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The thermal diffusivity measurement through pulsed photodeflection in a modified collinear 
configuration is presented and discussed; comparison between theory and experiment is also 
shown. 

I. INTRODUCTION 

The photothermal deflection method in its collinear 
configuration with a pulsed pump beam has been used to 
measure low absorption ( z 10d6 cm-‘) coefficients.1-3 
For the determination of thermal diffusivity, the technique 
is used with a periodically modulated pump beam.4 Alter- 
natively a pulsed “flash” method is currently used;sP6 how- 
ever this method is not useful for thin samples. 

In the present article it is shown how the photothermal 
deflection in collinear configuration can be used with a 
pulsed beam to measure the thermal ditksivity by studying 
the time evolution of the deflection signal in a very simple 
way which also allows one to determine the thermal spot 
size dimension. In this method the time f,, at which the 
detkction of a probe beam, traveling at some suitable dis- 
tance from the pump beam, reaches its maximum value is 
measured. 

.4fter some theoretical considerations and numerical 
simulations, the method is applied to the experimental 
measurement of thermal diffusivity of a glass sample giving 
results in excellent agreement with previously known 
values. 

II. TIHEORY 

The problem of the determination of the temporal be- 
havior of the photodeflection signal in collinear configura- 
tion for a pulsed pump has been discussed for some time.lP2 

In this configuration (Fig. 1 ), the expression for the 
deflection angle along the radius r is given by 

1 an 

s 
a T( r,t)dz, 

path ar 
(1) 

where n is the refractive index, War is the derivative along 
the direction perpendicular to the ray path z, and T (r,t) is 
the temperature increasing. The determination of the ther- 
mal field is obtained solving the Fourier equation for the 
ith medium, 
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where Di, ki, and Wi( r,t), respectively, are the thermal 
diffusivity, thermal conductivity, and the power density 
transformed into heat in each ith medium. Because the air 
is transparent, the only source term is WI, which for a 
pulse of duration to can be written 

w,(rJ)=Fexp[ -I(f)‘-o.z]ftO(f), (3) 

where a is the pump spot-size, r= ( 1 -R), R is the reflec- 
tion coefficient at the interface between air and the sample, 
a is the absorption coefficient of the sample, E is the pulse 
energy, and fro(r) is the temporal form factor of the pulse 
which is defined such that 

s ca fto(t)dt= 1. 

Using Laplace transforms to solve Eq. (2) for a slab of 
length L, we obtain 
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FIG. 1. Schematic representation of the configuration. 
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where T( r,z,s) and F(s) are, respectively, the time Laplace 
transform of the sample rise temperature and of the tem- 
poral form factor, fll = Jm, and 6 is the spatial 
frequency. It should be noted that Eq. (4) is applicable if 
the heat diffusion in air is neglected. This happens when 
the ratio between the thermal effusivities of sample 
and air is larger than one [e,/e,, 1, where ei = ki/ fi 
= ,,/=I. Th’ is condition is usually verified for many 
solid samples due to the low value of k. and ( PC)~. 

Therefore, by using Eqs. ( 1) and (4) and neglecting 
the deflection in air [the efficient path in Eq. ( 1) is from 
z=O to z= L], one obtains the time Laplace transform of 
the deflection angle, 

1 an 
@(r,s)=---EF(s) 

TE[ 1 -exp( -aL)] 
2n-k, 

m 
X 
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s2J,(&)exp[ - (&2)‘/8] 
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By the use of the inverse Laplace transform and integrating 
over S, the deflection angle for a pulse in the form of a 
Dirac delta function is given by 

1 dn 8rEDi[l-exp(-cxL)] 
*(r,r) = -; p 

h 

X 
rexp[ -2?/(a2+8Dlt)] 

b2+*D,Q2 ’ 
(6) 

where D, is the sample thermal diffusivity, r is the distance 
between the two beam axes, and kl is the sample thermal 
conductivity. 

Studying Eq. (6) one sees that the form of a,( r,t) has 
two maxima as a function of r located symmetrically with 
respect to r=O, for which d@ (r,t)/dr=O, at positions 

,/a2+8Dlt 
r -* max - 2 * (7) 

On the other hand, studying the time behavior of @(r,t) 
[Eq. (6)] one can see that the deflection angle reaches a 
maximum value at t=O, if r < a, while for r> a, it has a 
maximum at a later time tmax given by 

?-a2 
t max=- 80, * 

This behavior shows that the delay with which @( r,t) 
reaches its maximum value, with respect to the time (t=O) 
at which the pump pulse is applied, exists starting from a 
minimum distance r,i, = a between the probe and pump 
beam. For smaller values of r, the deflection has its maxi- 
mum at t=O. 

