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Abstract

A numerical code is presented to study the motion of an incompressible inviscid flow in a deformable tank. It is
based on a method belonging to the pantii@atment class, as the fluid and structural fields are solved by coupling
two distinct models. The fluid field is modeled by the Laplace equation and numerically solved by a Finite Volume
technique. The computatial grid is updated at each time step toetdkto account the movements of the free
surface and the deformations of the vertical walls. An unsteady finite element formulation is used for modeling the
tank on a grid discretized by triangular elements and linear shape functions. Results are presented for two different
cases: a flow induced by a perturbation on the free surface in a tank motionless; a flow in a tank forced to oscillate
periodically in the horizontal direction.

0 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The coupling of unsteady fluid flow and structure motion is an important field of computational
mechanics [1,2]. The behavior of the fluid flow and the structure are dependent on each other. The
development of numerical methods to solve these problems is a challenging issue. Accurate computation
of unsteady flow and concurrent updating of the fluid grid are required to calculate the fluid-structure
interaction. This issue is very interesting in the field of aerospace, even for possible applications to the
launchers of the next generations. In fact the problem of tank security is particularly felt, because spatial
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vehicles carry large quantities of fluids; when a tank is subjected to periodic forces, large amplitude
vibrations are induced along the walls. Besides, the fluid movement of the free surface, named as
sloshing, may induce a resonance condition if the oscillations are at a determinate frequency. A partially
filled tank will experience violent fluid motion when subjected to periodic forces containing energy in the
vicinity of the natural periods for the fluid motion inside the tank. Sidoshing is a typical resonance
phenomenon, it is not necessarily the most extreme external force that causes the most severe condition:
As a consequence, the study of ghashing is important in order to determine the structural requirement

of the tank. It is simple to observe that the fluid domain contours move under the action of the liquid
pressure, causing a variation of the fluid dynamics boundary conditions; therefore the study of the flow
field and the structural behavior cannot be treated separately, otherwise considerable errors could be
noticed.

The methodologies used for the solutions of fluid-structure interaction problems can be subdivided
into the following groups: field elimination [3], partition treatment [4] and simultaneous treatment [5].

In the first case, the structural calculus is decoupled from the fluid dynamics one by means of simple
integral transformations. The use of these methodologies is recommended only for linear problems with
few degrees of freedom. In the second case, the fluid and structural fields are solved using two distinct
models that are mathematically formulated on two different computational domains. These computational
domains are suitably interfaced for data exchanging. In the last case, an implicit coupling is performed
between fluid and structure. The governing equations are written independently using the most suitable
formulation for each field (e.g., finite volume for the fluid, finite element for the structure) and solving
simultaneously all the algebraic equations obtained.

In this paper we present a numerical code capable of simulating the motion of an incompressible fluid
in a two-dimensional domain bounded by elastic-deformable walls, with an open top surface mobile
and free. A partition treatment has been adopted, and two distinct mathematical models have been use
respectively for the fluid (CFD) and for the structure (CSD). Discretization of the governing equation for
the flow is conducted via a second-order finite volume technique on a grid with quadrilateral elements.
The grid is updated at each time step, keeping into account the movements of the free surface and the
deformations of the solid walls. The pressure distribution along the walls is interpolated using a second-
order polynomial approximation. The governing equations for the structure have been discretized with
an unsteady finite element formulation, using triangular elements with linear shape functions. As the
two computational grids are connected without continuity, the data exchange between the two solvers
is not immediate, but requires some interpolation operations. The data transfer from CFD to CSD is
realized by evaluating the forces acting on the nodes of the solid interface starting from the values of
the pressure in the nodes of the liquid interface. The data transfer from CSD to CFD is performed by a
simple data interpolation on the deformations. The fluid dynamics approach is proven to be efficient from
a computational point of view and flexible, as it allows to solve a large variety of problems, both at earthly
gravity and in microgravity conditions. A great accuracy in the time histories and mass conservation is
achieved [6]. The CSD solver is a traditional one, but it provides accurate results: in fact, the structural
deformation phenomenon is much more regular if compared with the fluid motion and therefore particular
care is not required.

