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Abstract

In this paper we consider a Bayesian nonparametric approach to the analysis of discrete-time
queueing models. The main motivation consists in applications to telecommunications, and in
particular to asynchronous transfer mode (ATM) systems. Attention is focused on the posterior
distribution of the over7ow rate. Since the exact distribution of such a quantity is not available
in a closed form, an approximation based on “proper” Bayesian bootstrap is proposed, and its
properties are studied. Some possible alternatives to proper Bayesian bootstrap are also discussed.
Finally, an application to real data is provided.
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1. Introduction and preliminaries

The statistical analysis of queueing systems is an important interface between queue-
ing theory and its applications to real cases. In fact, the parameters characterizing a
queueing model are usually unknown, and must be estimated on the basis of the avail-
able real data. In the recent years there has been a considerable growth of interest in
Bayesian inference for queueing models. See, among others, the papers by Mc Grath
et al. (1987), Mc Grath and Singpurwalla (1987), and the series of papers by Armero
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(1994) and by Armero and Bayarri (1994a, b, 1996, 1998). All those papers deal with
continuous-time parametric models, and the “unknown” part of the model is represented
by a Fnite number of parameters. Furthermore, attention is focused on Markovian
queues, where the arrivals are paced by a Poisson process, and the service time dis-
tribution is either exponential or Erlang (i.e. convolution of exponential distributions).
These stringent assumptions allow one to write down explicitly the equilibrium waiting
time distribution, which turns out to depend on a Fnite number of unknown parame-
ters. In many cases, their posterior distribution is obtained in a closed form. To our
knowledge, the only paper dealing with nonparametric statistics for continuous-time
queueing models is Ruggeri et al. (1999). They consider a queueing model with Pois-
son input, and general service time. The results obtained in that paper, despite their
interest, do not Ft broadband teletraGc applications for several reasons. In fact, many
real communication systems work in discrete time; continuous-time models are ob-
tained by 7uid-7ow approximations, and could overestimate the performance of the
systems (Roberts et al., 1996). Furthermore, in that paper no attention is paid to the
over7ow rate, which is the most important performance measure for many queueing
systems.
Motivated by applications to teletraGc, and in particular to asynchronous transfer

mode (ATM) broadband communication systems (Parker, 1995), nonparametric sta-
tistical problems for discrete-time queueing models have been recently considered by
Conti (1999). In ATM, information is segmented into Fxed-size transmission units
called cells. The transmission time of a cell is the cell-time, and it is naturally assumed
as a time slot. During a time slot, exactly one cell is transmitted, and k¿ 0 cells can
simultaneously enter the system, from diIerent connected sources, and have to be trans-
mitted. The system works in discrete time, which is measured in terms of time slots.
Cells that cannot be immediately transmitted are stored in a buIer, and form a queue.
Their transmission is delayed according to a FIFO rule. In particular, in Conti (1999)
the attention is focused on Bayesian inference for Geo/G/1 models. These models are
considered realistic and useful for cell-level teletraGc applications; see Roberts et al.,
1996; Brunel and Kim, 1993; Gravey et al. (1990) and references therein. Let Ti be
the ith inter-arrival time, (i.e. the number of time slots between the (i−1)th and the ith
arrivals), and let Si be the r.v. ith service time (i.e. the number of cells corresponding
to the ith arrival). From now on we assume that

(i) Ti ∼ Geo(�), i.e. P(Ti = k|�) = �(1− �)k−1; k¿ 1; 0¡�¡ 1.
(ii) P(Si = k|Pb) = b(k), k¿ 1 (

∑
k¿1 b(k) = 1), Pb being the probability measure

(concentrated over positive integers) corresponding to the service time distribution.
(iii) 
 = E(Si|Pb)¡∞.
(iv) (Ti; i¿ 1) and (Si; i¿ 1) are two sequences of i.i.d. r.v.’s, conditionally on �

and Pb; the r.v.’s Ti’s are independent of Si’s, conditionally on � and Pb.

The quantities � and b(k)’s have to be estimated on the basis of observed data that in
our case are assumed to be n inter-arrival times Tn=(T1; : : : ; Tn), and the corresponding
service times Sn = (S1; : : : ; Sn). Note that no special parametric hypotheses are made
on the service time distribution.
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In Conti (1999), a nonparametric approach to the estimation of the probability gen-
erating function (p.g.f.) of the equilibrium waiting time distribution is taken. The p.g.f.
of the waiting time distribution is given by

W (z) =
(1− �)(1− z)
1− �− z + �B(z)

I(0;1)(�); (1)

where

B(z) =
∞∑
k=1

zkb(k)

is the p.g.f. of the service time distribution, IA(·) is the indicator function of the set
A, and �= 
�.
Eq. (1) shows that the p.g.f. W (·) is a transform of both inter-arrival and service time

distributions. In other words, it can be seen as a functional that maps the inter-arrival
and service time distributions onto the equilibrium waiting time distribution.
Note that the p.g.f. (1) is proper if and only if (iI) �¡ 1, that is iI the model is

stable. Roughly speaking, if �¿ 1, then we have W (·) ≡ 0, and hence the probabil-
ity distribution corresponding to W (·) takes Fnite values with probability zero. This
corresponds to the well-known fact that the equilibrium waiting time is almost surely
inFnite whenever �¿ 1, that is whenever the model is unstable.
The approach based on the p.g.f. W (·) is motivated by two basic facts. First of all, the

equilibrium waiting time distribution is known in a closed form only when the service
time distribution is geometric (Hunter, 1983). Unfortunately, a geometric service time
distribution cannot be reasonably assumed in any ATM application; see, for instance,
Roberts et al. (1996). In the second place, all relevant queueing characteristics can
be expressed as functionals of such a p.g.f. As a consequence, virtually all results in
statistical analysis of queueing characteristics can be obtained as by-products. Finally,
the consideration of the over7ow rate (Section 3) naturally leads to use the p.g.f. W (·).
The deFnition of a prior law directly for W (·), and the computation of the corre-

sponding posterior conditionally on the sample data, is practically “too diGcult” (see
the remarks in Conti, 1999). For this reason, it is preferable to resort to an “indirect”
approach as in Conti (1999), based on the following steps.

