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Survey of developments in the theory
of continuous skewed distributions

Summary - In this paper we trace developments in the theory of skewed continuous
distributions (univariate and multivariate) which commenced in the late 19th century
and —after some dormant period during the most of the 20th century— were invig-
orated in the middle 80’s of the 20th century and has become in the last 20 years an
area of rapid advances.
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1. From the 18th until the middle of the 20th century

Our purpose is to highlight the milestones in the development of somewhat
non-homogeneous area in statistical distributions which can be traced to the
19th century, but has gained speed and attention only in the last 20 years.

We shall take this opportunity to present a number of remarks on the early
history of skewed (continuous) distributions which seems to be presented in
the literature in a somewhat fragmented manner.

We start with a swift historical overview of the subject matter. Unfortu-
nately it is quite common in the statistical literature that many developments
are carried by researchers in different countries more or less simultaneously
without any coordination. This is especially valid for the initial studies of
general continuous distributions at the very end of the 19th century. This may
explain in part a somewhat disconnected presentation of this first part which is,
in our intention, just an historical background of the following developments.

It is well known that so-called normal or Gaussian or Laplace-Gaussian
distribution, law of error (or the “probability curve”—the term coined by Chau-
venet (1863) and popularized by F. Y. Edgeworth (1845–1926) in his 1883
paper) has, for over 250 years, dominated developments in probability theory
and as well as much of practical statistical work— often uncritically.
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By now the bookshelves in university libraries cry for mercy under the
weight of statistical textbooks based on the normal distribution assumptions.
As J. Aldrich (2003) points out: The word “normal” had been used by F. Galton
(1822–1911) but K. Pearson (1857–1936) made it a standard term. The books
K. Pearson used as a student in 1874–1877 referred to the “probability curve”
or “law of error.” The later term was used by F. Bessel (1784–1865) in his
1815 paper on the positions of stars. “Normal” may be a sound abbreviation
for according to the law (of error) and K. Pearson (1893) may have begun by
thinking that “as a rule” the normal held but he kept the name even after he
had concluded that it did not. By 1895 he was saying, “to deal effectively
with statistics [data] we require generalised probability curves which include the
factors of skewness and range.”

The earliest published derivation of the normal distribution (as an approx-
imation to a binomial) is due to A. de Moivre (1667–1754) in his pamphlet
of November in 1733 in Latin, which was translated by him into English five
years later. The original seven-page Latin treatise was discovered by Karl Pear-
son in the library of University College, London, in 1924. P. S. Laplace in
1774 obtained the normal distribution as an approximation of hypergeometric
distribution and four years later suggested tabulation of the normal probability
integral 
(x).

C. F. Gauss (1777–1855) in 1809 and 1816 established estimation tech-
niques based on the normal distribution that became standard methods used
during the 19th and early 20th centuries. More recently, starting from the mid-
dle of the 20th century, a great deal of research in statistics has been devoted
to testing for and applying transformations to produce approximate normality
in data sets.

However, in the late 19th century the increasing collection, tabulation, and
publication of data by government and private institutions and agencies in
demography, social sciences and medicine, biology, economics, and insurance
revealed that the normal distribution is not sufficient for describing phenomena
(homogeneous with respect to all but random factors) in real world situations.

A. Quetelet (1796–1874) was one of the first to encounter such data
(Quetelet, 1846). In 1879, the lognormal distribution was introduced by McAl-
ister at F. Galton’s instigation. J. Venn in 1887 criticized the unquested ap-
plication of the normal distribution and presented examples of meteorological
measurements (pressure and temperature) that seem to show marked departures
from normality. This criticism was deflected by F. Y. Edgeworth in a letter
to Nature. However, J. Venn’s criticism touched a raw nerve, and in his first
statistical publication in 1893 (also a letter to Nature), Karl Pearson mentions
Venn’s objections and announces that he obtained a generalization of “probabil-
ity curve” (i.e., the normal distribution) using a method of “higher moments.”
The full account appeared in 1894 and 1895 in two voluminous memoirs in
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the Philosophical Transactions of the Royal Society where Pearson develops:
(a) a mixture of two normal curves;
(b) derived a “generalized form of the normal curve of an asymmetrical char-

acter”, currently referred to as Pearson’s type III curve (closely related to
the Gamma distribution).

This curve was earlier derived and presented by the American scholar E. De
Forest in 1882–1883 (and K. Pearson acknowledged this in his letter in Nature in
August 1895). In his monumental work, K. Pearson generalized the geometrical
relation between binomial polygon and the normal curve of frequency, i.e.,
generalizing the differential equation
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dx
= − x

c1

to
1

y
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= −x

c1 + c2x

and later on provided analogous analysis of the hypergeometric distribution
leading to the famous differential equation

1

y
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c1 + c2x + c3x2

for the Pearson curves. The 1894 and 1895 memoirs which contained 30
pages of examples received worldwide attention and these curves are still being
extensively used after 110 years since their “inauguration”. Johnson et al.
(1994) provide a detailed account of the Pearson’s curves. The type of a curve
depends on the nature of the roots of the quadratic in the denominator which
can be expressed in terms of moments. Pearson (1895) started with five types
of curves (treated a frequency curve) as an object with mechanical properties.
The number of types grew to seven, and finally to twelve.

Independently and somewhat earlier during the years 1873–1897, Danish
astronomer, actuary, mathematician and statistician (a person of remarkable
erudition and profound mental abilities), T. N. Thiele (1838–1910) who was
unintentionally neglected by the leaders of the British statistical establishment
at the turn of the 19th century, introduced three new frequency functions that
were generalizations of the normal and binomial distributions. He needed a
skew distribution for the demographic and actuarial data from a life insurance
company where he worked as an actuary. This led him to the form

(a0 + a1x + a2x2 + · · · )bx e−(x−m)2/2k

(but he used this model only for b = 1).
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This is a linear combination of a normal distribution and its successive
derivatives known as Gram-Charlier series. Thiele’s approach of generating
skew distributions is radically different from Pearson’s method of inventing
a four-parameter system of continuous distributions, among which the nor-
mal distribution is a special (two-parameter) case. Thiele discusses a par-
tial sign of the Gram-Charlier series (the A series in A. Hald’s (1981) ter-
minology) with orthogonal terms and a series defined as a linear combina-
tion of symmetric binomial distributions and its successive differences (the B
series). Thiele’s idea of writing a frequency function as a linear combina-
tion of known functions allowed to bring the analysis of frequency functions
within the realm of the method of least squares. Gram (1850–1916) also added
the requirement of orthogonality. This resulted in the emergence of the so-
called Thiele-Gram method of series expansion and estimation of frequency
functions.

Thiele’s C series (1897 and 1903) proposes to use polynomial interpolation
on the logarithm of a given density g(x), leading to

ln g(x) =
2m∑

r=0

cr xr , c2m < 0, m = 1, 2, . . . , −∞ < x < ∞.

For m = 1, we arrive at the normal distribution.
On the European continent, Thiele’s ideas were “in the air” as it is wit-

nessed by independent, related investigations of Gram-Charlier series by Bruns
(1897, 1906), Hausdorff (1901) and Charlier (1906). Bruns tables of the first
six derivatives of the normal density were published in Czuber’s (1903) classical
text on probability theory.

In his book, posthumously published in 1897, Kollectivemasslehre, the
founder of psychophysics, G. T. Fechner (1801–1887) proposed a two-sided
Gaussian law which may have different scales for positive and negative devia-
tions, being a composition of two normal distributions with different standard
deviations and common mode.

In 1908 at the 4th International Mathematical Congress in Rome, an Italian
mathematician F. de Helguero presented a paper on the analytical represen-
tation of the “abnormal” distribution curves which seems to be one of the
earliest (if not the earliest) predecessors in the spirit, along the path of the
univariate skew-normal distribution that was explicitly introduced only in the
second half of the 20th century (see Section 2). De Helguero (1909) noted
that the theoretical curves studied by Pearson and Edgeworth are lacking in
considering that the causes of the variation are interdependent, but they as-
sume nothing about the law of dependence. He suggested that could be very
helpful to consider distributions including a variability due to external causes.
De Helguero considered two forms of departure from normality: the first one,
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deals with the mixture of two normal populations and was motivated by a paper
by A. Giard (1894), who firstly formulated a similar hypothesis in biological
context. The second formulation refers to a selection mechanism of a normal
population. Starting from the normal density, both a constant measuring the
effect of the perturbation cause and the probability of an individual being hit
by such a perturbation are included. That it could be the first occurrence in
the literature of distribution generated by selective sampling which leads to a
unimodal and asymmetric curve. Some 100 years later, G. Barnard (1915–
2002) defined the Fechner family of distributions which was investigated by
K. J. Thomas (1993). A Dutch scientist, J. C. Kapteyn, in 1903 published an
influential book, Skew Frequencies in Biology and Statistics, in which he con-
sidered the genesis of the lognormal distribution along the lines of McAlister
(1879). This distribution is also mentioned in G. T. Fechner’s (1897) book on
Kollectivemasslehre.

