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ABSTRACT

We investigate the stability of dense stellar clusters against relativistic collapse by approximate
methods described in the previous paper in this series. These methods, together with the analysis of the
fractional binding energy of the system, have been applied to sequences of equilibrium models, with
cutoff in the distribution function, which generalize those studied by Zeldovich & Podurets. We show
the existence of extreme configurations, which are stable all the way up to infinite values of the central
redshift.

Subject headings: celestial mechanics, stellar dynamics — globular clusters: general — relativity

1. INTRODUCTION

The motivation for analyzing relativistic clusters as a way of explaining the quasar redshift as a pure gravitational redshift
phenomenon (Hoyle & Fowler 1967) has been superseded by the very clear evidence of the cosmological nature of the redshift
associated with the Hubble flow. On the other hand, the formation of massive black holes in active galactic nuclei (AGNs)
could be the result of a collapse of dense stellar cluster (see, e.g., Rees 1984). The theoretical issue of the stability of such
relativistic clusters, started by Finstein himself (1939) and continued by Zeldovich & Podurets (1965; hereafter ZP) and
Zapolsky (1968), is still open.

A particular case of stable equilibrium configurations in a relativistic cluster with infinite central gravitational redshift was
obtained by Bisnovatyi-Kogan & Zeldovich (1969).

In this paper we address the investigation of the stability against relativistic collapse of isothermal models generalizing
those studied by ZP, setting the critical values for the onset of instability and showing also the existence of an entire
two-parameter family of stable nonsingular models with arbitrarily large central redshifts (for a short version see also
Merafina et al. 1996).

We consider spherically symmetric stellar clusters, with no angular momentum, described by Schwarzschild metric,

ds® = e'c? dt® — e*dr* — r¥(d6? + sin® 0d¢p?), (1)

with a distribution function given by

{f: Be EIT for E<E,, =mc*—aT/2, 2

f=0 for E>E,_,,

where E = e"%(p?c® + m>c*)'/? is the total energy of the particle star and T, in energy units, is the temperature “ measured by
an infinitely remote observer,” constant over the cluster in equilibrium; 7, characterizing the average kinetic energy of the
stars, is T. = Te ™ */? and varies along the cluster.

The investigation of equilibrium of models with « = 1 was considered by ZP in 1965, while the extension to models with
o # 1 has been previously considered by Ipser (1969) and Suffern & Fackerell (1976; hereafter SF) and then systematically
analyzed by Merafina & Ruffini (1990).

In a previous paper (Bisnovatyi-Kogan et al. 1993; hereafter BMRYV) we considered the issue of the stability of such
configurations by analyzing the specific case of the distribution function of equation (2) with « = 1, introduced by ZP.

In this paper we generalize the analysis of the stability of models with o # 1. Spanning the entire range of possible values of
o we obtain equilibrium configurations characterized by extreme core-halo density profiles and also more homogeneous
configurations.

In BMRYV we have formulated three criteria for the stability of clusters against relativistic collapse, based on the static
approach of Zeldovich (1963) with the construction of sequences of appropriate equilibrium configurations:

1. Sequences of models with fixed cutoff parameter;

2. Sequences of models with constant specific entropy;

3. Sequences of non-Maxwellian models, constructed from the condition of conservation of adiabatic invariant, p,, ~ n’

These criteria were applied, in BMRYV, to the models with « = 1, and the relationship between our criteria and those
existing in literature was also examined; in particular, a close relation was shown to exist between our criterion (1) and that
introduced in Ipser (1980).
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In the present paper, we extend the above three criteria to the stability analysis of models with values of the parameter
o #+ 1. There is, a priori, no reason to select a specific value of a. In a certain sense, fixing a value of o corresponds to arbitrarily
reducing the space of all possible models of equilibrium.

The difficulty of formulating exact criteria of dynamical stability, unlike the case of stars, arises from the fact that, in this
case of collisionless clusters, correct sequences fulfilling the adiabaticity requirement cannot be rigorously constructed by
writing analytically the distribution functions.

As explained in detail in BMRYV, the criteria we have introduced are based on sequences along which the adiabaticity
requirement is fulfilled but the Maxwellian form of the distribution function remains unchanged (criteria [1], [2]), or
sequences where the deviations from the Maxwellian form are taken into account but the adiabaticity requirement is only
approximately fulfilled (criterion [3]).

Nevertheless, these approximations are clearly not too severe, and the criteria are expected to supply reliable results on the
critical parameters for the onset of dynamical instability. This expectation is indeed confirmed by our results: in the region
with T > 0.1 mc? for models with o < 1.5, which was already examined in previous investigations (Ipser 1969; SF), we find
results in agreement with these treatments.

In § 2 we show the main properties of the equilibrium configurations in the range of small central redshifts and sufficiently
large temperatures. In § 3 we briefly describe the three stability criteria introduced in BMRYV and the results of the stability
analysis of equilibria shown in § 2. In §§ 4 and 5 we address the equilibrium properties and the stability of the limiting
solutions with « — 0 and those with T — 0, respectively; we show the existence of stable configurations with z, — c0. In § 6,
following Merafina & Ruffini (1995), we compare the properties of a particular family of configurations with numerical
models existing in literature. Finally, in § 7 we summarize the conclusions of the paper.

2. EQUILIBRIUM CONFIGURATIONS

The general relativistic equilibrium equations (Tolman 1939) for a perfect fluid of pressure P, and energy density €, can be

written in dimensionless form as
1 dv 1 1 ~
7

io dio ;g (0] (3)
s Ldho 1) L oo
¢ \f @7, RB)TRT T

where the subscript 0 indicates unperturbed configurations with Maxwellian distribution function of equation (2). The values
without this subscript are related to non-Maxwellian distributions used in criterion (3) of BMRV.