(a) Constructing priors for inter-arrival and service time distributions.
(b) Updating them on the basis of sample data.
(c) Studying the induced posterior distribution of the p.g.f. of the waiting time

distribution.

Since the posterior of the p.g.f. W (·) cannot be obtained in a closed form, after
calculating the posterior laws of � and b(k)’s it is necessary to Fnd out (at least)
an approximation of the posterior law of W (·) conditionally on the sample data. In
Conti (1999), the attention is focused on asymptotic approximations that hold when
the sample size is “large enough”. The most important result obtained in that paper is,
at least from a practical point of view, an asymptotic approximation of the posterior
mean of the over7ow rate. No attempt is made to approximate its posterior distribution.
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The goal of the present paper is to obtain useful approximations of the posterior
distributions of measures of the system performance. We focus our attention on the
over7ow rate. This considerably improves, from a theoretical point of view as well as
from a practical one, the results already obtained in Conti (1999). For instance, it is
now possible to construct (approximated) credibility regions.
The paper is organised as follows. Approximations of the posterior distribution of

W (·), based on the “proper” Bayesian bootstrap (Muliere and Secchi, 1996) are consid-
ered in Section 2, and their limiting behaviour is studied. The main result (Proposition
1) essentially provides an inFnite-dimensional version of Theorem 3.1 by Muliere and
Secchi (1996).
As a by-product, an approximation of the posterior distribution of the over7ow rate

is obtained in Section 3. Attention is also focused on the behaviour of approximated
credibility regions. The motivation to the study of Section 3 is that the over7ow rate is
of primary interest in the evaluation of the system performance. We stress also that no
assumptions are made on the “true parameters” of the queueing model. In particular,
the stability of the system is not assumed.
Bayesian bootstrap was originally proposed by Rubin (1981); a large sample study,

in case of a Dirichlet prior, is in Lo (1987). Extensions named “Bayesian bootstrap
clones” were subsequently proposed by Lo (1991). The rationale of all those Bayesian
bootstrap schemes is that they provide approximations which are frequently better than
the crude Frst-order asymptotic approximation based on Bernstein–Von Mises theorem.
Experimental results for law school data are provided by Lo (1991). A theoretical study
for the approximation of the posterior distribution of an unknown mean, when the prior
is a Dirichlet process, can be found in Weng’s (1989) paper.
The “proper” Bayesian bootstrap by Muliere and Secchi (1996) is diIerent from all

others Bayesian bootstrap schemes, since it possesses a special feature that makes it
particularly attractive: it works for every 7xed sample size n, and does not require any
large sample argument. This is in fact the main motivation for its use. As it appears
in the sequel, we will always consider the sample size n as Fxed. Our interest will
be mainly in obtaining an approximation of the actual posterior distribution of special
non-linear functionals of the Dirichlet process (see Section 3), without necessarily
assuming n “large”. A discussion of the relative merits of proper Bayesian bootstrap
will be given in Section 4.

2. Prior speci�cations and proper Bayesian bootstrap approximations for W (·)

The assumptions on the prior distributions for � and Pb are listed below.

(P1) The prior measure for Pb is a Dirichlet process such that for every k¿ 1 the joint
distribution of (b(1); : : : ; b(k)) is Dirichlet D(�(1); : : : ; �(k); �−�(1)−· · ·−�(k)),
where �(·) is a Fnite measure with support the set of all positive numbers. In
the sequel, the sum of all �(k)’s is denoted by �, and it is further assumed that∑

k�(k)¡∞.
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(P2) The prior for � is a natural conjugate Beta distribution Be(�1; �2).
(P3) The prior distributions of Pb and � are independent.

Denote now by O� (¿ 1) the quantity

O�= sup

{
z¿ 1 :

∞∑
k=1

E[b(k)]zk ¡∞
}

and let Oz be the greatest positive root of the equation G(z) = 0, where G(z) = 1 −
�− z + �B(z). Then, it is easily seen that Oz = 1 ( Oz¿ 1, respectively) iI O�= 1 ( O�¿ 1,
respectively). Moreover, random function (1) is a.s. analytic in (0; Oz), and continuous
in [0; Oz) ([0; 1] if Oz = 1).
In the sequel, we denote by �̂ and b̂(j) the quantities

�̂= n

(
n∑

i=1

Ti

)−1

and

b̂(j) = n−1
n∑

i=1

I{j}(Si) j¿ 1;

respectively.
Then the posterior means of �, 
, and B(z) are given by

E[�|Tn;Sn] =
n+ �1

n�̂−1 + �1 + �2
;

E[
|Tn;Sn] =
∞∑
k=1

kE[b(k)|Sn] =
∞∑
k=1

k

{
�(k) + nb̂(k)

n+ �

}
;