The early history of bivariate (and multivariate) skewed continuous dis-
tributions is associated with Karl Pearson’s Notes on Skew Frequency Surfaces
(1923). After an unsuccessful attempt to replace a pair of correlated variables
by a pair of independent ones, in his 1905 work mentioned above, K. Pearson
considered methods of construction of joint distributions starting from spe-
cific requirements on the regression and scedastic functions. Attempts by the
British researchers Filon, Rhodes, and Isserlis, who were associated at one
time or another with K. Pearson’s laboratory, to generalize Pearson’s curves
to skewed frequency surfaces via double hypergeometric series or by rotation
of axis were not fully successful, although Filon-Isserlis and Rhodes surfaces
provided impetus for a more general derivation by S. Narumi (a Japanese
mathematician) which was hailed by K. Pearson and published in Biometrika
1923. Rhodes’ work has appeared in Biometrika (also in 1923) but was crit-
icized in the Current Notes of the J.R.S.S. (1923), Vol. 86, pp. 460–461 [May
1923]. Filon’s and Isserlis’ results were somewhat neglected and only briefly
and critically discussed by K. Pearson in his Notes on Skew Frequency Sur-
faces (1923). Narumi (1923) imposes somewhat stronger requirements on the
model namely that the shape of each conditional (array) distribution of one
variable, given the others, should be the same for all values of the conditioning
variables and places restrictions on the median regression function. This allows
him to construct some specific distributions of the form

Z =
z0

(
1 + x2

σ2
1

− 2r xy
σ1σ2

+ y2

σ2
2

)−λ−2

2λ(1 − r2)
,

while Rhodes surfaces (which are strictly speaking not a generalization of
Pearson’s skew frequency curves) are of the type

e�x+my(1 + ax + by)p(1 + cs + dy)q .
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Attempts to generalize the univariate Pearson’s differential equation

1

p

dp

dx
= − a + x

c0 + c1x + c2x2

to bivariate and multivariate cases were carried out by very diligent Dutch
researcher, M. J. van Uven for over the 20-year period (from 1925 to 1948)
and by H. S. Steyn (1960), and more recently by French scholar R. Risser
(1945–1950) and S. N. Sagrista (1952).

Bivariate Pearson surfaces are presented in Elderton and Johnson (1969).
They all have linear regression of each variable on the other.

1.1. Transformed skewed distributions

It is handy to consider constructing skewed univariate distributions by
assuming that a transformation of the random variable at hand has a standard
normal distribution.

This is known as the method of translation. Over 100 years ago, F. Y. Edge-
worth (1896) investigated transformations represented by polynomials while
Wicksell (1917, 1923) and Rietz (1922) considered more general transforma-
tions including logarithmic. However, the curves based on these transformations
cover a rather limited variety of shapes as compared to the Pearson curves.

In 1949, N. L. Johnson (1917-2004) applied the method of translation to
generate three families of frequency distributions which assume a wide variety
of shapes and cover the feasible (β1, β2) plane, i.e., all ordered pairs (β1, β2)

which are below the limiting line β2 − β1 − 1.
The transformations are of the form:

z = ν + δ f (y; γ, σ ) , (1)

where z is the standard normal variable and f (y; γ, σ ) is a simple monotone
function. The four parameters are ν, δ, γ , and σ .

The specific families of Johnson distributions are:
1. The SL generated by f (y; γ, σ ) = ln[(y − γ )/σ ].
2. The SB generated by f (y; γ, σ ) = ln[(y − γ )/(σ + γ − y)].
3. The SU family generated by f (y; γ, σ ) = sinh−1[(y − γ )/σ ].

More recently Rieck and Nedelman (1991) proposed two additional distribu-
tions: non-central sinh-normal distributions (SN (α, γ, σ, ν)) defined by the
transformation

z = ν +
(

2

α

)
sinh

[
y − γ

σ

]
, (2)

where z is a standard normal variable, and the central sinh-normal distribution
(SN (α, γ, σ )) defined by setting ν = 0 in (2).



Survey of developments in the theory of continuous skewed distributions 231

The non-central distribution admits the c.d.f. of the form

F(y) = 


{
ν −

(
2

α

)
sinh

[
y − γ

σ

]}
; (3)

here γ and σ are location and scale parameters respectively, and α and ν affect
kurtosis and skewness. The density is

f (y) =
[

2

ασ
√

2π

]
cosh

[
y − γ

σ

]
exp

{
−.5

[
ν + 2

α
sinh

[
y − γ

σ

]]2
}

. (4)

The parameters α and σ are positive while ν and γ are unrestricted.
The central distribution (ν = 0) is symmetric but can be bimodal. The

majority of (β1, β2) points of SN (α, γ, σ, ν) distribution for α in the range of
0.2 to 10 and ν from 0 to 10 fall in the same region as the Johnson’s SB

family, although there are some points in the SL and SU regions as well. The
logarithm of a well-known Birnbaum-Saunders fatigue-life distribution is in the
family of SN (α, γ, σ ).

As in the case of univariate distributions, bivariate translation systems
are generated by supposing that certain functions of variables are normally
distributed.

The pioneering work along these lines has been carried out by N. L. John-
son (1949) and the bivariate joint-skewed distributions found recent applications
in describing the structure of tree heights and diameters, Schreuder and Hafley
(1977), Knoebel and Burkhart (1991), among other applications. Some details
are given in Kotz et al. (2000).

2. Univariate skew-normal (and skew non-normal) distributions. The
modern era

The idea of modelling skewness by constructing a mathematically tractable
family of distributions starting from the symmetric normal distribution by mod-
ifying it in the context of Bayesian analysis can be perhaps traced to Birn-
baum (1950) and, independently, much later to O’Hagan and Leonard (1976).
Birnbaum (1950) suggested to apply what is now known as “conditioning
method” (discussed below). Two short notes by M. A. Weinstein (1964) and by
M. Lipow, N. Mantel, and J. W. Wilkinson, as reported by the editor L. S. Nel-
son (1964), deal with analogous problem catched in slightly different language.
The paper by C. Roberts (1966) where a correlation model “useful in the study
of twins” was developed by taking maxima of normal variables resulted in an
equivalent representation. Aigner et al. (1977) tackled the same problem using
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the “transformation method” (discussed below) involving two normal variables
with applications in econometrics.

Much later Mukhopadhyah and Vidakovic (1995) provided further exam-
ination of this problem with application to Bayesian analysis for constructing
skewed prior classes. These authors also suggested generalizations to be men-
tioned below.

However, the initiator and the driving force behind the development of the
modern theory and applications of skewed-normal distributions undoubtedly was
A. Azzalini (and his students and associates). It starts with the ground-breaking
paper in the 1985 issue of the Scandinavian Journal of Statistics, 12, 171–178,
which is probably the most quoted paper in the field of skewed distributions.
(Some ten years later, Azzalini and Dalla Valle (1996), extended the original
result to the multivariate cases which also generated widespread attention).

An important contribution by B. C. Arnold et al. (1993) provided appli-
cations and further amplifications and interpretations (followed by a number
of papers by Arnold and Beaver (2000, 2002) exploring the multivariate case).
More recently, M. G. Genton and his coworkers initiated further investigations
in the multivariate case.

The basic definition proposed by Azzalini (1985) states that a random
variable Z (sometimes denoted Zλ) has skew-normal (SN ) distribution with
asymmetric parameter λ (i.e., Zλ ∼ SN (λ)) if the density of Zλ is given by

fZλ
(z|λ) = 2φ(z)
(λz), z ∈ IR, λ ∈ IR , (5)

where φ and 
 are the N (0, 1) p.d.f. and c.d.f., respectively. Azzalini (1985)
and Azzalini and Dalla Valle (1996) provide expressions for the mean and
variance of a standardized skew-normal random variable Zλ with density (5):

E(Zλ) =
(

2

π

) 1
2 λ

(1 + λ2)
1
2

,

Var(Zλ) = 1 − 2

π

λ2

(1 + λ)
.

