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Abstract The possibility of communicating with the far side of the Moon is essential for
keeping a continuous radio link with lunar orbiting spacecraft, as well as with manned or
unmanned surface facilities in locations characterized by poor coverage from Earth. If the
exploration and the exploitation of the Moon must be sustainable in the medium/long term,
we need to develop the capability to realize and service such facilities at an affordable cost.
Minimizing the spacecraft mass and the number of launches is a driving parameter to this end.
The aim of this study is to show how Space Manifold Dynamics can be profitably applied
in order to launch three small spacecraft onboard the same launch vehicle and send them
to different orbits around the Moon with no significant difference in the Delta-V budgets.
Internal manifold transfers are considered to minimize also the transfer time. The approach
used is the following: we used the linearized solution of the equations of motion in the Cir-
cular Restricted Three Body Problem to determine a first–guess state vector associated with
the Weak Stability Boundary regions, either around the collinear Lagrangian point L1 or
around the Moon. The resulting vector is then used as initial state in a numerical backward-
integration sequence that outputs a trajectory on a manifold. The dynamical model used in
the numerical integration is four-body and non-circular, i.e. the perturbations of the Sun and
the lunar orbital eccentricity are accounted for. The trajectory found in this way is used as the
principal segment of the lunar transfer. After separation, with minor maneuvers each satellite
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118 R. Marson et al.

is injected into different orbits that lead to ballistic capture around the Moon. Finally, one
or more circularization maneuvers are needed in order to achieve the final circular orbits.
The whole mission profile, from launch to insertion into the final lunar orbits, is modeled
numerically with the commercial software STK.

Keywords Space manifold dynamics · Lunar exploration · Weak stability boundary · Low
energy transit orbits

Abbreviations
CR3BP Circular restricted three body problem
DU Distance unit
EL1 Earth–Sun Lagrange point 1
EL2 Earth–Sun Lagrange point 2
EIRP Effective isotropic radiated power
LL1 Lunar Lagrange point 1
LL2 Lunar Lagrange point 2
SMD Space manifold dynamics
STK Satellite tool kit
WSB Weak stability boundary
ZVS Zero velocity surface

1 Introduction

In the past few years there has been a renewed interest in the exploration of the Moon, and
the future plans of the major space agencies foresee the realization of lunar missions. It is
also becoming clear that the exploration of the far side of the Moon will play a significant
role in this scenario. In 2005 NASA issued an Exploration Systems and Architecture Study
(NASA 2005) that defined ten high-priority lunar landing sites where the very first missions
should be focused. It is interesting to note that four out of ten of these sites are located on
the far side, two at the poles and the remaining four on the near side. Since direct commu-
nication with the Earth from the far side of the Moon is not possible, it becomes necessary
to develop facilities that will enable future unmanned vehicles and crews to keep a constant
link with mission control. In addition, servicing missions must be as low-cost as possible in
order to make the exploration of the Moon sustainable over a long period of time. The total
cost of a mission will not only depend upon the total Delta-V necessary for the spacecraft
to reach its intended orbit, but also upon the cost of the spacecraft itself. Key parameters are
the propulsion system (whether chemical or electrical), and the mission lifetime (i.e. the fuel
needed for station keeping). When more than one spacecraft is involved in a single mission
or in maintaining a space infrastructure, another key parameter is the number of launches
needed to put all the spacecraft in place and/or to service such infrastructure.

Thus, in the present study, aside from minimizing the total Delta-V, we will try to reduce
as much as possible the fraction of the Delta-V that must be delivered by the spacecraft
and to allow simultaneous launch of multiple spacecrafts. To do this, it would be desirable:
(1) to be able to change significantly the spacecraft trajectories with little fuel expense (e.g.
using electrical engines) and (2) perform ballistic capture into lunar orbit (i.e. no inser-
tion burn). Both requirements are satisfied by low-energy non-keplerian orbits known as
“Weak Stability Boundary” (WSB) transfers (Conley 1968; Gomez et al. 2004; Belbruno
2004). WSB trajectories are usually split into two groups, named “Internal” and “External”
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transfers. In the Earth–Moon system, the former represent trajectories approaching the Moon
from the region around the interior equilibrium point L1, while the latter represents trajec-
tories encountering the Moon from the exterior equilibrium point L2 (Circi and Teofilatto
2006). Only Internal WSB transfers in the Earth–Moon system will be investigated in the
present work.

WSB transfers have been recently considered within the framework of the treatment of
trajectories lying on a manifold-shaped surface, which represent special solutions of the Cir-
cular Restricted Three Body Problem (CR3BP). It has been therefore proposed (Perozzi and
Ferraz-Mello 2009; Garcia and Gomez 2007) to refer to all the applications to mission design
sharing this common dynamical ground as “Space Manifold Dynamics” (SMD).

SMD is today a very active research field with a considerable number of papers published
on the subject in recent years, covering various aspects of the problem (Leiva and Briozzo
2008; Érdi et al. 2009; Baig and McInnes 2009; Mingotti et al. 2009; Barrabés et al. 2009;
Pergola et al. 2009, just to name a few).

The aim of this study is to show how Space Manifold Dynamics can be profitably applied
in order to launch three small spacecraft onboard the same launcher and send them to different
orbits around the Moon with no significant difference in the Delta-V budget. Furthermore,
it will be shown that most of this budget is charged to the launcher and that the spacecraft
masses can be kept reasonably small. It will also be shown how target conditions can be com-
puted using a linearized model and transported with a fair degree of accuracy to a nonlinear
model. Propagation of the whole mission profile in the elliptical three-body problem is done
with STK.

In Sect. 2, the theory of the CR3BP will be briefly outlined, along with a detailed descrip-
tion of the types of orbit in the L1 region and their properties. In the following sections, two
different strategies used to compute numerically Internal WSB transfers will be outlined,
along with some examples. In particular, Sect. 3 deals with trajectories computed by tar-
geting a Lyapunov or quasi-periodic orbit around L1 and then finding a suitable asymptotic
orbit associated to it. Section 4 addresses trajectories computed by targeting the WSB region
associated with certain arrival conditions at the Moon. In the fifth and final section the results
of Sects. 3 and 4 will be applied to studying the launch and deployment of a three-satellite
constellation around the Moon.

