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Summary: A vast literature has recently concerned the measurement of quality 
dimensions such as access, effectiveness, performance and outcome of health 
services supplied by national health care providers. The main concern is to achieve 
a classification of administrative areas with respect to observed quality indicators. 
We describe a simple and effective procedure to achieve this goal which allows 
powerful testing of the hypothesized cluster structure. We describe the performance 
of this method on a dataset on preventable hospitalizations (PPH) in Italy during 
1998, in order to highlight clusters of regions with homogeneous relative risk. 
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1. Introduction 
 
A wide class of models is now available to analyze univariate disease counts 
observed over a set of adjacent regions to identify areas with homogeneous 
relative risks by modelling the extra-Poisson variation. Proposals include 
Quasi-Likelihood (see, among others, Clayton and Kaldor, 1987, Breslow 
and Clayton, 1993, Langford et al., 1999) and Bayesian approaches (see e.g. 
Besag et al, 1991, Knorr-Held and Besag, 1998). Often, these approaches are 
based on restrictive parametric assumptions, which can be relaxed adopting 
the semiparametric approach proposed by Böhning et al. (1992) and 
Schlattmann and Böhning (1993). This approach is related to those 
developed by Aitkin (1999) for the analysis of overdispersed or clustered 
data and allows the classification of administrative areas on the basis of 
posterior probabilities of component membership, via a MAP (maximum a 
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posteriori) approach. While powerful enough in general empirical 
conditions, such methods are not adequate to analyze spatial data where 
neighbouring areas can be dependent on each other. The semiparametric 
approach of Böhning et al. (1992) has been modified to take into account 
spatial dependence by Biggeri et al. (2003) and Alfò and Vitiello (2002). 

In this paper, we will focus on semiparametric mapping models for the 
geographical analysis of preventable hospitalisation ratios in Italy. The 
observed data and the motivation for the working example will be introduced 
in the next section. The spatial feature will be considered via a standard 
mixture model that includes spatial information through a Gibbs distribution 
on mixture weights. The model is a likelihood version of the one proposed 
by Green and Richardson (2002) in the Bayesian context, with the major 
extension of explicitly allowing for class-specific strengths. 

The paper is so organized: in section 2 the definition of PPH is discussed 
together with the motivation for using them as a measure of effectiveness of 
National Health Service. In sections 3 and 4, we describe finite mixture 
models and pseudo ML estimation of the proposed method. Experimental 
results are detailed in section 5 and concluding remarks are in section 6. 
 
 
2. Working example 
 
The foundation of the Italian National Health Service (NHS) in 1978 was 
inspired by ideas such as planning of health care, equity, public provision 
and decentralization. The promotion of primary care was the only route to 
achieve an effective and universal coverage, the goal being that of health for 
all. This approach was exclusively focused on perceived needs, giving little 
attention to health care demand. Since then, there has been a gradual shift of 
vision: rather than providing all possible care to everyone, delivering to all 
an effective and socially acceptable essential care. 

We focus on the analysis of geographical variation in PPH rates recorded 
in Italy during 1998. Previous research in the UK suggests that some 
characteristics of primary care reflecting quality of practice are related to 
admission ratios for chronic diseases (see e.g. Griffith et al. 1997). The 
effects of socio-economic and racial/ethnic characteristics of the analyzed 
population (see e.g. Bindman et al., 1995; Fiscella et al., 2000) have raised 
severe questions about this interpretation. Statistical analyses of PPH rates 
have been discussed previously (see e.g. Parchman and Culler, 1999). 
 
 
3. Finite mixture models 
 
In this section a brief overview of standard semiparametric mapping 
methods will be given. Let us assume that the analyzed area can be 
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partitioned into n  subregions and that counts io  of observed cases have been 
recorded for each subregion. Conditionally on class membership k=1,…,K 
the observed counts ,  1iO i … n= , ,  are assumed to be Poisson random 
variables with class-specific parameter. Such an assumption can be 
motivated considering that, in the ideal case, areas belonging to each class 
should present a constant relative risk. In disease mapping the interest is 

usually focused on the relative risk vector ( )1

T

nλ λ= ,...,λ ; using a log link, it 

can be modelled as follows: 
 
 nivu iii ,...,1loglog 0 =++= λλ  (1) 
 
where 0λ  is the overall average risk and iu  and iv  represent individual 
heterogeneity and contextuality with respect to a specified neighborhood. 
This formulation, introduced by Besag et al. (1991), is referred to as the 
convolution model (Molliè, 1996). Various alternative specifications have 
been proposed for both random terms; our starting point is the 
semiparametric approach suggested, among others, by Böhning et al. (1992) 
and Aitkin (1999). Conditionally on class membership k, we assume that 