Henze (1986) cites expressions for all odd moments in a closed form. The
even moments (as it is evident from Z 2

λ ∼ χ2
1 and density (5)) are the same as

those of N (0, 1) variable. Henze (1986) and simultaneously Azzalini (1986),
building on Azzalini (1985), provide the stochastic representation of Zλ:

Zλ
d= λ√

1 + λ2
|U | + 1√

1 + λ2
V , (6)

where U and V are independent N (0, 1) random variables. The notation X d=
Y means that X and Y have the same distributions. It is easy to verify that the
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r.h.s. of (5) is a proper density and the case λ = 0 results in N (0, 1) density.
It was stated by Azzalini (1985), and later emphasized by Mukhopadhyah and
Vidakovic (1995), among others, that for any λ ∈ IR, the function

2 f (u)G(λu) , (7)

is a p.d.f. where f is the density of a variable symmetric around 0, and G
is the c.d.f. of another independent random variable. By combining different
symmetric distributions (t , logistic, uniform, double exponential (Laplace), etc.)
numerous families of skewed distributions may be generated (Nadarajah and
Kotz (2003, 2004)).

Specifically following (5), if the densities ψ0 and ψ1 are, for example,
standard Cauchy densities, the skew-Cauchy density (of “the Azzalini” type) is
given by

f (z, λ) = 2

π(1 + z2)

[
1

2
+ 1

π
tan−1(λz)

]
, z ∈ IR . (8)

Alternatively, defining

Zλ = δ|Y0| +
√

1 − δ2 Y1,

(
λ = δ

1 − δ2

)
, (9)

see (6), where Y0 and Y1 has symmetric density ψ we obtain

fZλ
(z) = 2

δ
√

1 − δ2

∫ ∞

0
ψ

(
z − u√
1 − δ2

)
ψ

(
u

δ

)
du , (10)

and substituting for ψ0 and ψ1 Cauchy (0, 1), we have for δ > 0,

fZ (z) = 2

δ
√

1 − δ2

∫ ∞

0

1

π
(

1 + (z−u)2

1−δ2

) 1

π
(

1 + u2

δ2

) du . (11)

After partial fraction expansion of the integrand, we obtain the closed form:

fZ (z) = 1

π(δ + √
1 − δ2)

1(
1 + z

(δ+
√

1−δ2)

)
×
[

1 + 2δ

π(δ + √
1 − δ2)

tan−1
(

z√
1 − δ2

)]

− 2δ
√

1 − δ2z

π2(z2 + (δ + √
1 − δ2)2)(z2 + (δ − √

1 − δ2)2)

× log

(
δ2

z2 + 1 − δ2

)
, z ∈ IR .

(12)
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Evidently, the “Azzalini”-type density (8) is simpler. See Arnold and Beaver
(2002).

Analogously, assuming that ψ0 and ψ1 are standard Laplace densities:
ψ0(u) = ψ1(u) = e−|u|, u ∈ IR, we can arrive at two “skewed-Laplace” models.
We note here that two different generating mechanisms resulted in two different
forms of skewed distributions. We shall dwell on various generating approaches
involving normal distributions in the next section.

Another property (known as the square root property, see, e.g., Arellano-
Valle et al., 2002) is that

Zλ ∼ SN (λ) implies that Z 2
λ ∼ χ2

1 ,

as it is the case for normal (0, 1) random variable. This property is extended
by Arellano-Valle et al., 2002) to the multivariate case. (See the next section).

Wang et al. (2004b) provides, inter alia, a chi-square characterization of
Zλ which improves on the square root property: let g(x) be the probability
density function of a random variable X . Then X2 ∼ χ2

1 if and only if
there exists a skewing function π(x) such that g(x) = 2φ(x)π(x), where
φ(x) = 1√

2π
exp − x2

2 .
This allows us to interpret skewness in terms of conditional distribution

of aX0 + bX given x0 > 0 where (x0, X)T is the so-called C-random vector.
Details are presented in Arellano-Valle et al. (2002).

A characterization of the SN (λ) density f given by

f (z, λ) = 2
(λz)φ(z)

in the spirit of Arellano-Valle et al. (2002) and Wang et al. (2004) was recently
developed by Gupta and Chen (2004).

Let X and Y be i.i.d. skew normal, and let F be the distribution function
of two i.i.d. random variables X1 and X2 having all moments finite. Then
F is skew normal iff X2

1 and X2
2 are distributed as X2 (i.e. chi squared) and

(X1 + X2)
2 as (X + Y )2. The proof, by induction, is rather complicated. It

is based on a result saying basically that distributions having all moments are
determined by the distributions of X2

1, X2
2 and (X1 + X2)

2.
Ma and Genton (2004) propose a flexible class of skew-symmetric distri-

butions with the probability density function of the form of a product of a
symmetric density (non necessarily normal or Laplace) and a skewing func-
tion. They illustrate their approach by examples for the fiberglass data and the
well-known Swiss bills data.

Ali and Woo (2005) discuss skew reflected Gamma distribution, skew-
symmetric double Weibull distribution and skew-symmetric beta prime distri-
bution and derive their moments. For example, in the Gamma case, the reflected
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variable has the p.d.f.

f (x) = 1

2�(α)
|x |α−1e−|x |, x ∈ IR, α > 0

(note that f (x) = f (−x) for all x ∈ IR) and the c.d.f.

F(x) = 1

2
+ sgn(x)

2�(α)
γ (α, |x |), x ∈ IR

where γ (α, x) is the incomplete Gamma function

γ (α, x) =
∫ x

0
tα−1e−t dt .

The skew reflected Gamma distribution has the density 2 f (x)F(cx) for any
real c.

2.1. Estimation of univariate skew normal distributions

It was already mentioned that the standard skew-normal distribution with
parameter λ, SN (λ), represented by r.v. X , can be generalized to

Y = ξ + ηX .

This is called direct parametrization and distribution of Y is denoted by
SND(ξ, η, λ). Consider a standardized sample YS = (y01, . . . , ySn ) where Ysi =
(yi − ȳ)/s and s2 is the sample variance) of n observations from a SND(ξ, η, λ)

distribution.
The method of moments yields the following estimators of the parameters:

ξ̃s = −cm
1
3
3 /s, η̃s = (1 + ξ̃ 2

s )
1
2 and δ̃ = − ξ̃s

bη̃s
, (13)

where b =
√

2
π

, m3 is the third central moment,

c =
(

2

4 − π

) 1
3
, and δ = λ√

1 + λ2
. (14)

(Note that λ̃ = δ̃/(1 − δ̃2)
1
2 , provided |δ̃| < 1).

The method of moments estimators of the location and scale parameters
for a normal distribution are ȳ and s. Thus, if we use (13) to estimate the
parameters of an assumed skew-normal distribution when data actually comes
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from a normal distribution, we shall overestimate η and, depending on the
sign of ξ̃s , underestimate (or overestimate) ξ . Azzalini (1985) introduces the
“centered” parametrization (µ, σ, γ1) and defines skew-normal variable Y with
E(Y ) = µ and Var(Y ) = σ 2 by

Y = µ + σ
X − E(X)

(Var(X))
1
2

, −∞ < µ < ∞ , (15)

where X ∼ SN (λ).
In this reparameterization the methods of moments estimates are given

by µ̃ = ȳ, σ̃ = s and γ̃ = m3
s2 . Since the coefficient of skewness γ1 ∈

(−0.99527, +0.99527), the inadmissible values for γ̃1 satisfy |γ̃1| > 0.99527.
Such values occur often for highly skewed populations for large sample sizes.
They are an indication that negative folded normal distribution (rather than a
skewed-normal) is the underlying generating mechanism (see Pewsey, 2000, for
details).

The problem when estimating parameters of the SN model using maximum
likelihood approach is that the information matrix becomes singular when the
data are generated by a normal distribution (Azzalini, 1985, Pewsey, 2000). The
singularity of the information matrix can be removed by the reparameterization
of the model in terms of the centered parameters (µ, σ, γ ). These reparame-
terizations made the shape of the likelihood function closer to quadratic and
provides less correlated estimators.

However, this estimation procedure may lead to λ̂ = ±∞ even if the
generating model has finite λ. The frequency of these boundary estimates
decreases as n increases but is substantial even for large samples, especially
if |λ| is large. (This is due to the fact that shape of the density is almost
unchanged when |λ| is greater than 20). In the general three parameter case
the Fisher information is singular as λ → 0 (Azzalini and Capitanio, 1999,
Liseo and Loperfido, 2004).

