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We address the issue of the scaling of the anisotropic components of the hierarchy of correlation
tensors in the logarithmic region of a turbulent boundary layer over a flat plate, at Re��15 000. We
isolate the anisotropic observables by means of decomposition tools based on the SO�3� symmetry
group of rotations. By employing a dataset made of velocity signals detected by two X probes, we
demonstrate that the behavior of the anisotropic fluctuations throughout the boundary layer may be
understood in terms of the superposition of two distinct regimes. The transition is controlled by the
magnitude of the mean shear and occurs in correspondence with the shear scale. Below the shear
scale, an isotropy-recovering behavior occurs, which is characterized by a set of universal exponents
which roughly match dimensional predictions based on Lumley’s argument �J. L. Lumley, Phys.
Fluids 8, 1056 �1965��. Above the shear scale, the competition between energy production and
transfer mechanisms gives rise to a completely different scenario with strong alterations of the
observed scaling laws. This aspect has significant implications for the correct parametrization of the
anisotropy behavior in the near wall region since, approaching the wall, an increasingly larger
fraction of the scaling interval tends to conform to the shear-dominated power laws. © 2008
American Institute of Physics. �DOI: 10.1063/1.2898659�

I. INTRODUCTION

Most turbulent flows encountered in nature or in techno-
logical applications are intrinsically anisotropic, which are
sustained by mechanisms such as mean velocity gradients,
rotation, or stratification. In many circumstances, additional
complications are introduced by the presence of physical
boundaries. Unfortunately, a solid theory has been developed
only under the simplifying assumptions of homogeneity and
isotropy.1 Beyond this situation, description of turbulence
statistics is much more limited, even if valuable results have
been obtained for specific problems with ad hoc assump-
tions. Yet, improving the characterization of the anisotropy
effects on the flow structure is not only of great theoretical
importance, but is also a key ingredient for the development
of reliable tools for flow prediction.2

As well known, most popular numerical methods, either
large eddy simulations or Reynolds averaged Navier–Stokes
�RANS� equations, do not perform well in many cases of
practical importance, in particular, when the mean deforma-
tion rate is comparable or larger than the inverse turbulent
time scale. The basic reason behind this failure has to do
with a poor characterization of the velocity field anisotropy,
which is usually done only in terms of few global indicators.
In many models, anisotropy effects are simply neglected by
relying on Kolmogorov phenomenology in which turbulent
fluctuations become isotropic at the small scales of high Rey-
nolds number flows, regardless of the detail of forcing and
boundary conditions.1 This picture, which is considered a
good working approximation until recently, is getting pro-
gressively refined. Actually, the possibility of persistence of

anisotropy in the small scales was clearly recognized in a
few papers in the 1990s.3,4 More recently, numerical and
experimental works5–7 confirm that anisotropy may persist in
shear flows even at very high Reynolds numbers. In any
case, in the presence of strong anisotropy, the very basic
premise to Kolmogorov theory is questionable, i.e., no suffi-
ciently large number of cascading steps may exist through
which the forcing-dependent properties are progressively
smeared out. In these conditions, important departures from
Kolmogorov predictions are expected over the entire range
of scales.

The most appropriate tool to discuss departure from isot-
ropy is based on a general decomposition of tensor fields in
terms of certain basis functions able to probe increasingly
complex levels of anisotropy, the so-called SO�3� decompo-
sition �see Ref. 8 for a comprehensive review of the subject
in the context of turbulence�. For a scalar, this approach re-
duces to a standard expansion in spherical harmonics where
the basis functions are hierarchically organized in sectors
progressively numbered j=0,1 , . . . �see, e.g., the ordering of
orbitals in the hydrogen atom�. Each sector j is a subspace
spanned by 2j+1 spherical harmonics Y jm, which is invariant
under rotations and is characterized by a certain type of an-
isotropy. The extension of these concepts to tensor fields has
proved useful in the past decade to rationalize the issue of
small scale isotropy recovery in turbulent flows.9–18 The ma-
jor conclusion of these investigations is that, under weak
anisotropy, a universal route to isotropy recovery exists, with
the isotropic component of the velocity field always provid-
ing the leading contribution to the expansion at small scales.
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Our purpose here is to investigate how a strong shear
alters this nowadays well established pattern to understand
how anisotropy may persist in the small scales of high Rey-
nolds number shear flows. This issue has been addressed
numerically in a recent paper by means of direct numerical
simulations of the homeogeneous shear flow.19 In the present
paper, we use, instead, an experimental approach similar to
that described in Ref. 18. We focus, in particular, on the
leading anisotropic component of the statistics of the veloc-
ity field, which is isolated by means of particular multipoint
observables selected with the help of the SO�3� decomposi-
tion. A discussion of the behavior of the isotropic sector un-
der strong shear may be found in Ref. 20. We use the Mini-
mum Turbulence Level �MTL� wind tunnel at KTH which
gives well controlled conditions at a high Reynolds number
�in this case Re�=15 000�, allowing us to overcome usual
resolution limitations. In such a way, we are able to charac-
terize the scale-dependent anisotropic features of turbulence
throughout the entire logarithmic region of the boundary
layer.