We solve here these equations for sequences of models with the distribution function given in equation (2) for different
values of the parameter «. Along each sequence « is constant and T varies. The total star energy E and the momentum p are
connected as

E = ev/2(p202 + m2c4)1/2 . (4)

The dimensional expressions of the energy density €, = p, c2, the pressure P,, and the number density n, in Maxwellian case
are written in the form

47 mc2—aT/2
©="3 Bye 32 e BT /e"E2 — m?c* EZdE, , 5)

mc2evo/2
47 mc2—aT/2
_ —vo/2 —Eo/T(,—V 2 2 .4\3/2
PO__3c3 Bye™ e "l (e™"EF — m*c*)’'* dE, , (6)
mc2evo/2
47 mc2—aT/2
ny=—3 Bye ™ e Eo/T e_voEg — mZC4E0 dE, . ()
c mc2evo/2
The dimensionless variables used for the numerical solution are
o T E - r N n ~ P . €
Tr=—7y5, xo=—02, ro=—0, "o=—0, Po=—0, €o=_0, ®)
mc mc Tox Moy 0% €ox
where
47 4n
— 2\3 — _ 2\4 — 2 -1
Moy = =l By(mc?)° , Py, =€gy = = By(mc*)* , Foy = (M*/4nGcBy) ™" . 9

The corresponding dimensionless expression for energy density, pressure, and number density are written, respectively, as

1-aT/2 N
€, = e 302 e /T JemvoxZ — 1x2dx, , (10)
e

vo/2
_ 1-aT/2 _
P,=1e 2 e ™ T(e7vox2 — 1)32dx, , (11)

evo/2
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1—-aT/2

fip=e" " f e T Jemvox2 _1x,dx, . (12

vo/2

At a given T and o, the solution of the equation (3) is determined uniquely by the boundary conditions
A00)=0,  v(0) =v,, 13)

where v,o(T, «) is calculated by the condition at boundary 7, = R, where "®2 = 1 — ¢T/2 = (1 — 2M,/R,)"/* and the
solution smoothly matches the Schwarzschild solution,

Vo(Ro) + Ag(Ro) = 0. (14)

The dimensionless mass .7 ,(7,) within a given radius 7, and the total number of stars of the cluster N,,, proportional to its rest
mass, are given by the formulae

M o) = Jv 4né, Fq diy with M, = .7 (R,) , (15)
and
~ ﬁo
N, = J Ariiy 21272 dF, | (16)
0

where e = [1 — 2.4 o(Fo)/Fo] ™!, M o(Fo) = M o(ro)/(€05To4 %) and N = No/(o, 75,)-

The results of integrations are given in Figures 1-2, where the main dimensionless parameters for the models are presented.
It is interesting to note from Figure 1 that the maximum mass of the sequences of the equilibrium configurations tends to a
limiting value, for o — 0. Moreover, for sequences with « > 1.5 different branches of the same family of solutions at fixed o
appear (see, e.g., « = 2.0). This particular feature is also evident in Figure 2 where the central redshift, z, = €2 — 1, of the
sequences of equilibrium models at fixed « is given as a function of the temperature. At small T, the curves deform, and they
split in more parts: one or more loops and one curve all coming out from the origin.

The calculations have shown that equilibrium solutions exist only for « < ay; (7). This limit is decreasing with increasing
temperature and tends to zero at very large temperature (see Fig. 3). Thus, only configurations with « — 0 exist for very large
values of the temperature, corresponding to the limiting solution described in § 4.

The Newtonian limit corresponds to T — 0 and can be investigated separately using equations (7) (9) of BMRV. For this
case a unique curve M(«) or M(p,) can be plotted (Figs. 4a—4b) showing that « — 2.02 for p, — co. It is evident also in Figure
4a the particular behavior of the solutions with « > 1.5: there are more solutions with different values of the mass at the same
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Fi1G. 1.—Mass of the equilibrium configurations as a function of the central density along sequences at fixed value of « (labeled on the curves). Quantities
are given in arbitrary units.
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FiG. 3.—Limiting value of « as a function of the temperature 7. The absolute maximum value is reached at T — 0 and corresponds to oy, = 2.87.
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FI1G. 4—(a) Mass of the Newtonian solutions as a function of the parameter «. The limiting value of « (center of the spiral), corresponding to an infinite
value of the central density, is equal to 2.02. (b) Mass of the Newtonian solutions as a function of the central density. Mass and density are given in arbitrary
units.

value of the parameter o. The maximum value of « for a Newtonian solution corresponds to the maximum value of any
relativistic solution, easily deducible also from Figure 3 for T — 0: there are no solutions with o larger than o,; = 2.87. These
models, obtained in the framework of the Newtonian formalism, can also reach very large values of central gravitational
potential (y, > + o0) and central density (p. — + o).

The GR family of the equilibrium curves M#) or M3(p,), are plotted in the Figures 5a-5b. It is interesting to note two
kinds of oscillations existing in the curves M (p.) (Fig. 1) and M 4(p.) (Fig. 5b). The oscillations in the curve M (p_) for « < 1.5
have pure relativistic origin (see, e.g., Harrison et al. 1965); they are connected with the stability analysis and correspond to an
increase of unstable modes for increasing values of p.. The second class of oscillations is evident in the curve M #(p,); it has no
relation with stability but reflects oscillatory properties of an isothermal configuration, not yet clearly understandable, similar
to the density oscillations in the equilibrium curve p(r) (see, e.g., Chandrasekhar 1939).

Further, it is important to note that while in neutron stars and white dwarfs, because of the uniqueness of the equation of
state of matter in the ground state, the onset of gravitational instability occurs at a unique value of central gravitational
redshift and at a specific value of the mass, called the critical mass against gravitational collapse, in the present case of
relativistic clusters the equation of state, defined by equations (10)<(12), is a function of the temperature and the cutoff
parameter. Consequently, the region of stability and the onset of gravitational instability are defined not by a unique value of
the critical mass but by a continuous line in the z,-T plane (see § 5).

Finally, for completeness, we would like to recall here the discussion of some features on the structures of the equilibrium
configurations pointing to a novel classification of stable relativistic clusters recently analyzed by Merafina & Ruffini (1997).
In this classification attention is given to the region S2 (see Figure 9 below): the novelty is that these configurations, unlike
those of the region S1, do present a double feature of a relativistic core and an extended halo.