Azzalini and Capitanio (1999) propose to stop the maximization proce-
dure when the log-likelihood value is “not substantially” lower than the max-
imum. (Since the estimates also depend on the significance level this pro-
posal may be somewhat arbitrary.) A two-step procedure to obtain a fi-
nite estimate was proposed by Sartori (2003) using Firth’s (1993) bias re-
duction method. Liseo and Loperfido (2003, 2004) develop a procedure for
Bayesian analysis of the skew-normal distribution. In the standard case SN (λ),
they propose to calculate the Jeffrey’s prior for λ and show that it is a

proper density with tails of order O(n− 3
2 ) (as a rule non-informative priors

for real parameters are improper). This allows us to use a Metropolis-Hastings
type algorithm to obtain a sample from the posterior distribution of λ. The
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Bayes estimate (the posterior mean of λ) seems to be superior over that of
the MLE.

In the general three-parameter case, a reference prior (Berger and Bernardo,
1992) is derived. It involves the product of non-informative prior 1

σ
for

the location-scale parameter times a marginally proper density of λ. After
the integrated likelihood for λ is calculated, the location and scale parame-
ters are eliminated using a normal-Gamma type prior (of which 1

σ
is a spe-

cial case). A comparison with Azzalini and Capitanio (1999) results is then
carried out.

A. C. Monti (2003) proposes a variant of the minimum chi-square estimation
method that is asymptotically equivalent to maximum likelihood method to
estimate SN parameters. Here a random sample of size n is allocated to k
classes, and we are searching for the value of the parameter corresponding to
the distribution that is the closest to the empirical distribution in accordance
with the χ2 criterion. This is equivalent (asymptotically in probability) to
maximizing the likelihood function of a multinomial distribution defined on
these classes. See, e.g., Neyman (1949), Serfling (1980), Harris and Kanji
(1983). These classes considered are:

C1 = (−∞, u1), C2 = (u1, u2), . . . , Cn−1 = (un−2, un−1), Cn = (un−1, +∞) ,

where ui = (x(i) + x(i+1)/2) for i = 1, 2, . . . , n − 1.
It turns out that means, standard deviations, and root mean square er-

rors of estimators of λ are quite inflated by large estimates, while medians
and median absolute deviations are unaffected by them. As it was mentioned,
simulation results indicate that the original parametrization can produce unrea-
sonably large estimates of λ. The method proposed by Monti (2003), seems
to reduce substantially the presence of boundary values of estimators of γ .

Arnold and his coworkers (1993, 2000a) emphasize the concept of hidden
truncation: the motivation is illustrated by the distribution of waist sizes for
uniforms of elite troops who are selected only if they meet a specific minimal
height requirement. The joint distribution of height and waist measurements
could well be bivariate normal but imposing the height restriction will result in
a positively skewed distribution for the waist sizes of the selected individuals.
In some situations this kind of truncation may occur even without us hav-
ing knowledge of its occurrence. An alternative expression for this procedure
is “selective reporting.” The latter concept is somewhat broader than hidden
truncation (when, for example, each reported observation is actually the maxi-
mum of two independent, identically distributed normal observations obtained
by picking the “best” one of each pair of observations). Azzalini and Dalla
Valle (1996), Arnold and Beaver (2000) describe four scenarios of generating
skewed normal distributions:
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(a) Let Y and W be two independent i.d. standard normal variables. Define
Z = {Y |λY > W }, then Z has skew-normal density: f (z|λ) = 2ϕ(z)
(λz),
z ∈ IR.

(b) (Conditioning method ) Let (Z , Y ) have bivariate normal distribution with
N (0, 1) marginals and correlation δ. Consider the conditional density of
Z given Y > 0, namely keeping only those Z ’s whose corresponding Y
value is above average. The variable Y can be expressed as:

Y = δZ −
√

1 − δ2 W , (16)

where W is i.d. N (0, 1) variable independent of Z . (This is because the
event {Y > 0} is equivalent to {δZ − √

1 − δ2 W > 0} or { δ√
1−δ2

Z > W }.
Hence conditional distribution of Z given {Y > 0} is skew normal with
parameter λ = δ√

1−δ2
. (As observed initially by Henze (1986) mentioned

above.)
(c) (Transformation method ) Let Y1, Y2 be independent standard normal vari-

ables and a constant δ ∈ (−1, 1) be given. Then

Z = δ|Y1| +
√

1 − δ2 Y2 (17)

is skew-normal with parameter λ = δ√
1−δ2

. Note that (c) seems to be

conceptually different from (a) and (b).
(d) Consider (W1, W2) to be a bivariate normal random vector with standard

normal N (0, 1) marginals and correlation δ. Let Z = max(W1, W2), then Z
is skew-normal random variable with parameter λ = √

(1 − δ)/(1 + δ).
The basic skew normal density can be extended to

f (z; λ0, λ1) = ϕ(z)
(λ0 + λ1z)


(λ0/

√
1 + λ2

1)
(18)

(discussed in some detail in Arnold, et al. (1993)), and by introducing scale
and location parameter

f (z, λ0, λ1, µ, σ ) = ϕ
( z−µ

σ

)


(
λ0 + λ1

( z−µ

σ

))

(λ0/

√
1 + λ2

1)
with λ0, λ1 ∈ IR . (19)

The moment generating function corresponding to a variable given by den-
sity (18) is:

M(t) = e
t2
2




(
λ0+λ1t√

1+λ2
1

)



(
λ0√
1+λ2

1

) . (20)



Survey of developments in the theory of continuous skewed distributions 239

See Azzalini (1985) for elegant derivations (his equation (9)). With a different
notation, the moment generating function of the basic skew normal density can
be found in Arnold, et al. (1993) and in the earlier paper by Chou and Owen
(1984). The basic paper by Azzalini (1985) also deals with the case λ = 0
(where the denominator becomes 1

2 ).
For non-normal univariate skew distributions using the hidden truncation

method, we consider two independent random variables W, U assuming that W
has density (distribution) function ψ1(�1) and U has ψ2(�2), respectively. The
conditional density of W given {λ0 + λ1W > U } is

f (w; λ0, λ1) = ψ1(w)�2(λ0 + λ1w)

P(λ0 + λ1W > U )
. (21)

Computation of the denominator may be troublesome in certain cases. Arellano-
Valle, et al. (2003) and Genton and Loperfido (2005), extending the results
of Azzalini and his coworkers, discuss all the skew p.d.f.’s F∗ which can be
written in the form f∗ = 2 f (z)Q(z) where f is a symmetric p.d.f. about zero
and 0 ≤ Q(z) ≤ 1 and Q(−z) = 1 − Q(z), which is called a skewing function.

These authors refer to them as generalized skew-distributions. In particular,
for some special skewing function, Arellano-Valle, et al., obtain the following

generalized skew-normal p.d.f.: f∗(z|η, τ) = 2ϕ(z)

(

ηz√
1+τ2z2

)
, where z ∈ IR

and η ∈ IR is a location parameter, and τ > 0 is a scale one. (Compare
with the density given by (18)). The corresponding variable is denoted by Z ∼
GSN (η, τ ). Some properties of this model such as Z d= X√

1+X2
U + 1√

1+X2
V ,

where X ∼ N (η, τ 2) and is independent of U and V which are i.i.d. N (0, 1)

variables, are discussed in Arellano-Valle, et al. (2003a,b).
The standard skew-t distribution possesses the density

2t (z; ν) · T

λz
(

1 + ν

z2 + ν

) 1
2 ; ν + 1

 , (22)

where t (z, ν) is the density of the “ordinary” t-random variable and T is the t
c.d.f. with ν + 1 degrees of freedom. The random variable Z with density (22)
satisfies the square root property in the sense that Z̃ 2 is distributed as F with
(1, ν) degrees of freedom. Details are given in Azzalini and Capitanio (2003).
This distribution (actually its log transformation) has been recently successfully
applied as a model for the yearly family income data in 13 European countries
and the USA in the late 20th century (Azzalini, Dal Cappello, and Kotz, 2003).
Jones and Faddy (2003) also discuss a skew extension of the t-distribution
(emphasizing it as a heavy-tailed alternative to the scale (univariate) skew-
normal class).
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The linear regression model Yi = α + βxi + εi relating the variables Yi

and X (assuming that xi are directly observed but the errors εi are i.i.d. SN (λ)

and λ has an SN prior distribution has been discussed by Arellano Valle, et
al. (2003) and a more elaborate regression models involving SN distributions
by Arellano-Valle, Bolfarine and Ozán, 2003).