In this paper a square tank whose walls are made up of steel is considered. The tank is filled with water
and the gravity acceleration is equal to the earthly value. Two different cases have been considered: a flow
induced by a perturbation on the free surface in a tank motionless; a flow in a tank forced to oscillate
periodically in the horizontal direction (forced sway oscillations).
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2. Mathematical model for the fluid dynamics

2.1. Formulation

The evolutions of waves on the surface of a fluid enclosed in a box is described by the equations
governing the motion of the flow and appropriate boundary conditions (CFD). As we consider containers
whose size is larger than the characteristic wavelengths, the surface tension and the viscous effects
are neglected, while non-linear free surface effects are taken into account. We consider the case of ar
irrotational incompressible flow in a rectangular two dimensional box (widthheight H) with an
open top free surface. We also assume that the amplitude of the oscillations is small if compared to
the wavelength of the perturbation and to the depth of the box. All the physical quantities are referred to
a coordinate system fixed with respect to the undeformed tank; so, in the case of a moving tank (forced
sway oscillations), the apparent forces must be taken into account. The fluid motion is governed by the
Laplace equation [7]:

3% 02
v 0% _
0x2 072
whereg is the potential velocity and the components of the velocity vacter w) are given by:

R10) R10)
= —, w=—.
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As illustrated by Fig. 1, we assume that the waves propagate alangthe free surface. Lef(x, 1)

be the function describing the wave height measured with respect to the undisturbed configuration. The
boundary conditions are imposed in the following way.

V2 = 0, 1)

u
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Fig. 1. Reference system for the fluid.
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e On the solid walls of the box the compatibility condition on the velocity field is:
Uu-n=us-n, (2

wheren is the outward normal to the boundary amds the velocity deformation of the wall.
e On the free surface, a cinematic and a dynamic conditions are imposed. The first one states that the
velocity of the surface must be equal to the vertical component of velocity:
dn 9 dn 3¢

o _t%  _o 3
at + a.x ax aZ (z=n) ( )

The dynamic condition states that the pressure on the free surface is equal to the external one. The
Bernoulli theorem can be successfully used; if the volume forces are reduced to the weight and the
external pressure is set equal to zero, we obtain [8]:

3 1[[90\% [3\? 3o
¥+§|:(£) +(¥) :|+g77+ P =0, (4)

whereg is the gravitational acceleratiof¢,./dt is the acceleration of the tank with respect to an inertial
coordinate system. Note that this last term vanishes if the tank is motionless. Fppadlyelated to the
relative velocity of the tank by the relation:

¢C:fu,dx.

This set of equations must be completed by suitable initial conditions to get a unique solution.

The Laplace equation (1) and the boundary conditions (2)—(4) have been set in non-dimensional form
assuming the width of the tank as reference length and the quantify/go)*/? as reference timegf
is the gravity acceleration at earthly level). The formulation presented here is independent of the tank
support condition. At the end of each time step, the liquid pressure on the solid walls is evaluated using
the Bernoulli equation [6]:

)]
P="%3r 72| \ox 9z 827 %

(the reference pressure for the a-dimensionalization is givesyiay).

2.2. Numerical implementation

A time-dependent algorithm has been used in order to obtain accurate true transient solutions. A Fully
Implicit approach has been adopted for the time integration in order to guarantee high stability to
the method. As shown in [9], this kind of approach represents a useful compromise among numerical
efficiency, robustness and flexibility in applications. Particular care has been adopted for the treatment of
the non-linear conditions on the free surface. The cinematic and dynamic conditions on the free surface
have been linearized by means of the following approximations:

0 9™ 0 1/0¢* 0

_77+_¢ _77__ _¢ +_¢ =0,

dt  ox ox 2\0z 0z

0 1ogp*d¢p 1o¢p*dp 1 w0
a0 20k 3x T23; as T2t =—50



E. Bucchignani et al. / Applied Numerical Mathematics 51 (2004) 463-475 467

where all the quantities are considered at the current time step, with the exception of the quantities marked
with a * that are considered at the previous time step. Few remarks can be made on this use of quantities
evaluated at the previous time step. For what concerns the @it and n respectively in the first

and second equation, the discrete form is obtained following the well-known Cranck—Nicholson formula
[10,11]. Concerning the quadratic terms, since they are all non-linear, a linearization is required in order
to approach the resulting algebraic problem with a linear solver. In this case one of the factors has been
frozen at the previous time step, reducing the problem to a linear one [12]. This technique guarantees a
good coupling between all the equations. As a result of the simplifying assumptions, the lack of viscosity
may cause an undesirable contribution from the high frequency components to the numerical solution of
the problem. This contribution is undesirable because the high frequency modes are poorly representec
in the discretized system. As a consequence, a dispersion error may develop in the numerical solution.
This effect may occur when the liquid is in the resonance zone or when the excitation level is relatively
high. Numerical dissipation could be used to damp out the high frequency wave components propagating
near the free surface, as proposed in [13]. However this strategy has not been considered in the preser
work, as our goal is the investigation of the system for small amplitude oscillations.

