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ABSTRACT
We investigate the stability of dense stellar clusters against relativistic collapse by approximate

methods described in the previous paper in this series. These methods, together with the analysis of the
fractional binding energy of the system, have been applied to sequences of equilibrium models, with
cuto† in the distribution function, which generalize those studied by Zeldovich & Podurets. We show
the existence of extreme conÐgurations, which are stable all the way up to inÐnite values of the central
redshift.
Subject headings : celestial mechanics, stellar dynamics È globular clusters : general È relativity

1. INTRODUCTION

The motivation for analyzing relativistic clusters as a way of explaining the quasar redshift as a pure gravitational redshift
phenomenon & Fowler has been superseded by the very clear evidence of the cosmological nature of the redshift(Hoyle 1967)
associated with the Hubble Ñow. On the other hand, the formation of massive black holes in active galactic nuclei (AGNs)
could be the result of a collapse of dense stellar cluster (see, e.g., The theoretical issue of the stability of suchRees 1984).
relativistic clusters, started by himself and continued by & Podurets hereafter andEinstein (1939) Zeldovich (1965 ; ZP)

is still open.Zapolsky (1968),
A particular case of stable equilibrium conÐgurations in a relativistic cluster with inÐnite central gravitational redshift was

obtained by & ZeldovichBisnovatyi-Kogan (1969).
In this paper we address the investigation of the stability against relativistic collapse of isothermal models generalizing

those studied by setting the critical values for the onset of instability and showing also the existence of an entireZP,
two-parameter family of stable nonsingular models with arbitrarily large central redshifts (for a short version see also

et al.MeraÐna 1996).
We consider spherically symmetric stellar clusters, with no angular momentum, described by Schwarzschild metric,

ds2\ elc2 dt2[ ej dr2[ r2(dh2] sin2 h d/2) , (1)

with a distribution function given by

G f \ Be~E@T
f \ 0

for E¹ Ecut 4 mc2[ aT /2 ,
for E[ Ecut ,

(2)

where E\ el@2(p2c2] m2c4)1@2 is the total energy of the particle star and T , in energy units, is the temperature ““ measured by
an inÐnitely remote observer,ÏÏ constant over the cluster in equilibrium; characterizing the average kinetic energy of theT

r
,

stars, is and varies along the cluster.T
r
\Te~l@2

The investigation of equilibrium of models with a \ 1 was considered by in 1965, while the extension to models withZP
has been previously considered by and & Fackerell hereafter and then systematicallya \/ 1 Ipser (1969) Su†ern (1976; SF)

analyzed by & RuffiniMeraÐna (1990).
In a previous paper et al. hereafter we considered the issue of the stability of such(Bisnovatyi-Kogan 1993 ; BMRV)

conÐgurations by analyzing the speciÐc case of the distribution function of with a \ 1, introduced byequation (2) ZP.
In this paper we generalize the analysis of the stability of models with Spanning the entire range of possible values ofa \/ 1.

a we obtain equilibrium conÐgurations characterized by extreme core-halo density proÐles and also more homogeneous
conÐgurations.

In we have formulated three criteria for the stability of clusters against relativistic collapse, based on the staticBMRV
approach of with the construction of sequences of appropriate equilibrium conÐgurations :Zeldovich (1963)

1. Sequences of models with Ðxed cuto† parameter ;
2. Sequences of models with constant speciÐc entropy ;
3. Sequences of non-Maxwellian models, constructed from the condition of conservation of adiabatic invariant, pcut D n1@3.
These criteria were applied, in to the models with a \ 1, and the relationship between our criteria and thoseBMRV,

existing in literature was also examined ; in particular, a close relation was shown to exist between our criterion (1) and that
introduced in Ipser (1980).
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In the present paper, we extend the above three criteria to the stability analysis of models with values of the parameter
There is, a priori, no reason to select a speciÐc value of a. In a certain sense, Ðxing a value of a corresponds to arbitrarilya \/ 1.

reducing the space of all possible models of equilibrium.
The difficulty of formulating exact criteria of dynamical stability, unlike the case of stars, arises from the fact that, in this

case of collisionless clusters, correct sequences fulÐlling the adiabaticity requirement cannot be rigorously constructed by
writing analytically the distribution functions.

As explained in detail in the criteria we have introduced are based on sequences along which the adiabaticityBMRV,
requirement is fulÐlled but the Maxwellian form of the distribution function remains unchanged (criteria [1], [2]), or
sequences where the deviations from the Maxwellian form are taken into account but the adiabaticity requirement is only
approximately fulÐlled (criterion [3]).

Nevertheless, these approximations are clearly not too severe, and the criteria are expected to supply reliable results on the
critical parameters for the onset of dynamical instability. This expectation is indeed conÐrmed by our results : in the region
with T [ 0.1 mc2 for models with a ¹ 1.5, which was already examined in previous investigations we Ðnd(Ipser 1969 ; SF),
results in agreement with these treatments.

In we show the main properties of the equilibrium conÐgurations in the range of small central redshifts and sufficiently° 2
large temperatures. In we brieÑy describe the three stability criteria introduced in and the results of the stability° 3 BMRV
analysis of equilibria shown in In and we address the equilibrium properties and the stability of the limiting° 2. °° 4 5
solutions with a ] 0 and those with T ] 0, respectively ; we show the existence of stable conÐgurations with Inz

c
] O. ° 6,

following & Ruffini we compare the properties of a particular family of conÐgurations with numericalMeraÐna (1995),
models existing in literature. Finally, in we summarize the conclusions of the paper.° 7

2. EQUILIBRIUM CONFIGURATIONS

The general relativistic equilibrium equations for a perfect Ñuid of pressure and energy density can be(Tolman 1939) P0 v0written in dimensionless form as

g
e~j0

A 1
r8 0

dl0
dr8 0

] 1
r8 02
B

[ 1
r8 02

\ 8nP3 0 ,

e~j0
A 1
r8 0

dj0
dr8 0

[ 1
r8 02
B

] 1
r8 02

\ 8nv8 0 ,
(3)

where the subscript 0 indicates unperturbed conÐgurations with Maxwellian distribution function of The valuesequation (2).
without this subscript are related to non-Maxwellian distributions used in criterion (3) of BMRV.