The general relativistic models for small values of T have small values of the ratio 2GM/Rc?, ranging from Newtonian
regimes, where 2GM/Rc? < 1, all the way to a mildly relativistic regime with 2GM/Rc? ~ 0.09, for T ~ 0.06. Moreover, they
have very large values of z, in the limit of large values of the central density p,. In this regime the equilibrium configurations
present a regular center without singularities even for arbitrarily large central densities. However, they have extreme core-halo
structures, the core being up to only 10~ * times the radius of the cluster.
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FIG. 5.—(a) Mass of the relativistic solutions as a function of the parameter o for fixed values of the temperature T (labeled on the curves). (b) Mass of the
relativistic solutions as a function of the central density for fixed values of the temperature T (labeled on the curves). Mass and density are given in arbitrary
units.

In order to illustrate the explicit density distribution and metric coefficients, two specific configurations are examined: one
in the traditional family (region S1) with z, < 0.5 (config. 1) studied by Ipser (1969) and one in the region S2 at low
temperatures and large values of the central redshift (config. 2). These configurations are discussed in detail in Figure 6 where
the metric coefficients, the density profiles, and the local circular velocities are shown. It is important to note that in
configuration 1 the maximum of e* occurs very close to the radius R of the configuration, while in configuration 2 the
existence of a compact core is clearly manifested by the occurrence of the maximum of e* deeply inside the configuration at
r ~ 1073 R. It is also important to emphasize the fact that the dense cores cannot exist “ bare,” i.e., without their extended,
almost Newtonian envelopes. The global stability of the cluster appears to demand the existence of both components: the
relativistic core and the halo.

3. STABILITY ANALYSIS

Since the sequence of the models M(p,) at given « is not good enough in the intermediate region for stability analysis, we use
three different sequences from BMRYV. In this section we investigate the stability of models with o < 1.5, where the criteria
give reliable results. First, for o > 1.5, the criterion based on sequences with a fixed specific entropy gives results of difficult
interpretation, which is due to a particular oscillatory behavior after the first maximum that appears in the mass-radius
relation relevant to the stability analysis; second, the criterion based on sequences with the conservation of the adiabatic
invariant does not apply well at these regimes because of changes from increasing to decreasing behavior of the central density
in families at constant o (see Fig. 1). The only criterion that gives results with sufficient accuracy also for models with o > 1.5 is
that based on sequences with a fixed cutoff (see§ 5), even if it is less precise than the other two in the regime « < 1.5.

We will investigate the stability of models witha > 1.5in § 5.

3.1. Sequences with a Fixed Cutoff Parameter
The parameters

€ T,
W = [ Seut d _ _R 17
0 < T >r=0 an m02 ’ ( )

r
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FI1G. 6.—(a) Metric elements e*, ¢’ are plotted as a function of the radial coordinate for a particular solution with T = 0.09 and z, = 0.13 (config. 1). (b)
Metric elements e, e’ are plotted as a function of the radial coordinate for a particular solution with 7 = 0.05 and z, = 3.59 (config. 2). (c) Density profile as a
function of the radial coordinate is shown for the two particular solutions. (d) Local circular velocity is given as a function of the radial coordinate for the two
particular solutions.

where T, = Te™ " is the local temperature varying along the cluster and €, = (p2,c> + m*c*)"/?> —mc? = Ee™"> — mc? is
the kinetic energy cutoff, were used by Merafina & Ruffini (1989) instead of T = T/mc? and o of ZP. They are related by the
following expressions:

T
b= 1—aT)2 (18)
and
_ pv(0)/2
L (19)

T 2

The first of the sequences used for stability analysis is the sequence with constant W, and varying . As shown in BMRYV, the

parameter W, can be taken as approximately adiabatic; sequences with o constant and varying T correspond to sequences

with B varying and W, changing slowly, at least until the first maximum of T, in accordance with equation (19) (see Fig. 7).

The equivalence of this stability criterion with that suggested by Ipser (1980) was definitely shown in BMRYV for o = 1: this

sequence near the critical point corresponds to that relevant in the application of Ipser’s criterion. This correlation near the

critical point is also retained at o # 1 for models with T > 1.5 and leads to results in accordance with those given in literature.
Results of the application of this criterion for models with « < 1.5 are given in Table 1.

3.2. Sequences with a Fixed Specific Entropy
We introduce the expression of the entropy of a system with arbitrary distribution function,

S = f A —nf)dpdir, (20)
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F1G. 7—Cutoff parameter W, shown as a function of the temperature T, for sequences at fixed values of o (labeled on the curves). The equilibria are
limited by the condition W, T < 1 (dashed line), obtainable from eqgs. (18)-(19) and the definition of central redshift z, = e "2 — 1, Dotted line indicates the
onset of instability. Notice that there are no unstable models for T < 0.06.

and we investigate the sequences with the fixed specific entropy S/N,, where N, is the total number of stars, whose
dimensionless expression is given by equation (16). Using equations (2), (16), and (20) we can obtain for the specific entropy the

expression
S B & e**V2er? gy
=—=|1—In|— R o 21
> N, |: n<B*>:| T |& e**nr? dr @1)

where B, is an arbitrary constant along the sequence with the dimension of B.
The sequences with fixed entropy were considered by BMRYV as the second set of sequences for stability investigation. Here
these sequences are used for stability investigation of models with « < 1.5. The results are presented in Table 2.

3.3. Sequences with Conservation of the Adiabatic Invariant

The conservation of the adiabatic invariant I = pn, 1/* (Podurets 1969) along the sequence of models implies the intro-
duction of non-Maxwellian distribution functions

ev/2 n o 2/3 1/2
f=Bexp{— T |:pzc2 nL + m2c4:| , (22)
0 c
with the cutoff parameters
n; 13 Pcu n 13
DPeut = pcut0<n_co> = Tto s K= n_:) . (23)

The expression for p,,, is determined from the cutoff relation of the initial Maxwellian model with T = T, and v = v(r); we
have

(P20 + m2c*)1 2002 = me? — oT)2 . (24)

The procedure of constructing approximate equilibrium models with a non-Maxwellian distribution function is described in
detail by BMRYV as well as a method of constructing the sequences of models for stability analysis. Here we use exactly the
same method for models with o < 1.5. The results are presented in Table 3.