2 Classification of orbits around L1

The equations of motion of a spacecraft in the Earth–Moon gravitational field are usually
written in a rotating frame with origin in the mass center of the Earth–Moon system. The
angular rate ω is equal to the orbital angular velocity of the system composed of the two
celestial bodies (termed the primaries). The distance unit (DU) is the Earth–Moon distance,
whereas the time unit is such that the period of the two primaries equals 2π . Under these
assumptions, the vector �x = (x, y, z) denotes the position vector, whereas �V = (u, v, w)

represents the velocity vector (i.e. it includes the derivatives of the coordinates �x = (x, y, z)
with respect to the dimensionless time τ =ωt). With these settings the Earth is placed along
the horizontal axis x in the position −µ and the Moon is placed along the same axis in
the position 1 − µ, where µ represents the Moon gravitational constant in the Earth–Moon
system. Then the equations of motion are:
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dx
dτ

= u

dy
dτ

= v

dz
dτ

= w

du
dτ

= �x + 2v

dv
dτ

= �y − 2u

dw
dτ

= �z

(1)

where the potential function � is defined as: � = 1
2 (x2 + y2) + 1−µ

r1
+ µ

r2
.

Equations (1) admit the Jacobi integral (Moeckel 2005)

H(�x, �V ) = 1

2
(u2 + v2 + w2) − �(x, y, z) = 1

2
�V · �V − �

For any positive constant value λ, the integral manifold is defined as

M(λ) =
{(

�x, �V
)

∈ �6s.t.H
(
�x, �V

)
= −λ

}

which is a five-dimensional manifold in the six-dimensional state space
(
�x, �V

)
.

The projection of the integral manifold along the position coordinates is a volume referred
to as Hill’s region

S(λ) =
{
�x ∈ �3s.t.∃ �V : H

(
�x, �V

)
= −λ

}

The boundary of the Hill’s region is represented by the Zero Velocity Surface (ZVS)

�(x, y, z) = λ

In terms of the more usual Jacobi constant C (Szebehely 1967):

C = 2�(�x) − �V · �V
the ZVS is defined as

�(x, y, z) = C

2

Figure 1 shows the ZVS corresponding to three distinct values of the Jacobi constant C. In
Fig. 1a the motion is allowed either inside the ovals surrounding the Earth and the Moon or
outside the surface enveloping both the celestial bodies. Figure 1b illustrates the case corre-
sponding to a lower value of C, allowing internal transfers through the intermediate Lagrange
point L1. Lastly, Fig. 1c portrays the zero velocity surfaces associated with a value of C that
permits also external transfers to the Moon through the collinear point L2.

The integral manifold M(λ) is the product of the three-dimensional Hill’s region S(λ) and
the velocity locus defined by

ρ2 = (u2 + v2 + w2) = 2(�(x, y, z) − λ) (2)

From Eq. (2) it is apparent that the velocity locus is a sphere S2
ρ of variable radius ρ. The

radius ρ tends to zero as the point (x, y, z) tends to the ZVS. In more technical terms the
integral manifold is then a S2 fiber bundle over the Hill’s region:

π : M(λ) → S(λ), π−1(�x) = S2
ρ

(�x, �V ) → �x
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Fig. 1 The zero velocity surfaces corresponding to the following Jacobi constants C: a ±35.13, b ±35.13,
c ±35.13, where ±35.13 is the Jacobi constant related to the Lagrangian collinear equilibrium points ±35.13,
±35.13

Low energy transit orbits from Earth to Moon are trajectories passing through the neck of the
Hill’ region sited about the Lagrangian collinear equilibrium point L1 of the Earth–Moon
system (cf. Fig. 1b). This result emerges from numerical simulations and is consistent with
the original work made by Conley (1968).

In (Conley 1968) a classification of the orbits around Lagrangian collinear equilibrium
points is given in the context of the planar restricted three-body problem. Using analyt-
ical arguments similar to those developed in (Conley 1968), such a classification is here
generalized to the spatial restricted three body problem with application to the intermediate
Lagrangian point L1 of the Earth–Moon system.

The above Eq. (1) are linearized around L1: the reference frame is centered in the Lagrang-
ian point L1 = (xL1 , 0, 0), so the new position coordinates (ξ, η, ζ ) are : ξ = x − xL1 , η =
y, ζ = z and the linear equations of motion are:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ̇

η̇

ζ̇

u̇
v̇

ẇ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
a 0 0 0 2 0
0 −b 0 −2 0 0
0 0 −c 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ

η

ζ

u
v

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

where a = 1 + 2γ 2, b = γ 2 − 1, c = γ 2 and γ 2 = 1−µ
∣
∣xLi +µ

∣
∣3

+ µ
∣
∣xLi +µ−1

∣
∣3

.

The eigenvalues of the matrix of the linear system are:

λ1 = α, λ2 = −α, λ3 = iωxy, λ4 = −iωxy, λ5 = iωz, λ4 = −iωz

where α = √
s+, ωxy = √

s−, ωz = γ, s± = γ 2−2
2 ±

√
9γ 4−8γ 2

2 . The eigenvectors are

�v1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
σ

α

ασ

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, �v2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−σ

−α

ασ

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, �v3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
iτ

iωxy

−ωxyτ

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, �v4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−iτ

−iωxy

−ωxyτ

0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, �v5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
1

iωz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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�v6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
1

−iωz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where

σ = −2α

α2 + γ 2 − 1
, τ = −2ωxy

γ 2 − 1 − ω2
xy

, γ 2 = 1 − µ
∣
∣xLi + µ

∣
∣3

+ µ
∣
∣xLi + µ − 1

∣
∣3

Note that the eigenvectors depend on the eigenvalues
(
α, ωxy, ωz

)
and on the above constants

(σ, τ ).
Then the general solution �U (t) of the linearized motion around L1 takes the form:

�U (t) = α1eαt �v1 + α2e−αt �v2 + Re
(

Axyeiωxy t+φxy �v3

)
+ Re

(
Azeiωzy t+φz �v4

)
(4)

This motion is the sum of two divergent terms, proportional to α1 and α2, and a quasi-periodic
motion characterized by the two (non-commensurable) frequencies ωxy and ωz and by the
two amplitudes Axy and Az . The constant parameters α1, α2, Axy, Az, φxy, φz depend on the
initial conditions (ξ0, η0, ζ0, u0, v0, w0).

Equation (4) allows an immediate classification for the orbits:

(1) Quasi-periodic orbits: these are the solutions with α1 = α2 = 0
(2) Asymptotic orbits: these are the orbits with α1 = 0, α2 �= 0 (orbits approaching the

quasi-periodic orbit), or α1 �= 0, α2 = 0 (orbits generated from the quasi-periodic
orbit).

(3) Transit orbits: these are the solutions with α1α2 < 0. For instance, orbits with α1 > 0
and α2 < 0 cross the L1 region from left to right (from the Earth to the Moon).