We solve here these equations for sequences of models with the distribution function given in for di†erentequation (2)
values of the parameter a. Along each sequence a is constant and T varies. The total star energy E and the momentum p are
connected as

E\ el@2(p2c2] m2c4)1@2 . (4)

The dimensional expressions of the energy density the pressure and the number density in Maxwellian casev04o0 c2, P0, n0are written in the form

v0\ 4n
c3 B0 e~3l0@2

P
mc2el0@2

mc2~aT@2
e~E0@TJel0E02 [m2c4E02 dE0 , (5)

P0\ 4n
3c3 B0 e~l0@2

P
mc2el0@2

mc2~aT@2
e~E0@T(e~l0E02[ m2c4)3@2 dE0 , (6)

n0\ 4n
c3 B0 e~l0

P
mc2el0@2

mc2~aT@2
e~E0@TJe~l0E02[ m2c4E0 dE0 . (7)

The dimensionless variables used for the numerical solution are

T3 \ T
mc2 , x0\ E0

mc2 , r8 0\ r0
r0*

, n8 0\ n0
n0*

, P3 0\ P0
P0*

, v8 0\ v0
v0*

, (8)

where

n0* \ 4n
c3 B0(mc2)3 , P0* \ v0* \ 4n

c3 B0(mc2)4 , r0* \ (m2J4nGcB0)~1 . (9)

The corresponding dimensionless expression for energy density, pressure, and number density are written, respectively, as

v8 0\ e~3l0@2
P
el0@2

1~ao@2
e~x0@oJe~l0x02[ 1 x02 dx0 , (10)

P3 0\ 13e~l0@2
P
el0@2

1~ao@2
e~x0@o(e~l0x02[ 1)3@2 dx0 , (11)
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n8 0\ e~l0
P
el0@2

1~ao@2
e~x0@oJe~v0 x02[ 1 x0 dx0 . (12)

At a given and a, the solution of the is determined uniquely by the boundary conditionsT3 equation (3)

j0(0)\ 0 , l0(0)\ l
c0 , (13)

where a) is calculated by the condition at boundary where and thel
c0(T3 , r8 0\R3 0, el0(m0)@2\ 1 [ aT3 /2 \ (1[ 2M3 0/R3 0)1@2solution smoothly matches the Schwarzschild solution,

l0(R3 0)] j0(R3 0) \ 0 . (14)

The dimensionless mass within a given radius and the total number of stars of the cluster proportional to its restM3 0(r8 0) r8 0 N3 0,mass, are given by the formulae

M3 0(r8 0) \
P
0

—0
4nv8 0 r8 0@2 dr8 0@ , with M3 0 \M3 0(R3 0) , (15)

and

N3 0\
P
0

m0
4nn8 0 ej0@2r8 0@2 dr8 0@ , (16)

where andej0 \ [1[ 2M3 0(r8 0)/r8 0]~1,M3 0(r8 0) \M0(r0)/(v0* r0*3 c2), N3 0\N0/(n0* r0*3 ).
The results of integrations are given in Figures where the main dimensionless parameters for the models are presented.1È2,

It is interesting to note from that the maximum mass of the sequences of the equilibrium conÐgurations tends to aFigure 1
limiting value, for a ] 0. Moreover, for sequences with a [ 1.5 di†erent branches of the same family of solutions at Ðxed a
appear (see, e.g., a \ 2.0). This particular feature is also evident in where the central redshift, of theFigure 2 z

c
\ el0@2[ 1,

sequences of equilibrium models at Ðxed a is given as a function of the temperature. At small the curves deform, and theyT3 ,
split in more parts : one or more loops and one curve all coming out from the origin.

The calculations have shown that equilibrium solutions exist only for This limit is decreasing with increasinga \alim(T3 ).
temperature and tends to zero at very large temperature (see Thus, only conÐgurations with a ] 0 exist for very largeFig. 3).
values of the temperature, corresponding to the limiting solution described in ° 4.

The Newtonian limit corresponds to and can be investigated separately using equations of For thisT3 ] 0 (7)È(9) BMRV.
case a unique curve or can be plotted (Figs. showing that a ] 2.02 for It is evident also inM3 (a) M3 (o

c
) 4aÈ4b) o

c
] O. Figure

the particular behavior of the solutions with a [ 1.5 : there are more solutions with di†erent values of the mass at the same4a

FIG. 1.ÈMass of the equilibrium conÐgurations as a function of the central density along sequences at Ðxed value of a (labeled on the curves). Quantities
are given in arbitrary units.



FIG. 2.ÈSequences with di†erent values of a in the plane z
c
-T3

FIG. 3.ÈLimiting value of a as a function of the temperature The absolute maximum value is reached at and corresponds toT3 . T3 ] 0 a
M

\ 2.87.
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FIG. 4.È(a) Mass of the Newtonian solutions as a function of the parameter a. The limiting value of a (center of the spiral), corresponding to an inÐnite
value of the central density, is equal to 2.02. (b) Mass of the Newtonian solutions as a function of the central density. Mass and density are given in arbitrary
units.

value of the parameter a. The maximum value of a for a Newtonian solution corresponds to the maximum value of any
relativistic solution, easily deducible also from for there are no solutions with a larger than TheseFigure 3 T3 ] 0 : a

M
\ 2.87.

models, obtained in the framework of the Newtonian formalism, can also reach very large values of central gravitational
potential and central density(t0] ]O) (o

c
] ]O).

The GR family of the equilibrium curves or are plotted in the Figures It is interesting to note twoMo(a) Mo(o
c
), 5aÈ5b.

kinds of oscillations existing in the curves and The oscillations in the curve for a ¹ 1.5Ma(oc
) (Fig. 1) Mo(o

c
) (Fig. 5b). Ma(oc

)
have pure relativistic origin (see, e.g., et al. they are connected with the stability analysis and correspond to anHarrison 1965) ;
increase of unstable modes for increasing values of The second class of oscillations is evident in the curve it has noo

c
. Mo(o

c
) ;

relation with stability but reÑects oscillatory properties of an isothermal conÐguration, not yet clearly understandable, similar
to the density oscillations in the equilibrium curve o(r) (see, e.g., Chandrasekhar 1939).

Further, it is important to note that while in neutron stars and white dwarfs, because of the uniqueness of the equation of
state of matter in the ground state, the onset of gravitational instability occurs at a unique value of central gravitational
redshift and at a speciÐc value of the mass, called the critical mass against gravitational collapse, in the present case of
relativistic clusters the equation of state, deÐned by equations is a function of the temperature and the cuto†(10)È(12),
parameter. Consequently, the region of stability and the onset of gravitational instability are deÐned not by a unique value of
the critical mass but by a continuous line in the plane (seez

c
-T3 ° 5).

Finally, for completeness, we would like to recall here the discussion of some features on the structures of the equilibrium
conÐgurations pointing to a novel classiÐcation of stable relativistic clusters recently analyzed by & RuffiniMeraÐna (1997).
In this classiÐcation attention is given to the region S2 (see below) : the novelty is that these conÐgurations, unlikeFigure 9
those of the region S1, do present a double feature of a relativistic core and an extended halo.