4. THE LIMITING SOLUTION AT o — 0

It is interesting to investigate the limiting solution corresponding to « — 0, T — oo, and aT = 5. Since in this limit
e BT ~ 1, the expressions of the most relevant quantities in the calculation of the equilibrium properties assume a more
simplified form. The importance of this limiting solution lies in the fact that the properties of the equilibrium solutions with a
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TABLE 1
NUMERICAL RESULTS OF STABILITY ANALYSIS BASED ON STATIC CRITERION OF SEQUENCES AT CONSTANT W, (o < 1.5)

o W, P, M N R T z,

1.20...... 1.190 x 10° 5.305 x 10° 273278 x 10~ 2.834 x 1072 2626 x 107! 1.84 x 107! 4.886 x 107!
5.371 x 10° 273291 x 10~ 2.834 x 1072 2619 x 107! 1.84 x 107! 4916 x 107!
5437 x 10° 273299 x 102 2.834 x 102 2611 x 107! 1.84 x 107¢ 4946 x 107!
1.20...... 1.193 x 10° 5.406 x 10° 273137 x 10~2 2.833 x 1072 2615 x 107! 1.85 x 107! 4929 x 10°!
5473 x 10° 273143 x 10~ 2.833 x 1072 2.607 x 107! 1.85x 107! 4959 x 107!
5.540 x 10° 273142 x 1072 2.833 x 1072 2.600 x 10~* 1.85x 107! 4989 x 1071
1.20...... 1.197 x 10° 5.513 x 10° 2.72934 x 10~ 2.830 x 1072 2.603 x 107! 1.86 x 107! 4972 x 107!
5.581 x 10° 272932 x 102 2.830 x 1072 2.595 x 107! 1.86 x 1071 5.003 x 1071
5.650 x 10° 272926 x 102 2.830 x 1072 2588 x 10! 1.86 x 107! 5.034 x 1071
0.50...... 4429 x 107! 3.542 x 10° 3.17653 x 1072 3.294 x 102 2.870 x 107! 472 x 107! 4.829 x 107!
3.586 x 10° 3.17660 x 10~2 3.294 x 102 2.861 x 107¢ 472 x 1071 4858 x 107!
3.629 x 10° 3.17661 x 10~2 3.294 x 10~ 2853 x 107! 472 x 1071 4.887 x 107!
0.50...... 4433 x 107! 3.570 x 10° 3.17630 x 1072 3.294 x 102 2.864 x 107! 473 x 107! 4847 x 107!
3.614 x 10° 3.17634 x 1072 3.294 x 102 2.856 x 107* 473 x 1071 4877 x 1071
3.658 x 10° 3.17631 x 1072 3.294 x 102 2.847 x 107! 473 x 107! 4906 x 107!
0.50...... 4436 x 107! 3.598 x 10° 3.17614 x 1072 3.294 x 10~ 2.859 x 107! 474 x 1071 4.865 x 107!
3.642 x 10° 3.17614 x 1072 3.294 x 102 2851 x 107! 474 x 1071 4.895 x 107!
3.687 x 10° 3.17608 x 1072 3.294 x 102 2.842 x 107! 474 x 10~* 4925 x 107!
0.20...... 1.704 x 1071 3.008 x 10° 3.34394 x 1072 3.468 x 102 2984 x 107! 1.20 x 10° 4744 x 107!
3.082 x 10° 3.34426 x 102 3.468 x 102 2.966 x 107! 1.20 x 10° 4.801 x 107!
3.157 x 10° 3.34433 x 102 3.468 x 102 2949 x 107! 1.20 x 10° 4.859 x 107!
0.20...... 1.709 x 1071 3.068 x 10° 3.34386 x 102 3.468 x 102 2969 x 107! 1.21 x 10° 4790 x 107!
3.144 x 10° 3.34397 x 10~ 3.468 x 102 2952 x 107! 1.21 x 10° 4.848 x 107!
3.221 x 10° 3.34384 x 1072 3.468 x 102 2934 x 107! 1.21 x 10° 4907 x 107!
0.20...... 1.716 x 1071 3.182 x 10° 3.34354 x 1072 3.468 x 1072 2943 x 107! 1.22 x 10° 4877 x 107!
3.261 x 10° 3.34329 x 10~ 3.467 x 102 2926 x 107! 1.22 x 10° 4937 x 107!
3.342 x 10° 3.34278 x 1072 3.467 x 102 2.908 x 107! 1.22 x 10° 4996 x 107!
0.02...... 1.669 x 1072 2.760 x 10° 3.43941 x 1072 3.567 x 102 3.047 x 1071 1.21 x 10! 4706 x 107!
2.828 x 10° 3.43984 x 10~2 3.568 x 102 3.029 x 101 1.21 x 10! 4763 x 107!
2.896 x 10° 3.44001 x 1072 3.568 x 102 3.011 x 10~* 1.21 x 10! 4.820 x 107!
0.02...... 1.674 x 1072 2.847 x 10° 3.43988 x 102 3.568 x 102 3.024 x 1071 1.22 x 10! 4779 x 107!
2917 x 10° 3.43997 x 10~ 3.568 x 102 3.006 x 1071 1.22 x 10! 4.836 x 107!
2.988 x 10° 3.43982 x 1072 3.568 x 102 2.989 x 107! 1.22 x 10! 4.894 x 107!
0.02...... 1.682 x 1072 2938 x 10° 3.43991 x 10~2 3.568 x 102 3.001 x 107+ 1.23 x 10* 4854 x 1071
3.011 x 10° 3.43967 x 1072 3.567 x 102 2983 x 107! 1.23 x 10! 4912 x 107!
3.085 x 10° 343918 x 1072 3.567 x 102 2.965 x 107! 1.23 x 10! 4972 x 107!

Note.—The second configuration of each group belongs to the equilibrium sequence. For each value of «, the configuration coinciding
with the maximum mass in the sequence at constant W, corresponds to the critical one.

sufficiently small value of « and large value of T converge to it. This behavior is clearly shown in Figure 1 where the solutions
asymptotically converge to a limiting sequence for o — 0.