(4) Bouncing orbits: these are the solutions with α1α2 > 0. For instance, orbits with α1 > 0
and α2 > 0approach the L1 region departing from the Earth, and come back to the Earth
without crossing the L1 region.

Transfer orbits from Earth to Moon are (in the linear sense) transit orbits with α1 > 0
and the locus of these orbits will be determined in the phase space according to the linear
equations of motion (3). However, the following questions arise: can this locus be defined
when the nonlinear flow is considered? Which are the properties of these orbits in terms of the
initial orbital elements (with respect to the Earth) and the final orbital elements (with respect
to the Moon)? These issues can be addressed as follows: first, let �x0 = (ξ0, η0, ζ0, u0, v0, w0)

be a point belonging to the locus of transit orbits (and close to L1). Then, the states at pe-
riselenium and at perigee are obtained by forward and backward propagation of �x0, using the
nonlinear equations (1). What will be shown is that lower altitude perigees and periselenia
correspond to initial conditions (for propagation) �x0 close to those yielding asymptotic orbits
when the linear model is assumed.

2.1 Asymptotic orbits: characterization of position

Let us determine the locus of orbits that are asymptotic with respect to the linear equations (3).
The linearized equations of motion admit the energy integral

h = 1

2
(υ2 + ν2 + w2) − a

2
ξ2 + b

2
η2 + c

2
ς2 (5)
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The integral h can be written as a quadratic form:

h = 1

2
�UG �U (6)

with

G =
[

E 04×2

02×4F

]

, E =

⎡

⎢
⎢
⎣

−a
b

c
1

⎤

⎥
⎥
⎦ , F =

[
1

1

]

and �U = (ξ, η, ζ, u, v.w) is the solution of the linear equations of motion.
On the other hand, using the expression (4) for �U , one obtains:

h = α1α2e1 + A2
xye2 + A2

z e3 (7)

where

e1 = �v1 E �v2, e2 = �v3 E �v4, e3 = �v5 E �v6 (8)

According to Eq. (7), the asymptotic orbits have the following energy:

h = A2
xy e2 + A2

z e3 (9)

With reference to the same analytic arguments of (Conley 1968), a point (ξ, η, ς) can generate
an asymptotic orbit of energy h if the following conditions are satisfied:

− a

2
ξ2 + b

2
η2 + c

2
ζ 2 ≤ h (10)

and

η = −σξ ± 2Axy(σ
2 + τ 2) ↔ orbits departing from the Earth side (α1 = 0) (11)

or

η = σξ ± 2Axy(σ
2 + τ 2) ↔ orbits departing from the Moon side (α2 = 0) (12)

For a given energy h, the above conditions imply that the points which generate asymptotic
orbits project within one of the two stripes (11), (12), lying on the (ξ, η) plane. The third
coordinate ζ is such that the associated point belongs to the Hill’s region of energy h. Hence,
the asymptotic orbits are located within the corridor whose walls depart from the boundaries
of the stripes (11) and (12) and end at the zero velocity surface, which can be viewed as the
“ceiling” (Fig. 2). In fact the width of the corridor depends on the out-of-plane amplitude
Az . Namely, if h is fixed to a specific value, the in-plane amplitude of the asymptotic orbit is
equal to (cf. Eq. (9)):

Axy =
(

h − A2
z e3

e2

) 1
2

(13)

and the out-of-plane amplitude is constrained to:

0 ≤ Az <

√
h

e3
(14)

Of course higher values of the out-of-plane amplitude reduce the amplitude of the in-plane
periodic motion as well as the width of the strip of the asymptotic solutions.
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Fig. 2 The corridor where
asymptotic orbits are located

Fig. 3 Plot of the (ξ , η) region
around L1. The strip of the
±35.13 asymptotic orbits for
h = 0.001 and for four different
values of the out-of-plane
amplitude ±35.13 are shown. The
up down arrows show the width
of the ±35.13 case (maximum
width) and the width of the
±35.13 case (minimum width)

For instance, if the value µ of the Moon is set to µ = 0.01214 and the energy value to
h = 0.001, one obtains

0 ≤ Az < 0.00985

Figure 3 shows the planar projection of the boundary of the Hill’s region corresponding
to h = 0.001, the projection of the quasi-periodic orbit and four stripes associated to the
(α1 = 0)-asymptotic orbits. These stripes correspond to the following four different values
of Az :

Az = 0, Az = 0.00197, Az = 0.00394, Az = 0.00591

It is apparent that the width of the strip of the asymptotic orbits decreases as the out-of-plane
amplitude increases.
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2.2 Asymptotic orbits: characterization of velocity

The initial position must lie on the above defined corridor in order to obtain an asymptotic
orbit. However, also some conditions on the initial velocity must be satisfied. Consider any
point (ξ0, η0, ς0) within the corridor of asymptotic orbits associated with α1 = 0. In par-
ticular the coordinates ξ0 and ζ0 are assumed as specified and the coordinate η0 is selected
along a vertical segment, as shown in Fig. 3 (where ξ0 = −0.01). Each point (ξ0, η0, ς0) is
associated to a value ρ of the velocity magnitude:

ρ2 = 2h + aξ2
0 − bη2

0 − cς2
0 (15)

Hence, the tip of the velocity vector corresponding to (ξ0, η0, ς0) belongs to a sphere of
variable radius; let δ and θ be the polar and azimuth angles of the direction of the velocity
�V = (u, v, w):

u = ρ cos δ cos θ

v = ρ cos δ sin θ (16)

w = ρ sin δ

In the following, the condition α1 = 0, as well as the sign of the coefficient α1, will be related
to the angles (θ, δ).