The general relativistic models for small values of have small values of the ratio 2GM/Rc2, ranging from NewtonianT3
regimes, where 2GM/Rc2> 1, all the way to a mildly relativistic regime with 2GM/Rc2D 0.09, for Moreover, theyT3 ^ 0.06.
have very large values of in the limit of large values of the central density In this regime the equilibrium conÐgurationsz

c
o
c
.

present a regular center without singularities even for arbitrarily large central densities. However, they have extreme core-halo
structures, the core being up to only 10~4 times the radius of the cluster.
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FIG. 5.È(a) Mass of the relativistic solutions as a function of the parameter a for Ðxed values of the temperature (labeled on the curves). (b) Mass of theT3
relativistic solutions as a function of the central density for Ðxed values of the temperature (labeled on the curves). Mass and density are given in arbitraryT3
units.

In order to illustrate the explicit density distribution and metric coefficients, two speciÐc conÐgurations are examined : one
in the traditional family (region S1) with (conÐg. 1) studied by and one in the region S2 at lowz

c
[ 0.5 Ipser (1969)

temperatures and large values of the central redshift (conÐg. 2). These conÐgurations are discussed in detail in whereFigure 6
the metric coefficients, the density proÐles, and the local circular velocities are shown. It is important to note that in
conÐguration 1 the maximum of ej occurs very close to the radius R of the conÐguration, while in conÐguration 2 the
existence of a compact core is clearly manifested by the occurrence of the maximum of ej deeply inside the conÐguration at
r D 10~3 R. It is also important to emphasize the fact that the dense cores cannot exist ““ bare,ÏÏ i.e., without their extended,
almost Newtonian envelopes. The global stability of the cluster appears to demand the existence of both components : the
relativistic core and the halo.

3. STABILITY ANALYSIS

Since the sequence of the models at given a is not good enough in the intermediate region for stability analysis, we useM(o
c
)

three di†erent sequences from In this section we investigate the stability of models with a \ 1.5, where the criteriaBMRV.
give reliable results. First, for a º 1.5, the criterion based on sequences with a Ðxed speciÐc entropy gives results of difficult
interpretation, which is due to a particular oscillatory behavior after the Ðrst maximum that appears in the mass-radius
relation relevant to the stability analysis ; second, the criterion based on sequences with the conservation of the adiabatic
invariant does not apply well at these regimes because of changes from increasing to decreasing behavior of the central density
in families at constant a (see The only criterion that gives results with sufficient accuracy also for models with a º 1.5 isFig. 1).
that based on sequences with a Ðxed cuto† (see even if it is less precise than the other two in the regime a \ 1.5.° 5),

We will investigate the stability of models with a º 1.5 in ° 5.

3.1. Sequences with a Fixed Cuto† Parameter
The parameters

W0\
Avcut

T
r

B
r/0

and b \ T
R

mc2 , (17)
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FIG. 6.È(a) Metric elements ej, el are plotted as a function of the radial coordinate for a particular solution with and (conÐg. 1). (b)T3 \ 0.09 z
c
\ 0.13

Metric elements ej, el are plotted as a function of the radial coordinate for a particular solution with and (conÐg. 2). (c) Density proÐle as aT3 \ 0.05 z
c
\ 3.59

function of the radial coordinate is shown for the two particular solutions. (d) Local circular velocity is given as a function of the radial coordinate for the two
particular solutions.

where is the local temperature varying along the cluster and isT
r
\Te~l@2 vcut \ (pcut2 c2] m2c4)1@2 [mc2\ Ee~l@2 [ mc2

the kinetic energy cuto†, were used by & Ruffini instead of and a of They are related by theMeraÐna (1989) T3 \ T /mc2 ZP.
following expressions :

b \ T3
1 [ aT3 /2

(18)

and

W0\ 1 [ el(0)@2
T3

[ a
2

. (19)

The Ðrst of the sequences used for stability analysis is the sequence with constant and varying b. As shown in theW0 BMRV,
parameter can be taken as approximately adiabatic ; sequences with a constant and varying correspond to sequencesW0 T3
with b varying and changing slowly, at least until the Ðrst maximum of in accordance with (seeW0 T3 , equation (19) Fig. 7).
The equivalence of this stability criterion with that suggested by was deÐnitely shown in for a \ 1 : thisIpser (1980) BMRV
sequence near the critical point corresponds to that relevant in the application of IpserÏs criterion. This correlation near the
critical point is also retained at for models with and leads to results in accordance with those given in literature.a \/ 1 T3 [ 1.5

Results of the application of this criterion for models with a \ 1.5 are given in Table 1.

3.2. Sequences with a Fixed SpeciÐc Entropy
We introduce the expression of the entropy of a system with arbitrary distribution function,

S \
PP

f (1 [ ln f ) d3p d3r , (20)
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FIG. 7.ÈCuto† parameter shown as a function of the temperature for sequences at Ðxed values of a (labeled on the curves). The equilibria areW0 T3 ,
limited by the condition (dashed line), obtainable from eqs. and the deÐnition of central redshift Dotted line indicates theW0 T3 \ 1 (18)È(19) z

c
\ e~l0@2 [ 1.

onset of instability. Notice that there are no unstable models for T3 [ 0.06.

and we investigate the sequences with the Ðxed speciÐc entropy where is the total number of stars, whoseS/N0, N0dimensionless expression is given by Using equations and we can obtain for the speciÐc entropy theequation (16). (2), (16), (20)
expression

s 4
S

N0
\
C
1 [ ln

A B
B

*

BD
] /0R e(j`l)@2vr2 dr

T /0R ej@2nr2 dr
, (21)

where is an arbitrary constant along the sequence with the dimension of B.B
*The sequences with Ðxed entropy were considered by as the second set of sequences for stability investigation. HereBMRV

these sequences are used for stability investigation of models with a \ 1.5. The results are presented in Table 2.

3.3. Sequences with Conservation of the Adiabatic Invariant
The conservation of the adiabatic invariant along the sequence of models implies the intro-I\ pn

c
~1@3 (Podurets 1969)

duction of non-Maxwellian distribution functions

f \ B exp
G
[ el@2

T0

C
p2c2

An
c0
n
c

B2@3] m2c4
D1@2H

, (22)

with the cuto† parameters

pcut \ pcut0
A nc
n
c0

B1@3\ pcut0
i

, i \
An

c0
nc

B1@3
. (23)

The expression for is determined from the cuto† relation of the initial Maxwellian model with and wepcut0 T \T0 l\ l0(r) ;have

(pcut02 c2] m2c4)1@2el0(r)@2\mc2 [ aT /2 . (24)

The procedure of constructing approximate equilibrium models with a non-Maxwellian distribution function is described in
detail by as well as a method of constructing the sequences of models for stability analysis. Here we use exactly theBMRV
same method for models with a \ 1.5. The results are presented in Table 3.