II. ANGULAR DEPENDENCE OF CORRELATION
TENSORS

As anticipated, the SO�3� decomposition is used to ex-
tract the anisotropic components from the complete velocity
field. For our purposes, it is sufficient to recall here that the
technique allows one to distinguish among different kinds of
anisotropies by projecting generic statistical quantities, e.g.,
correlation tensors, on a suitable basis formed by the eigen-
functions of the infinitesimal generator of the rotation group
SO�3�. The method has been described in great detail in sev-
eral papers, see, e.g., Refs. 8–10, and has been successfully
implemented both in numerical works �random Kolmogorov
flow13 and channel flows at small Reynolds numbers14� and
experimental investigations �atmospheric boundary layer,9–12

homogeneous shear flows,16–18 flat plate boundary layer18�.
By first denoting the velocity difference component be-

tween two points separated by r as �v�1
�r�, where �1=1, 2,

or 3, we can define the velocity structure tensor of order 2 as
S�1�2

�r�= ��v�1
�r��v�2

�r��. The decomposition for S�1�2
�r�

then reads

S�1�2
�r� = �

j=0

�

�
m=−j

+j

�
q=1

p�j�

Sjmq
�2� �r�B�1�2

jmq �r̂� . �1�

Here, the index j denotes a sector of the SO�3� decomposi-
tion, i.e., a subspace of dimension 2j+1 invariant under ro-
tations. Eigenfunctions pertaining to sector j=0 are constant
under the solid angle, thus accounting for the isotropic part
of the object. Higher j’s contain increasing degrees of aniso-
tropy. The tensorial nature is described by the indices �1 ,�2

of the basis elements B�1�2

jmq �r̂�, where the unit vector r̂=r /r
provides the dependence on the two angles, azimuthal and
polar, say, which parametrize the unit sphere. Here, m rang-
ing from −j to j denotes one of the independent elements of
the functional basis, i.e., the spherical harmonics, in sector j.
Without entering here in more detail, we like to provide the
unfamiliar reader with a feeling concerning the need for in-
dex q. In the functional expansion for a scalar field, i.e., in

the standard spherical harmonics, the index q does not ap-
pear at all. This corresponds to the fact that a scalar is a
tensor of order zero. When moving from scalars to vector
and tensor fields of increasing order, the space dependence is
still captured by the spherical harmonics being functions of
the angles r̂ and the indices j ,m and by the r dependence of
the coefficients Sjmq

�2� . In addition, to take care of the local
algebraic base for tensors, a certain number of independent
elements is necessary, e.g., in principle, 3 for vectors or 9 for
second order tensors. This fact is accounted for by the basis
elements B�1�2

jmq with q=1, . . . , p�j� for given j ,m, where �1

and �2 specify, e.g., the Cartesian components. Clearly, for
second order tensors, p�j��9, which is less than the maxi-
mum only if the symmetry of the sector reduces the number
of independent elements allowed. This happens, e.g., in the
isotropic sector j=0. Actually, as well known, the most gen-
eral isotropic second order tensor field is expressed as
A�r����+B�r�r�r�+C�r�����r�, implying that p�0�=3. The
coefficients Sjmq

�2� �r� of the expansion carry the information
concerning the scaling behavior of the observable.

Expansion �1� for the second order correlation tensor can
be generalized to correlation tensors S�1¯�n

�r�
= ��v�1

�r�¯�v�n
�r�� of order n and their components

Sjmq
�n� �r� represent the key objects of the theory.