 
 ( )~Poisson 1,...,i k i kO E i nλ λ =  (2) 

 
where iE  represents the number of expected cases in the thi −  subregion 

after standardization with respect to known confounding factors, kλ  
describes the departure of the standardized ratio for the k-th component from 
λ0 and can be considered as a relative risk parameter for the thk −  
component. Adopting a discrete distribution ( )G ⋅  for the λs results in at least 
two major advantages: robustness, and detection of clusters of subregions 
characterized by a homogeneous relative risk. The pseudolikelihood function 
can therefore be written as:  
 

 ( ) ( )
11

n K

i k k
ki

L f O λ π
 
 
 
 

==  

⋅ = ∑∏  (3) 

 
Here, locations kλ  and corresponding masses kπ  represent unknown 

parameters, which have to be estimated. Denoting with δ  the parameter 
vector, we have: 
 

 
( ) ( )

1 1

log[ ] logn K
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i k
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∂ ∂ ∂
= =
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δ δ δ

ℓ
 (4) 
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where wik represents the posterior probability that the thi −  area belongs to 
the thk −  component of the mixture. We obtain pseudolikelihood equations 
which are weighted sums of those for an ordinary spatial GLM with weights 

ikw ; solving these equations for given ikw s and updating weights from 
current parameters estimates is an EM algorithm. Differentiating the 

pseudolikelihood under the constraint 
1

1
K

kk
π

=
= ,∑  we get 

1
ˆ

n

k iki
w nπ =

=∑ , 

which is a standard result in finite mixture ML theory. The unknown number 
of locations K , can be estimated via penalized likelihood criteria, such as 
AIC or BIC. This approach has been modified to take into account an 
explicit spatial component by Biggeri et al. (2003) and it has been extended 
to the case of ecological regression by Alfò and Vitiello (2003). 
 
 
4. Semiparametric Gibbs models 
 
Since the autoregressive-type approach is unsatisfactory, in this section 
spatial dependence will be modelled through explicitly modelling prior 
probabilities following Green & Richardson (2002). Let iN  denote the 
neighbourhood for the thi −  subregion; information on the ratios observed 
in neighbouring areas should be taken into account to determine the class the 
area belongs to, since it could be convenient to allocate adjacent areas to the 
same class. According to the work by Geman and Geman (1984), the class 
process can be modelled as a Markov Random Field and the Hammersley-
Clifford theorem allows to impose a Gibbs distribution on the class process.  

In the following, the conditional prior probability is denoted by ikπ . Given 
the neighbourhood system, the Gibbs distribution is defined by:  
 

 
1

exp exp ( ( ) ( ))
i

kik k i sk
s Nk

E V b k b k
T

π βα
 
  
 
 

∈  

   ∝ − = −  
   

∑ɶɶ  (5) 

 
where kE  represents the energy function, kT  denotes the temperature in the 

k -th class, and ( )ib k is the indicator variable for the i -th subregion in the 

k -th class. The terms kαɶ  and 
kβɶ  represent a class-specific constant related 

to the one-dimensional energy, and the smoothness (regularization) 
parameter, respectively. The potential function ( )V ⋅  is usually defined as:  
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 1

1 if ( ) ( ) 1
( ( ) ( ))

1 otherwise

K

i s
ki s

b k b k
V b k b k =

− == 
+

∑  (6) 

 
in order to penalize neighbouring regions belonging to different classes and 
adopting the K -th class as reference category, the prior (conditional) 
probabilities ikπ , 1 1k … K= , , − , can be written as:  
 

exp ( ( ) ( )) exp ( ) ( )
i

ik k k i s k k i i
s N l k

V b k b k n k n lπ α β α β
∈ ≠

    ∝ − = + −    
   

∑ ∑  (7) 

 
where k Kkα α α= −ɶ ɶ  and 1k k K

k … Kβ β β= − , = , ,ɶ ɶ . The term ( )in l  

represents the number of subregions in Ni belonging to the l -th class, 
1l … K= , , . Expression (7) defines a multinomial logit for the prior 

probabilities of class membership. The class-specific intercept term kα  
represents the log-prior probability of each class, regardless of the 
neighbouring subregions. The term kβ  gives information on the strength of 
the class process describing how the class membership of each subregion is 
influenced by the class memberships of neighbouring subregions.  