Note that any point η0 taken along the vertical segment is inside the strip related to Az = 0.
If the value of Az increases, the width of the strip of asymptotic orbits decreases and the point
η0 could exit the strip. The maximum allowed value for Az is the value corresponding to the
strip with boundary passing through the point (ξ0, η0) (cf. Eqs. (12), (13)):

Amax
z =

∣
∣
∣
∣

1

e3

(

h − e2

4

(η0 − σξ0)
2

(σ 2 + τ 2)2

)∣
∣
∣
∣

1
2

(17)

On the other hand, Az is related to the out-of-plane initial conditions

Az =
{

1

2

(

z2
0 + w2

0

ω2
z

)} 1
2

. (18)

Amax
z is associated to the maximum (and minimum) allowed value of the angle δ through the

relationships (18) and (16), which yield:

δmax =
∣
∣
∣
∣a sin

[
ωz

ρ
(2Amax2

z − ζ 2
0 )

]∣
∣
∣
∣ , δmin = −δmax (19)

If α1 = 0 (asymptotic solutions), then the angle θ , introduced in (16), turns out to be equal
to one of the following two values:

{
θ = θmin = χ1 − a cos

(
κ1

cos δ

)

θ = θmax = χ1 + a cos
(

κ1
cos δ

) (20)

where

κ1 = − aξ0 + bση0

αρ(1 + σ 2)
1
2
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Fig. 4 Velocity locus: the region
of transit-asymptotic orbits

and χ1 is the angle between the ξ coordinate axis and the straight line η = −σξ ; as a
consequence, χ1 is defined by

cos χ1 =
√

1

1 + σ 2 , sinχ1 =
√ −σ

1 + σ 2

In summary, the conditions needed to have an asymptotic orbit with energy h are:

(a) the point (ξ0, η0, ζ0) must be placed in the corridor defined by the Eqs. (10), (11) or
(10), (12)

(b) the velocity must have the magnitude ρ expressed by (15), and the direction defined by
the two angles θ and δ (according to (16)), with

θ = θmin or θ = θmax and δ ∈ [δmin, δmax]

where (θmin, θmax) and (δmin, δmax)are defined in (20) and (19), respectively.

On the other hand, if the angle θ is included in the interval (θmin, θmax) the constant α1

is greater than zero, so the orbit is a transit orbit. Moreover, the values outside the interval
correspond to α1 < 0 (bouncing orbits). Figure 4 represents the sphere of radius ρ of the
admissible velocity vectors associated to a point (ξ0, η0, ζ0) in the asymptotic corridor. If the
tip of the velocity vector belongs to the interior of the region ABCD, then the orbit will be a
transit orbit. If the tip of velocity lies along the boundary curve ABDC, then the orbit is an
asymptotic orbit. Finally, if the tip is outside the region ABCD, then the orbit is a bouncing
orbit.

The arcs AD, BC correspond to the difference �δ = δmax − δmin = 2δmax, whereas
the arcs AB, DC correspond to the difference �θ = θmax − θmin at δ = δmax, δ = δmin,
respectively. With reference to Fig. 3, let us consider the values ξ0 = −0.01, ζ0 = 0.001 and
η0 equal to three distinct values along the vertical segment A1 A2:

η01 = −0.0257 , η02 = −0.0110, η03 = −0.0055

The planar projection (ξ0, η01) of the point (ξ0, η01, ζ0), is on the boundary of the strip cor-
responding to Az = 0, (that is δ = 0, planar orbit), the projection (ξ0, η03) corresponds
to the center of the strip, and the point (ξ0, η02) is mid-way between the above two points.
The velocity locus related to the transit-asymptotic orbits associated to the three points
(ξ0, η0i , ζ0) i = 1, 3 has the parameters reported in Table 1. Of course the region ABCD
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Table 1 Parameters defining the velocity locus ABCD of transit-asymptotic orbits

η0 ρ θmin/θmax(δ = 0)(deg) θmin/θmax(δ = δmax)(deg) δmin/δmax(deg)

−0.0257 0.0199 24.71 / 24.71 24.71 / 24.71 0

−0.0110 0.0512 −31.48 / 80.91 −21.90 / 71.31 ±35.92

−0.0055 0.0547 −29.86 / 79.28 −20.01 / 69.57 ± 35.13

related to the point (ξ0, η01, ζ0) collapses to a single point corresponding to the direction
parallel to the strip that generates an asymptotic orbit.

Now points on the locus of asymptotic orbits will be propagated according to the nonlinear
equations of motion (1).

Let us first consider planar cases: ζ0 = w0 = 0. One hundred equally spaced values η0 are
taken along the segment ξ0 = −0.01 inside the strip with energy h = 0.001. The positions
(ξ0, η0) are propagated numerically by using the (nonlinear) planar restricted three-body
model under the assumption of specified magnitude ρ for the velocity:

ρ2 = 2h + aξ2
0 − bη2

0

Nine different directions of the velocity are assumed for each point according to the following
formula for the firing angle θ :

θ = sθmin + (1 − s)θmax

where s is a parameter that varies in the interval [0, 1].
These 900 initial conditions are backward propagated up to the (first) perigee and propa-

gated forward up to the (first) periselenium. It is worth remarking that all the orbits are transit
orbits, as stated by the analysis of the linearized equations of motion. Figure 5 shows the
(dimensionless) values of perigee and periselenium radii that can be reached starting from
the 900 distinct initial conditions.

Figure 5 shows that, with the above fixed value of the energy h, the closest approach to
the Earth occurs at about 75000 km of altitude, and the closest approach to the Moon is at an
altitude of about 1000 km. These values are achieved by taking the velocity direction close
to the minimum firing angle θmin (s = 0.9), which corresponds (in the linear approximation)
to an asymptotic orbit. The same analysis is generalized to the three-dimensional case by
adding the initial out-of-plane coordinate ζ0 = 0.001. Now the above three values η0i are
taken along the segment A1 A2 of Fig. 3: the velocity magnitude is determined by the energy
h = 0.001 and the velocity direction is defined by two parameters, s1, s2, according to the
following relationships:

δ = s1δmin + (1 − s1)δmax , s1 = 0.1, . . . , 0.9
θ = s2θmin(δ) + (1 − s2)θmax(δ) , s2 = 0.1, . . . , 0.9

These initial conditions have been backward propagated up to the (first) perigee and propa-
gated forward up to the (first) periselenium. It is worth remarking that all these three dimen-
sional orbits are transit orbits, as stated by the analysis of the linearized equations of motion.
Figures 6 and 7 show the (dimensionless) values of perigee and periselenium radii that can be
reached starting from these initial conditions. Again lower perigee and periselenium values
are achieved at the boundary of the region of (linear) transit orbits.
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Fig. 5 Perigee and periselenium
radii (in dimensionless units)
obtained from one hundred points
taken along the vertical segment
±35.13 (see Fig. 3), with nine
different firing angles

Fig. 6 Perigee radii (z-axis, DU) obtained after backward propagation from the points ±35.13, ±35.13,
±35.13, by employing 81 different firing angles

3 Targeting to the L1 region

3.1 Strategy

An Internal WSB transfer is generally composed of the following segments:

1. Launch
2. Near-Earth parking orbit apogee raising maneuver
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Fig. 7 Periselenium radii (z-axis, DU) obtained after forward propagation from the points ±35.13, ±35.13,
±35.13, by employing 81 different firing angles