Thus, number density n,, energy density €,, and pressure P, depend only on the parameter #, and the explicit dependence
on the temperature T and the cutoff parameter o disappears:

47 mc2—n/2
no=—3 Boe™ e “E! —m’c*E,dE, , (25)
4 mc2evo/2
47 mec2—n/2
€p=—3 Bye 2 f Je E} — m*c*E%dE, , (26)
¢ mc2evo/2
47 mc2—n/2
P, = 33 Bye 2 J (e E} — m*c*)’? dE, . (27
4 mc2evo/2

The stability of this limiting solution has been investigated by the method of conservation of adiabatic invariant, introduced
in § 3.3. The parameter = aT does not change during the perturbation, so the perturbed quantities keep the simple form:

4r (mc2—n/2)e(v—v0)/2
n=——Be™ e YE? —m?c*EdE , (28)
(8 mc2ev/2
4z (mc2—n/2)e(—v0)/2
€=—— Be™’ V(E2e™Y — m*c* + m2c*k?)e E? — m*c*EdE , (29)
C3K4 2ev/2
mc<eV,
4n (me2 — j2)e—r0)2

P= FyEme: Be™ J‘ (E%e™ — m2c* + m?c*k?) ™ V2%(e"E?> — m*c*)*?EdE , (30)

C'K mc2ev/2

where x was defined in equation (23).
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TABLE 2
NUMERICAL RESULTS OF STABILITY ANALYSIS BASED ON STATIC CRITERION OF SEQUENCES AT CONSTANT ENTROPY (a < 1.5)
« S/N P. M N R T Z
1.20...... 5.691 x 10° 4.733 x 10° 2.7409 x 10~2 2.842 x 102 2.697 x 101 1.79 x 107! 4.640 x 107!
4.773 x 10° 2.7410 x 1072 2.842 x 1072 2692 x 107! 1.79 x 107! 4.659 x 107!
4.813 x 10° 27411 x 1072 2.842 x 1072 2,687 x 107! 1.80 x 107! 4.678 x 107*
1.20...... 5.640 x 10° 4.924 x 10° 2.7388 x 1072 2.840 x 102 2,672 x 1071 1.81 x 107! 4724 x 107!
4.966 x 10° 2.7388 x 1072 2.840 x 1072 2,667 x 107! 1.81 x 107! 4744 x 1071
5.008 x 10° 2.7388 x 10~ 2.840 x 10~ 2.662 x 1071 1.81 x 107! 4763 x 1071
1.20...... 5.615 x 10° 5.022 x 10° 27377 x 102 2.839 x 102 2.660 x 101 1.81 x 101 4767 x 1071
5.065 x 10° 2.7376 x 102 2.839 x 1072 2.655 x 107! 1.82 x 107! 4787 x 1071
5.109 x 10° 27375 x 10~ 2.839 x 102 2.650 x 1071 1.82 x 107! 4.807 x 107*
0.50...... 2.792 x 10° 3.381 x 10° 3.1772 x 1072 3.295 x 1072 2902 x 1071 4.65 x 1071 4719 x 1071
3.447 x 10° 3.1774 x 10~2 3.295 x 10~ 2.889 x 107! 4.67 x 1071 4764 x 1071
3.515 x 10° 3.1774 x 1072 3.295 x 1072 2.876 x 1071 470 x 1071 4.810 x 1071
0.50...... 2.788 x 10° 3.407 x 10° 3.1773 x 1072 3.295 x 1072 2.896 x 10! 4.66 x 1071 4738 x 1071
3.474 x 10° 3.1774 x 10~2 3.295 x 10~2 2.883 x 107! 468 x 1071 4784 x 1071
3.543 x 10° 3.1773 x 1072 3.295 x 1072 2.870 x 107! 471 x 1071 4.830 x 107*
0.50...... 2.783 x 10° 3.434 x 10° 3.1772 x 1072 3.295 x 1072 2.892 x 107! 467 x 1071 4756 x 1071
3.502 x 10° 31772 x 1072 3.295 x 10~ 2.878 x 10! 469 x 1071 4.802 x 1071
3.572 x 10° 3.1771 x 1072 3.295 x 1072 2.864 x 1071 471 x 1071 4.849 x 1071
0.20...... 1.701 x 10° 2.857 x 10° 33433 x 1072 3.467 x 1072 3.021 x 1071 1.18 x 10° 4672 x 1071
2968 x 10° 3.3441 x 1072 3.468 x 10~ 2993 x 10°¢ 1.19 x 10° 4761 x 10™*
3.084 x 10° 33442 x 1072 3.468 x 1072 2965 x 1071 1.21 x 10° 4852 x 1071
0.20...... 1.697 x 10° 2910 x 10° 3.3439 x 1072 3.468 x 1072 3.008 x 101 1.19 x 10° 4716 x 107!
3.024 x 10° 3.3443 x 1072 3.468 x 102 2980 x 10! 1.20 x 10° 4.806 x 107!
3.143 x 10° 3.3440 x 1072 3.468 x 1072 2952 x 107! 1.21 x 10° 4.899 x 107!
0.20...... 1.693 x 10° 2.965 x 10° 3.3442 x 1072 3.468 x 1072 2994 x 1071 1.19 x 10° 4753 x 1071
3.082 x 10° 3.3442 x 107! 3.468 x 102 2.966 x 10! 1.21 x 10° 4.845 x 1071
3.205 x 10° 3.3436 x 1072 3.467 x 1072 2938 x 107! 1.22 x 10° 4938 x 107!
0.02...... 1.069 x 10° 2.681 x 10° 3.4389 x 1072 3.566 x 102 3.069 x 10! 1.20 x 10! 4.677 x 1071
2.784 x 10° 3.4396 x 1072 3.567 x 102 3.041 x 101 1.21 x 10* 4765 x 1071
2.892 x 10° 34397 x 1072 3.567 x 1072 3.013 x 1071 1.22 x 10! 4.856 x 107!
0.02...... 1.068 x 10° 2.764 x 10° 3.4398 x 1072 3.568 x 102 3.046 x 10! 1.21 x 10* 4749 x 1071
2.872 x 10° 3.4400 x 1072 3.568 x 102 3.018 x 107! 1.22 x 10* 4.840 x 10°*
2.985 x 10° 3.4396 x 1072 3.568 x 1072 2990 x 10! 1.23 x 10! 4933 x 107!
0.02...... 1.068 x 10° 2.852 x 10° 3.4401 x 1072 3.568 x 102 3.022 x 107! 1.22 x 10* 4815 x 1071
2.965 x 10° 3.4399 x 1072 3.568 x 102 2994 x 10~* 1.23 x 10! 4908 x 107!
3.084 x 10° 3.4389 x 1072 3.567 x 102 2965 x 1071 1.24 x 10! 5.004 x 101

Note.—The second configuration of each group belongs to the equilibrium sequence. For each value of o, the configuration
coinciding with the maximum mass in the sequence at constant entropy corresponds to the critical one.