E[B(z)|Tn;Sn] =
∞∑
k=1

zk
{
�(k) + nb̂(k)

n+ �

}
;

respectively.
As it will be clearer in Section 3, we are chie7y interested in the posterior distri-

bution of some special (generally non-linear) functionals of W (·). Apart from some
very special cases, it is not usually possible to obtain in a closed form the poste-
rior distribution of such functionals. Hence, it is necessary to resort to some kind
of approximation. Now, virtually every numerical approximation requires to simulate
from the posterior of (b(k); k¿ 1). DeFne

�b(k) = E[b(k)|Tn;Sn] =
1

n+ �
�(k) +

n
n+ �

b̂(k); k¿ 1

and let (n + �)�b(·) be the posterior driving measure of the Dirichlet process (b(k);
k¿ 1). The simulation problem is easily solved when �b(·) possesses a Fnite support.
Without loss of generality, it can be assumed equal to {1; : : : ; q}. Then, one has simply



70 P.L. Conti / Journal of Statistical Planning and Inference 120 (2004) 65–84

to simulate from a Dirichlet vector, and this can be done, for instance, by resorting to
the well-known representation formula

b(k) d=
Yk∑q
k=1 Yk

; k = 1; : : : ; q;

where Y1; : : : ; Yq are independent r.v.’s with Gamma Ga(�(k) + nb̂(k); 1) distributions,

and d= denotes the equality in distribution. However, when �b(·) has inFnite support,
it is no longer possible to simulate directly from the posterior law of (b(k); k¿ 1).
In this section we use a Bayesian bootstrap scheme essentially due to Muliere and

Secchi (1996). In Section 4, further possible choices will be discussed in Section 4.
Let �b(·) be the probability measure, concentrated over the non-negative integers, such
that (conditionally on Sn, Tn)

�b(k) = E[b(k)|Tn;Sn] =
1

n+ �
�(k) +

n
n+ �

b̂(k); k¿ 1

and let S∗
m = (S

∗
1 ; : : : ; S

∗
m) be an i.i.d. sample of size m from the probability measure

�b. Denote further by

b̂∗m(k) =
1
m

m∑
i=1

I{k}(S∗
i ); k¿ 1 (2)

the empirical counterparts of �b(k)’s. Finally, let (b∗m(k); k¿ 1) be a Dirichlet process,
independent of Tn, with driving measure ((n+ �)b̂∗m(k); k¿ 1), conditionally on Sn,
S∗
m. The idea is to approximate the posterior distribution of (b(k); k¿ 1) by the
conditional distribution of (b∗m(k); k¿ 1), given Sn.
This approximation naturally leads to approximate the posterior distribution of B(z)

by the conditional distribution of

B∗
m(z) =

∞∑
k=1

b∗m(k)z
k :

Hence, the posterior distribution of W (z) is approximated by the conditional distribution
of

W ∗
m(z) =

(1− �∗m)(1− z)
1− �− z + �B∗

m(z)
I(0;1)(�∗m);

where �∗m = �
∗
m, 


∗
m =

∑
kb∗m(k).

As a consequence of the Glivenko–Cantelli theorem, conditionally on Sn and Tn,
b̂∗m(k)’s tend a.s. to �b(k)’s as m goes to inFnity. As proved in Proposition 1, this
implies that the distribution of W ∗(z) weakly converges to the posterior of W (z).

Lemma 1. Under the assumption P1, the sequence of stochastic processes (B∗
m(·);

m¿ 1) converges weakly to B(·) in the space C[0; r] endowed by the sup-norm, for
every 16 r ¡ O�.
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Proof. See Appendix A.

Proposition 1. Under the assumptions of Lemma 1, the sequence of stochastic
processes (W ∗

m(·)) converges weakly in C[0; r], equipped with the sup-norm, to W (·).

Proof. See Appendix A.

3. Applications to the approximation of the posterior distribution of the over#ow rate

The results obtained in Section 2 are mainly interesting because they provide an
easy way to obtain approximations for the posterior distribution of quantities of in-
terest in queueing analysis. As speciFed in Section 1, the goal of statistical analysis
of queueing systems is usually the evaluation of their performance. Since measures of
performance are essentially functionals of the (equilibrium) waiting time distribution,
they can be also expressed as functionals of its p.g.f. More formally, virtually every
measure of performance  of the systems can be represented as  =!(W ), !(·) being
an appropriate functional of W . As a by-product of the approximation of the poste-
rior of W , one can easily obtain an approximation of the posterior of  by replacing
the posterior of !(W ) by the distribution of !(W ∗

m), provided that !(·) is continu-
ous w.r.t the topology of the weak convergence. In fact, in this case the probability
law of !(W ∗

m) converges to the probability law of !(W ) whenever W ∗
m converges

weakly to W .
In practice, the approximation is based on Monte Carlo method. The basic idea, as

described in Muliere and Secchi (1996) consists of the following steps.
Step 1: Generate a sample S∗

m of size m from the probability measure �b, and
compute the b̂∗m(k)’s as in (2).
Step 2: Generate two independent realizations of the variates � and (b∗m(k); k¿ 1)

from their posterior distributions.
Step 3: Compute the corresponding p.g.f. W ∗(·).
Step 4: Compute the value of  ∗ =!(W ∗).
Step 5: Repeat Steps 1–4, a large number of times, say r times, to obtain the values

 ∗
1 ; : : : ;  

∗
r .