The Laplace equation has been discretized using a finite volume technique on a grid made up of
quadrilateral elements.The computational grid is updated at each time step, in order to take into account
the variation of the domain shape due to the movement of the free surface and of the solid walls.
A transient procedure requires particular care, as the mass conservation could be violated. The staggering
of the variable location provides the maximum accuracy of the discretized derivatives and ensures the
discrete conservation of mass at each time step. In fact, as shown in reference [14], it is possible to
obtain mass conservation to round off error if the horizontal velocity is located at the middle of the
vertical face of the computational cell and the vertical velocity is located at the middle of the horizontal
face. As a consequence, the potenpiad naturally located at the center of the cell. For what concerns the
boundary conditions, spatial derivatives are discretized using two-point backward differences, while time
derivatives are discretized using three-point backward differences. At each time step the original system
of partial differential equations gives rise to a large linear system of equations of tha.type, where
x is the unknown vector. The coefficient matAxhas a large sparse structure. The solution of this linear
system via a direct method is not recommended due to the size of the problem, so an iterative procedure
has been preferred: the Bi-CGSTAB algorithm [15], associated with a ILU decomposition of the matrix
A as preconditioner has been employed. The Bi-CGSTAB algorithm is an iterative method belonging to
the class of the Krylov subspace methods; it has been chosen for its good numerical stability and speed
of convergence even in dealing with non-symmetric problems, as shown in Refs. [16,9].

3. Mathematical model for the structure

When the walls of a tank are thin, their vibrations under the effects of variable liquid pressure cannot be
neglected. In this case it is essential to develop a mathematical model (CSD) that keeps into account the
deformations of the walls. It is assumed that the tank is made up of an elastic isotropic material and that
the constitutive law is the Hook’s one. The governing equations for the structure are the usual undefined
equilibrium relations for continuous media. Under these hypothesis, a finite element discretization of the
tank can be performed. If the displacement of the structure changes in the time, it is necessary to keep
into account the inertial forces and the frictional resistances opposing the motion. These may be due to
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microstructure movements, air resistance etc. As a consequence, the equilibrium general condition for
the structure in a Finite Element formulation assumes the following expression [3]:

Ma+ Ca+ Ka=f,

wherea is the displacement vectadf, C and K are respectively the mass matrix, the damping matrix
and the stiffness matrixX; is the force vector. All the matrices are obtained by assembling the matrices
related to each element(®, C¢ andK¢). K¢ is obtained in accord with Ref. [17] as:

Ke:/BTDBds,

whereB is the strain-displacement matrix afds the material matrix (depending on the Young modulus
E and on the Poisson coefficienof the material).M¢ is given by:

Me:/NT,oNds,

wherep is the density and/ is the shape function matrix. The definition®@f is in practice difficult and
therefore it is assumed th&¥ is a linear combination of stiffness and mass matrices; that is:

C*=aM’+ BK®,

wherea andg are determined experimentally.

The spatial discretization of the structure has been performed using triangular elements with linear
shape functions (Fig. 2). The discretization of the time derivatives has been performed using Finite
Difference approximations with a three-point formula for the second-order derivative and a two-point
formula for the first-order derivative. Also in this case, the large sparse linear systems arising from
discretization at each time step are solved using the Bi-CGSTAB algorithm without preconditioning.

4. Coupling between fluid and structural fields

The methodology used here for the solution of the fluid-structure interaction problems belongs to
the partition treatment class. As described above, in a general approach the CFD and CSD solvers
use different formulations and discretizations. The two computational grids are not continuously
interconnected, in the sense that the nodes on the interface of the fluid domain do not coincide with
the ones of the interface of the solid domain (Fig. 3). Therefore, the data exchange between the two
solvers is not immediate, but requires some interpolation operations. The data transfer from CFD to CSD
is realized by evaluating the forces acting on the nodes of the solid interface starting from the values of
the pressure in the nodes of the liquid interface. This operation must be performed carefully, in such a
way that the global energy of the system is conserved. The forces acting on the CSD nodes are [18]:

F; =/—Nipind5,
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Fig. 2. An example of structural computational grid.