Equation (6) has been derived for an ideal probe beam 
of zero size (single ray). Taking into account the probe 
beam spot size b one obtains the expression (see Appendix 
A) 

1 dn 8rED1[1-exp( -aL)] 
G(r,t> = -n do 

nkl 

X 
rexp[ -2?/(a2+b2+8Dlt)] 

(a2+b2+8D,t)’ ’ 
(9) 

Equation (9) shows that the deflection is given by an ef- 
fective spot size 

a&=a2+b2. (10) 

Finally, for a pump beam with a pulse of finite time 
duration to and rectangular shape, by using Eq. (5) one 
obtains 

1 &z TE[ I-exp(-oL)] exp[ -2?/(&+8Dlt)] -exp( -2?/&) 
--- ?lC3T 2vklto 

, O<t<t,, 
@E 

1 an TE[l-exp(-aL)] exp[-212/(&+8D~~)]-exp{-2?/[&+8Dl(f-to)l) 
(11) 

-- t,t 
r 0. 

From the previous results one sees that at a distance r > aeff 
from the pump beam axis it is possible to have a deflection 
signal which reaches its maximum value at some time t,,, . 
In the case in which tmax)to and for r> Q, Eqs. ( 11) and 
(9) give for the thermal diffusivity of sample practically 
the same result, 

D 
1 
=?- (u2+b2) 

*tmax * 
(12) 
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In a typical experiment tmax and r can be measured, 
while & is not known exactly. If D, has to be determined 
through Eq. (12), a number of determinations of t,,, is 
made as a function of r. A plot oft,,, as a function of 3 is 
a straight line whose slope is 80, while the intercept at 
t max=O is g=a&. In this way both the diffusion constant 
and the effective spot size are determined. 

In Fig. 2 are shown the results of the theoretical cal- 
culation of the deflection angle a, reported to its maximum 
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FIG. 2. Theoretical results of the deflection angle reported to its maxi- 
mum value a(t)/@,,, vs the time delay f (ms) for different values of the 
pump-probe distance r ( D, =0.005 cm*/s, a,=70 pm): ( 1) r= 35 pm; 
(2) r=75 pm; (3) r=80 pm; (4) r=90 pm; (5) r=l@) pm; 
(6) r= 110 pm. 

valule, as a function of time for six different values of r, by 
the help of Eq. (9). It is evident that the maximum signal 
value position is very sensitive to the r value for r > a,, . 
Figure 3 shows that a change of 20% of the thermal dif- 
fusivity value results in a corresponding change of the tmax ; 
therefore, Eq. (9) is sensitive to any change of D, . Figure 
4 shows the theoretical results (see Eq. 11) of the deflec- 
tion angle as a function of the distance between the centers 
of the two laser beams r for different observation times and 
different pulse time lengths. Note that the space maximum 
of deflection signal depends on the observation time, while 
it is insensitive enough to the pulse time length to. The 
different slope of the curves is due to the heat diffusion. 

III. E:XPERIMENTAL SETUP 

The experimental setup is shown in Fig. 5. A beam 
from an Ar laser model Coherent Innova 70 has been used 
as a Ipump with an exit spot size of 0.75 mm, focused down 
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FIG. 3. Theoretical results of the deflection angle reported to its maxi- 
mum value @( t)/am, vs the time delay t (ms) for different values of the 
samplediffusivity D, (cr,=70~m, r=9Opm): (1) D,=O.O04cm*/s; (2) 
D, =CK)O5 cm2/s; (3) D, =0.006 cm2/s. 
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FIG. 4. Theoretical results of the deflection angle reported to its maxi- 
mum value a(t)/*, vs the pump-probe offset r for different observa- 
tion times and different pulse time lengths (a,=40 pm, D, =0.005 
cm’/s): (1) t=l ms, to=1 ps; (2) f=l ms, fo=2C0~s; (3) t=l ms, 
fo=5COps; (4) t=5 ms, too=1 ps; (5) 1=5 ms, fo=200~s; (6) t=5 ms, 
to= loo0 p. 

to 42 pm from lens L, of focal length 0.2 m on an acousto- 
optic modulator from Hamamatsu. A diaphragm D is used 
to select the modulated beam that is sent on the sample 
through a moving mirror M, which is moved along the z 
direction so as to shift the pump beam on the sample with 
respect to the probe beam along the r direction. The probe 
beam comes from a He-Ne laser with a spot size at the exit 
of 0.4 mm. The probe is expanded four times by a beam 
expander BE and then is focalized by lens L, of focal 
length 0.1 m on the sample. The spot size on the sample is 
bo= 22 pm and the Rayleigh length is zb= 0.24 cm. 