The instability sets in at (11/mc2)Cm = 0.2439, corresponding to a central redshift z, = 0.4832. It is interesting to note that the
critical value of T is increasing with decreasmg values of «; a similar behavior of the critical value of T was found by Ipser
(1969) for some values of «. The value of the quantity (« T)., increases with decreasing values of « also and tends to a constant
value («T),, = 0.2239. Given the relation between aT and the cutoff energy E.,, (see eq. [14] in BMRYV), this result leads to the
important conclusion that no stable configurations exist for 2GM/Rc? > 0.2290, for large values of T. The critical value of
central redshift z, tends likewise to a limiting value corresponding to (z.)..;; = 0.4832, for decreasing values of o. The results,
using the three different methods, are in complete agreement.

5. LIMITING CASE FOR LOW-TEMPERATURE CONFIGURATIONS WITH HIGH CENTRAL REDSHIFTS

The stability of models with « < 1.5 can be approximately estimated from the behavior of the curves M (p,). For larger « up
to the limiting value, the curve M (p,) shows a behavior consisting of one or more loops and in some cases of a curve coming
out from the origin. In this case the maximum of M (p,) is not good for the investigation of the stability, and it is very difficult
to use other methods mentioned in § 1.

The criteria mentioned in § 3 cannot be applied in this regime except for the one based on sequences with constant W;,. This
criterion permits us to extend the stability analysis to conﬁguratlons with T<0.1andz, 2 1.

In order to better analyze the stability of the conﬁguratlons in such a region we calculated the first maximum of the
fractional binding energy E,/N, with E, = (mN M)c?, in the sequences with constant W;. This procedure is equivalent
to that based on the calculation of the maximum mass, especially in the region at small z, and T = 0.1, where the total
number N is constant near the maximum of the mass M and the results coincide. In the region T<0landl< z, S 4 the
results are slightly different as a result of small variations of the total number N near the maximum of the mass M.

In the isothermal limit of large z, (or p.) and small enough T, the stability analysis can be approximately connected with the
behavior of the fractional binding energy as a function uniquely of 7. We notice that the fractional binding energy of the
system is almost constant along the curves M#(p,) at large enough p,, and we find that the maximum occurs at T. ~ 0.06 in
accordance with a particular solution investigated by Bisnovatyi-Kogan & Zeldovich (1969). This result can be 1nterpreted as
a transition from the stable (quasi-Newtonian) configurations at T < T, to the unstable ones at T > T..
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TABLE 3
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NUMERICAL RESULTS OF STABILITY ANALYSIS BASED ON METHOD OF ADIABATIC INVARIANT (2 < 1.5)

o T z, Pe M R
1.20...... 1.80 x 107! 4700 x 107! 4.838 x 10° 2.73982 x 102 2.680 x 107!
4.870 x 10° 2.73990 x 102 2679 x 107!
4.902 x 10° 273994 x 102 2678 x 107!
1.20...... 1.81 x 107! 4765 x 107! 4.986 x 10° 2.73804 x 102 2662 x 107!
5.019 x 10° 2.73810 x 1072 2.661 x 107!
5.052 x 10° 2.73804 x 102 2.660 x 107!
1.20...... 1.82 x 107! 4786 x 107! 5.032 x 10° 2.73760 x 102 2.656 x 107!
5.065 x 10° 273758 x 1072 2.655 x 107!
5.098 x 10° 2.73756 x 1072 2.654 x 107!
0.50...... 467 x 1071 4765 x 107! 3.424 x 10° 3.17737 x 102 2.893 x 107!
3.447 x 10° 3.17740 x 10~2 2.889 x 107!
3.470 x 10° 3.17740 x 102 2.886 x 107!
0.50...... 4.68 x 1071 4784 x 107! 3.451 x 10° 3.17739 x 102 2.886 x 107!
3.474 x 10° 3.17740 x 102 2.883 x 107!
3.497 x 10° 3.17738 x 102 2.880 x 107!
0.50...... 4.69 x 1071 4.802 x 107! 3.479 x 10° 3.17721 x 102 2.881 x 107!
3.502 x 10° 3.17720 x 102 2.878 x 107!
3.525 x 10° 3.17716 x 102 2875 x 107!
0.20...... 1.19 x 10° 4714 x 107! 2.920 x 10° 3.34390 x 1072 3.004 x 10!
2.968 x 10° 3.34410 x 10?2 2993 x 107!
3.017 x 10° 3.34418 x 1072 2982 x 107!
0.20...... 1.20 x 10° 4758 x 107! 2975 x 10° 3.34423 x 1072 2991 x 1071
3.024 x 10° 3.34430 x 1072 2980 x 107!
3.074 x 10° 3.34425 x 1072 2969 x 107!
0.20...... 1.21 x 10° 4802 x 107! 3.032 x 10° 3.34436 x 1072 2977 x 1071
3.082 x 10° 3.34430 x 1072 2966 x 107!
3.133 x 10° 3.34412 x 1072 2955 x 107!
0.02...... 1.21 x 10* 4763 x 107¢ 2.782 x 10° 3.43966 x 1072 3.041 x 1071
2.828 x 10° 3.43980 x 1072 3.029 x 107!
2.875 x 10° 3.43982 x 1072 3.017 x 107!
0.02...... 1.22 x 10* 4.800 x 107* 2.825 x 10° 3.43998 x 102 3.030 x 1071
2.872 x 10° 3.44000 x 10~2 3.018 x 107!
2920 x 10° 3.43991 x 102 3.006 x 10°*
0.02...... 1.23 x 10* 4.874 x 1071 2917 x 10° 3.44010 x 10~ 3.006 x 107!
2.965 x 10° 3.43990 x 102 2994 x 107!
3.014 x 10° 3.43958 x 102 2982 x 107!