An investigation of properties of scaled (univariate) skew-normal distribu-
tions were carried out by Chiogna (1998). She presents recurrence relations
for incomplete moments of the skew-normal variable and provides moments of
order statistics. While explicit derivation of moments of normal order statistics
fails for sample sizes of greater than 6 (Ruben, 1954), derivation of a single
moment of order statistics: α

(r)
i,n = E(zr

i,n) for scalar skew-normal distributions
seems to fail already for samples of size 3 and higher. In general, it is possi-
ble to adapt relations satisfied by normal order statistics to skew-normal order
statistics by introduction of correction terms which account for the skewness.

Pewsey (2000) proposed the wrapped skew-normal distribution on the cir-
cle. Let X ∼ SN (λ). The variable θ = Y (mod 2π) where Y = ξ +ηX is given
by the density

f (θ; ξ,η,λ)= 2

η

∞∑
t=−∞

ϕ

(
θ+2πr −ξ

η

)



{
λ

(
θ+2πr −ξ

η

)}
, 0≤θ ≤2π. (23)

An application is provided by fitting the distribution to the “headings” (the
direction of a bird body during flight of migrating birds) of some 1655 birds
recorded near Stuttgart, Germany, during the autumnal migratory period of 1987.

Alternative approaches to generating univariate skew distribution from sym-
metric ones (including univariate normal distributions) have been discussed by
Mudholkar and Huston (2000), among others.

Fernández and Steel (1998) propose to convert a symmetric distribution
into a skewed one by introducing inverse scale factors into the negative and
positive parts of the real line.

Suppose that f is a symmetric p.d.f. defined on IR. Then, for c > 0 and
κ > 0, we define a new density function as follows:

g(x) =
{ c f (xκ), x ≥ 0,

c f
(

x

κ

)
, x < 0 .

(24)

This distribution is skewed. To find the normalizing constant c, note that∫ 0

−∞
c f (xκ)dx +

∫ ∞

0
c f
(

x

κ

)
dx = 1 , (25)

and the normalizing constant c is:

c = 2κ

1 + κ2
. (26)
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Thus, the density g(x) becomes

g(x) = 2κ

1 + κ2

{ f (xκ), for x ≥ 0 ,

f
(

x

κ

)
, for x < 0 .

(27)

Note that a more general model can be obtained replacing κ with κ1 and 1
κ

with κ2. When f is the normal density, we obtain a class of skew distribution
different from the one given by density (5) (see also Mudholkar and Huston,
2000 and references therein). When f is the Laplace density, we obtain a class
of skew Laplace distributions (see Kotz et al., 2001).

A comparison between h(x) = 2 f (x)Fx(λx) and g(x) apparently has not
been carried out. Mudholkar and Huston (2000) introduce and investigate
estimation in the so-called epsilon-SN family:

f (z|ε) = φ

(
2

1 + ε

)
I{z<0} + φ

(
z

1 − ε

)
I{z≥0}, z ∈ IR, |ε| < 1 . (28)

This family in the literature goes under different names and Mudholkar and
Huston (2000) include a detailed list of early occurrences of the same dis-
tribution going back to Fechner (1897). Polynomially skewed-normal models
suggested by Arnold, Castillo, and Sarabia (2002) are of the form

f (x) ∝ f0(x) · G0

(
k∑

i=1

λi x
i

)
, (29)

where f0 is the basic density, G0 is usually an unrelated c.d.f. and λ =
(λ1, . . . , λk) is a k-dimensional skewness parameter.

Choosing f0 and G0 to be standard normal density φ and c.d.f. 
, respec-
tively, Arnold, Castillo, and Sarabia (2002) investigate the polynomial skewed-
normal density of the form:

f (x) = φ(x)
(x(x − 1)(x + 1)) . (30)

(See Fig. 1).
As we shall observe in the following section, it is worthwhile to note that

although the initial purpose of the research reviewed in this Survey was the
idea of adding appropriately skewness to a continuous symmetric distribution,
the more recent results are directed to wider aspects of multivariate distributions
which are not totally dominated by skewness considerations.
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Figure 1. Graph of the function (30).

3. Multivariate skew-normal and related distributions

3.1. Skew-normal case

As we have seen —when discussing univariate skew-normal distributions
SN (λ)— if Z ∼ SN (λ),

Z = λ√
1 + λ2

|X | + 1√
1 + λ2

Y . (31)

The representation (31) was used by Azzalini and Dalla Valle (1996) to extend
the density of Z

f (z|λ) = 2φ(z)
(λz), z ∈ IR, λ ∈ IR

(φ and 
 are the N (0, 1) p.d.f. and c.d.f., respectively) to the multivariate case
given by

f (z|λ) = 2φd(z)
d(λ
′z), z ∈ IRd, λ ∈ IRd ,

where φd and 
d are the p.d.f. and c.d.f. of the d-dimensional N d(0, Id)

distribution. This is the standard multivariate SN d(λ) distribution. Note that
this approach —based on transformation— leads to identical result obtained by
conditioning (see Section 2.1).

Extensions for multivariate location-scale SN -distributions denoted SN d

(µ, 	, λ) were also considered by Azzalini and Dalla Valle (1996) and various



Survey of developments in the theory of continuous skewed distributions 243

properties were discussed by Azzalini and Capitanio (1999). A general form
of SN d(µ, 	, α) density is given by:

f (y; µ; 	, α) = 2φd(y; µ, 	)
(α′
ω

−1(y − µ)) , (32)

where φd( · ; µ, 	) denotes the d-dimensional normal density with vector of
expected values µ and covariance matrix 	; 
( · ) the N (0, 1) distribution
function; ω the diagonal matrix containing the standard deviations of 	 and α

a d-dimensional vector which regulates the “shape” of the distribution. (Note
that the parameters µ and 	 in expression (32) are not the vector of expected
values and the covariance matrix of the random vector Y —except in the case
α = 0 when the distribution reduces to N d(µ, 	). Azzalini and Capitanio
(1999) present expressions for the mean and variance of the d-dimensional
r.v. Y with density (32) which are:

µY = E(Y) =
(

2

π

) 1
2

δ ,

where

δ = 1

(1 + α′�α)
1
2

�α ,

and
Var(Y) = � − µYµ

′
Z .

Compare with the univariate case which shows that the multivariate expressions
are direct extensions of the univariate ones.

A linear transformation property can be expressed as follows: If Y ∼
SN d(µ, 	, α) and A is a d × h matrix of constants (h ≤ d), then B = A′Y ∼
SN h(µ∗, 	∗, α∗), with

µ
∗ = A′µ, 	

∗ = A′
	A, α

∗ = ω∗(	∗)−1B′α√
1 + α′(ω−1	ω−1 − B(	∗)−1B′)α

,

where B = ω−1	A and ω∗ is a diagonal matrix containing the standard de-
viations of the diagonal of 	∗. In particular, if A is a non-singular d × d
matrix, then α∗ = ω∗A−1ω−1α. Furthermore, the following result is also valid:
(Y − µ)′	−1(Y − µ) ∼ χ2

d .
For a d-dimensional random variable with the normal distribution with

zero mean and correlation matrix � the region of preassigned probability p
and minimum geometric measure is

RN = {x : x′
�

−1x ≤ cp} , (33)

where cp is the pth quantile of the χ2
d distribution.
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For the d-dimensional skew-normal distribution SN d(α) given by the den-
sity

f (x) ≡ 2φd(x; �)
(α′x) , (34)

where φd(x; �) denotes the N d(0, �) density at x, 
 is the N (0, 1) c.d.f., and
α is a vector of shape parameters (cfr. (32)). The region (33) is still a region of
probability p but does not have minimum volume since it does not necessarily
correspond to the set of points with maximal values of the density function.

Azzalini (2001) suggests to consider the region

{x : 2 log f (x) ≥ cp − d log(2π) − log(|�|)} ,

as an appropriate region corresponding to (33) in the SN d(α) case and examines
its empirical performance by means of simulation experiments.

Denote α∗ = √
α′�α (a summary measure of skewness). Then, quite an

accurate approximation to an optimal region is:

RSN ≈ {x : 2 log f (x) ≥ −cp − d log(2π) − |�| + 2 log[1 + exp(−b/α∗)]} ,

here b = 1.854, 1.544, 1.498, 1.396 when the dimension d varies from 1 to 4,
respectively.

Dunajeva et al. (2003) derive an estimator of α in (34) using the method
of moments and calculate its bias.

Kollo and Traat (2001) and Gupta and Kollo (2000) slightly modify Az-
zalini’s definition (34) by assuming � to be a d × d positive definite matrix.
They provide the moment-generating function

M(t) = 2 exp
(

1

2
t′�t

)



(
α′�α

(1 + α′�α)
1
2

)

which allows for easy calculations of dispersion matrix, moments and cumu-
lants. The authors assert that using their parametrization it is possible to
describe distributions of estimators of the parameters in a simpler manner.