An interferential filter IF selects only the probe beam 
to be detected by the position sensor PS. The focal lengths 
of lenses L, and L, are chosen so to have a spot size on the 
sample ao= 15 pm, a value nearly equal to the spot size of 
the probe beam. 

The pump Rayleigh length is, in this case, z,=O.145 
cm. The lens and the mirror M are mounted on a micro- 
metric translator TLF8 Micro Control that allows one to 
perform a spatial scanning along the r axis. 

The sample S is put on a similar translator which 
moves it along the z axis so as to change the spot sizes of 
both the pump and probe beams according to the relations 

FIG. 5. Experimental setup. 
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FIG. 6. Experimental results of the deflection signal reported to its max- 
imum value GY(r)/AV,,,,, vs time delay I (ms) for a glass doped with 
Cd.%CdSe for different values of the pump-probe offset r (r,=O.5 ms, 
Ppuk=0.2 W): (1) r=30 pm; (2) r=70 pm; (3) r=80 pm; (4) r=90 
pm; (5) r=lCOpm; (6) r=llOpm. 

b(z) =bo  ,im, 

u(z) =a0 l/m. 
(13) 

A position sensor was used to detect the probe beam de- 
flected by the sample heating. Its output is sent to an os- 
cil loscope and a digital TV set. 

Special care has been used to have the pump and probe 
beams in the same plane in which the deflection is pro- 
duced by the heating of the sample; in our case the r-z 
plane. 

IV. EXPERIMENTAL RESULTS 

The method has been applied to measure the thermal 
diffusivity of a  borosilicate glass doped with particles of 
CdS,+e,-,. The sample had 0.3 cm thickness. The probe 
beam was weakly absorbed (a=4 cm-‘) while the pump 
beam was strongly absorbed (a=: 102-lo3 cm-’ at 488 nm 
wavelength). 

The optical penetration length of the pump beam is 
IO-100 pm, which is much shorter than the Rayleigh 
length (z,= 1450 pm) so we can consider the spot size 
inside the sample to have a fixed value even if the sample is 
not in the focus. 

The peak power of the pulses of the Ar laser was 
PP,=0.2 W , with a pulse time duration fo=0.2-0.5 ms. 

In Fig. 6  the deflection signal of the probe beam as a 
function of time is given for different distances r between 
the axis of the probe and pump beams ( l-2-3-4-5-6). The 
starting point r=O where pump and probe are superposed 
is easily found because it is the position in which the de- 
flection signal goes to zero. 

All curves have been normalized to their maximum 
value. The time t=O on the plot corresponds to the time at 
which the pump pulse ends. 

Curve 1 has been taken in the position r=d= 30 ,um at 
which a maximum value of the effective deflection signal 
occurs (see Fig. 7)) while tmax = 0 causes d < aeff [see Eq. 

o!,,,,,,,?,,a,,,, 
-90 40 -40 20 0 20 40 80 

r dum) 

FIG. 7. Experimental results of the effective value of the deflection signal 
reported to its max imum value AV,,,( r)/AV,,,,, vs pump-probe offset r 
(pm) (ro=0.2 ms, Ppeak- -0.2 W): (Cl) 2=0.17 cm; (+) z=O.37 cm. 

(8)]. By increasing the distance r, the curves become wider 
and the value tmax shifts to longer times. 

Figure 7 gives the effective value of the deflection sig- 
nal measured with a lock-in amplifier as a function of r for 
two different values of the vertical offset z. The experimen- 
tal results take into account a time average performed be- 
cause of the integration time of the detection system (see 
Appendix B). By increasing z and accordingly aeff, the 
distance 2d between the two maxima of the,effective de- 
flection signal increases due to the relation 

d=a+ff y (14) 

where y(8D,T,,,/a&) is the corrective function (see Ap- 
pendix B) (plotted in Fig. 12) which always is greater than 
1 (1 < y< 1.5852), and Tavs is the time integrating con- 
stant of the detection system. 

The values of time at which the deflection signal 
reaches its maximum value, tmax, as a function of rz for a 
pulse duration to=0.5 ms and for five different z values are 
shown in Fig. 8. By increasing z and accordingly aeff, the 
slope does not change and the curves only shift parallel to 
each other in agreement with Eq. ( 12). 