Structural | Fluid dynamics
grid grid

Fig. 3. Solid-fluid interface.

where the pressurg in the CSD nodes is the integral of the liquid pressure on the faces of the CSD cells
(Fig. 4) [19]:

xi+Ax/2

1
pi= s / p(x) .

xi—Ax/2

Otherwise, in many practical problems the liquid pressure distribution is rather regular and so it is
convenient to have an analytical representation of the pressure distribution by means of a polynomial
interpolation; in this case a second-order polynomial is adopted.
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Fig. 4. Pressure distribution on a cell face.
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Fig. 5. Scheme of the domain with elastic walls.

The data transfer from CSD to CFD is less difficult and is performed by a simple data interpolation on
the deformations. This is due to a better regularity of the physical phenomenon of structural deformation
with respect to the pressure fluctuations.

The time-stepping algorithm works as follows. First, the partition method that we have developed
performs a fluid dynamics simulation and the pressures on the solid walls and displacements of the
points of the free surface are evaluated. Then, data are transferred to the CSD solver and the structura
simulation is performed, in order to evaluate the deformations of the tank. These values are transferred
to the CFD solver to update the boundary conditions. Besides, it is now possible to draw the new shape
of the CFD domain and to update the computational grid, performing a new time step and continuing the
time marching procedure with a new CSD simulation (performed on the grid which has been updated on
the basis of the previous deformations).

5. Results

The test cases presented herein assume that the undeformed tank is a squdre=kigx<{ 1 m)
(Fig. 5), that the gravity acceleration is equal to the earthly value and that the tank is filled by water
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(p = 1000 kgnt?). The vertical walls are made up of stedl & 198 x 10° Pa, v = 0.3) and are
characterized by a square section with size 5 cm. The horizontal wall is rigid and the frictional
resistance opposing the motion is neglected. For the CFD solver, a grid witk 101 nodes has been
adopted, while for the CSD solver an unstructured grid of 552 nodes and 877 elements, generated by the
commercial code ANSYS 5.7 is used. The time step is°X@on-dimensional units).

5.1. Tank motionless

In the first case, we assume that the tank is motionless and the fluid motion is induced by a perturbation
on the free surface. The fluid is initially at rest, while the free surface has the following initial shape:

2
n(x, 0) = 0.005. cos(T”x),

with A =L/2, L/4, L/6. This test case has been chosen because many theoretical and numerical results
are available in literature for the case of a rigid tank [20,21,8,22,23] so we are interested in the evaluation
of the influence of deformable walls on the solution. In a rigid tank, the initial perturbation causes the
points of the free surface to oscillate in a sinusoidal way with a frequency givghw/g /27 A [20].

In the present case, for each of the three values, af similar behavior is registered, but the values of
frequencies (Table 1) are different from the theoretical ones being the difference between 4% and 7%.
Figs. 6, 7 and 8 show respectively the transient history of the horizontal displacement of a grid point
located on the left wallaf =1 m, forh = L/2, L/4 andL /6. The analysis of these signals reveals that

Table 1

Main oscillation frequencyf§), minimum and maximum displacement of the left vertical wall, oscillation frequency of the free
surface {z), error on the continuity equation as a functiomof

A fs Min. displ. Max. displ. fs Err.
L/2 0.5489 —1.3623x 103 —1.37491x 103 0.5446 207 x 10-10
L/4 0.7324 —1.3756x 103 —-1.36292x 103 0.7374 567 x 10-10
L/6 0.8544 —1.3742x 1073 —1.36385x 103 0.9074 871x 10710
TN soorse
-0.001364 _0.001364 ﬂ [ ﬂ [\
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Fig. 6. Tank motionless: transient history of the horizontal Fig. 7. Tank motionless: transient history of the horizontal
displacement of the point located on the left walyat 1 m, displacement of the point located on the left walyat 1 m,
fora=1L/2. fora=1L/4.
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Fig. 8. Tank motionless: transient history of the horizontal Fig. 9. Tank motionless: average deformed configuration of
displacement of the point located on the left walyat 1 m, the vertical walls fon. = L /2.
fora=L/6.

also the vertical walls oscillate in a periodic way. Roe L /2 only one frequency is observed, while for
A= L/4 andL /6 a second low frequency appears, whose value is a quarter of the main one.