3. Bridge segment
4. Manifold insertion maneuver
5. Ballistic transfer trajectory (plus a course-correction maneuver if needed)
6. Ballistic lunar orbit insertion
7. Circularization maneuver (if required)

The main problem is determining point 5, i.e. finding a suitable WSB trajectory that meets
the given mission requirements. The determination of all the other segments is then based
upon this result. The first of two approaches that can be used when planning an Internal
WSB lunar transfer is to choose a point along a LL1 quasi-periodic orbit as target. There are
stable and unstable manifolds going to and departing from quasi-periodic orbits in the L1
region (Gomez et al. 2004, 2009; Koon et al. 1999): some properties of these manifolds in the
vicinity of L1 have been discussed in Sect. 2. Among the stable manifolds, some run form
the Earth region to L1 while others form the Moon to L1. Conversely, unstable manifolds can
run from L1 either to the Earth region or to the Moon. With the correct energy, an Earth-to-L1
stable manifold can be connected with a L1-to-Moon unstable manifold, thus obtaining a
transit orbit. The type of orbit (asymptotic or transit) is determined by the value of its Jacobi
Constant. Since L1 is a connecting point for manifolds, quasi-periodic orbits are a sort of
“gateway” to the Moon. It makes sense, then, to “target” a quasi-periodic orbit in order to
find the desired WSB trajectory. A bridge segment is then needed because the internal stable
and unstable manifolds do not cross low Earth orbits, since they approach the Earth at a
minimum distance of about 65000 km. Thus, there is the need of connecting the low Earth
orbit achieved after launch with the chosen SMD trajectory. The numerical procedure used
is as follows:

1. Compute a L1 Lyapunov or quasi-periodic orbit using the linearized solution to the
CR3BP, described in Sect. 2 (Fig. 8).

2. Select a point along the said orbit and extract its six-dimensional state vector (position
and velocity components).

3. Initialize a backward-integration sequence inside STK/Astrogator with the state vector
obtained in point 2. Run the sequence until the desired bridging point.

4. Retrieve the state vector at the bridging point and use it as target in a forward-integration
sequence which starts from the post-launch parking orbit and performs the apogee raising
maneuver needed to reach the selected manifold (bridge segment in Sect. 3.1). In this
way, the correct launch time, launch azimuth and Delta-V can be computed.

5. Point 4 will take the spacecraft at the right place at the right time to intersect the WSB
transfer trajectory, but not at the correct speed. One more targeting is required to compute
the correct manifold insertion burn Delta-V.
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Fig. 8 A MATLAB plot of an
asymptotic trajectory tending to a
Lyapunov orbit around LL1,
computed according to the linear
model of Sect. 2. The axis show
the value of the X and Y
coordinates (DUs) of the
Earth–Moon sinodic frame
centered around L1

6. Propagating forward from the manifold insertion maneuver on should lead the space-
craft into a ballistic capture in a quasi-periodic orbit around LL1. In practice, as will be
discussed below, most of times a small course-correction maneuver is required.

7. Once in the L1 region, there is still the need to forward-target a lunar ballistic capture
orbit and, if required, a circularization maneuver.

The model considered for the integration of the equations of motion of the spacecraft includes
the Earth, the Sun and the Moon, whose positions are taken from the JPL precise ephemerides
DE405. Thus the trajectories found are in the non-circular and non-planar problem.

3.2 Results

It is interesting to note how solutions of the linearized model when backward-propagated
with STK lead to nearly-asymptotic trajectories that are not too far from the linear solution.
In most planar cases, they lead to ballistic captures in a Lyapunov orbit (Figs. 9, 10), while
in most out-of-plane cases a small insertion Delta-V is needed. Getting to L1 by means of a
WSB transfer is generally more economical than with a Hohmann transfer.

Once in the L1 region, we still need to target the desired lunar orbit. A course-correction
Delta-V is needed at some point of the transfer to place the spacecraft in a trajectory that
will transit through the L1 region leading to a ballistic capture around the Moon. The capture
orbit must, at least, have the desired inclination and radius of periapse. The work of Parker
(Parker 2007) shows that one of the most fuel efficient transfer-schemes is the so-called
“open-point” transfer. Here, the bridging is done at the farthest approach point with the Earth
of the backward-propagated transfer trajectory and the course-correction maneuver is per-
formed soon thereafter. This is the strategy used for all the transfers treated in this section.
Figure 9 shows an example of transfer leading to a Lyapunov orbit around LL1, while Fig. 10
gives a good idea of how closely the Lyapunov orbit achieved at the end of the integrated
trajectory matches the linearized “target” orbit.

The simulations show that there is no significant difference in terms of Delta-V between a
ballistic capture into a Lyapunov orbit around L1 and a ballistic capture into lunar orbit. The
total Delta-V does not usually exceed 3.9 km/s, with over 99% of the entire budget delivered
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Fig. 9 The complete transfer
from a low Earth orbit to a
Lyapunov orbit around LL1
described in Sect. 3.2, Table 2. It
can be seen that the orbit leads to
a Lyapunov orbit of amplitudes
very close to those of Fig. 8. The
axis show the value of the X and
Y coordinates (DUs) of the
Earth–Moon sinodic frame
centered around the Earth

Table 2 Summary of the
Delta-V required for the transfer
to the Lyapunov orbit shown in
Fig. 9

Segment Delta-V ( km/s)

Raising apoapsis 2.96

Manifold injection burn 0.88

Course-correction burn 0.012

Orbit injection 0

Total 3.852

Transfer time (days) 20

Fig. 10 This figure shows a comparison between the linearized Lyapunov orbit used to compute the target
point (blue dashed line) and the Lypaunov orbit achieved after numerical integration in the 4-body problem
(black continuous line). It is worth noting that the target point and insertion point do not differ more than
100 km along the X axis. The axis show the value of the X and Y coordinates (DUs) of the Earth–Moon sinodic
frame centered around L1
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by the launcher (under the assumption that the manifold insertion maneuver is performed by
a restartable fourth stage).

What raises the cost of a lunar mission is usually the need to circularize the orbit, and
the lower is the desired radius the higher is the cost. From a 10000 km radius down to a
100 km radius orbit, the Delta-V required for circularization ranges from about 150 m/s to
about 600 m/s. The Delta-V percentage delivered by the launcher drops to about 93% and
86%, respectively, thus raising accordingly the percentages to be provided by the spacecraft.
If we look at the total Delta-V, this kind of transfer does not perform well when the target
is a low lunar orbit, equaling, at best, a Hohmann transfer (Perozzi and DiSalvo 2008). This
is partly inherent in this type of transfer and partly due to the fact that targeting from L1 to
the Moon is not easy and usually the capture orbit obtained has an eccentricity (above 0.9)
higher than the value predicted theoretically.