4. THE LIMITING SOLUTION AT a ] 0

It is interesting to investigate the limiting solution corresponding to a ] 0, T ] O, and aT \ g. Since in this limit
e~E@T ^ 1, the expressions of the most relevant quantities in the calculation of the equilibrium properties assume a more
simpliÐed form. The importance of this limiting solution lies in the fact that the properties of the equilibrium solutions with a
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TABLE 1

NUMERICAL RESULTS OF STABILITY ANALYSIS BASED ON STATIC CRITERION OF SEQUENCES AT CONSTANT (a \ 1.5)W0
a W0 o

c
M N R T3 z

c

1.20 . . . . . . 1.190] 100 5.305] 100 2.73278] 10~2 2.834] 10~2 2.626] 10~1 1.84 ] 10~1 4.886] 10~1
5.371] 100 2.73291] 10~2 2.834] 10~2 2.619] 10~1 1.84 ] 10~1 4.916] 10~1
5.437] 100 2.73299] 10~2 2.834] 10~2 2.611] 10~1 1.84 ] 10~1 4.946] 10~1

1.20 . . . . . . 1.193] 100 5.406] 100 2.73137] 10~2 2.833] 10~2 2.615] 10~1 1.85 ] 10~1 4.929] 10~1
5.473] 100 2.73143] 10~2 2.833] 10~2 2.607] 10~1 1.85 ] 10~1 4.959] 10~1
5.540] 100 2.73142] 10~2 2.833] 10~2 2.600] 10~1 1.85 ] 10~1 4.989] 10~1

1.20 . . . . . . 1.197] 100 5.513] 100 2.72934] 10~2 2.830] 10~2 2.603] 10~1 1.86 ] 10~1 4.972] 10~1
5.581] 100 2.72932] 10~2 2.830] 10~2 2.595] 10~1 1.86 ] 10~1 5.003] 10~1
5.650] 100 2.72926] 10~2 2.830] 10~2 2.588] 10~1 1.86 ] 10~1 5.034] 10~1

0.50 . . . . . . 4.429] 10~1 3.542] 100 3.17653] 10~2 3.294] 10~2 2.870] 10~1 4.72 ] 10~1 4.829] 10~1
3.586] 100 3.17660] 10~2 3.294] 10~2 2.861] 10~1 4.72 ] 10~1 4.858] 10~1
3.629] 100 3.17661] 10~2 3.294] 10~2 2.853] 10~1 4.72 ] 10~1 4.887] 10~1

0.50 . . . . . . 4.433] 10~1 3.570] 100 3.17630] 10~2 3.294] 10~2 2.864] 10~1 4.73 ] 10~1 4.847] 10~1
3.614] 100 3.17634] 10~2 3.294] 10~2 2.856] 10~1 4.73 ] 10~1 4.877] 10~1
3.658] 100 3.17631] 10~2 3.294] 10~2 2.847] 10~1 4.73 ] 10~1 4.906] 10~1

0.50 . . . . . . 4.436] 10~1 3.598] 100 3.17614] 10~2 3.294] 10~2 2.859] 10~1 4.74 ] 10~1 4.865] 10~1
3.642] 100 3.17614] 10~2 3.294] 10~2 2.851] 10~1 4.74 ] 10~1 4.895] 10~1
3.687] 100 3.17608] 10~2 3.294] 10~2 2.842] 10~1 4.74 ] 10~1 4.925] 10~1

0.20 . . . . . . 1.704] 10~1 3.008] 100 3.34394] 10~2 3.468] 10~2 2.984] 10~1 1.20 ] 100 4.744] 10~1
3.082] 100 3.34426] 10~2 3.468] 10~2 2.966] 10~1 1.20 ] 100 4.801] 10~1
3.157] 100 3.34433] 10~2 3.468] 10~2 2.949] 10~1 1.20 ] 100 4.859] 10~1

0.20 . . . . . . 1.709] 10~1 3.068] 100 3.34386] 10~2 3.468] 10~2 2.969] 10~1 1.21 ] 100 4.790] 10~1
3.144] 100 3.34397] 10~2 3.468] 10~2 2.952] 10~1 1.21 ] 100 4.848] 10~1
3.221] 100 3.34384] 10~2 3.468] 10~2 2.934] 10~1 1.21 ] 100 4.907] 10~1

0.20 . . . . . . 1.716] 10~1 3.182] 100 3.34354] 10~2 3.468] 10~2 2.943] 10~1 1.22 ] 100 4.877] 10~1
3.261] 100 3.34329] 10~2 3.467] 10~2 2.926] 10~1 1.22 ] 100 4.937] 10~1
3.342] 100 3.34278] 10~2 3.467] 10~2 2.908] 10~1 1.22 ] 100 4.996] 10~1

0.02 . . . . . . 1.669] 10~2 2.760] 100 3.43941] 10~2 3.567] 10~2 3.047] 10~1 1.21 ] 101 4.706] 10~1
2.828] 100 3.43984] 10~2 3.568] 10~2 3.029] 10~1 1.21 ] 101 4.763] 10~1
2.896] 100 3.44001] 10~2 3.568] 10~2 3.011] 10~1 1.21 ] 101 4.820] 10~1

0.02 . . . . . . 1.674] 10~2 2.847] 100 3.43988] 10~2 3.568] 10~2 3.024] 10~1 1.22 ] 101 4.779] 10~1
2.917] 100 3.43997] 10~2 3.568] 10~2 3.006] 10~1 1.22 ] 101 4.836] 10~1
2.988] 100 3.43982] 10~2 3.568] 10~2 2.989] 10~1 1.22 ] 101 4.894] 10~1

0.02 . . . . . . 1.682] 10~2 2.938] 100 3.43991] 10~2 3.568] 10~2 3.001] 10~1 1.23 ] 101 4.854] 10~1
3.011] 100 3.43967] 10~2 3.567] 10~2 2.983] 10~1 1.23 ] 101 4.912] 10~1
3.085] 100 3.43918] 10~2 3.567] 10~2 2.965] 10~1 1.23 ] 101 4.972] 10~1

NOTE.ÈThe second conÐguration of each group belongs to the equilibrium sequence. For each value of a, the conÐguration coinciding
with the maximum mass in the sequence at constant corresponds to the critical one.W0

sufficiently small value of a and large value of T converge to it. This behavior is clearly shown in where the solutionsFigure 1
asymptotically converge to a limiting sequence for a ] 0.