In the case of weak anisotropy, experimental and numeri-
cal evidences8 support the conjecture that different projec-
tions in the same sector j display the same power-law behav-
ior, with a scaling exponent 	 j�n� independent of m and q.
Order of magnitude estimates for such exponents are pro-
vided by dimensional analysis, 	 j�n�= �j+n� /3,15 by general-
izing an argument first put forward by Lumley for the
cospectrum.21 In fact, the actual exponents may substantially
differ from dimensional predictions—the so-called intermit-
tency correction—unless the order of the structure function n
and of the sector j are sufficiently low. Clearly, the problem
cannot be attacked on the purely theoretical ground starting
from the Navier–Stokes equations. At any rate, the available
experimental and numerical data display a hierarchical orga-
nization of the scaling exponents, whereby the anisotropic
power laws decay faster than the isotropic component
�	0�n�
	 j�n��, so that, in the limit of large Reynolds num-
bers, the isotropic part makes up the leading term of the
decomposition at sufficiently small scales. In this sense, isot-
ropy is recovered at small separations, as concluded in a
number of recent numerical and experimental investigations
�see again Ref. 8� for a review.

We will show in the following how a strong shear modi-
fies this conclusion to explain the conditions under which the
anisotropy may persist down to the viscous scales and affect
the gradient statistics.

III. ANISOTROPY EXTRACTION

A precise assessment of the exponents 	 j�n� is hampered
by many obstacles. In numerical applications, the projections
on the different sectors can be straightforwardly performed.
However, ambiguities associated with the modest extent of
inertial ranges typical of current direct numerical simulations
arise. On the experimental side, on the contrary, only the
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scaling of some sectors is accessible by probing the behavior
of particular components of correlation tensors in suitable
directions so as to cancel out the contribution from the iso-
tropic part. For instance, at second order, quantities such as
S12�r1� or S12�r3� turn out to be dominated by the projection
on sector j=2, enabling the measurement of 	2�2� �see, e.g.,
Ref. 9 or 16�. Similarly, measurements in sector j=1 have
been performed in the atmospheric boundary layer by ad-
dressing the behavior of antisymmetric quantities evaluated
from temporal data gathered by fixed probes.10 More com-
plicated experimental configurations are needed in order to
directly probe spatial dependence, as done in, e.g., Ref. 18.
There, the exponent in sector j=2 has been directly mea-
sured for homogeneous shear turbulence, and the extracted
value was found appropriate to reproduce the statistics in the
outer part of the logarithmic region of turbulent boundary
layers. However, closer to the wall, the quality of the predic-
tion degraded. An explanation for this discrepancy, as well as
new features of anisotropy fluctuations, will be provided here
based on new measurements performed in a larger facility at
higher Reynolds numbers.

IV. EXPERIMENTAL SETUP

The measurements were made in the MTL wind tunnel
at KTH using the standard flat plate setup described by
Österlund22 �see also Ref. 23 for a recent experiment�. The
instrumentation setup consists of two X-wire probes oriented
so as to measure the instantaneous velocity components �u

=v1 and v=v2� in the streamwise �x=x1� and wall-normal
�y=x2� directions. Both probes are positioned with a com-
mon traversing system at the same height from the plate and
can be moved apart in the spanwise direction �x3� with sepa-
ration r3 ranging approximately from 1 up to 60 mm by
means of a second traversing system �see Fig. 1�. Both the
active length and the separation between wires of the probes
are 0.5 mm with a wire diameter of 2.5 �m. The wires were
connected to an AN1003 anemometer system and run at an
overheat ratio of 1.7. They were calibrated in the free stream
versus the angle by means of a pitching device �by first ro-
tating them by 90°�.

Data were acquired at approximately 5.45 m from the
leading edge of the plate and at a free stream velocity of
26.6 m /s. The integral parameters of the boundary layer at
the measurement position are summarized in Table I. In the
present work, the friction velocity u� was determined from a
Clauser plot and gave a value in good agreement with pre-
vious oil film measurements �see also Ref. 22 for a detailed
characterization of the flow�.

A good compromise between the conflicting issues of
spatial resolution and Reynolds number requirements is ob-
tained by restricting the measurements to the logarithmic re-
gion, in the range y+�100–750. In Table II, we give the
relevant parameters at the two representative positions where
most of the discussion will be focused.