The empirical distribution function of  ∗
1 ; : : : ;  

∗
r , putting mass r−1 on  ∗

j ’s
provides the Bayesian bootstrap approximation for the posterior of  given the
data.
We consider here the approximation of the posterior distribution of the probability of

a “long delay”, i.e. the probability Q(M) that the waiting time is greater than a given
constant M . Such a quantity is of primary importance in assessing the performance of
the system under examination. In fact, in terms of teletraGc applications, the waiting
time can be viewed as the “buIer content”. Since in concrete applications the buIer
size is Fnite, M , say, the probability Q(M) turns out to be the over:ow rate, i.e. the
probability that a cell cannot be neither transmitted nor stored in the buIer. Further
discussion on the importance of Q(M) is in Roberts et al. (1996).
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As a slight generalization of Conti (1999), the probability Q(M) is “well approxi-
mated” by

 =
1− �

�B′( Oz)− 1 Oz
−(M+1)I(�¡1) + I(�¿1): (3)

Note that  = 1 whenever �¿ 1, i.e. in case of an unstable queueing model.
The relative error of approximation tends to zero as M increases. Since in real

cases the value of M (buIer size) is large (usually M¿ 100), inference based on the
posterior of Q(M) is virtually identical to inference based on the posterior of  .
Let G∗

m(z) be equal to 1− �− z+ �B∗
m(z), and let Oz

∗
m be the largest real root of the

equation G∗
m(z)=0. Finally, let  

∗ be deFned exactly as  , except that Oz, �, G′(·), are
replaced by Oz∗m, �

∗
m, G

∗′
m (·), respectively.

For the sake of simplicity, let H (x) and H∗
m(x) be equal to P( 6 x|Sn;Tn) and

P( ∗
m 6 x|Sn;Tn), respectively. Furthermore, if  ∗

m1; : : : ;  
∗
mr are the  ∗

mj’s values
obtained from steps 1–5, denote by

Ĥ∗
m;r(x) =

1
r

r∑
j=1

I(−∞; x]( ∗
mj)

their empirical distribution function (e.d.f., for short).
The next proposition shows that the bootstrap distribution of  ∗

m gives an eIec-
tive approximation of the posterior distribution of  . It is essentially in the spirit of
Theorem 3.1 in Muliere and Secchi (1996). Part (ii) is the corresponding Ĥ∗

m;r-version.
It shows that the approximation still holds when the genuine bootstrap distribution of
 ∗
m is replaced by its simulated version. To be precise, conditionally on Tn, Sn, the
generated sequences ( ∗

m1; : : : ;  
∗
mr) are assumed to live in an appropriate probability

space (&∗;F∗; P∗). In Proposition 2, r and m are both assumed to tend to inFnity,
and r is implicitly taken dependent on m: r = rm.

Proposition 2. Under assumptions P1–P3, the following two statements hold true:

(i) limm→∞ H∗
m(x) = H (x) for every continuity point x of H (·).

(ii) limm→∞ Ĥ∗
m;r(x) = H (x) for every continuity point x of H (·), a.s.-P∗.

Proof. See Appendix A.

Let now u(q)= inf{x :H (x)¿ q} be the qth quantile of the posterior distribution of
 , and let û∗m;r(q) = inf{x : Ĥ∗

m;r(x)¿ q} be the corresponding qth quantile of Ĥ∗
m;r(·).

Proposition 1 suggests to take the interval

[û∗m;r(�=2); û
∗
m;r(1− �=2)]

as an approximated credibility region of probability 1 − � for the posterior of  . The
sequel of the present section is devoted to prove that this procedure is correct, i.e. that
the quantiles û∗m;r(q) converge to u(q) as m and r tend to inFnity. To prove this result,
we need the following preliminary lemma.
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Lemma 2. The distribution function H (x) possesses the following properties:

(i) H (x) = 0 for every x¡ 0, H (1−) = P(�¡ 1|Sn;Tn), H (x) = 1 for every x¿ 1.
(ii) H (x) is strictly increasing in the interval (0; 1).

Proof. See Appendix A.

Proposition 3. Under hypotheses P1–P3, the approximated quantiles û∗m;r(q) converge,
a.s.-P∗, to u(q), as m and r both tend to in7nity, for every 0¡q¡ 1 − P(�¿
1|Sn;Tn).

Proof. See Appendix A.

4. Discussion and remarks on di(erent approximations

In Sections 2 and 3, a crucial role is played by the approximation of the posterior
law of (b(k); k¿ 1). Motivated by the remarks made by both the referees, in the
sequel we shortly discuss some alternatives to proper Bayesian bootstrap.
As remarked by a referee, the proper Bayesian bootstrap scheme considered in this

paper is (slightly) more complex than Rubin’s Bayesian bootstrap (1981) from a com-
putational point of view, since it requires preliminary generations of samples S∗

m’s.
Furthermore, the asymptotic arguments on which Rubin’s Bayesian bootstrap rests (Lo,
1987) essentially work as long as the posterior has a Brownian bridge limiting dis-
tribution, for whatever prior (not only a Dirichlet process). In this case, due to the
discreteness of the problem, the posterior of the cumulative d.f. of b(k)’s possesses,
for large n, a limiting distribution which is not a Brownian bridge. It is actually a
Gaussian process with discontinuous covariance function. However, it is easy to show
that Rubin’s Bayesian bootstrap still approximates the posterior law of (b(k); k¿ 1).
As already stressed, the disadvantage of Rubin’s Bayesian bootstrap is that it only
provides a Frst-order approximation based on Bernstein–Von Mises theorem. Our main
concern is mainly in studying approximations that hold for every sample size.
A possible alternative to proper Bayesian bootstrap, as suggested by a referee, could

consist in truncating the driving measure of the posterior law of (b(k); k¿ 1) at some
point q, and then to simulate from a Dirichlet process driven by such a truncated
measure. Formally, take m¿ 1, and denote by qm the smallest positive integer such
that

qm∑
k=1

�b;m(k)¿ 1− m−1; (4)

and let �b;m(k) be equal to �b(k) if k = 1; : : : ; qm − 1, and �b;m(qm) = �b(qm) +∑
k¿qm �b(k). Then, one could approximate the posterior law of (b(k); k¿ 1) by

a Dirichlet process with driving measure (n+ �)�b;m(·). Since this measure possesses
a Fnite support, the problem reduces to simulate from a (Fnite) Dirichlet vector.
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This clearly opens the road to further approximation schemes, that are shortly dis-
cussed in the sequel. We begin by a simple result, which is a minor variation of Propo-
sition 1. Consider a (countable) family {(b̃m(k); k¿ 1); m¿ 1} of random probability
measures concentrated over the set of all positive integer numbers. Let further B̃m(z)
be equal to