Thus, number density energy density and pressure depend only on the parameter g, and the explicit dependencen0, v0, P0on the temperature T and the cuto† parameter a disappears :

n0\ 4n
c3 B0 e~l0

P
mc2el0@2

mc2~g@2
Je~l0E02[ m2c4E0 dE0 , (25)

v0\ 4n
c3 B0 e~3l0@2

P
mc2el0@2

mc2~g@2
Je~l0E02[ m2c4E02 dE0 , (26)

P0 \ 4n
3c3 B0 e~l0@2

P
mc2el0@2

mc2~g@2
(e~l0E02 [m2c4)3@2 dE0 . (27)

The stability of this limiting solution has been investigated by the method of conservation of adiabatic invariant, introduced
in The parameter g \ aT does not change during the perturbation, so the perturbed quantities keep the simple form:° 3.3.

n \ 4n
c3i3 Be~l

P
mc2el@2

(mc2~g@2)e(l~l0)@2
Je~lE2[ m2c4EdE , (28)

v\ 4n
c3i4 Be~l

P
mc2el@2

(mc2~g@2)e(l~l0)@2
J(E2e~l [ m2c4] m2c4i2)(e~lE2 [m2c4)EdE , (29)

P\ 4n
3c3i4 Be~l

P
mc2el@2

(mc2~g@2)e(l~l0)@2
(E2e~l [ m2c4] m2c4i2)~1@2(e~lE2 [m2c4)3@2EdE , (30)

where i was deÐned in equation (23).
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TABLE 2

NUMERICAL RESULTS OF STABILITY ANALYSIS BASED ON STATIC CRITERION OF SEQUENCES AT CONSTANT ENTROPY (a \ 1.5)

a S/N o
c

M N R T3 z
c

1.20 . . . . . . 5.691 ] 100 4.733] 100 2.7409 ] 10~2 2.842] 10~2 2.697] 10~1 1.79] 10~1 4.640 ] 10~1
4.773] 100 2.7410 ] 10~2 2.842] 10~2 2.692] 10~1 1.79] 10~1 4.659 ] 10~1
4.813] 100 2.7411 ] 10~2 2.842] 10~2 2.687] 10~1 1.80] 10~1 4.678 ] 10~1

1.20 . . . . . . 5.640 ] 100 4.924] 100 2.7388 ] 10~2 2.840] 10~2 2.672] 10~1 1.81] 10~1 4.724 ] 10~1
4.966] 100 2.7388 ] 10~2 2.840] 10~2 2.667] 10~1 1.81] 10~1 4.744 ] 10~1
5.008] 100 2.7388 ] 10~2 2.840] 10~2 2.662] 10~1 1.81] 10~1 4.763 ] 10~1

1.20 . . . . . . 5.615 ] 100 5.022] 100 2.7377 ] 10~2 2.839] 10~2 2.660] 10~1 1.81] 10~1 4.767 ] 10~1
5.065] 100 2.7376 ] 10~2 2.839] 10~2 2.655] 10~1 1.82] 10~1 4.787 ] 10~1
5.109] 100 2.7375 ] 10~2 2.839] 10~2 2.650] 10~1 1.82] 10~1 4.807 ] 10~1

0.50 . . . . . . 2.792 ] 100 3.381] 100 3.1772 ] 10~2 3.295] 10~2 2.902] 10~1 4.65] 10~1 4.719 ] 10~1
3.447] 100 3.1774 ] 10~2 3.295] 10~2 2.889] 10~1 4.67] 10~1 4.764 ] 10~1
3.515] 100 3.1774 ] 10~2 3.295] 10~2 2.876] 10~1 4.70] 10~1 4.810 ] 10~1

0.50 . . . . . . 2.788 ] 100 3.407] 100 3.1773 ] 10~2 3.295] 10~2 2.896] 10~1 4.66] 10~1 4.738 ] 10~1
3.474] 100 3.1774 ] 10~2 3.295] 10~2 2.883] 10~1 4.68] 10~1 4.784 ] 10~1
3.543] 100 3.1773 ] 10~2 3.295] 10~2 2.870] 10~1 4.71] 10~1 4.830 ] 10~1

0.50 . . . . . . 2.783 ] 100 3.434] 100 3.1772 ] 10~2 3.295] 10~2 2.892] 10~1 4.67] 10~1 4.756 ] 10~1
3.502] 100 3.1772 ] 10~2 3.295] 10~2 2.878] 10~1 4.69] 10~1 4.802 ] 10~1
3.572] 100 3.1771 ] 10~2 3.295] 10~2 2.864] 10~1 4.71] 10~1 4.849 ] 10~1

0.20 . . . . . . 1.701 ] 100 2.857] 100 3.3433 ] 10~2 3.467] 10~2 3.021] 10~1 1.18] 100 4.672 ] 10~1
2.968] 100 3.3441 ] 10~2 3.468] 10~2 2.993] 10~1 1.19] 100 4.761 ] 10~1
3.084] 100 3.3442 ] 10~2 3.468] 10~2 2.965] 10~1 1.21] 100 4.852 ] 10~1

0.20 . . . . . . 1.697 ] 100 2.910] 100 3.3439 ] 10~2 3.468] 10~2 3.008] 10~1 1.19] 100 4.716 ] 10~1
3.024] 100 3.3443 ] 10~2 3.468] 10~2 2.980] 10~1 1.20] 100 4.806 ] 10~1
3.143] 100 3.3440 ] 10~2 3.468] 10~2 2.952] 10~1 1.21] 100 4.899 ] 10~1

0.20 . . . . . . 1.693 ] 100 2.965] 100 3.3442 ] 10~2 3.468] 10~2 2.994] 10~1 1.19] 100 4.753 ] 10~1
3.082] 100 3.3442 ] 10~1 3.468] 10~2 2.966] 10~1 1.21] 100 4.845 ] 10~1
3.205] 100 3.3436 ] 10~2 3.467] 10~2 2.938] 10~1 1.22] 100 4.938 ] 10~1

0.02 . . . . . . 1.069 ] 100 2.681] 100 3.4389 ] 10~2 3.566] 10~2 3.069] 10~1 1.20] 101 4.677 ] 10~1
2.784] 100 3.4396 ] 10~2 3.567] 10~2 3.041] 10~1 1.21] 101 4.765 ] 10~1
2.892] 100 3.4397 ] 10~2 3.567] 10~2 3.013] 10~1 1.22] 101 4.856 ] 10~1

0.02 . . . . . . 1.068 ] 100 2.764] 100 3.4398 ] 10~2 3.568] 10~2 3.046] 10~1 1.21] 101 4.749 ] 10~1
2.872] 100 3.4400 ] 10~2 3.568] 10~2 3.018] 10~1 1.22] 101 4.840 ] 10~1
2.985] 100 3.4396 ] 10~2 3.568] 10~2 2.990] 10~1 1.23] 101 4.933 ] 10~1

0.02 . . . . . . 1.068 ] 100 2.852] 100 3.4401 ] 10~2 3.568] 10~2 3.022] 10~1 1.22] 101 4.815 ] 10~1
2.965] 100 3.4399 ] 10~2 3.568] 10~2 2.994] 10~1 1.23] 101 4.908 ] 10~1
3.084] 100 3.4389 ] 10~2 3.567] 10~2 2.965] 10~1 1.24] 101 5.004 ] 10~1

NOTE.ÈThe second conÐguration of each group belongs to the equilibrium sequence. For each value of a, the conÐguration
coinciding with the maximum mass in the sequence at constant entropy corresponds to the critical one.