The proposed model represents an extension of standard models where 
parameters are assumed to be constant (and often arbitrarily fixed a priori); 
the choice of varying smoothness parameter should permit local rate 
stabilization without losing geographic resolution. 

 
 

5. Working example (results) 
 
As of 1998, there were 196 local health agencies (LHA) in Italy providing 
health care services to the population through independent public and private 
contracted structures working under their supervision. We used data on 
hospital discharges drawn from routine information collected in the national 
register of hospital discharges (the SDO register), maintained by the 
Ministry of Health. In particular, we considered admission standardized 
ratios for diabetes (ICD9cm codes 250.xx) aggregated at LHA level. Figure 
1 shows the observed distribution of crude estimators for the relative risk, 
classified according to observed sextiles. We have first modelled observed 
ratios by using the standard finite mixture model (FM in the following). The 
model identifies K=7 components, where only 2 components show values for 
the estimated relative risk which are significantly higher than the average 
one (equal to 1.4157 and 2.4249 respectively). The results obtained by 
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adopting the FM approach and the extended approach here proposed are 
shown in Figure 2. Figure 2(a) displays the geographical representation of 
component membership; as can be observed, the estimated geographical 
distribution is highly scattered and shows no significant spatial correlation. 
To verify if spatial dependence could represent an additional source of extra-
Poisson variation, we applied the proposed finite mixture model with Gibbs 
prior. The estimated distribution is quite similar to the one obtained by FM, 
as can also be argued looking at the significance test for the beta parameters 
in the multinomial regression model (7). These test statistics have to be used 
for fixed number of components K; care is needed when using standard 
asymptotic theory in a pseudo-ML contest. Values of relative risk parameters 
are not significantly different from those obtained via finite mixture and this 
shows that spatial dependence, if present, does not play a substantial role in 
the analysis. The only substantial effect is on the number of components 
which is selected via the BIC criterion. If the Gibbs prior distribution is used, 
only six components are estimated from the observed data; those 
components with higher values for the relative risk are left unchanged, while 
the spatial distribution affects only those components with smaller relative 
risk parameters. Components 1-3 (λ=0.836, 0.69 and 0.4814 respectively) 
are summarized by only two classes (with λ=0.7556 and 0.5118). 

 

0.3000-0.5500

0.5500-0.7300

0.7300-0.8600

0.8600-1.0200

1.0200-1.4400

1.4400-3.8200
Relative risk

 
Figure 1. Observed relative risks ratios classified by empirical sextiles. 

 
Here the main focus is on assessing relevant differences between 

administrative areas in observed PPH hospitalisation ratios. While any 
methods based on mapping crude or estimated relative risk using 
thresholding fail to address this issue, the proposed model provides a 
classification of the LHAs, based on posterior probabilities of component 
membership, where the number of components can be formally tested. From 
a health policy perspective, one should simply select those LHAs in the first 
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(λ=2.4249) and/or second (λ=1.4250) component and try to proceed to a 
deeper analysis based on hospital and age-specific ratios. 
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0.5118
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(a) (b) 

Figure 2. Estimated relative risks ratios. Finite mixture model (a) and finite mixture 
model with Gibbs prior (b). 
 
 
6. Concluding Remarks 
 
The suggested semiparametric approach allows to model both heterogeneity 
sources and spatial effects and represents a natural extension of usual finite 
mixture models for statistical mapping of spatial observations. The approach 
is computationally feasible and provides reliable estimates also when spatial 
dependence is weak, as in the working example. Thus, it could represent an 
interesting tool to assess geographical clusters which is less computationally 
intensive than proper Bayes approaches. 
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