∑
k¿1 b̃m(k)z

k , �̃m = �B̃
′
m(1), and

W̃ m(z) =
(1− �̃m)(1− z)

1− �− z + �B̃m(z)
I(0; 1)(�̃m):

Suppose now that {(b̃m(k); k¿ 1); m¿ 1} converges weakly to (b(k); k¿ 1) as m
goes to inFnity, in the space [0; 1]∞, equipped by the sup-norm. The corresponding
Borel )-Feld coincides with the usual product )-Feld ⊗B([0; 1]), B([0; 1]) being the
Borel class over [0; 1]. Furthermore, in this case the weak convergence is equivalent
to the convergence of the Fnite dimensional distributions. Since the r.v.’s b̃m(k), b(k)
are bounded, the Helly–Bray theorem (see, e.g., Breiman, 1992, p. 160) implies that
E[b̃m(k)|Sn;Tn] tends to E[b(k)|Sn;Tn] as m tends to inFnity, for every positive integer
k. More deFnitely, the following proposition holds.

Proposition 4. Assume that, conditionally on Sn, Tn, {(b̃m(k); k¿ 1); m¿ 1} con-
verges weakly to (b(k); k¿ 1) as m increases, and that the series

∑
k¿1 E[b̃m(k)|Sn;

Tn]zk possesses (at least) the same radius of convergence of
∑

k¿1 �(k)z
k , for every

m¿ 1. Then:

(i) the sequence of stochastic processes (B̃m(·); m¿ 1) converges weakly to B(·) in
the space C[0; r] endowed by the sup-norm, for every 16 r ¡ O�;

(ii) the sequence of stochastic processes (W̃ m(·); m¿ 1) converges weakly to W (·)
in the space C[0; r] endowed by the sup-norm, for every 16 r ¡ O�.

Proof. Similar to those of Lemma 1 and Proposition 1.

The essence of Proposition 4 is that if the conditional law of (b̃m(k); k¿ 1), as m is
“large”, approximates the posterior law of (b(k); k¿ 1), then also the (conditional) law
of W̃ m(·) approximates the posterior distribution of W (·). Of course, the approximation
is useful when the realizations of the random probability measure (b̃m(k); k¿ 1)
possess a.s. a 7nite support, since it is usually not particularly diGcult to simulate
from them.
The Bayesian bootstrap is obtained as a special case of the scheme described above

(apart from a change of symbols, (b∗m(k); k¿ 1) is a mixture of Dirichlet processes).
The same holds for the procedure suggested by the referee: it is enough to assume that
(b̃m(k); k¿ 1) is a Dirichlet process driven by the measure (n+ �)�b;m(·). The con-
ditions of Proposition 4 are fulFlled, since �b;m(·) converges in total variation to �b(·),
and this obviously implies that (b̃m(k); k¿ 1) converges weakly to (b(k); k¿ 1).
It is of some interest to notice that also the approximation procedure developed

by Muliere and Tardella (1998) Fts the scheme discussed in this section. When par-
ticularised to our case, Muliere and Tardella procedure consists in approximating the
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posterior law of the Dirichlet process (b(k); k¿ 1) by the law of a random measure
deFned as

b̃m(k) = hmI{k}(Y0) +
nm∑
i=1

piI{k}(Yi); k¿ 1;

where

p1 = ,1 pi = ,i(1− ,i−1) · · · (1− ,1) ∀i¿ 2;

nm = inf

{
j¿ 1 :

j∑
i=1

pi¿ 1− m−1
}
; hm = 1−

nm∑
i=1

pi;

and ,i’s are i.i.d. r.v. with Beta distribution Be(1; �+n), Yi’s are i.i.d. r.v.’s, independent
of ,i’s and with P(Yi = k) = �b(k) for every k¿ 1, i¿ 0. Again, it is easy to check
that the conditions of Proposition 4 are fulFlled.
The arguments developed so far naturally lead to a simple variation of the pro-

cedure outlined in the previous section. In fact, it is enough to replace the special
(b∗m(k); k¿ 1) considered in Section 3 by the more general (b̃m(k); k¿ 1), and
W ∗

m(·) by W̃ m(·), respectively, and apply steps 2–4. In this way, r values  ̃m1; : : : ;  ̃mr
are obtained. Again, the posterior d.f. H (x) can be then approximated by its “empirical
counterpart”

H̃m;r(x) =
1
r

r∑
j=1

I(−∞; x]( ̃mj)

and the quantiles u(q) = inf{x :H (x)¿ q} by the corresponding “empirical quantiles”
ũm;r(q) = inf{x : H̃m;r(x)¿ q}. If r = rm goes to inFnity as m does, as a consequence
of Proposition 4 and Lemma 2 we have that H̃m;r(x) converges in law to H (x), and
that ũm;r(q) converges to u(q). These two facts are summarised in Proposition 5.

