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ABSTRACT
We consider the nonlinear convex energy forms E ( p)   on the infinite Koch curve 

K<∞> and we prove that the corresponding domains F ( p)  coincide with the spaces 
Lipδ,df (p, ∞, K<∞>), where δ =        .

الخلاصــة

 (Koch) ” كوخ “  مُنحنى  على  المتواجدة  للطاقة  اللاخطية  المُحدّبة  الأشكال  المقال  هذا  في  نعتبر 
اللانهائي  ونُبرهـن  أنّ  المجـالات  المُـتـناظرة  تـتطابـق  وفضاءات  ” لبسيش“

. δ = أين   
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NONLINEAR ENERGY FORMS AND LIPSCHITZ SPACES ON THE INFINITE
KOCH CURVE

1. INTRODUCTION

Nonlinear energy forms

E(p), 1 < p < ∞

on a fractal set, the unit Koch curve, were constructed for the first time in [1], where the properties of their
domains F (p) were studied and it was shown that they can be considered to be the analogues of the usual Sobolev
spaces W 1,p.

In [2], the spaces W 1,p ≡ F (p) were put in relation to the spaces Lipα,df
(p,∞,K) and the following characteri-

zation was given:

W 1,p(K) = Lipδ,df
(p,∞,K), for every 1 < p < ∞, (1.1)

where df is the fractal (Hausdorff) dimension of K and δ = df = log 4
log 3 . In the quadratic case p = 2, analogous

results have been proved for various fractals K such as the Sierpinski gasket, the Koch curve, and more general
fractals first in [3] and then in [4–6]. More precisely, the domain F (2) of the energy form E(2) on K — which is
the fractal analogue of the space H1 = W 1,2 — has been put in relation with the space Lipα,df

(2,∞,K) and
the following identification is proved:

W 1,2(K) = Lipδ,df
(2,∞,K),

where δ is a parameter depending on the structural constants of the fractal (see [4]).

The purpose of this paper is to extend the nonlinear results in [2] to the case of the infinite Koch curve K<∞>

(see Theorem 5.5 in Section 5). Following the lines in [7], we define on K<∞> the nonlinear energy forms

E(p)
K<∞> , 1 < p < ∞

with domains F (p)
K<∞> — which can still be considered to be the analogue of the Sobolev space W 1,p on the real

line — and we prove the following characterization:

W 1,p(K<∞>) = Lipδ,df
(p,∞,K<∞>), for every 1 < p < ∞, (1.2)

where δ = log 4
log 3 , as in the previous case, and df is the Hausdorff dimension of K<∞>.

This characterization allows us to regard the functions of finite energy on the fractal K<∞> as traces of
functions belonging to suitable Sobolev spaces on the plane (see [8] and [3]). These trace results are of great
importance in some applications: for instance, in the second order transmission problems of the type studied in
[9–11] where the fractal set is a layer separating two domains.

Our results in the present paper can be used in 3-dimensional second order transmission problems with infinite
fractal layers (namely, the fractal surface S = K<∞> × [0, h], h > 0), of the kind described in [11]. They can
also be useful in dealing with nonlinear fractal transmission problems involving the fractal p-Laplacian in the
transmission condition (in this regard, see [12]).
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Nonlinear energy forms (and the related p-Laplacians) naturally arise in many application problems such as
in the study of non-Newtonian fluids or flows in porous media, in nonlinear elasticity, in glaceology, in petroleum
extraction, as well as in some reaction diffusion problems (for an exhaustive discussion, see [13] and the references
listed therein).

The plan of the paper is the following. In Section 2, we recall the definitions of the Koch curve K, of the
invariant measure µ and, for 1 < p < ∞, of the nonlinear energy forms E(p) with domains F (p).

In Section 3, the definition of the Lipschitz spaces is given according to [3]; moreover, from [2], we recall,
the identification of the domain F (p) of the associated nonlinear energy form E(p) with the Lipschitz space
Lipδ,df

(p,∞, K), where δ = df = log 4
log 3 .

In Section 4, according to [7], we introduce the infinite Koch curve K<∞>, the invariant measure µ and, for
1 < p < ∞, the nonlinear energy forms E(p)

K<∞> with domains F (p)
K<∞> .

In the last section, we prove that, for 1 < p < ∞, the domains F (p)
K<∞> of E(p)

K<∞> coincide with the spaces
Lipδ,df

(p,∞, K<∞>), where δ = log 4
log 3 .

2. THE NONLINEAR ENERGY FORM ON THE KOCH CURVE

In this section, we recall the nonlinear energy forms on the Koch curve, whose construction has been developed
by one of the authors in [1].