In Fig. 9  the behavior of tmax as a function of the pulse 
time length to is shown for several values of r at fixed z 
(z=O.3 mm). By increasing to, t,,, decreases according 
with Eq. (11). 

V. DISCUSSION 

From Eq. (12) we see that, when the center of the 
probe beam is at a  suitable distance r from the center of the 
pump beam (r > ,/m), the time needed for the de- 
flection signal to reach its maximum value tmax depends on 
the square of the distance r in a linear way, 

TZ=Clt”ax+C2, (15) 

where c, = 8 D, and c2 = azE= a2 + b2. 
The curve ?=f( tmax) is therefore a straight line with 

a slope proportional to the sample diffusivity, given by 
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FIG. 8. Experimental results of the square pump-probe distance ? (cm2) FIG. 10. Experimental behavior of the square of the pump-probe offset ? 
“S r,Lax (s) for different values of the vertical offset z (~,=o.s ms, (cm’) with respect to the delay time tman (s) for different vertical offset z 
P ,k=O.2 W): (0) z=O cm; (X) 2=0.03 cm; (+) z=O.17 cm; (4) 
2=0.37 cm; (A) z=O.47 cm. 

(to=0.5 ms, P,,=O.2 W): (Cl) z=O cm; (X) z=O.17 cm; 
(+)=0.47 cm. 

A? 
-=c,=8D,, 
Atmax 

16) 

while the intercept with the I’ axis, obtained for t,,=O, 
only depends on the effective spot size 

3(t,,,=O) =c2=u2+b2=& (17) 

Figures 10 and 11 show the experimefital slopes for 
different values of z for two different pulse lengths: t,=O.S 
ms (IFig. 10) and t,=O.2 ms (Fig. 11). Different values of 
z mean different positions of the sample along the z axis, 
i.e., different values of a(z) and b(z) [see Eq. (13)]. The 
continuous straight line is the result of a linear interpola- 
tion of Eq. ( 15) using the least-squares method. Note that 
by increasing z, i.e., a2 (z) + b2 (z) , the curves remain par- 
allel to each other and only shift upward. Such behavior 
shows a good agreement between theory and experimental 
results. 

o! 
0 0.2 0.4 0.5 0.8 1 1.2 

t, (msec) 

FIG. 9. Experimental behavior of the delay time tmai (ms) with respect to 
the pulse time length to (ms) for different values of the pump-probe offset 
r (Ppe,k=0.2 W): (0) r=80 pm; (+) r=65 pm; (+) r=60 pm. 

L (set) 
14 

In Table I are shown the values of D, and a, (col- 
umns 3 and 8), for different z values and for two different 
pulse lengths to (columns 1 and 2), and the distance 2d 
between the two maxima of the effective deflection signal 
(column 4) obtained from the experimental data by using 
Eqs. ( 16) and ( 17). The calculated y corrective function is 
reported in the column 5; the spot sizes of the two beams 
a(z) and b(z) calculated by the use of Eq. ( 13) are given 
in columns 6 and 7. 

Finally, a comparison between the effective spot size 
u&z), obtained with different formulas [Eqs. (14) and 
(13)] (columns 9 and 10) and the value obtained by the 
experiments (column 8)) is given showing a very good 
agreement. 

An excellent agreement is also found between the val- 
ues of thermal diffusivity measured with this method (col- 
umn 3) and the ones obtained with the traditional photo- 

0 I 
0 0.031 0.002 0.003 O.W4 

L (set) 

FIG. Il. Experimental behavior of the square of the pump-probe offset ? 
(cm2) with respect to the delay time t,, (s) for different vertical offset z 
(f0=0.2 ms, P,,,=O.2 W): (continuous line) linear interpolation; (+ ) 
z=O.17 cm; (X) z=O.37 cm. 
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TABLE I. Experimental data: In each row seven different experiments are shown, in each column all calculated parameters are reported. 1: time pulse 
length to (ms); 2: vertical offset z (cm); 3: sample diffusivity D, (cm2/s) obtained as c,/8, 4: the distance 2d (pm) between the two maxima of the 
effective deflection signal; 5: the calculated y corrective function; 6: pump beam spot size [Eq. (13)] 7: probe beam spot size [Eq. ( 13)]; 8: estimate of 
the effective spot size a,, (pm) through Bq. (17); 9: estimate of the effective spot size c,e ( p m) through Eq. (14); 10: estimate of the effective spot size 
4s (pm) through Eq. (13). 