Proposition 5. Suppose that the assumptions P1–P3 and the conditions of Propositions
4 are ful7lled. Assume further that r = rm tends to in7nity as m increases, and that
the generated sequences ( ̃m1; : : : ;  ̃mr) live in a probability space (&∗;F∗; P∗). Then,
the following two statements hold.

(i) limm→∞ H̃m;r(x) = H (x) for every continuity point of H (·) a.s.-P∗.
(ii) limm→∞ ũm;r(q) = u(q) for every 0¡q¡ 1− P(�¿ 1|Sn;Tn) a.s.-P∗.

Proof. Similar to those of Propositions 2, 3.

Since several possible choices are possible, a short comparison is necessary. In partic-
ular, we examine three diIerent approximations of (the posterior law of) (b(k); k¿ 1),
namely: (i) the proper Bayesian bootstrap by Muliere and Secchi; (ii) a Dirichlet
process driven by the truncated measure (n + �)�b;m(·) deFned in (4) (denote by
(b̃Rm(k); k¿ 1) the corresponding approximating random measure); the Muliere and
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Tardella procedure (denote by (b̃MTm (k); k¿ 1) the corresponding approximating ran-
dom measure).
The most important aspect of (b̃MTm (k); k¿ 1) is that its Prohorov distance from

(b(k); k¿ 1) is smaller than m−1 (Muliere and Tardella, 1998). This allows one to
Fx ., and to take m = �.−1�. However, this does not imply that the same holds for
the non-linear functional  =  (W ) (3). Since  is a continuous functional, we can
only say that the approximation becomes better when . increases. However, it is not
possible to quantify (with obvious symbols) how close the law of  (W̃MT

m ) is close to
the law of  (W ).
In the second place, it is easy to see that

E[b∗m(k)|Sn;Tn] = E[b̃MTm (k)|Sn;Tn] = �b(k) ∀k¿ 1; m¿ 1:

In a sense, the approximations provided by the proper Bayesian bootstrap and by the
Muliere and Tardella scheme are “unbiased”. The same does not hold for (b̃Rm(k);
k¿ 1). E[b̃Rm(k)|Sn;Tn] is equal to zero for every k ¿qm. Since we are mainly in-
terested in the posterior law of the over7ow rate, this could be a negative feature. In
fact, the higher the service times, the higher the over7ow rate. Since (b̃Rm(k); k¿ 1)
systematically deletes the highest service times, the approximated posterior of  tends
to be concentrated on small values, and hence the performance of the system could be
(at least potentially) overestimated.
An important issue is the computational burden of diIerent approximation schemes.

To generate a realization of (b∗m(k); k¿ 1) one has Frst to generate m i.i.d. r.v.’s
S∗
1 ; : : : ; S

∗
m with common probability mass function (�b(k); k¿ 1). Then, conditionally

on S∗
j ’s, one has to generate m (at most) independent Gamma r.v.’s. EGcient simu-

lations algorithms for the Gamma distribution are described, for instance, in Devroye
(1986).
As far as the Muliere and Tardella scheme is concerned, Fx 0¡.¡ 1, and let m0 be

equal to �−log .�. To implement the scheme, one has to Frst generate nm0 independent
Beta r.v.’s (again, for fast simulation algorithms, see Devroye, 1986), and then nm0 +1
i.i.d. discrete r.v.’s with probability mass function (�b(k); k¿ 1). It is possible to
show (Muliere and Tardella, 1998) that nm0 − 1 has Poisson distribution with mean
(n+�)m0. To get a good approximation . should be “small”, i.e. m0 should be “large”.
Since the average number of r.v. to be generated is (n+�)m0, the computational burden
could be heavy, at least when n is large (in our application, n is 5328).
For all the above-mentioned reasons, in the application considered in Section 5 we

have used the proper Bayesian bootstrap.

5. Application to real data

In the present section, the techniques developed so far are applied to telecommuni-
cation data coming from the experimental European ATM network (Parker, 1995). The
data are obtained by the superposition of three diIerent kinds of applications: videocon-
ference (20 sources simultaneously connected), teleteaching (30 sources simultaneously
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Table 1
Values of b̂(k)’s

k b̂(k) k b̂(k) k b̂(k) k b̂(k)

1 0:653528500 7 0:011448950 13 0:003753754 19 0:000000000
2 0:168918900 8 0:011261269 14 0:002627628 20 0:000187688
3 0:056118620 9 0:007695195 15 0:001126126 21 0:000000000
4 0:030968470 10 0:006381381 16 0:001689189 22 0:000000000
5 0:017079580 11 0:007319820 17 0:000938438 23 0:000375375
6 0:012950450 12 0:005630631 18 0:000000000

connected), and transport of routing information (20 sources simultaneously connected).
All these applications use the Internet Protocol over ATM.
The transmission capacity requirement Peak Cell Rate (PCR) is 8320 cells=s for

videoconferences, 13104 cells=s for teleteaching, and 9434 cells=s for transport of
routing information. The resulting Sustainable Cell Rates (SCR) are 510, 226, and
43 cells=s, respectively. See ITU-T Recommendation I.371 (1996) for the meaning of
PCR, SCR and other traGc indicators. The ATM link bandwidth or the service rate of
the server is 80; 000 cells=s (34 Mbit=s). The sample size is equal to 5328. The value
of �̂ is 0.243; the values of b̂(k)’s are given in Table 1.
Due to the large value of the sample size, the prior of � does not play a very

important role. At any rate, in order to be as realistic as possible, we have based our
choice of such a prior on a “training sample” of experimental measurements made on
more or less similar traGc. As a prior of �, a Beta distribution with parameters �1,
�2 is adopted. Since the Frst two (sample) moments of the inter-arrival times in the
training sample are equal to 3.19 and 15.64, respectively, the prior parameters �1 and
�2 have been selected in such a way that the two relationships

E[�−1] =
�1 + �2 − 1

�1 − 1 = 3:19; (5)

E[�−2] =
(�1 + �2 − 1)(�1 + �2 − 2)

(�1 − 1)(�1 − 2) = 15:64 (6)

hold true. From (5) and (6) the equalities �1 = 3:28, �2 = 4:99 follow.
The choice of the prior measure �(·) is essentially based on similar considerations.