The instability sets in at corresponding to a central redshift It is interesting to note that the(g/mc2)crit\ 0.2439, z
c
\ 0.4832.

critical value of is increasing with decreasing values of a ; a similar behavior of the critical value of was found byT3 T3 Ipser
for some values of a. The value of the quantity increases with decreasing values of a also and tends to a constant(1969) (aT3 )crvalue Given the relation between and the cuto† energy (see eq. [14] in this result leads to the(aT3 )cr \ 0.2239. aT3 Ecut BMRV),

important conclusion that no stable conÐgurations exist for 2GM/Rc2[ 0.2290, for large values of The critical value ofT3 .
central redshift tends likewise to a limiting value corresponding to for decreasing values of a. The results,z

c
(z

c
)crit\ 0.4832,

using the three di†erent methods, are in complete agreement.

5. LIMITING CASE FOR LOW-TEMPERATURE CONFIGURATIONS WITH HIGH CENTRAL REDSHIFTS

The stability of models with a \ 1.5 can be approximately estimated from the behavior of the curves For larger a upMa(oc
).

to the limiting value, the curve shows a behavior consisting of one or more loops and in some cases of a curve comingMa(oc
)

out from the origin. In this case the maximum of is not good for the investigation of the stability, and it is very difficultMa(oc
)

to use other methods mentioned in ° 1.
The criteria mentioned in cannot be applied in this regime except for the one based on sequences with constant This° 3 W0.criterion permits us to extend the stability analysis to conÐgurations with andT3 [ 0.1 z

c
Z 1.

In order to better analyze the stability of the conÐgurations in such a region we calculated the Ðrst maximum of the
fractional binding energy with in the sequences with constant This procedure is equivalentE

b
/N, E

b
\ (mN[ M)c2, W0.to that based on the calculation of the maximum mass, especially in the region at small and where the totalz

c
T3 Z 0.1,

number N is constant near the maximum of the mass M and the results coincide. In the region and theT3 [ 0.1 1[ z
c
[ 4

results are slightly di†erent as a result of small variations of the total number N near the maximum of the mass M.
In the isothermal limit of large (or and small enough the stability analysis can be approximately connected with thez

c
o
c
) T3 ,

behavior of the fractional binding energy as a function uniquely of We notice that the fractional binding energy of theT3 .
system is almost constant along the curves at large enough and we Ðnd that the maximum occurs at inMo(o

c
) o

c
, T3

c
^ 0.06

accordance with a particular solution investigated by & Zeldovich This result can be interpreted asBisnovatyi-Kogan (1969).
a transition from the stable (quasi-Newtonian) conÐgurations at to the unstable ones atT3 \T3

c
T3 [ T3

c
.
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TABLE 3

NUMERICAL RESULTS OF STABILITY ANALYSIS BASED ON METHOD OF ADIABATIC INVARIANT (a \ 1.5)

a T3 z
c

o
c

M R

1.20 . . . . . . 1.80] 10~1 4.700 ] 10~1 4.838] 100 2.73982] 10~2 2.680 ] 10~1
4.870] 100 2.73990] 10~2 2.679 ] 10~1
4.902] 100 2.73994] 10~2 2.678 ] 10~1

1.20 . . . . . . 1.81] 10~1 4.765 ] 10~1 4.986] 100 2.73804] 10~2 2.662 ] 10~1
5.019] 100 2.73810] 10~2 2.661 ] 10~1
5.052] 100 2.73804] 10~2 2.660 ] 10~1

1.20 . . . . . . 1.82] 10~1 4.786 ] 10~1 5.032] 100 2.73760] 10~2 2.656 ] 10~1
5.065] 100 2.73758] 10~2 2.655 ] 10~1
5.098] 100 2.73756] 10~2 2.654 ] 10~1

0.50 . . . . . . 4.67] 10~1 4.765 ] 10~1 3.424] 100 3.17737] 10~2 2.893 ] 10~1
3.447] 100 3.17740] 10~2 2.889 ] 10~1
3.470] 100 3.17740] 10~2 2.886 ] 10~1

0.50 . . . . . . 4.68] 10~1 4.784 ] 10~1 3.451] 100 3.17739] 10~2 2.886 ] 10~1
3.474] 100 3.17740] 10~2 2.883 ] 10~1
3.497] 100 3.17738] 10~2 2.880 ] 10~1

0.50 . . . . . . 4.69] 10~1 4.802 ] 10~1 3.479] 100 3.17721] 10~2 2.881 ] 10~1
3.502] 100 3.17720] 10~2 2.878 ] 10~1
3.525] 100 3.17716] 10~2 2.875 ] 10~1

0.20 . . . . . . 1.19] 100 4.714 ] 10~1 2.920] 100 3.34390] 10~2 3.004 ] 10~1
2.968] 100 3.34410] 10~2 2.993 ] 10~1
3.017] 100 3.34418] 10~2 2.982 ] 10~1

0.20 . . . . . . 1.20] 100 4.758 ] 10~1 2.975] 100 3.34423] 10~2 2.991 ] 10~1
3.024] 100 3.34430] 10~2 2.980 ] 10~1
3.074] 100 3.34425] 10~2 2.969 ] 10~1

0.20 . . . . . . 1.21] 100 4.802 ] 10~1 3.032] 100 3.34436] 10~2 2.977 ] 10~1
3.082] 100 3.34430] 10~2 2.966 ] 10~1
3.133] 100 3.34412] 10~2 2.955 ] 10~1

0.02 . . . . . . 1.21] 101 4.763 ] 10~1 2.782] 100 3.43966] 10~2 3.041 ] 10~1
2.828] 100 3.43980] 10~2 3.029 ] 10~1
2.875] 100 3.43982] 10~2 3.017 ] 10~1

0.02 . . . . . . 1.22] 101 4.800 ] 10~1 2.825] 100 3.43998] 10~2 3.030 ] 10~1
2.872] 100 3.44000] 10~2 3.018 ] 10~1
2.920] 100 3.43991] 10~2 3.006 ] 10~1

0.02 . . . . . . 1.23] 101 4.874 ] 10~1 2.917] 100 3.44010] 10~2 3.006 ] 10~1
2.965] 100 3.43990] 10~2 2.994 ] 10~1
3.014] 100 3.43958] 10~2 2.982 ] 10~1

NOTE.ÈThe second conÐguration of each group belongs to the equilibrium sequence and corre-
sponds to a Maxwellian conÐguration. The Ðrst and third conÐgurations correspond to non-
Maxwellian conÐgurations for small perturbations of the radius For each value of a, theR0.conÐguration coinciding with a local maximum for the mass corresponds to the critical one.