However, it must be noted that:

(a) The capture into lunar orbit requires no Delta-V, and, although unstable, guarantees at
least a week before escape for very high eccentricity values (Winter and Vieira 2002;
de Melo et al. 2007). Hence, there is no need for a large impulsive maneuver, but the
orbit can be circularized more slowly, for example by means of an electrical engine.

(b) Since a ballistic capture orbit has an eccentricity that is, by definition, always less then
1, the Delta-V that the spacecraft must provide to achieve a circular orbit is always
less than the corresponding Delta-V in the Hohmann transfer case. This translates into
saving up to about 200 m/s when comparing to a classical LOI maneuver

In conclusion, this means that using this kind of transfer results in a different distribution of
the Delta-V between launcher and spacecraft rather then a net decrease. This means a larger
spacecraft dry mass, which in turn may allow the use of a spacecraft bus otherwise not fitting
the propulsion requirements (e.g. fuel capacity) of a classical lunar transfer. However this is
achieved at the cost of a longer transfer time (10–15 days longer than Hohmann).

4 Direct targeting to a lunar capture orbit

4.1 Theory

Let us define the concept of Weak Stability Boundary region around the Moon, in the restricted
three body problem. When restraining to two-body motion, a spacecraft traces the same orbit
around the Moon indefinitely, no matter its radius, provided that the velocity is less then
the escape velocity. The WSB is a region of phase-space where each point (defined by both
position and velocity) is such that any body with negligible mass (i.e. the spacecraft) will
not remain bounded to the Moon indefinitely. Instead, it will escape after a finite number of
revolutions and end up into an orbit around the Earth. Note that in this case, the velocity in
the WSB is always less than the escape velocity. This process is often referred to as “ballistic
escape”. Conversely, if a spacecraft approaches the Moon with a state (in phase-space) that
is inside the WSB, it will be captured without the need for a maneuver into a highly elliptical
orbit for a finite period of time.

According to Belbruno (Belbruno 2004), the WSB region can be defined mathematically
in a three-dimensional sinodic frame as the region in which Eq. (21) is satisfied.

C = −r

(

±2

√
µ (1 + e)

r
+ r

)

+ µ (1 − e)

r
+ A (r, θ, ϕ) (21)
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Fig. 11 With a small variation of
the mission profile of Fig. 9
(about 1 m/s), a lunar ballistic
capture orbit can be obtained

where

A (r, θ, ϕ) = (rx − 1 + µ)2 + r2
y + r2

z + 2
(1 − µ)

rt
(22)

Writing explicitly the radius vector components rx , ry, rz in Eqs. (21) and (22), yields:

C = −r

(

±2

√
µ (1 + e)

r
+ r

)

+ µ (1 − e)

r
+ (r cos θ cos ϕ − 1 + µ)2 + (r sin θ cos ϕ)2

+ (r sin ϕ)2 − 2
(1 − µ)

rt
(23)

where r is the radius from the current attracting body (e.g. the Moon), rt is the radius from
the third body (e.g. the Earth), θ is the in-plane angle from the X axis, φ is the angle between
the XY plane and the radial vector, and the other variables follow the same notation as in
Sect. 2. The ± sign differentiates Internal and External transfers, respectively.

Solving the equation above for e gives, for a fixed Jacobi constant, the eccentricity that
an orbit must have at any given distance form the Moon to lie inside the WSB region. If we
are targeting a lunar encounter at periselenium (very common in mission design), the veloc-
ity associated to a given value of the periselenium that guarantees ballistic capture follows
directly from the eccentricity (Fig. 11).

vp =

√
√
√
√
√

G Mmoon
(

2
1−e − 1

)

r p
1−e

(24)

Where G Mmoon denotes the dimensional Moon mass parameter
Note from Fig. 12 the high values of the eccentricity involved in a low altitude (100 km)

periselenium of the capture orbit. The relatively large magnitude of the circularization maneu-
ver needed to reach a circular low altitude operational orbit as typical of most remote sensing
missions, reduces the advantage achieved through ballistic capture, in terms of overall delta-
V. However, electric propulsion for reaching a low altitude circular orbit can be applied more
effectively if the spacecraft undergoes a gravity capture. It is also interesting to note how
ballistic capture opens up new possibilities. For instance, the capture orbit could be modified
through Earth gravity assists (an example of this is shown in Fig. 13).
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Fig. 12 a The eccentricity associated to a lunar WSB capture orbit for a fixed Jacobi Constant C = 3.2 and
a fixed periselenium radius of 1838 km. The figure shows how the eW SB changes with θ and φ (respectively,
the longitude starting from the Earth–Moon line and the elevation above the Moon equator); b The same plot
as in (a) but with a periselenium radius fixed at 10000 km

Fig. 13 The ballistic capture
orbit achieved by targeting the
lunar WSB region as described in
Sect. 4.3, Table 4

4.2 Strategy

The WSB transfer in this case is still composed of the same building blocks as in Sect. 3.1.
The difference is that instead of targeting a point in the L1 region using the equations devel-
oped in Sect. 2, the target will be a ballistic capture orbit around the Moon, computed through
Eq. (23). This method is convenient because the targeting is done directly to the final orbit
and avoids the need for a second targeting from L1 to the Moon. As it will be shown, the
trajectory does not transit through a quasi-periodic orbit and, thus, this method can only be
used for planning lunar transfers. The procedure, very similar to the one outlined in Sect. 3,
is as follows:

1. By means of Eqs. (23), (24), find a lunar orbit which is inside the WSB region around
the Moon and has the desired periapse radius and inclination.
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Table 3 Summary of the
Delta-V required for achieving a
10000 km circular lunar orbit
shown in Fig. 11

Segment Delta-V ( km/s)

Raising apoapsis 2.96

Manifold injection burn 0.88

Course-correction burn 0.013

Lunar orbit injection 0 (e = 0.9)

Circularization 0.180

Total 4.032

Transfer time (days) 30

2. Initialize a backward-integration sequence inside STK/Astrogator with the orbital ele-
ments obtained in point 1. Run the sequence until the desired bridging point is achieved.

3. Retrieve the state vector at the bridging point and use it as target in a forward-integration
sequence within STK/Astrogator. In this way, the correct launch time, launch azimuth
and Delta-V value for the “raising apogee” maneuver can be computed.1

4. Point 3 brings the spacecraft at the right place at the right time to intersect the Internal
WSB transfer trajectory, but not at the correct speed. One more targeting is required to
compute the correct “manifold insertion burn” Delta-V.