Note.—The second configuration of each group belongs to the equilibrium sequence and corre-
sponds to a Maxwellian configuration. The first and third configurations correspond to non-
Maxwellian configurations for small perturbations of the radius R,. For each value of «, the
configuration coinciding with a local maximum for the mass corresponds to the critical one.

The behavior of the fractional binding energy as a function of the temperature T and the central redshift z, is summarized
in Figure 8. The separation between the regions of stable and unstable configurations is clearly denoted by the two chains of
the maxima of the fractional binding energy. At T 2 0.1, we have a horizontal chain which, in accordance with the traditional
results, identifies the critical value of the central redshift separating the stable from the unstable models: this value is z, ~ 0.5.
In the region of smaller 7 we have a vertical chain extending up to infinite values of z, less high than the horlzontal chain,
which identifies a critical value of the temperature: this value is 7, ~ 0.06; models with temperatures lower than T, are always
stable, for every value of the central redshift. In the transition zone, where the vertical chain joins the horizontal one, the
behavior of the maxima is uncertain and critically depends on the choice of the sequence of models, which makes the
determination of the curve of the onset of instability difficult.

It is important to note how the critical curve obtained by calculating the first maxima of the fractional binding energy from
the sequences with constant W, reproduces, with surprising accuracy, the behavior of the chain in the three-dimensional figure
(see also the dashed curve in Figure 9).

These results are not reproduced if one considers (as in SF) sequences with constant « in order to determine the maxima of
the fractional binding energy. In fact, it is clear from Figure 9, showmg the sequences with constant o in the z,-T plane that
the reason that the curve of maximum fractional binding energy in SF turns down toward the origin (see curve C in Fig. 1 of
SF) is that it was obtained by looking at the maxima along sequences at constant «, whose particular behavior is no longer so
regular in the region of small temperatures, where loops at o > 1.5 occur. These maxima are neither actual maxima of the
fractional binding energy nor they are relevant for the stability analysis.

Figure 8 shows clearly that the claim of SF “ Along any sequence in the (T,,, z.)-plane the magnitude of E,/N has a local
maximum when the sequence crosses the curve C; C thus represents the locus in the (T, z,)-plane of maximal fractional
binding energy ” is not correct. Therefore any conclusion about the stability of the models drawn by using the portion of the
curve C turning down toward the origin is wrong because that part of the curve does not represent any particular feature of
the binding energy. For instance the Ipser (1980) claim, “ One convinces himself that the appropriate sequences generally run
upwards in the figure. Assuming that the sufficient condition for stability is valid below curve C, the locus of points of
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FIG. 9.—Sequences at fixed a (labeled on the curves) in the plane z,-T. Dashed line indicates the onset of instability and separates the region U (unstable
models) from the regions S1 and S2 (stable models).
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maximum binding energy in the two-dimensional plot, it will follow that the conditions breaks down everywhere along the
curve C” must be considered in the light of Figure 8.

6. COMPARISON WITH NUMERICAL MODELS

Rasio, Shapiro, & Teukolsky (1989, hereafter RST) have investigated by numerical simulations the stability of a particular
set of equilibrium models up to large values of the central redshift z.. We would like, for completeness, to recall here some
results presented in a letter by Merafina & Ruffini (1995), leading to an explicit relation between the work of RST and ours.

RST adopted a relativistic form of the distribution function figr, resulting from numerical integrations of the Newtonian
Fokker-Planck equation for secular evolution of an isotropic stellar cluster during the gravothermal catastrophe. Actually, as
it is clear from their Figure 1, the distribution function adopted by RST is slightly different from that used in this paper (eq.
[2]) and this leads to some differences in the density profiles, particularly in the size of the configurations.

Even though the functional form of the distribution function adopted by RST is different from the one used in this paper,
there is a close relationship between the sequence of models of RST and a particular one of our treatment (Merafina & Ruffini
1995).

The dimensionless energy variable x in the numerical distribution function used byRST is defined as

E/mc* — 1+ zc>

Xgst = 13.25< 31)

Ze

where E is the total energy of a single “particle” defined by equation (4) and z, is the central redshift of the equilibrium

configuration. The range of variation of xg¢r is determined by the behavior of the total energy E. If we assume that E varies
2 ,v0/2

from a minimum value corresponding to a particle at rest in the center of the configuration E,;, = mc*e’*? to a maximum
given by E___ = mc?, the range of variability of xpgy is
13.25[z /(1 + z.)] < xger S 13.25. (32)

RST focused their attention on models with 0.123 < z, < 3.75.
In our case, the dimensionless energy variable x used in the distribution function given in equation (2) is
xgmrv = E/T , (33)
where the minimum energy has the same value given in RST and the maximum energy corresponds to the energy cutoff
defined in equation (2). Then the range of variation of xgygy is

2 2

mc me* o
— < <———. 34
T +z) PMRV="T T2 (34

If we relate the expression of xzgr with that of xgyry We obtain

T -1+
Xes = 13.25(%) : (39)
or the inverse expression
z, [ x

XBMRV = F <_13R.52T5 - 1) ) (35a)

where T = T/mc>.
If we consider the same energy range in both treatments, by using equation (34) we obtain the following range of variation
of Xgsr:

T} 2) . (36)

Ze

ZC
13.25( o > < Xpst < 13.25<1 -

4

In § 3.1 we have defined families of equilibrium configurations with constant central energy cutoff parameter W,. The
relationship that connects the cutoff parameter W, with the other relevant parameters characterizing the equilibrium configu-
rations can be obtained by equation (19)

(X(Z’_., T) o Zc
|:WO+ 2 ]T_l—}—zc'

If we now turn to identify the configurations considered by RST within our models, we must search for configurations with
the same value of the fractional binding energy and the central redshift. The results are given in Table 4 where we have
calculated the values of T and W, selecting among our models those whose fractional binding energy and central redshift are
equal to each of the six configurations investigated by RST (indicated by solid triangles in their Fig. 3). We can conclude from
the table that the sequence shown in RST and used by the authors to draw their conclusions about the stability of the models
investigated is closely described by a sequence of models with W, ~ 114, namely, a particular sequence at constant W,
among those investigated by our criterion (1). It is clear from Figure 10a the good agreement of the values of T and z,, given
in Table 4, with the analytical relationship indicated in equation (37) for W, = 114.