Table 1 reports the values of the main frequency of oscillation of the grid point located on the left
wall at y =1 m (fs), with maximum and minimum value of the displacement (non-dimensional units).
The fourth column indicates the value of the main frequency of oscillafigrof a point on the free
surface §(0.25, ¢)). Besides, for each case the maximum error on the continuity equation is evaluated by
calculating the difference between the domain area at each time step and the origifial éhe

The values of the displacements of the vertical walls are compared to the ones obtained using the
commercial code ANSYS 5.7, considering a cantilever beam subjected to a distributed pressure equal
to the one produced by the liquid. The comparison shows a good agreement, because the difference i
less than 1%. Fig. 9 shows the average deformed configuration of the vertical walis &¢/2. The
scale of the horizontal displacements is quite different from the scale of the vertical extension of the
walls, in order to better visualize the deformations. Fig. 10 shows the LIC (line integral convolution)
representation at the time= 12.288 forA = L /2. It has been performed with the software visualization
FLOVIS [24], and gives an idea of the particle trajectories during the oscillations.

5.2. Forced sway oscillations

In this case, we assume that the tank is forced to oscillate harmonically along the horizontal direction.
A partially filled tank experiences violent fluid motion when subjected to periodic forces containing
energy in the vicinity of the natural periods for the fluid motion inside the tank. The problem of
small horizontal oscillations was extensively investigated in the past [21,8] for rigid containers. It has
been shown that the response is the same as that of the undamped Duffing equation and changes fror
soft-spring (decreasing amplitude with increasing frequency) to hard-spring (increasing amplitude with
increasing frequency) behavior as the ratio depth—width passes through a certain value. It is of course
interesting to analyze the behavior of the system when the walls of the tank are no more rigid, in
order to understand the influence of wall elasticity on the phenomenon. Unfortunately, experimental
and numerical results related to this case are not available in literature for comparison. Thus, our results
have to be considered as preliminary ones and the error that affects them has to be better quantified
The amplitude of the excitation is set equal to 0.005 non-dimensional units, while the circular frequency
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Fig. 10. Tank motionless: LIC representation foe L/2 atr = 12.288.
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Fig. 11. Forced sway oscillations: wave elevatig0.025, r) as a function of time ab = 0.5.

of the external oscillatio is varied between.@ and 06 non-dimensional units. For each simulation,

a periodic oscillation of the vertical walls and of the free surface was found. Fig. 11 shows the free
surface elevation as a function of time fer= 0.5. The maximum free surface elevation is evaluated

and compared to the same values obtained in a rigid container [6]. These results are reported in Table 2
The comparison shows that in both cases the maximum valugi®fgrowing with w and the curve
interpolating the available points clearly traces to the upper stable branch of an hard-spring amplitude
response. However, even if the values are not really different, the tank with elastic walls seems to produce
waves with larger amplitudes.
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Table 2

Maximum free surface elevation in the present case and in the case of rigid tank as a funetion of
10) Max n Max 7 (rigid walls)
0.1 2.8320x 10°° 2.6912x 10°°

0.2 16912x 104 1.6830x 104

0.3 3.7890x 104 3.4513x 1074

0.4 7.4913x 1074 7.0477x 1074

0.5 13812x 1073 1.0700x 103

0.6 16613x 10°3 1.4904x 103

6. Conclusions

A numerical code for the study of the motion of an incompressible inviscid flow in a deformable
tank has been presented. It is based on a method belonging to the partition treatment class, as the
fluid and structural fields are solved by means of two distinct models. The fluid field is calculated by
numerically solving the Laplace equation by a finite volume technique on a computational grid updated
at each time step. The tank has been modelized by means of an unsteady finite element formulation
using triangular elements and linear shape functions. The partition methods feature the advantage tha
also two commercial codes can be coupled, but are probably less accurate with respect to the methods o
the simultaneous treatment class. Numerical results have been presented considering two cases: a tank
motionless where the top surface is free and oscillates under the effects of perturbations; a tank forced
to oscillate along the horizontal direction. In the last case, the external excitation frequency is varied in
a range placed below the first natural frequency. The tank with elastic walls seems to produce waves
with larger amplitudes with respect to the tank with rigid walls. The numerical code revealed to be very
effective as it is very fast and guarantees the respect of the mass conservation. However the problems
under investigation are very complex and require a deeper analysis, that will be the topics of future
research.
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