First of all, for mathematical reasons the measure �(·) is taken proportional to a Poisson
measure: �(k) = ce−00k=k!, k¿ 1.
Since the mean service time in the training sample is 2.39, the value of the parameter

0 is selected in order to ensure the following equality:

∞∑
k=1

k
�(k)
�

=
0

1− exp{−0} = 2:39
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Fig. 1. Approximated posterior distribution of  ; M = 50.
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Fig. 2. Approximated posterior distribution of  ; M = 100.

from which the relationship 0= 2:10 follows. The constant c has been taken equal to
the size of the training sample: c = 115.
To approximate the posterior of  , the values m= 25, r = 5000 have been adopted.

The histograms of the approximated posterior of  , corresponding to M =50, M =100,
M = 200, are displayed in Figs. 1–3.
Approximated posterior regions of level 0.95 and 0.99 are reported in Table 2.
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Fig. 3. Approximated posterior distribution of  ∗ 1016; M = 200.

Table 2
Approximated posterior regions for  

M Level

0:95 0:99

50 3:62× 10−5 1:18× 10−4 6:22× 10−5 1:04× 10−4
100 9:44× 10−9 1:19× 10−8 1:08× 10−10 5:58× 10−8
200 3:02× 10−18 2:86× 10−17 1:93× 10−18 5:12× 10−17
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Appendix A

Proof of Lemma 1. The proof uses arguments similar to those of Lemma 3 in Conti
(1999), with some changes. We have to show that (i) the Fnite-dimensional distribu-
tions of (B∗

m(·); m¿ 1) converge to those of (B(·)), and (ii) the sequence of random
functions (B∗

m(·); m¿ 1) is tight.
As far as (i) is concerned, we can conFne ourselves to one-dimensional distributions

(the proof is similar for higher dimensional distributions). Take positive . and 1 such
that 2= r+1¡ O�, and take K large enough such that

∑
k¿K (r=2)

k6 1. Then it is easy
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to see that

P(B∗
m(z)6 t|Sn)6 P

(∑
k6K

b∗m(k)z
k6 t + .

∣∣∣∣∣Sn

)
+ P

(∑
k¿K

b∗m(k)z
k¿ .

∣∣∣∣∣Sn

)

6 P

(∑
k6K

b∗m(k)z
k6 t + .

∣∣∣∣∣Sn

)

+P

( ⋃
k¿K

{
b∗m(k)z

k¿ .(z=2)k
}∣∣∣∣∣Sn

)

6 P

(∑
k6K

b∗m(k)z
k6 t + .

∣∣∣∣∣Sn

)
+
1
.

∑
k¿K

E[b∗m(k)|Sn]2k

6 P

(∑
k6K

b∗m(k)z
k6 t + .

∣∣∣∣∣Sn

)
+
1
.

∑
k¿K

�(k) + nb̂(k)
n+ �

2k :

Since the Fnite-dimensional distribution of (b∗m(k); k¿ 1) tend to those of ((b(k);
k¿ 1) as m goes to inFnity (Freedman, 1963), it is easy to see that

lim
m→∞P

(∑
k¿1

b∗m(k)z
k6 t

∣∣∣∣∣Sn

)
6 P

(∑
k6K

b(k)zk6 t + .

∣∣∣∣∣Sn

)

+
1
.

∑
k¿K

�(k) + nb̂(k)
n+ �

2k :

Letting K tend to inFnity and . tend to zero in such a way that

1
.

∑
k¿K

{�(k) + nb̂(k)}2k

tends to zero, we conclude that

lim
m→∞P

(∑
k¿1

b∗m(k)z
k6 t

∣∣∣∣∣Sn

)
6P

(∑
k¿1

b(k)zk6 t+
∣∣∣∣∣Sn

)
:

To prove the reverse inequality, it is enough to observe that

P

( ∞∑
k=1

b∗m(k)z
k6 t

∣∣∣∣∣Sn

)
¿ P

(∑
k6K

b∗m(k)z
k6 t − .

∣∣∣∣∣Sn

)
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+P

(∑
k¿K

b∗m(k)z
k6 .

∣∣∣∣∣Sn

)
− 1

¿ P

(∑
k6K

b∗m(k)z
k6 t − .

∣∣∣∣∣Sn

)

−P

(∑
k¿K

b∗m(k)z
k ¿ .

∣∣∣∣∣Sn

)

and apply the same technique as before.
We have now to prove the tightness of the sequence of random functions (B∗

m(·);
m¿ 1). Observing that B(0) = 0 a.s. for every m¿ 1, and using Theorem 8.3 in
Billingsley (1968), we only have to show that for each positive . and 0, there exist a
positive 5 and an integer m0 such that

1
5
P
(

sup
z6s6z+5

|B∗
m(s)− B∗

m(z)|¿ .
∣∣∣∣Sn

)
6 0 ∀m¿m0: (7)

Take again a positive 1 such that 2 = r + 1∈ [1; O�), and a positive � smaller than 1.
We have Frst, by Markov inequality and taking into account that b∗m(k)’s are smaller
than 1,

1
5
P
(

sup
z6s6z+5

|B∗
m(s)− B∗

m(z)|¿ .
∣∣∣∣Sn

)

6
1
5
P

( ∞∑
k=1

b∗m(k) sup
z6s6z+5

|sk − zk |¿ .