We accumulated sufficient statistics �	5106 samples�
to be confident on the anisotropic quantities up to order 6,
e.g., S111112�r3� and similar quantities listed in Table III.
Since the prerogative of this setup is its ability to directly
measure spatial correlations in the transverse direction with-
out resorting to additional assumptions, the main concern of
the paper will be on such objects. In any case, we have also
examined the scaling of traditional single-probe anisotropic
quantities computed with the help of Taylor hypothesis, such
as S12�r1� �Ref. 16� or the shear-stress cospectrum E12�k1�.24

In our conditions, however, the longitudinal structure func-
tions did not show any well-defined scaling and will not be
further discussed here.

V. EXPERIMENTAL RESULTS

An overall impression of the impact of anisotropy on
turbulent statistics as the wall is approached is provided in
Fig. 2. Here, the mixed structure function of order 2, S12�r3�,
is computed as a function of spanwise separation at different
wall-normal distances, ranging from y+=750 down to y+

=60. Although for the measurement points closest to the wall
resolution issues may arise, they do not flaw the qualitative
picture. For quantitative purposes, we focus only on the re-
gion above y+=180 in the following.

TABLE I. Integral parameters of the zero pressure gradient boundary layer.

U�

�m s−1�
x

�m�
�

�mm�
�

�mm� Re�

u�

�m s−1�

26.6 5.50 8.1 55 15 000 0.91

FIG. 1. �Color online� Top: Sketch of the experimental setup together with
the coordinate system. Bottom: Picture of the probe setup, showing the two
inclined supports for the X wires and the spanwise traversing mechanism.
For reference, the circular Plexiglas plug has a diameter of 50 mm.
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The quantity −S12�r3� / �S11�r3� ·S22�r3��1/2, which is nor-
mally used to assess the scale dependence of the velocity-
difference anisotropy, is shown in the inset of Fig. 2. This
quantity should be zero at isotropic scales while approaching
−uv /urmsvrms�0.4 for large separations in the logarithmic
region.

In the outer part of the logarithmic region, the scaling
exponent fitted from the data, 	2�2�=1.22�0.03, matches
those found when deviations from the isotropic state are
small, i.e., under weak shear. In these conditions, a typical
value taken from the literature8 for 	2�2� is 1.22, which, since
both n and j are small, is not too far from the dimensional
prediction by Lumley,21 	2�2�= 4

3 . The comparison of 	2�2�
with the corresponding exponent in the isotropic sector under
weak shear, 	0�2�
0.7
 2

3 , shows that isotropy is eventually
recovered at small separations in the high Reynolds number
limit. Actually, the anisotropic component of the structure
function, S��

�A�, decays like r	2�2� much faster than the corre-
sponding isotropic part S��

�I� �r	0�2�, which eventually domi-
nates the small scale range. This is fully consistent with the
conclusions drawn in Ref. 24 on the basis of second order
statistics gathered in rough-wall turbulent boundary layers.

On the contrary, closer to the wall, recovery of isotropy
appears to progress at a much lower rate, as shown by the
slower approach toward zero of the anisotropy indicator in
the inset of Fig. 2. Quite understandingly, the influence of the
imposed mean shear is exerted on the entire spectrum of
scales. An additional factor preventing the eventual return to
isotropy is the decrease of the integral spanwise length scale
in this region �due to the effect of the wall�, which erodes the
extent of the small scale interval.

To address the issue in more detail, we now consider two
extreme situations, the upper bound of the logarithmic layer,
y+=750, and the lower part of the same region, y+=180. The
corresponding anisotropic structure functions of order 6,
S111112�r3�, are plotted in Figs. 3 and 4, respectively. At y+

=750, a neat scaling over almost one decade above the Kol-
mogorov scale appears. Given the symmetry of the observ-
able, projections on odd-indexed sectors vanish, and sector
j=2 provides the leading contribution. By assuming the hi-
erarchical ordering for the exponents, contributions from j
=4 onward are subleading, and the mixed structure function
follows a power law in the form S111112�r3�	r3

	2�6�. At this
location, the quality of the scaling allows the exponent to be
safely extracted by a direct fit of the data versus scale sepa-
ration, yielding a figure of 	2�6�=2.43�0.15. Similarly, an-
isotropic moments of lower order �n=2,4� also obey power
laws with well-defined exponents �see Table IV�. Their
agreement with the values measured in other conditions,
namely, a homogeneous shear flow at similar shear rate
parameter,18 is remarkable, see also the inset of Fig. 3 for a
direct comparison of the fourth order anisotropic moment
measured in both configurations. All the values we measure
in the high logarithmic region are consistent with those
found by other authors for weak shear flows, as reported in
Ref. 8 where different data sets systematically yield values