5. Propagating forward from this point on leads the spacecraft into a ballistic capture around
the Moon.

4.3 Results

As in Sect. 3.2, the forces considered for the integration of the spacecraft equations of
motion are that of the Earth, the Sun and the Moon. The positions of the celestial bodies are
determined through the JPL precise ephemerides database DE405. Therefore, the resulting
trajectories are non-circular and non-planar.

As it can be seen from Tables 3, 4 and 5, this method leads to more efficient transfers
to lunar orbits than those obtained in Sect. 3. The difference in terms of total Delta-V, for
the same target orbit, is as high as 300 m/s. In the case of a 100 km polar orbit (Fig. 13), the
total Delta-V is very similar to that of a Hohmann transfer. However, it can be seen from
Table 4 that the Delta-V that must be supplied by the spacecraft is as low as 595 m/s, with
a net decrease of 205 m/s with respect to Hohmann. It can also be seen that the ballistic
capture orbit has a lower eccentricity then that shown in Table 3. Moreover, the eccentricities
obtained both for a capture orbit with a 100 km radius and for a 10000 km one, are in the
range predicted by the theory and shown in Fig. 12a and b.

1 This problem can be summarized as follows. Since STK uses actual ephemerides for computing the position
of Earth, Sun and Moon it needs to know the epoch at which the spacecraft trajectory shall be calculated (e.g.
the launch date and time). Furthermore, the “manifold insertion” maneuver Delta-V given by the linearized
model can only be considered a “first guess” because of the differences, however small, introduced by the
presence of a fourth attracting body and the non-circularity of the problem. Thus, there are three unknown
quantities in the problem that need to be calculated: two launch conditions (epoch and azimuth) and the
maneuver Delta-V. STK/Astrogator differential corrector uses an iterative process to numerically correct the
“first guess” solutions and find the needed quantities. See Appendix A for a brief explanation of the method.
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Table 4 Summary of the
Delta-V required for the transfer
to a lunar orbit targeting the lunar
WSB region

Note that the final lunar orbit here
is much lower than that in the
previous section and has a radius
of 100 km (i = 90◦)

Segment Delta-V ( km/s)

Raising apoapsis 2.83

Manifold injection burn 0.71

Course-correction burn 0

Lunar orbit injection 0 (e = 0.8)

Circularization 0.595

Total 4.135

Transfer time (days) 19

Table 5 Summary of the
Delta-V required for a transfer to
a lunar orbit that has the same
target conditions as in the
transfers shown in Fig. 11,
namely a 10000 km circular orbit

It can be seen how this transfer
performs significantly better

Segment Delta-V ( km/s)

Raising apoapsis 2.83

Manifold injection burn 0.74

Course-correction burn 0

Lunar orbit injection 0 (e ∼ 0.5)

Circularization 0.200

Total 3.77

Transfer time (days) 19

5 Deploying a three-satellite constellation

5.1 Overview

This section briefly presents the results obtained form a simulation of a WSB transfer for
multiple spacecraft. The goal of this study is to prove that it is possible to launch more than
one spacecraft onboard a single launch vehicle, place them initially in the same WSB transfer
trajectory, and exploit its chaotic nature for driving them to significantly different lunar orbits
(i.e. with little fuel consumption),.

The main purpose of the constellation is to provide a telecommunications link between
the Earth and the whole lunar surface,. It has been known since the 1960s that a continuous
link with the far side of the Moon can be achieved with just one relay spacecraft in a halo
or Lissajous orbit around the Earth–Moon L2 point (Farquhar 1967). However, the multiple
satellite approach has been chosen here for two main reasons: while it is true that a single L2
satellite provides full coverage of the far side, it cannot act as a relay for transmitters located
in the near side. This implies that a transmitter in the near side should have enough EIRP
to provide a good direct link with Earth. This is not always the case, particularly for small
rovers. The constellation approach enables a high data rates link with every site on the lunar
surface even with a rover equipped with a patch antenna with a gain no greater than 6 db.
Secondly, a telecom constellation can be used for navigation purposes as well, thus providing
two key services with the same asset.

The design of the transfer trajectory adopted for delivering the three-satellite constella-
tion described in what follows was originally developed with the targeting-to-L1 approach
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Table 6 Summary of the
Delta-V required for the first part
of the transfer, common to all
three satellites, provided by the
launcher

Segment Delta-V ( km/s)

Common transfer lag

Raising apoapsis 297

Manifold injection burn 0.84

Total 3.81

Table 7 Summary of the
Delta-V required for the first
Satellite to complete its transfer

Segment Delta-V ( km/s)

Satellite 1 after separation

Course-correction burn 0.055

Lunar orbit injection 0

Circularization 0.180

Total 0.235

Transfer time (days) 26

Satellite 1 orbital parameters at first periselenium

Rp ( km) 10000

e ∼0.67

i (◦) 70

Arg. of periselenium (◦) 34.82

Longitude of asc. Node (◦) 103.78

Table 8 Summary of the
Delta-V required for the second
Satellite to complete its transfer

Segment Delta-V ( km/s)

Satellite 2 after separation

Course-correction burn 0.032

Lunar orbit injection 0

Circularization 0.183

Total 0.215

Transfer time (days) 21

Satellite 2 orbital parameters at first periselenium

Rp ( km) 10000

e ∼0.69

i (◦) 70

Arg. of periselenium (◦) 307.55

Longitude of asc. Node (◦) 307.8

described in Sect. 3. The effects of the Earth, Sun and Moon gravity are considered and their
motion is modeled after the JPL DE405 ephemerides.
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Table 9 Summary of the
Delta-V required for the third
Satellite to complete its transfer

Segment Delta-V ( km/s)

Satellite 3 after separation

Course-correction burn #1 0.028

Course-correction burn #2 0.042

Lunar orbit injection 0

Circularization 0.158

Total 0.228

Transfer time (days) 28

Satellite 3 orbital parameters at first periselenium

Rp ( km) 10000

e ∼0.3

i (◦) 70

Arg. of periselenium (◦) 97.27

Longitude of asc. Node (◦) 39.1

5.2 Results

The results obtained are summarized in Tables 6,7,8 and 9. Under the assumption that the
launch vehicle releases the three satellites together after the manifold insertion burn, about
94% of the total Delta-V (4 km/s) necessary for the transfer is delivered by the launcher itself.
Only the remaining 6%, little more than 200 m/s, is at the expense of the single satellite. Fur-
thermore, about 4.5% of the budget is spent for the circularization maneuver only. In this
respect the longer time allowed to reach the desired operational orbit by the ballistic capture,
can bring further advantages if the spacecraft is equipped with a low-thrust engine which pro-
vides more efficiently the required orbital change. Hence, there is only the need to equip the
spacecraft with a propulsion system capable of delivering, in a single maneuver, a maximum
of 60 m/s. This scenario supports the conclusion that launching multiple lunar satellites using
a WSB transfer is not only feasible but it also allows major savings on the spacecraft masses.