Mateu-Figueras et al. (1998) define the additive logistic skew-normal dis-
tributions on a simplex SD, where D = d + 1, d being the dimension, denoted
L Sd(µ, 	, α). Logistic-normal theory is based on the transformation of com-
positional data from SD to Rd and modelling the transformed data by means
of multivariate normal distributions N d(µ, 	) (Aitchison, 1986). The additive
logistic skew-normal distributions L Sd(µ, 	, α) is represented by a D-part com-
position X where Y = logratio(X) has the regular SN d(µ, 	, α) distribution.
The definition is independent of the component used as denominator in the
logratio transformation.
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The modelling advantages of the L Sd class were illustrated by Mateu-
Figueras et al. (1998). It turns out that data sets originating from convex linear
combinations of additive logistic normal distributions are adequately fitted by
a distribution from the L Sd class.

Azzalini and Capitanio (1999) describe cases in which quadratic forms
in skew-normal variates have independent χ2 distributions (analogously to the
Cochran theorem for multivariate normal variables).

Genton et al. (2001) derive the moments of a random vector with multi-
variate SN d(λ) distribution and their quadratic forms. (See also a somewhat
related paper by Loperfido, 2001). As in the case of univariate skew-normal
distributions, there seem to be minor differences between the “Azzalini school”
and “Arnold’s school” in their interpretation of multivariate skew-normal dis-
tributions. Arnold and his coworkers (2000, 2002) describe three scenarios.

(1) Consider i.i.d. skew-normal variables

Y1, Y2, . . . , Yd and W .

Take Z = (Y|∑d
i=1 λi Yi > W ). Then Z (or its affine transformation

X = µ + 	
1
2 Z) has d-dimensional skew-normal distribution.

(2) Consider (d +1)-dimensional normal vector (X1, Y1, Y2, . . . , Yd) with zero
means and (d + 1) × (d + 1) covariance matrix . (Note that Yi , i =
1, . . . , d are not necessarily independent.) The hidden truncation model
is represented by the conditional distribution of Y = (Y1, . . . , Yd) given
X > 0 and provides a d-dimensional skew-normal distribution.

(3) Label (d + 1) i.i.d. N (0, 1) random variables Y1, Y2, . . . , Yd, Y0.

The vector Z whose components are

Zj = δj |Y0| +
√

1 − δ2
j Yj , δj ∈ [−1, 1], j = 1, . . . , d ,

has (a standard) d-dimensional skew-normal distribution.
Equation (32) is described in a slightly different notation (	 ≡ �, ξ ≡ µ)

in Azzalini and Dalla Valle (1996).
Numerous variants of multivariate skew-normal distribution are presented in

the recent literature (see Arnold and Beaver, 2002 and Azzalini, 2003 for com-
prehensive references). Arnold and Beaver (2000a, 2002) define a multivariate
skewed normal distribution via a linear transformation of the hidden truncation
model (scenario 2) above and arrive at the multivariate normal-skewed distribu-
tion which is a generalization of the univariate skew density (18) (see Azzalini,
1985 and Arnold et al., 1993). Arnold et al. (2002) calls (18) to be linearly
skewed normal density.
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The multivariate version of (18) is given by

f (Z, λ0, λ1) =
[∏d

i=1 φ(zi)
]

(λ0 + λi Z)




(
λ0√

1+λ′
1λ1

) . (35)

A generalized class of multivariate skew-normal distributions discussed by
Gupta et al. (2001, 2004) and González-Farı́as et al. (2004) is defined by the
density

f (z; D, 
m) = φd(z)
d(Dz)

m(0|Im + DD′)

, z ∈ IRd , (36)

where φd( · |µ, 	) and 
d( · |µ, 	) are the p.d.f. and c.d.f. of the N d(µ, 	)

distribution, and D is a matrix of dimension m×d. For special forms of D, (36)
is reduced to multivariate SN (λ) family and to a product of univariate skew-
normal distributions. Further far-reaching generalizations are given in the impor-
tant paper by Arellano-Valle et al. (2002) based on the concepts of a C-random
vector (X, Y), and a skewing function of the form Prob(X > 0|Z = z) for some
random vectors of dimensions m × 1 and d × 1, respectively.

A related generalization was recently given by Sahu et al. (2003): let ε

and z be d-dimensional random vectors, µ be a d-dimensional vector and 	

be a d × d positive definite matrix. Define

Y = DZ + ε ,

where D is a d × d diagonal matrix. The skew normal distribution proposed
by Sahu et al. (2003) is given by the density:

f (y; µ, 	, D) = 2d |	 + D2|− 1
2 φd{(	 + D2)− 1

2 (y − µ)}Prob(V > 0) , (37)

where
V ∼ N d{D(	 + D2)−1(y − µ), I − D(	 + D2)−1D} ,

and φd is the density of d-dimensional normal distribution with mean 0 and
covariance matrix I and is denoted by SN d(µ, 	, D). SN d(µ, 	, D) coin-
cides with the Azzalini multivariate skew-normal distribution only for d = 1.
For SN d(µ, 	, D) with d > 1, the skewness does not affect the correlation
structure unlike the situation in the case of the Azzalini distribution. For
	 = diag(σ 2

1 , · · · , σ 2
d ), (37) becomes a distribution with independent marginals

f (y; µ, 	, D) =
d∏

i=1

2(σ 2
i + δ2

i )
− 1

2 φ

 yi − µi√
σ 2

i + δ2
i




 yi − µi√
σ 2

i + δ2
i

 . (38)
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For d = 2, compare this with the bivariate skew-normal distribution of Azzalini
(1996):

f (y|λ) = 2φ(y1)φ(y2)


{
λ√

1 − 2λ2
(y1 + y2)

}
, (39)

where λ is the skewness parameter. This is also a distribution with identical
marginals but with different variances than the SN d(µ, 	, D) for d = 2.

Gupta and Chen (2004) define a multivariate skew-normal distribution with
the density function f (y, �, d) = 2dφd(y, �)

∏d
j=1 
(λ′

j , y) where φd(·, �) de-
notes the density function of a multivariate normal variable with d × d cor-
relation matrix �, 
(·) is as usual the c.d.f. of the standard normal vari-
able, y = (y1, . . . , yd) ∈ IRd and the vectors (λ1, . . . , λd) are defined by

(λ1, . . . , λd) = �
− 1

2 diag(d). Here d denotes the d-dimensional vector of skew-
ness parameters of the marginal distributions.

This distribution is then compared with the Azzalini’s version and it is
shown that it possesses a stochastic representation in terms of multivariate
normal distributions.

The most general multivariate skew-normal distribution (G M SN ) so far is
apparently the one due to Gupta et al. (2004) given by the density

fp,q(y; µ,	,D,ν,�)= 1


q(Dµ; ν, � + D	D′)
φp(y; µ, 	)
q(Dy; ν, �) , (40)

where φp( · ; µ, 	) and 
p(·; µ, 	) denote the p.d.f. and the c.d.f. of p-
dimensional normal distribution with mean µ and covariance matrix 	, µ ∈ IRp,
ν ∈ IRq , 	(p × p) and �(q × q) are two covariance matrices and D(q × p)

is an arbitrary matrix. A random vector Y having this density is denoted by
Y ∼ GSN p,q(µ, 	, D, ν, �).

This class is closed under marginalization and conditioning. Some math-
ematical and statistical properties of this class are quite appealing. Since the
standard SN distribution can be very naturally associated to the condition-
ing mechanism on one observable variable, then it is a conceptually simple
extension to consider q conditioning events, and the interpretation involves a
selection process based on q linear constraints that the population units must
satisfy. Calculations of the mean value and variance are rather cumbersome.
For case q = 1 and ν = 0 the density reduces to (32).

In the special bivariate case with D =
(

δ1
0

δ2
0

)
and ν = 0, the density

reduces to the one given by Azzalini and Dalla Valle (1996).
Gupta et al. (2004) summarizing the results for the bivariate case scattered

in the technical reports by the same authors (which is not easy to follow) provide
a slightly simplified density of the bivariate general skew normal (BGSN)
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distribution

f2(x, y; µ, 	, D) =
exp

{
1

2(1−ρ2)

[
(x−µ1)2

σ2
1

− 2ρ(x−µ1)(y−µ2)

σ1σ2
+ (y−µ2)2

σ2
2

]}
2πσ1σ2

√
1 − ρ2

[
1
2 − 1

2π
arccos(ρD	)

]
× 
[δ11(x − µ1) + δ12(y − µ2)]

× 
[δ21(x − µ1) + δ22(y − µ2)] ,

(41)

where µ = (µ1, µ2)
′, 	 =

( σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

)
, and

ρD	 = δ21δ11σ
2
1 +δ22δ12σ

2
2 +(δ12δ21+δ22δ11)σ1σ2ρ√

(1+δ2
11σ

2
1 +2δ11δ12σ1σ2ρ+δ2

12σ
2
2 )(1+δ2

21σ
2
1 +2δ21δ22σ1σ2ρ+δ2

22σ
2
2 )

.