TABLE II. Basic turbulent quantities at two representative measurement locations in the boundary layer. Here,
L is the transverse integral scale obtained from the zero crossing in the spanwise correlation of the streamwise
velocity component, � is the Kolmogorov length scale, and Re� is the Reynolds number based on the Taylor
microscale. For the last two quantities, the averaged dissipation rate is needed and was obtained by integrating
the dissipation spectra of the streamwise velocity �assuming isotropy�.

y+
urms

�m s−1�
vrms

�m s−1� �uv

L
�mm�

�
�mm� Re�

750 1.88 0.92 −0.41 18 0.12 750

¯ ¯ ¯ ¯ ¯ ¯

180 2.05 0.85 −0.38 13.5 0.09 680

TABLE III. The purely anisotropic quantities of different order n on which
the present paper will focus �see also Fig. 1 in the following for the defini-
tion of the coordinate system employed�. Each of these observables is domi-
nated by the contribution of sector j=2, thus obeying power laws in the
form r	2�n�.

n=2 −S12�r3�
n=4 −S1112�r3� −S1222�r3�
n=6 −S111112�r3� −S111222�r3� −S1222222�r3�

101 102 103 104
10-2

10-1

100

r3
+

-
S

12+

101 102 103 104
10-2

10-1

100

y+

r3
+101 102 103 104

10-1

100

101

FIG. 2. Main panel: Distribution of the mixed structure function of order 2,
S12�r3� across the logarithmic region. From top to bottom, symbols corre-
spond to locations from y+=60 up to y+=750. The dotted line corresponds to
Lumley’s dimensional prediction �Ref. 21�, −S12	r3

1.33, while the solid line
represents the best fit of the data at y+=750, −S12	r3

1.22. Here, as in the
following, the separation r3 is made dimensionless with the viscous scale
�*=� /u�, while proper powers of u� are used for structure functions. Inset:
The anisotropic indicator given by the ratio −S12 / �S11 ·S22�1/2 �symbols as in
the main panel�. The solid line represents the decay expected on dimensional
grounds with exponent 0.66.
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for 	2�6� in the range 20–2.3 �for n=4, one has 	2�4�
=1.8�0.15�.

At vanishing shear, therefore, a unique set of scaling
exponents is sufficient to provide the leading anisotropic cor-
rection to Kolmogorov description of the inertial range. At
finite shear, however, such a correction is appropriate only
for the isotropy-recovering range, which is well below the
scales of energy injection. The upper bound of the isotropy-
recovering range can be determined on the basis of a scale
energy budget and is controlled by the shear scale LS

=��� /S3�, for more details see Ref. 25. In the logarithmic
layer, where energy dissipation and production balance, as-
suming −uv=u�

2, the shear scale is proportional to the wall-

normal distance and one obtains LS=�y, where ��0.4 is the
Kármán constant. At our uppermost position, y+=750, a wide
range of separations r3 do, indeed, satisfy the condition r3


LS �see Fig. 3� and allows the isotropy-recovering scaling
to be clearly detected.

Closer to the wall at y+=180, the situation is different, as
illustrated in Fig. 4 showing the behavior of two different
mixed structure functions of order 6. At this wall-normal
position, the shear scale LS	�y is approximately 1.3 mm,
roughly corresponding to our smallest resolved scale. Thus,
it turns out that we are now probing only the interval of
scales governed by the energy injection process, namely, the
separations LS
r3
L.

At y+=180, the most remarkable feature is the well-
defined scaling that occurs despite the strong anisotropy. Yet,
the exponents differ quite substantially from those evaluated
at y+=750. Actually, direct fits for the most energetic mo-
ments at orders 2, 4, and 6 yield 	2�2�=0.97�0.04, 	2�4�
=1.55�0.07, and 	2�6�=2.05�0.15, see Table V. It is a
recurrent feature that the exponents slightly depend on the
specific combination of indices appearing in the considered
structure function, i.e., u2-dominated structure functions
manifest a slightly lower scaling exponent than the
u1-dominated ones. Even accounting for this spreading, the
range of exponents found in the shear dominated regime is
well separated from that found in the isotropy-recovering
regime. Moreover, since the difference with the universal
isotropy-recovering exponents is much larger than typical in-
termittency corrections, the new values found above LS must
be understood as the distinctive signatures of the shear.