Fig. 14 The constellation
achieved after transfer is
complete for all three satellites
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Fig. 15 The complete transfer
for all three spacecraft shown in
the Earth-centered inertial
reference frame

Figure 14 shows the final constellation after circular orbits are achieved, while trajectories
for all satellites in the inertial frame are shown in Fig. 15.

6 Conclusions

The concepts of Space Manifold Dynamics and Week Stability Boundary are relatively new
in space mission design, yet they have proven to provide an efficient alternative option to
classical mission design. Several applications have been carried out for reaching halo orbits
around the Earth–Sun Lagrangian point EL1(e.g. the ESA SOHO mission), while most of
the future astronomical observatories in space are aimed to the Earth–Sun Lagrangian point
EL2. As far as the Moon is concerned, to date there have been two attempts of using SMD
transfers: by the European SMART-1 mission and by the Japanese Hiten spacecraft which
successfully achieved the first ballistic capture around the Moon in 1991. As far as modeling
SMD transfers is concerned, most of the literature involve studies made under simplifying
assumptions like the CR3BP. Moreover no commercial software has so far implemented
methods specifically devoted to routinely perform SMD mission design.

In our study proof has been given that linearized (or otherwise simplified) analytical solu-
tions of the three-body problem can be effectively used in conjunction with a commercial
software (STK). Indeed, it has been shown that the search algorithms within STK converge
to a SMD solution even when fourth-body or other perturbations are accounted for in the
model. The method presented here provides a means of handling these new techniques in
mission design inside an existing (and certified) software framework. In Tables 10 and 11 the
simulations carried out in Sects. 3 and 4 are summarized, showing that the numerical results
agree with the theory outlined in Sects. 2 and 4. Ballistic capture orbits with increasingly
higher periselenium have lower eccentricities and, thus, the circularization maneuver has a
magnitude inversely proportional to the periselenium distance.

Note that although periodic or quasi periodic internal transfers can be found which allow
extra savings in �V with respect to the values reported in Tables 10 and 11, the corresponding
increase of the transfer times makes them less appealing for practical applications, especially
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Table 10 Comparison of the results obtained for the same transfer (LEO parking orbit to a 100 km lunar
circular polar orbit) using the techniques described in Sects. 3 and 4

Segment Direct lunar targeting SMD
transfer �V ( km/s)

Lunar SMD transfer through
L1 �V ( km/s)

Raising apoapsis 2.83 2.97

Manifold injection burn 0.71 0.84

Course-correction burn 0.00 0.07

Lunar orbit injection (e = 0.8) 0.00 (e = 0.94) 0.00

Circularization 0.60 0.65

Total 4.14 4.53

Transfer time (days) 19 30

Table 11 Comparison of the results obtained for the same transfer (LEO parking orbit to a 10000 km lunar
circular orbit) using the techniques described in Sects. 3 and 4

Segment Direct lunar targeting SMD
transfer �V ( km/s)

Lunar SMD transfer through
L1 �V ( km/s)

Raising apoapsis 2.83 2.97

Manifold injection burn 0.74 0.84

Course-correction burn 0.00 0.06

Lunar orbit injection (e ∼ 0.5) 0.00 (e = 0.67) 0.00

Circularization 0.20 0.18

Total 3.77 4.05

Transfer time (days) 19 30

as far as manned missions are concerned (Compagnone and Perozzi 2007; Topputo et al.
2005).

Thus, some general conclusions on the use of internal WSB transfers to the Moon can be
drawn:

1. small changes in the choice of the incoming transfer trajectory lead, through ballistic
capture, to widely different orbits around the Moon (e.g. from equatorial to polar);

2. high-eccentricity or high-altitude operational orbits around the Moon strongly decrease
the magnitude of the total �V because they avoid performing circularization maneuvers
deep inside the gravity well of the Moon;

3. generally lower values of the total �V budget, of the eccentricity of the capture orbit
and of the transfer time are obtained when the direct lunar targeting is adopted instead
of entering the lunar sphere of influence through L1 (see Tables 10, 11).

These considerations have been used as drivers for carrying out a comprehensive simula-
tion on the place-in-orbit of a three-satellite constellation around the Moon. In an extensive
lunar exploration scenario multi-spacecraft missions of this kind are expected to guarantee
telecommunications with the Earth from the lunar far side and can be employed also for nav-
igation purposes. It is shown that the nominal orbital configuration of the lunar constellation
is obtained by launching all satellites at the same time into a high eccentricity near-Earth
orbit for performing a common manifold insertion maneuver. The three spacecraft are then
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separated from the launcher and provide by their own means the �V required to achieve
different ballistic capture orbits around the Moon.
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Appendix A

STK/Astrogator differential corrector (STK Help 2008)

The problem that the differential corrector needs to solve is finding the values of some
unknown (independent) variables that meet a given set of orbital goals. The goal G(v) is
expressed in terms of a pseudo-Taylor series expansion of the independent variable v, typi-
cally truncated at the first order. In the case of a single-dimension problem:

G1(v1) ≈ G0 + dG

dv
(v1 − v0)

Thus, the value v1 can be expressed as:

G ′
1 = dG

dv
≈ G1 − G0

v1 − v0

v1 ≈ v0 + GT − G0

G ′
1

= v0 + (GT − G0)
[
G ′

1

]−1

where v1 represents the approximated value of the independent variable needed to meet the
goal GT if the initial value v0is known and an approximation of the derivative G ′

1can be found.
In the case presented in this paper, the variables vi

1are the launch epoch, launch azimuth and
maneuver Delta-V magnitude, whereas the goals are represented by the orbital parameters of
the lunar orbit achieved after ballistic capture. To generate the approximation of the values
vi

1the algorithm perturbs each variable vi
0by a small amount δvi and measures the resulting

change in each goal. It then integrates a nominal trajectory and uses the results to calculate
an approximation of the derivative G j ′

1 and a new estimate of the variables vi
0. This process is

then repeated until the achieved value of the goal falls within the (user-specified) tolerance
for the goal. Starting values for the independent variables that are not too far from the actual
solution are needed for the process to converge. In our case, these “first guess” values are
computed through the analytical model.
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