The contours of the distribution (41) are not elliptical.
For 	 = I and � = I (41) reduces to the density in González-Farı́as

et al. (2004). Ma and Genton (2004) have recently proposed a substantial
generalization of (32) which systematically captures skewness, heavy tails, and
multimodality.

The literature dealing with multivariate skew-normal distributions has re-
cently grown rapidly including different proposals and various generalizations
have been proposed. In particular Arellano-Valle and Azzalini (2004) have
suggested a Unified Skew-Normal model (SUN) using both a convolution and
a conditioning mechanism for its genesis. This model includes as particular
cases up to a parametrization the original SN family, the Closed Skew-Normal
family (González-Farı́as et al., 2004) and the Hierarchical Skew-Normal (Liseo
and Loperfido, 2003).

3.2. Brief remarks on estimation in multivariate skew-normal case

Analogously to the univariate case, there are difficulties with maximum
likelihood estimation of the SN d(µ, 	, λ) parameters due to behavior of the
likelihood function and that of the information matrix at λ = 0. (For small
values of n also elsewhere.)

As we have seen, reparametrization is a powerful device at least for d = 1.
In some cases the maximum likelihood estimate is attained on a boundary
α = ±∞. For large n, however, the log-likelihood function usually behaves
regularly. These aspects were investigated in Azzalini and Capitanio (1999) and
in Pewsey (2000). Bayesian estimation is discussed in Liseo (1990). Possibly
Monti’s (2003) method described above can be extended to the multivariate
case. Capitanio et al. (2003) investigate graphical models involving skew-
normal variates (including multivariate).
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4. Elliptical (elliptical-contoured) ECD symmetric distributions

Let N d(µ, 	) denotes a multivariate random variable having mean µ and
covariance matrix 	.

Let the probability density be a function of positive definite quadratic form

(x − µ)′
	

−1(x − µ) ,

then the contours of the density are ellipses. Here x′ = (x1, x2, . . . , xd),
µ′ = (µ1, µ2, . . . , µd) and 	 is a nonsingular d × d scaling matrix (deter-
mined up to a multiplicative constant). In this case the distribution is called
elliptical-contoured symmetrical distribution. The elliptical contours here are
concentric with constant eccentricities. (Note that multivariate hyperbolic dis-
tribution has elliptic contours without the latter property and hence is not
symmetrical.)

If µ = 0 and 	 = I, the distribution is called spherical or radial. As Bentler
and Berkane (1985) emphasize: “It is becoming apparent that [elliptical] theory
has the potential to displace multinormal theory in a variety of applications such
as linear structural modelling.”

One of the earliest works on spherical distributions is Hartman and Wint-
ner (1940). A later Kelker’s (1970) paper has been an important contribution
to this subject.

An early paper on elliptical symmetric distributions is due to McGraw
and Wagner (1968). Chmielewski (1981) provides an excellent review and
bibliography until the late 70’s of the 20th century. See also Cambanis et
al. (1981) for a lucid and comprehensive discussion.

The modern era of research on elliptical distributions commences with the
works of K. T. Fang and his co-authors (see Fang et al., 1990 and the references
cited in the bibliography). Gupta and Varga (1993) provided an important
addition to the literature especially from theoretical aspects. These distributions
model kurtosis inference by including light-tailed (multivariate uniform), heavy-
tailed (multivariate t) and the multivariate normal. We emphasize that they are
all symmetric in the multivariate setting and do not model skewness, thus can be
applied in practical situations only where the symmetry seems to be appropriate.
In the last 10 years numerous contributions to ECDs have been in various
publications especially in the Journal of Multivariate Analysis. Estimation of
variance components in (ECD) distribution was discussed in detail by Kubokawa
(2000). Dominance results of estimating covariance and variance components
in a decision-theoretic set-up for normal models remain valid for a class of
ECD distributions.
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5. Skew elliptical (SE) (non-normal) multivariate distributions

We shall briefly survey some selected results related to SE multivariate
distribution which at present has attracted substantial attention. Extending mul-
tivariate skew-normal distribution and using conditioning method, Azzalini and
Capitanio (1999) (and somewhat later Branco and Dey, 2001) generate a class
multivariate skew-elliptical distributions utilizing the generating function of the
form:

g(k)(u) = 2π
k
2

�( k
2)

∫ ∞

0
g(k+1)(r2 + u)rk−1dr, u ≥ 0 , (42)

(see Fang et al., 1990 for a discussion of generators for multivariate elliptical
distributions). The density can be expressed as

fY (y) = 2|	|− 1
2

∫ λT (y−µ)

−∞
g(k+1)(r2 + (y − µ)T

	
−1(y − µ))dr ,

where 	 is the scale matrix associated with the vector X = (X0, . . . , Xk) and
Y = [X|X0 > 0] is the skew-elliptical vector under consideration. Numerous
examples: skew-scale mixture of normal distribution, skew-logistic, skew-t , and
skewed Pearson Type II distributions are provided in Branco and Dey (2001).
(The original motivation is to apply these distributions in regression and cali-
bration problems when the error distributions are skewed). Sahu et al. (2003)
present an analogous but slightly more general definition of SE distributions
also based on conditioning.

The early years of the 21st century produced a number of valuable results
dealing with generalized skew elliptical distributions (which led to the volume
edited by Genton in 2004 on this subject). Firstly, Genton and Loperfido
provided a manuscript in 2001 in which they introduced a class of generalized
skew-elliptical (GSE) distributions given by the density

f (z|Q) = 2 fk(z)Q(z), z ∈ IRk , (43)

where fk( · ) is the density of k-dimensional elliptic-contour distribution and Q
is a skewing function satisfying

Q(z) ≥ 0 and Q(−z) = 1 − Q(z) , (44)

for all z ∈ IRk . This work is due to be published in 2005. Many of the
SN (λ) properties are also valid for distributions in the class given by (43).
Presumably independently Azzalini and Capitanio (2003) consider a family of
GSN distributions which generalizes Genton and Loperfido (2005). Their results
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are similar to Wang et al. originally presented in a technical report (2002) and
more recently as a paper in Statistica Sinica (2004a).

The density (43) is extended to any symmetric density fk in IRk (namely,
assuming that fk(−z) = fk(z) for all z ∈ IRk). For the class given by (43)
the classical distribution theory of linear and quadratic forms, for the most
part, remains valid. The skewing function Q is flexible enough to include
skew-normal, skew-t , skew-Cauchy, and also other skew-elliptical forms. Here
skewing functions are monotone function of their argument, but as shown
by Genton and Loperfido (2005) this is not a necessary condition. Also the
skewness of a multivariate skew-normal distribution is bounded (Azzalini and
Dalla Valle, 1996) while GSE distributions may have unbounded skewness.

B. Q. Fang (2003) proposes and studies a family of the skew elliptic distri-
butions which includes the skew normal distributions in Azzalini and Capitanio
(1999) and Azzalini and Dalla Valle (1996) as well as Branco and Dey (2001)
and some elliptical distributions. This family-like skew normal distributions are
closed under marginalization, conditioning and linear transformations. We first
define briefly an elliptic distribution.

Let a random vector ṽ = (v0, v′) in IRn have spherical distribution, where
v ∈ IRk , n = k + 1. Then it has a stochastic representation (Fang et al., 1990)(

v0

v

)
d= R

(
u0

u

)
(45)

where R d= ||(v0, v′)′||, (u0, u′)′ d= (v0, v′)′/||(v0, v′)′|| has uniform distribu-
tion on the sphere in IRn , independent to each other, || · || denotes L2 norm.
The relationship of (45) is one to one in the sense that, if (v0, v′)′ has two
such representations, then the two R’s must have the same distribution (Fang
et al., 1990, p. 38). If (v0, v′)′ has p.d.f. f (v2

0 + v′v) on IRn , then R has p.d.f.
g(r) on IR+ given by

g(r) = 2π
d
2

�(d/2)
rd−1 f (r2), r > 0 ,

(Fang et al., 1990 p. 35). The distribution of µ + A′ṽ is by definition an
elliptical distribution, which depends on A only through A′A.