(37
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TABLE 4

EQUILIBRIUM CONFIGURATIONS WITH THE SAME
REDSHIFT AND FRACTIONAL BINDING
ENERGY OF THE NUMERICAL MODELS

INVESTIGATED BY RST

z, T Wo
(U8 X 9.594 x 10~* 113.1
0.500.......cccuiens 2.881 x 1073 114.8
0.750.....ccennns 3.688 x 1073 115.0
1250 4.809 x 1073 114.6
2250 i 6.027 x 1073 113.9
3750 6915 x 103 113.2

Vol. 500

In Figure 10b we give the behavior of the fractional binding energy E,/N as a function of the central redshift z, for the
sequence W, = 114, and we compare these results with the corresponding values in the six models investigated by RST. The

accordance is very satisfactory.

It is important to point out that models investigated by RST and found to be stable against relativistic collapse, have
T < T. and thus lie well inside the region of stable configurations of the z, — T plane. This is confirmed by the existence of a
lower limit for W, beyond the one all the sequences with constant W, are stable: this limit is W, ~ 15.5 (see Merafina &
Ruffini 1995), while the sequence of models investigated by RST has W, ~ 114.

Our analytical results show that there are many families that reach an infinite value of the central redshift without

becoming unstable and confirm the results of numerical simulations by RST made on a particular set of solutions.

[+
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E,/N
0.002
0.000

T

0.002 0.004 0.006 0.008
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2

F1G. 10.—(a) Configurations with the same fractional binding energy and central redshift of numerical models investigated by RST (open squares). They fit
the analytical function given in eq. (37) for W, = 114 (continuous line). (b) Numerical model obtained by RST (open squares) and the family of solutions with

W, = 114 (continuous line).



No. 1, 1998 STABILITY OF DENSE STELLAR CLUSTERS. I 231
TABLE 5
SUMMARY OF RESULTS OF STABILITY ANALYSIS BY USING DIFFERENT METHODS
W,-Constant Sequence S-Constant Sequence Adiabatic Invariant Conservation Fractional Binding Energy
T > 0.06: B 5 N

0=120.......... T, =0.185 .. =0.181 .. =0.181

z, o = 0.496 z, . = 0474 Z, o = 0477
0=0.50.......... T, =0473 T.. = 0.468 T, = 0468

z, o = 0.488 Z, . = 0478 z, . = 0.478
0=020.......... T, =121 T, =120 T.=120

Z, o = 0485 Z, o = 0481 z, .. = 0.476
0=002.......... T, =122 T, =122 T, =122

Z, o = 0.484 z, . = 0.484 z, .. = 0.480
0=0............ T, = T. .= T, =

Z, o = 0.483 e.or = 0.483 z, . = 0.483

T < 0.06: B

Z,=099%...... T, = 0.058
Z,,=2191...... T, = 0071
Z,=3.040...... T.. = 0.061
Z, o =4216...... T.. = 0.057
Zeor = 0 ceuinnnn. T.. = 0.060

7. CONCLUSIONS

In this paper we have investigated the stability against relativistic collapse of families of equilibrium configurations with
different cutoff parameters. The main results can be summarized dividing the z.-T plane (Fig. 9) into three regions: S1, S2,
and U.

1. S1 — U (T > 0.06)—These regions of the plane z,-T correspond to the traditional families of equilibrium configurations
whose stability was largely investigated in the past. S1 indicates the part of the plane corresponding to stable equilibria, while
U indicates the unstable ones. The three different methods introduced in BMRYV give results in agreement among them (see
Table 5) and with the results of previous analysis (see, e.g., Ipser 1969 and SF). For large values of the temperature T the
critical value of central redshift tends to (z.).,;, = 0.4832. In this regime there are not stable configurations with z, larger than
0.5. Our results confirm this conclusion and are obtained with more accuracy.

2. 82 (T < 0.06)—This region of the plane corresponds to extreme core-halo configurations whose stability analysis
carried out by SF did not supply conclusive results. In contrast to the conclusions of SF, our results show that these
configurations are also stable (see Table 5). As pointed out by Merafina & Ruffini (1997), the dense core is in gravitational
equilibrium with a Newtonian envelope, which permits to the system to be stable as a whole.

In order to investigate the stability of these equilibria we have used a binding energy criterion supplying results in good
agreement with the ones based on sequences at constant W,,. The other two methods introduced in BMRYV do not give results
of simple interpretation.

Thus we come to the interesting conclusion that there exist stable nonsingular configurations with arbitrarily large central
redshift.

It must be noted that the Ipser (1969) and Fackerell (1970) results, also reported in SF, already indicated that models with
small temperatures could be stable even for values of the central redshift larger than 0.5 but only until a limiting value of z..
Nevertheless the authors came to a different conclusion by considering the behavior of the curve of the maxima of the
fractional binding energy. Application of these criteria for the particular solution obtained by Bisnovatyi-Kogan & Zeldovich
(1969) has shown that it satisfies necessary condition of stability but was unable to establish the sufficient condition
(Bisnovatyi-Kogan & Thorne 1970).

We have shown that the curve indicating the onset of instability, obtained by SF, gives correct results only in the region
with T = 0.1, while it represents only the locus of the relative maxima of the fractional binding energy for smaller T and
therefore in no way it is related with the analysis of the stability of those equilibrium configurations. Actually it is evident from
Figure 8, where the fractional binding energy has been plotted as a function of z, and T, the chain corresponding to the curve
separating the region S1 from U and the chain at a lower height corresponding to the curve separating the region S2 from U.
The plot shows that the conclusions of SF about the role of the curve C in the stability analysis are not valid.

Finally, we have compared and contrasted the models investigated by RST with our families of configurations with
constant W,. We found that the models of RST correspond to a particular sequence of stable solutions (W, = 114) belonging
to a more general family of stable configurations which can reach arbitrarily large values of z,.
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