1 2 

to Z 

bs) (cm) 

0.2 0.17 
0.2 0.37 
0.5 0 
0.5 0.03 
0.5 0.17 
0.5 0.37 
0.5 0.47 

3 

D,$ 

0.005 1 
0.0053 
0.0047 
o.cQ50 
0.0050 
0.0049 
0.0049 

4 5 

& Y 

40 1.19 
60 1.106 
38 1.42 
40 1.38 
52 1.26 
64 1.15 
74 1.14 

6 7 8 9 10 
a(z) b(z) QAZ) Qdz) 
0.4 (pm) (pm) (2, (wd 

Eq. (13) Eq. (13) Es. (17) Eq. (14) El. (13) 

23 27 35 33.5 36 
41 40 54 54 58 
15 22 23 26.5 26 
15.5 22 27 29 27 
23 27 47 41.5 36 
41 40 66 55.5 58 
51 48 70 65 70 

thermal deflection.7-9 Note that this value is nearly 
insensitive to a bad focalization of the two beams on the 
sample. 

VI. CONCLUSIONS 

We have applied the photothermal deflection method 
in a modified collinear configuration with a pulsed pump 
beam to measure the thermal diffusivity of a transparent 
sample (with respect to the probe beam). In this method 
the time at which the maximum deflection of the probe 
beam traveling at a suitable distance from the pump is 

detected. We have taken into account the finite dimension 
of the probe beam and studied the effect of a nonperfect 
focalization of the beams on the sample. A very easy and 
accurate measurement of the thermal diffusivity can be 
performed in this way. 

APPENDIX A 
Starting from the relationship for the deflection angle 

of a single ray (Dray one may calculate the deflection angle 
of a beam QPbeam by adding the individual deflections of 
each ray weighted over the beam intensity profile. Assum- 
ing a Gaussian profile with a spot size b, one can write” 

ar,,(xr t) = .f~~~@ray(6y%t) exP(-2[ (X-02+ (y-~)2]/b2}d~ dq , , 
kf”: exP-&2[+~)2+(y-~)2]/b2}d~d~ ’ 

where C= (xy) is the probe beam center and r = (&q) is the position of the single ray. By using the polar coordinates 

r= &T$, q=arctan f , 

p= Jm, qO=arctan z, 

one determines that the deflection occurs along the r direction between the centers of the two beams, with intensity given 
by 

2 
s 

+CU 
Qbeam(r,t) =a 

-03 
@,,(p,tlp exp( -2 q~)dp jiff exp~cos(p--~o))cos(B--po)d~o 

=$ev( -2;) s,‘” %.&,t)p ap( -2 $)~l($)dp, 
which, by the use of Eq. (6)) becomes 

1 &I 8TED,[l-exp(-cd)] 4.fz”p2exp{--2[p2(u2+b2+8Dlt)/b2(u2+8Dlt)]}II 
*,,(r,t) = -- - 

nar 7% b2(a2+8LW2 
9 
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which under integration” gives 

=@,,y(r,t) l&o2+@. 

Therefore, the beam deflection is equal to the deflection of 
the single ray traveling through the center of the probe 
beam when the pump spot size is 5 = dm. 

APPENDIX B 

The relationship between the deflection angle Q(r,t) 
and the effective deflection angle Qavg( r) at the output of a 
lock-in time integrating system is given by 

avg a,( r,t)dt, 

where Tavg is the time integration constant. By usmg Eq. 
(9), one obtains 

1 an 8rED,[ l-exp( -aL)] r 
$&)=--,~ 

h T a% 

/ -23 \ 

X 
s 

T exp 2 
at3 I aeff+8Dlt 1 

0 (a:f+8D,t)2 dt 

1 &z rE[l-exp(--aL)] 
= --- 

nar 2rrk, 

ew t2 -2rz 

X 
a,,+ 801 Tavg 

rTavg 

The effective deflection angle Qa,(r) has its maximum 
value for r,,= d (see Fig. 7), which could be calculated 
by the solution of &D&r)/&=0 giving the relation 

d=$ y(x) with 1 <y(x) < 1.585, 

whe.re y(x) is a corrective function taking into account the 
heat diffusion, given by 

._ 

145- 

1.4 - 

5 1.35 - 
.- 

‘4 
2 

9 .- 

Y  

i 

0 2 4 8 

X 

FIG. 12. The representation of the corrective y function vs its argument 
x = 8 D, T,,,/& 

(x+1)(1/2+1) A! 
g+x+1 

=exp ~ ( 1 2(x+1) ’ 
where x = 8 D, T,,,/a& . Figure 12 shows the plot of the 
function y(x). A numerical calculation put into evidence 
that y(x) has an increasing monotonic behavior and its 
values are in the range 1-1.585. 
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