∣∣∣∣∣Sn

)

6
1
5
P

(
5

∞∑
k=1

b∗m(k)k(z + 5)k−1¿ .
(
1− z + 5

2

) ∞∑
k=1

(
z + 5
2

)k−1∣∣∣∣∣Sn

)

6
1
5

∞∑
k=1

P
(
b∗m(k)2

k−1¿
.
k5
(1− r=2)

∣∣∣Sn

)

6
5�21+�

(.1)1+�

∞∑
k=1

k22(1+�)(k−1)E[b∗m(k)
1+�|Sn]:

Observing that E[b∗m(k)
1+�|Sn] = (�(k) + nb̂(k))=(n+ �), and that

C =
21+�

(.1)1+�

∞∑
k=1

k222(k−1)
{
�(k) + nb̂(k)

n+ �

}
¡∞;

relationship (7) follows by taking 5 smaller than (0=C)1=�.
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Proof of Proposition 1. It is suGcient to observe that, because of the properties of
B∗
m(·), the mapping

f(B∗
m(·)) =

(1− �∗m)(1− z)
1− �− z + �B∗

m(z)

is continuous in C[0; r] w.r.t. the sup-norm, and then to apply the continuous mapping
theorem (Billingsley, 1968, p. 30).

Proof of Proposition 2. To prove part (i), observe Frst that, as a consequence of
Lemma 2 in Conti (1999), the functional !(W ) = Oz is continuous w.r.t. the sup-norm.
Since the radii of convergence of B′(·) and B(·) coincide, it is immediate to verify
that Oz is in the circle of convergence of B(·). Using again the same arguments as in
Lemma 2 in Conti (1999), it is immediate to conclude that the functional  is continu-
ous w.r.t. the sup-norm. By applying Corollary 1 and the continuous mapping theorem
(Billingsley, 1968, p. 30), statement (i) follows.
To prove part (ii), it is enough to show that Ĥ∗

m;r(x) − H∗
m(x) tends to zero as m

and r go to inFnity. Let

Am;r = sup
x

|Ĥ∗
m;r(x)− H∗

m(x)|:

By Dvoretzky–Kiefer–Wolfowitz (1956) inequality, we have Frst

P∗(Am;r ¿ .|Sn;Tn)6C exp{−2rm.2};
where C being an absolute, positive constant, and . a positive real number. Hence

∞∑
m=1

P∗(Am;r ¿ .|Sn;Tn)6C
∞∑
m=1

exp {−2rm.2}

6C
∞∑
m=1

exp {−2m.2}

¡C(1− e−2.2 )−1

for every .¿ 0. By the Frst Borel–Cantelli lemma, the conclusion Am;r → 0 with
P∗-probability 1 follows, which proves statement (ii).

Proof of Lemma 2. Part (i) is obvious. It is enough to take into account that  lies in
the interval [0; 1] with probability 1, and that  = 1 iI �¿ 1.
To prove part (ii), it is suGcient to show that

P(x¡ ¡x + h|Sn;Tn)¿ 0 (8)

for every positive x, h, with x + h¡ 1.
The support (w.r.t. the topology of the weak convergence) of the posterior law

of Pb is the set of all probability measures whose support is contained in that of
(�(k); k¿ 1). Such a set of probability measures can be equipped by the Levy distance
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L(·; ·) (Dudley, 1989) that makes the space separable and complete. Furthermore, in
view of the assumptions (P1), the set P of all probability measures (over the positive
integers) that possess Fnite p.g.f. B(z) for every real z does have posterior probability
1. From Theorem 2.1 in Parthasarathy (1967), it follows that for every 9b ∈P and
for every r ¿ 0 all Levy neighbours S(9b; r)={9′b ∈P :L(9b; 9′b)¡r} do have positive
posterior probability. Consider now 9b ∈P and �0 such that the corresponding  is in
the interval (x; x+h). Since the mapping z �→ B(z) is continuous w.r.t. the topology of
the weak convergence, it is easy to conclude that there exist a Levy neighbour S(9b; r)
and an open interval (�0−u; �0 +u) such that P(Pb ∈ S(9b; r)|Sn), P(�0−u¡�¡�0 +
u|Tn) are both positive, and such that the  ’s values corresponding to all 9′b’s in S(9b; r)
and �’s in (�0 − u; �0 + u) are in (x; x + h). This proves relationship (8).

Proof of Proposition 3. The set of continuity points of H (·) is dense in R. Hence, for
every .′ ¿ 0 there is 0¡.¡.′ such that H (·) is continuous in both u(q) − . and
u(q) + .. By Lemma 2(ii), the inequalities

H (u(q)− .)¡q¡H (u(q) + .)

hold. Then by Lemma 1(ii), the inequalities

Ĥ∗
m;r(u(q)− .)¡q¡Ĥ∗

m;r(u(q) + .) (9)

hold for all but Fnitely many m’s, a.s.-P∗. Inequalities (9) are equivalent to (see, e.g.,
Ser7ing, 1980, Lemma 1.1.4)

u(q)− .¡ û ∗
m;r(q)¡u(q) + .

for all but Fnitely many m’s. By repeating the same argument for every positive .′,
the proposition follows.
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