The behavior of the fractional binding energy as a function of the temperature and the central redshift is summarizedT3 z
cin The separation between the regions of stable and unstable conÐgurations is clearly denoted by the two chains ofFigure 8.

the maxima of the fractional binding energy. At we have a horizontal chain which, in accordance with the traditionalT3 Z 0.1,
results, identiÐes the critical value of the central redshift separating the stable from the unstable models : this value is z

c
^ 0.5.

In the region of smaller we have a vertical chain extending up to inÐnite values of less high than the horizontal chain,T3 z
c
,

which identiÐes a critical value of the temperature : this value is models with temperatures lower than are alwaysT3
c
^ 0.06 ; T3

cstable, for every value of the central redshift. In the transition zone, where the vertical chain joins the horizontal one, the
behavior of the maxima is uncertain and critically depends on the choice of the sequence of models, which makes the
determination of the curve of the onset of instability difficult.

It is important to note how the critical curve obtained by calculating the Ðrst maxima of the fractional binding energy from
the sequences with constant reproduces, with surprising accuracy, the behavior of the chain in the three-dimensional ÐgureW0(see also the dashed curve in Figure 9).

These results are not reproduced if one considers (as in sequences with constant a in order to determine the maxima ofSF)
the fractional binding energy. In fact, it is clear from showing the sequences with constant a in the plane, thatFigure 9, z

c
-T3

the reason that the curve of maximum fractional binding energy in turns down toward the origin (see curve C in Fig. 1 ofSF
is that it was obtained by looking at the maxima along sequences at constant a, whose particular behavior is no longer soSF)

regular in the region of small temperatures, where loops at a [ 1.5 occur. These maxima are neither actual maxima of the
fractional binding energy nor they are relevant for the stability analysis.

shows clearly that the claim of ““ Along any sequence in the the magnitude of has a localFigure 8 SF (T=, z
c
)-plane E

b
/N

maximum when the sequence crosses the curve C ; C thus represents the locus in the of maximal fractional(T=, z
c
)-plane

binding energy ÏÏ is not correct. Therefore any conclusion about the stability of the models drawn by using the portion of the
curve C turning down toward the origin is wrong because that part of the curve does not represent any particular feature of
the binding energy. For instance the claim, ““ One convinces himself that the appropriate sequences generally runIpser (1980)
upwards in the Ðgure. Assuming that the sufficient condition for stability is valid below curve C, the locus of points of



FIG. 8.ÈFractional binding energy as a function of the central redshift and the temperatureE
b
/N z

c
T3

FIG. 9.ÈSequences at Ðxed a (labeled on the curves) in the plane Dashed line indicates the onset of instability and separates the region U (unstablez
c
-T3 .

models) from the regions S1 and S2 (stable models).
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maximum binding energy in the two-dimensional plot, it will follow that the conditions breaks down everywhere along the
curve C ÏÏ must be considered in the light of Figure 8.

6. COMPARISON WITH NUMERICAL MODELS

Shapiro, & Teukolsky hereafter have investigated by numerical simulations the stability of a particularRasio, (1989, RST)
set of equilibrium models up to large values of the central redshift We would like, for completeness, to recall here somez

c
.

results presented in a letter by & Ruffini leading to an explicit relation between the work of and ours.MeraÐna (1995), RST
adopted a relativistic form of the distribution function resulting from numerical integrations of the NewtonianRST fRST,Fokker-Planck equation for secular evolution of an isotropic stellar cluster during the gravothermal catastrophe. Actually, as

it is clear from their Figure 1, the distribution function adopted by is slightly di†erent from that used in this paperRST (eq.
and this leads to some di†erences in the density proÐles, particularly in the size of the conÐgurations.[2])

Even though the functional form of the distribution function adopted by is di†erent from the one used in this paper,RST
there is a close relationship between the sequence of models of and a particular one of our treatment & RuffiniRST (MeraÐna
1995).

The dimensionless energy variable x in the numerical distribution function used is deÐned asbyRST

xRST \ 13.25
AE/mc2[ 1 ] z

c
z
c

B
, (31)

where E is the total energy of a single ““ particle ÏÏ deÐned by and is the central redshift of the equilibriumequation (4) z
cconÐguration. The range of variation of is determined by the behavior of the total energy E. If we assume that E variesxRSTfrom a minimum value corresponding to a particle at rest in the center of the conÐguration to a maximumE&\ mc2el0@2

given by the range of variability of isE'\ mc2, xRST
13.25[z

c
/(1 ] z

c
)]¹ xRST [ 13.25 . (32)

focused their attention on models withRST 0.123¹ z
c
¹ 3.75.

In our case, the dimensionless energy variable x used in the distribution function given in isequation (2)

xBMRV \ E/T , (33)

where the minimum energy has the same value given in and the maximum energy corresponds to the energy cuto†RST
deÐned in Then the range of variation of isequation (2). xBMRV

mc2
T (1 ] z

c
)
¹ xBMRV¹

mc2
T

[ a
2

. (34)

If we relate the expression of with that of we obtainxRST xBMRV

xRST \ 13.25
AT3 xBMRV[ 1 ] z

c
z
c

B
, (35)

or the inverse expression

xBMRV\ z
c

T3
A xRST
13.25

[ 1
B

, (35a)

where T3 \T /mc2.
If we consider the same energy range in both treatments, by using we obtain the following range of variationequation (34)

of xRST :

13.25
A z

c
1 ] z

c

B
¹ xRST ¹ 13.25

A
1 [ aT3 /2

z
c

B
. (36)

In we have deÐned families of equilibrium conÐgurations with constant central energy cuto† parameter The° 3.1 W0.relationship that connects the cuto† parameter with the other relevant parameters characterizing the equilibrium conÐgu-W0rations can be obtained by equation (19)

C
W0] a(z

c
, T3 )
2

D
T3 \ z

c
1 ] zc

. (37)

If we now turn to identify the conÐgurations considered by within our models, we must search for conÐgurations withRST
the same value of the fractional binding energy and the central redshift. The results are given in where we haveTable 4
calculated the values of and selecting among our models those whose fractional binding energy and central redshift areT3 W0equal to each of the six conÐgurations investigated by (indicated by solid triangles in their Fig. 3). We can conclude fromRST
the table that the sequence shown in and used by the authors to draw their conclusions about the stability of the modelsRST
investigated is closely described by a sequence of models with namely, a particular sequence at constantW0^ 114, W0among those investigated by our criterion (1). It is clear from the good agreement of the values of and givenFigure 10a T3 z

c
,

in with the analytical relationship indicated in forTable 4, equation (37) W0\ 114.
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TABLE 4

EQUILIBRIUM CONFIGURATIONS WITH THE SAME

REDSHIFT AND FRACTIONAL BINDING

ENERGY OF THE NUMERICAL MODELS

INVESTIGATED BY RST

z
c

T3 W0
0.123 . . . . . . . . . . . . . . . . 9.594] 10~4 113.1
0.500 . . . . . . . . . . . . . . . . 2.881] 10~3 114.8
0.750 . . . . . . . . . . . . . . . . 3.688] 10~3 115.0
1.250 . . . . . . . . . . . . . . . . 4.809] 10~3 114.6
2.250 . . . . . . . . . . . . . . . . 6.027] 10~3 113.9
3.750 . . . . . . . . . . . . . . . . 6.915] 10~3 113.2

In we give the behavior of the fractional binding energy as a function of the central redshift for theFigure 10b E
b
/N z

csequence and we compare these results with the corresponding values in the six models investigated by TheW0\ 114, RST.
accordance is very satisfactory.