By combining the previous findings, a crossover be-
tween two distinct regimes is expected, at any given wall-
normal distance, at a scale O�LS� controlled by the magni-
tude of the local mean shear. As an example, the two curves

TABLE IV. Exponents 	2�n� of the anisotropic structure functions of differ-
ent orders, n=2–6, as measured by a direct fit vs spanwise separation r3 at
y+=750.

n=2 −S12�r3�
1.22�0.03

n=4 −S1112�r3� −S1222�r3�
1.89�0.05 1.72�0.05

n=6 −S111112�r3� −S111222�r3� −S1222222�r3�
2.43�0.15 2.28�0.15 2.05�0.15

TABLE V. Exponents 	2�n� of the anisotropic structure functions of differ-
ent orders, n=2–6, as measured by a direct fit vs spanwise separation r3 at
y+=180.

n=2 −S12�r3�
0.97�0.04

n=4 −S1112�r3� −S1222�r3�
1.55�0.07 1.36�0.07

n=6 −S111112�r3� −S111222�r3� −S1222222�r3�
2.05�0.15 1.87�0.15 1.67�0.15
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FIG. 3. Main panel: The mixed structure function of order 6, S111112 as
function of the transverse separation r3 measured at the outer edge of the
logarithmic layer, y+=750 ���. The solid line represents the best fit of the
data in the scaling region, −S111112	r3

2.43. The Kolmogorov scale �, the
shear scale LS=�y, and the integral scale L are indicated by arrows. Inset:
The most energetic mixed structure function of order 4, S1112, at y+=750 in
the boundary layer ��� is compared to that measured in the homogeneous
shear flow of Ref. 18 ���.
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FIG. 4. Mixed structure functions of order 6 measured in the lower part of
the logarithmic layer at y+=180 �S111112 ��� and S111222 ����. The solid line
represents the best fit of the data in the scaling region, S111112	r3

2.05. The
scaling exponent for S111222 is found to be 	2�6�=1.87. The arrows indicate
the positions of Kolmogorov scale �, shear scale LS=�y, and integral
scale L.
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in Fig. 5, relative to y+=430, correspond to the same mixed
structure function of order 6 premultiplied first with r	2�6�, as
obtained at y+=180 �	2�6�=2.43� and then with r	2�6� where
the exponent is now taken at y+=750 �	2�6�=2.05�. The two
nearby plateaus, each spanning a fairly large interval �almost
half a decade wide�, clearly show the two subranges sharply
separated by the local shear scale LS	y.

To further illustrate this result, the collection of the data
from all measurement points between y+=60 and y+=750 are
plotted in Fig. 6 in the same way as in Fig. 5 and arbitrarily
shifted in the vertical direction to fall on top of each other.
The normalization of r3 with y allows to collapse the cross-
over at a common point for all the curves �LS /y=k�. Quite
evidently, a combination of the two fundamental scalings is

able to reproduce the mixed structure function across the full
logarithmic region in the entire range of scales below L and
above �.

VI. IMPLICATIONS FOR SMALL SCALE ANISOTROPY

The present findings have particular relevance for the
persistence of anisotropy in the velocity gradients of the
near-wall region. Just to fix ideas, let us consider the pseudo-
dissipation tensor

��� = 2�� �u�

�x�

�u�

�x�
 ,

which is a quantity of particular relevance in certain RANS
models based on Reynolds stress transport.2 Clearly, ���

stems from the small scale limit of the second order structure
tensor S��, ����S�� /�2, where �= ��3 /��1/4 is the Kolmog-
orov scale. The anisotropic component of ���, hereafter de-
noted by ���

�A�, is then related to the anisotropic part of S��,

which is denoted as before by S��
�A�. As previously shown, S��

�A�

is dominated by its projection on sector j=2. Subdividing19

the inertial interval into the shear-dominated range above LS

�LS�r�L� and isotropy recovery range below LS ���r
�LS�, the scaling behaviors for S��

�A� in the two subranges are

S��
�A��r	2

S�2� and S��
�A��r	2

I �2�, respectively, with 	2
S�2�
	2

I �2� as
the corresponding scaling exponents �see Tables IV and V�.
We then obtain the estimate for the anisotropic component of
the second order structure tensor at scale � as

S��
�A���� 
 S��

�A��L��LS

L
�	2

S�2�� �

LS
�	2

I �2�

.