Denote by F1 the one-dimensional marginal distribution function of (v0, v)′.
Let λ ∈ IR, α ∈ IRk be constants and � be a k ×k constant positive-definite

matrix.
Let c0 = (1 + α′�α)1/2 by the property of the spherical distribution (Fang

et al., 1990), ∫ λ+α′�1/2v

−∞
f (v2

0 + v′v) dv0 dv = F1(λ/c0) .
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The random vector z ∈ IRk with the p.d.f.:

∫ λ+α′

−∞
f (y2

0 + (z − ζ )′
�

−1(z − ζ ))dy0|�|−1/2/F1(λ/c0)

is called the Fang (2003) skew elliptical distribution and is denoted by z ∼
Sk(ψ, �, λ, α; f ) where ζ ∈ IRk is a constant. For λ = 0 such a distribution
reduces to Branco and Dey (2001).

The invariance property of SN k(0, 	, λ) distributions asserts that if

Z ∼ SN k(0, 	, λ) ,

then the product Zi Z j (i, j = 1, . . . , n) does not depend on the skewness
parameter λ. This property can be extended to the GSE distribution, replacing
the product by an even function τ(Z) and the skewing function Q( · ) replaces
the parameter λ. This is useful for derivation of the distribution of quadratic
forms which are also independent of Q( · ).

Non-normal skewed multivariate distribution are defined by Arnold and
Beaver (2002) via k + 1 independent random variables W1, W2, . . . , Wk and U
with densities ψi , i = 1, . . . , k, 0, and c.d.f.’s �i , i = 1, . . . , k, 0, respectively.
With λ0 ∈ IR, λ1 ∈ IRk , the skewed distribution is defined by

fW (ω) =
∏k

1 ψi(ωi)�0(λ0 + λiω)

Prob(A)
, (46)

where ω ≡ (ω1, ω2, . . . , ωk) and A = {λ0 + λ′
1W > U }.

In the case when λ0 = 0 and ψi , i = 1, . . . , k, are symmetric (about 0)
we have Prob(A) = 1

2 and fW(ω) becomes 2
[∏k

1 φi(ωi)
]

(λ′

1ω). Variants of
this density without assuming independence of Wi ’s are also available. Sahu et
al. (2003) suggest multivariate t-skewed distribution STν(µ, 	, D) which even
in the special case 	 = σ 2I, and D = δI has a rather formidable expression
for its density involving the density of k-variate t-distribution with parameters
θ, �−1 and degrees of freedom ν + k of the form:

�
(

ν+k
2

)
�
(

ν
2

)
(νπ)

k
2

|�|− 1
2

{
1 + (x − θ)′�−1(x − θ)

ν

}−(ν+k)/2

, x ∈ IRk ,

and also give the corresponding c.d.f.
Unlike in the multivariate skew-normal case, the k variate skew-t distribu-

tion with 	 = σ 2I and D = δI cannot be written as the product of univariate
skew-densities. Here the components are uncorrelated but not independent.



Survey of developments in the theory of continuous skewed distributions 253

Using the definitions and arguments above, Arellano-Valle et al. (2002)
prove the following result (which substantially generalizes the original Azzalini,
1985 definition of skewed normal distribution).

Let Z be a k × 1 random vector with density fZ and let X0 be an m × 1
random vector. Let fZ∗ be the conditional density of Z given X0 > 0. Then

fZ∗(z) = fZ(z)
Prob(X0 > 0|Z = z)

Prob(X0 > 0)
. (47)

If sgn(X0) is uniformly distributed, then

fZ∗(z) = 2m fZ(z)Prob(X0 > 0|Z = z) . (48)

When Z has a symmetric distribution, the term Prob(X0 > 0|Z = z)
determines the degree of skewness of the distribution of Z∗ (the case m = 1
includes the skew-normal distributions).

This is also a far-reaching extension of the “conditioning method” for a
bivariate normal variable (X, Z) originally suggested by Birnbaum (1950) and
later elaborated by Arnold et al. (1993). A later paper by Copas and Lee (1997)
indicates that this method is closely related to selective sampling.

Arnold and Beaver (2002) study multivariate survival models when the
given random variables (X1, X2, . . . , Xk, Y ) are independent (but not necessar-
ily identically distributed) with the densities ψ1, ψ2, . . . , ψk , ψ0 and survival
functions �1, �2, . . . , �k, �0.

Under the restriction that the densities ψ0, ψ1, . . . , ψk all have the positive
half line as their support (viewed as representing survival times of k components
in a system) and Y being a concomitant variable, the conditional distribution
of X given λ′X < Y (the hidden truncation model) is:

fX(x; λ) ∝
[

k∏
i=1

ψi(xi)

]
�0(λ

′x) , (49)

and Xi ∼ exp(δi), i = 1, 2, . . . , k and Y ∼ exp(δ0) (δ represents the intensity
vector).

Namely we have

fX(x; λ) ∝
[

k∏
i=1

δi e
−δi xi

]
e−δ0λ′x I (x > 0) , (50)

where I (x > 0) is an indicator function. Thus, this (hidden truncation) model
has independent exponential (δi +δ0λi), i = 1, . . . , k, marginals which is equiv-
alent to a scale change on X. The two properties: (a) independent marginals,
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and (b) rescaling of X, are also valid when Xi ’s have gamma distributions
and Y has the exponential distribution. Also, if the joint density of the Xi ’s
is not an exponential family, then the hidden truncation model will be of
the same form. (It would be of interest to dig deeper and to discover —if
possible— intuitive reasons for these results. This may shed additional light
on the properties and geneses of exponential and gamma distributions which
has been extensively —perhaps even ravenously— studied by researchers, both
theoretical and applied).

Concluding remarks

We have provided highlight points in the development of skewed continuous
distributions during the last 120 years as reflected mainly in statistical periodical
literature. Applications —for the most part— are not discussed. They seem
to require additional invigoration. Uneven (chronologically) developments are
certainly due to unexpected but welcome changes in technology related to
statistical calculations. The earlier results in the late 19th century were prompted
by the so-called “English Biometric School” and almost independently by its
—less visible— Scandinavian counterparts. Advances in the last 20 years
spearheaded by the Italian investigators have been better coordinated with the
parallel research in the U.S., Canada, and more recently in South America.
Indeed, it may be of interest to contrast the lack of coordination (and even
antagonism) in the late 19th century and early 20th between the leaders of the
English Biometric School and prominent economists and statisticians in Italy
and Scandinavian countries with the cordial cooperation between the European
scholars and those in the Western Hemisphere working at present in the area
of skewed continuous distributions. No doubt that ease of communication
is an important (but presumably not the only) factor in these encouraging
developments.

The field of skewed distributions has become —in our opinion— one of the
most fruitful and promising areas in the development of statistical distribution
theory and applications, during the last 20 years which does not so far require
using advanced mathematical tools.

The current year 2005 is the 20th Anniversary of the modern era of con-
tinuous skewed distributions initiated by Azzalini (1985). The simple idea of
reallocating the probability mass of symmetric density f by defining the uni-
variate “Azzalini skew density” g such that g(x) + g(−x) = 2 f (x), for any x,
was the basic starting point. This lends itself quite naturally to multitude of
extensions and generalizations described in this paper. Jones (2004) points out
that there are two complementary approaches to introducing skewness. One
tries to directly employ a skewness parameter that in some sense does not
depend on the weights of the tails of distribution (Ferreira and Steel, 2004).
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The second method, propagated by Azzalini among others, regards skewness
as an implicit consequence of different left and right tails. Overabundance
of parameters as we develop new flexible generalizations is an inevitable but
unfortunate consequence of this activity (in Arnold’s words: “risking a chorus
of hisses”).

A justification for the introduction of models involving four parameters
(or more) is that these include as special cases many models which proved to
be useful to model data. However, estimation of four or more parameters is
usually a daunting and challenging task.

To utilize the available generalizations in practice would require substantial
work on problems of parameter estimation, hypothesis testing and model fitting
among others. In our opinion this activity should perhaps be a priority for
further research putting, at least temporarily, further generalizations on the
back burner.

We are thus confronted with two complementary possible avenues for fur-
ther research (which are not mutually exclusive):
1) continuation of the mostly theoretical work related to further generalizations

in effort to develop quite a general well structured and possibly elegant
framework;

2) concentration of already available models and results in effort to tackle
real-world problems using these models.

As Azzalini and Capitanio (2003) observe: success in tackling real problems
is “the ultimate test to decide about the actual usefulness of all this work”.
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