It is important to point out that models investigated by and found to be stable against relativistic collapse, haveRST
and thus lie well inside the region of stable conÐgurations of the plane. This is conÐrmed by the existence of aT3 \T3

c
z
c
[ T3

lower limit for beyond the one all the sequences with constant are stable : this limit is (see &W0 W0 W0 ^ 15.5 MeraÐna
Ruffini while the sequence of models investigated by has1995), RST W0^ 114.

Our analytical results show that there are many families that reach an inÐnite value of the central redshift without
becoming unstable and conÐrm the results of numerical simulations by made on a particular set of solutions.RST

FIG. 10.È(a) ConÐgurations with the same fractional binding energy and central redshift of numerical models investigated by (open squares). They ÐtRST
the analytical function given in for (continuous line). (b) Numerical model obtained by (open squares) and the family of solutions witheq. (37) W0\ 114 RST

(continuous line).W0\ 114
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TABLE 5

SUMMARY OF RESULTS OF STABILITY ANALYSIS BY USING DIFFERENT METHODS

W0-Constant Sequence S-Constant Sequence Adiabatic Invariant Conservation Fractional Binding Energy

T3 [ 0.06 :
a \ 1.20 . . . . . . . . . . T3 cr \ 0.185 T3 cr\ 0.181 T3 cr \ 0.181

z
c,cr\ 0.496 z

c,cr \ 0.474 z
c,cr \ 0.477

a \ 0.50 . . . . . . . . . . T3 cr \ 0.473 T3 cr\ 0.468 T3 cr \ 0.468
z
c,cr\ 0.488 z

c,cr \ 0.478 z
c,cr \ 0.478

a \ 0.20 . . . . . . . . . . T3 cr \ 1.21 T3 cr\ 1.20 T3 cr \ 1.20
z
c,cr\ 0.485 z

c,cr \ 0.481 z
c,cr \ 0.476

a \ 0.02 . . . . . . . . . . T3 cr \ 12.2 T3 cr\ 12.2 T3 cr \ 12.2
z
c,cr\ 0.484 z

c,cr \ 0.484 z
c,cr \ 0.480

a \ 0 . . . . . . . . . . . . . T3 cr \ O T3 cr\ O T3 cr \ O
z
c,cr\ 0.483 z

c,cr \ 0.483 z
c,cr \ 0.483

T3 \ 0.06 :
z
c,cr \ 0.994 . . . . . . T3 cr \ 0.058

z
c,cr \ 2.191 . . . . . . T3 cr \ 0.071

z
c,cr \ 3.040 . . . . . . T3 cr \ 0.061

z
c,cr \ 4.216 . . . . . . T3 cr \ 0.057

z
c,cr \ O . . . . . . . . . T3 cr \ 0.060

7. CONCLUSIONS

In this paper we have investigated the stability against relativistic collapse of families of equilibrium conÐgurations with
di†erent cuto† parameters. The main results can be summarized dividing the plane into three regions : S1, S2,z

c
-T3 (Fig. 9)

and U.

1. S1 [ U regions of the plane correspond to the traditional families of equilibrium conÐgurations(T3 [ 0.06).ÈThese z
c
-T3

whose stability was largely investigated in the past. S1 indicates the part of the plane corresponding to stable equilibria, while
U indicates the unstable ones. The three di†erent methods introduced in give results in agreement among them (seeBMRV

and with the results of previous analysis (see, e.g., and For large values of the temperature theTable 5) Ipser 1969 SF). T3
critical value of central redshift tends to In this regime there are not stable conÐgurations with larger than(z

c
)crit\ 0.4832. z

c0.5. Our results conÐrm this conclusion and are obtained with more accuracy.
2. S2 region of the plane corresponds to extreme core-halo conÐgurations whose stability analysis(T3 \ 0.06).ÈThis

carried out by did not supply conclusive results. In contrast to the conclusions of our results show that theseSF SF,
conÐgurations are also stable (see As pointed out by & Ruffini the dense core is in gravitationalTable 5). MeraÐna (1997),
equilibrium with a Newtonian envelope, which permits to the system to be stable as a whole.

In order to investigate the stability of these equilibria we have used a binding energy criterion supplying results in good
agreement with the ones based on sequences at constant The other two methods introduced in do not give resultsW0. BMRV
of simple interpretation.

Thus we come to the interesting conclusion that there exist stable nonsingular conÐgurations with arbitrarily large central
redshift.

It must be noted that the and results, also reported in already indicated that models withIpser (1969) Fackerell (1970) SF,
small temperatures could be stable even for values of the central redshift larger than 0.5 but only until a limiting value of zc.Nevertheless the authors came to a di†erent conclusion by considering the behavior of the curve of the maxima of the
fractional binding energy. Application of these criteria for the particular solution obtained by & ZeldovichBisnovatyi-Kogan

has shown that it satisÐes necessary condition of stability but was unable to establish the sufficient condition(1969)
& Thorne(Bisnovatyi-Kogan 1970).

We have shown that the curve indicating the onset of instability, obtained by gives correct results only in the regionSF,
with while it represents only the locus of the relative maxima of the fractional binding energy for smaller andT3 Z 0.1, T3
therefore in no way it is related with the analysis of the stability of those equilibrium conÐgurations. Actually it is evident from

where the fractional binding energy has been plotted as a function of and the chain corresponding to the curveFigure 8, z
c

T3 ,
separating the region S1 from U and the chain at a lower height corresponding to the curve separating the region S2 from U.
The plot shows that the conclusions of about the role of the curve C in the stability analysis are not valid.SF

Finally, we have compared and contrasted the models investigated by with our families of conÐgurations withRST
constant We found that the models of correspond to a particular sequence of stable solutions belongingW0. RST (W0\ 114)
to a more general family of stable conÐgurations which can reach arbitrarily large values of z

c
.
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