Since at large scales S��
�A��L�= ��u��L��u��L��� �u�u���A�,

where the latter quantity is the anisotropic contribution to the
velocity correlation, we end up with

���
�A� �

S��
�A����
�2 =

�u�u���A�

�2 �LS

L
�	2

S�2�� �

LS
�	2

I �2�

,

which expresses the amount of anisotropy expected in the
gradient given the anisotropy at large scales and the relative
position of integral, shear, and Kolmogorov scales. Tradi-
tionally, a shear flow is parametrized in terms of two dimen-
sionless quantities, the shear strength S*=Su2 /�= �L /LS�2/3,
and Corrsin parameter Sc=�S2� /�= �� /LS�2/3. In these terms,
we find

���
�A� �

�u�u���A�

�2

Sc
�2/3�	2

I �2�

S*
�2/3�	2

A�2�
.

We observe that, in the logarithmic layer, LS�y, while
��y3/4, hence approaching the wall � /LS=O�1�. In these
limiting conditions, the anisotropy in the second order statis-
tics of the gradients is thus completely controlled by the

shear-dominated exponents 	2
S�2�, i.e., ���

�A��S*
−�2/3�	2

A�2� or

�12
�A�� �uv�S*

−0.65 /�2.
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FIG. 5. The mixed structure function of order 6, S111112�r3� at y+=430,
compensated with the exponent of the isotropy-recovering regime 	2�6�
=2.43 ��� and with the exponent of the shear-dominated regime, 	2�6�
=2.05 ���. Two plateaus, below and above the shear scale, are apparent.
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FIG. 6. �Color online� As in Fig. 5, the mixed structure function of order 6,
S111112�r3�, at different wall-normal distances y+=100–750 is compensated
with the two scaling exponents, pertaining to the isotropy-recovering and
shear-dominated regimes, respectively. In both cases, data are arbitrarily
shifted to have the curves falling one on top of the other. For the lower
group of curves, the isotropy-recovering scaling exponent 	2�6�=2.43 is
measured by direct fitting at y+=750. For the upper group, the shear-
dominated value 	2�6�=2.05 is inferred from measurements at y+=180.
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VII. SUMMARY

We have experimentally analyzed the scaling behavior of
the anisotropic component of the velocity field throughout
the logarithmic region of a turbulent boundary layer over a
flat plate. The observables used in this study are particular
components of the correlation tensor with null projection on
the isotropic sector. As customary with experimental data,
the extraction of the exponents relies on their relative order-
ing, in such a way that a purely anisotropic observable is
dominated by the sector with smallest j, in our case j=2. In
principle, the estimate is thus contaminated by subleading
contributions from all the other sectors with nonvanishing
projection. Clearly, the hierarchical ordering of the expo-
nents cannot be proved in this way and calls for more com-
plete data, which are typically of numerical origin. The issue
already settled for the universal isotropy-recovering range8

has been assessed recently for strong shear flows through
numerical simulations of the homogeneous shear flow.19 Our
results here show that, at any particular distance from the
wall, the full information concerning anisotropy fluctuations
can be efficiently parametrized in terms of two distinct sets
of scaling exponents, each pertaining to a well-identified in-
terval of scales. The demarcation between the two subranges
is provided by the shear scale LS, which reflects the intensity
of the mean shear. In the logarithmic layer, this quantity is
proportional to the distance from the wall. In the interval of
scales below LS, the universal isotropy-recovering dynamics
takes place, which is characterized in terms of universal scal-
ing parameters, i.e., scaling exponents common to all situa-
tions where the mean shear is only a first order perturbation.
Turbulent scales above the shear scale are on the contrary
strongly affected by the presence of the mean velocity gra-
dient. In this interval of separations, the anisotropic fluctua-
tions continue to exhibit power laws, yet with substantially
lower exponents �see also Ref. 19�. This behavior can pro-
vide an explanation for the persistent anisotropy found in the
small scales of certain shear flows.16 In the near wall region,
where the classical isotropy recovery range below the shear
scale shrinks to zero approaching the wall, the scaling expo-
nents in the shear-dominated range allows us to estimate the
amount of residual anisotropy to be expected in the dissipa-
tive range, hence in the gradient statistics. It is important to
note that the differences in the two scaling behaviors, below
and above the shear scale, are evident already in second or-
der statistics. This makes the present findings potentially in-
teresting in view of attempts to introduce anisotropic refine-
ments into turbulence models.
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