We start by recalling the construction of the unit Koch curve K. Let Ψ = {ψi, i = 1, ..., 4} denote the set of
the N = 4 contractive similitudes ψi : IC → IC, with contraction factor l−1 = 1

3 given by ψ1 = z
3 , ψ2 = z

3ei π
3 + 1

3 ,
ψ3 = z

3e−i π
3 + 1

2 + i
√

3
6 , ψ4 = z+2

3 .

Let A ⊂ IR2, we define, for arbitrary n-tuples of indices i1, ..., in ∈ {1, ..., 4}, ψi1...in
:= ψi1 ◦ ... ◦ ψin

,
Ai1...in

:= ψi1...im
(A), A(0) = A, and

A(n) =
4⋃

i1,...,in=1

Ai1...in
.

Let us denote by z0 and z1 the points (0, 0) and (1, 0). Let V = {z0, z1} and let V� = ∪n≥0V
(n); the set K = V̄�,

that is, the closure in IR2 of V�, is the so-called unit Koch curve.

On the Koch curve K, there exists an invariant measure µ (see [14]) which is given, after normalization, by
the restriction to K of the df -dimensional Hausdorff measure of IR2 normalized, that is,

µ = (Hdf (K))−1Hdf (·)�K , (2.1)

where df = log 4
log 3 .

For f : V� → IR, we define for 1 < p < ∞ :

E(p)
n [f ] =

1
p
4(p−1)n

4∑
i1,...,in=1

∑
ξ,η∈V

|f(ψi1...in(ξ)) − f(ψi1...in(η))|p. (2.2)
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It is shown in [1] that the sequence E(p)
n (f, f) is non-decreasing, and by defining for f : V� → IR :

E(p)[f ] = lim
n→∞ E(p)

n [f ], (2.3)

the set

F (p)
� = {f : V� → IR : E(p)[f ] < ∞} (2.4)

does not degenerate to a space containing only constant functions. As proved in [1], each f ∈ F (p)
� can be

uniquely extended in C(K). We denote this extension on K still by f and we define the space

F (p) = {f ∈ C(K) : E(p)[f ] < ∞}, (2.5)

where E(p)[f ] := E(p)[f |V � ]. Hence F (p) ⊂ C(K) ⊂ Lp(K,µ). Moreover, (E(p),F (p)) is a non-negative energy
functional in Lp(K, µ) and the following result holds (see [1]).

Theorem 2.1

(i ) F (p) is complete in the norm ‖f‖F(p) := ‖f‖Lp(K,µ) + (E(p)[f ])1/p.

(ii ) F (p) is dense in Lp(K, µ).

(iii ) F (q) ⊂ F (p), for 1 < p ≤ q < ∞.

3. THE LIPSCHITZ SPACES Lipα,df
(p, q, K)

In this section we recall the definition of the Lipschitz spaces introduced by Jonsson in [3].

Let Be(x, r) denote the closed Euclidean ball with center x ∈ IRD and radius r. According to [8], we first
recall the definition of df -set.

Definition 3.1. A closed non-empty subset F ⊂ IRD is a df -set (0 < df ≤ D) if there exists a Borel measure µ

in IRD with suppµ = F , such that for some positive constants c1 = c1(F ) and c2 = c2(F ):

c1r
df ≤ µ(Be(x, r)) ≤ c2r

df for x ∈ F, 0 < r ≤ 1. (3.1)

Such a µ is called a df -measure on F.

If F is a df -set, then the restriction to F of the df -dimensional Hausdorff measure of IRD is a df -measure on
F and thus the Hausdorff dimension of F is df (for details and proofs see [8]).

We recall that the measure µ on the Koch curve has the property that there exist two positive constants c1, c2

such that

c1r
df ≤ µ(Be(x, r)) ≤ c2r

df , ∀x ∈ K,

and so the Koch curve is a df -set with df = log 4
log 3 > 1 and the space Lipα,df

(p, q,K) is well-defined.

Let F ⊂ IRD be a df -set, 0 < df ≤ D, let µ be the df -measure on F.
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In order to define Lipschitz spaces which we shall consider here it will be convenient to introduce the following
notation. Given an appropriately defined function θ over a set F, we write for convenience

I(F, r, θ, p) ≡
∫ ∫

x, y∈F, |x−y|<c03−h+r

|θ(x) − θ(y)|pdµ(x)dµ(y)

for some numbers c0, h, p, and r. Here and elsewhere c0 > 0, 1 < p < ∞, r = 0, n. We first define Lipschitz
spaces Lipα,df

(p, q, F ) in the following.

Definition 3.2. Let c0 > 0, α > 0, 1 < p < ∞, 1 ≤ q ≤ ∞, Lipα,df
(p, q, F ) is the space of those functions f

such that f ∈ Lp(F, µ),

‖{ah}‖lq =

( ∞∑
h=0

aq
h

)1/q

< ∞ for 1 ≤ q < ∞ (3.2)

‖{ah}‖l∞ = sup
h≥0

|ah| < ∞ for q = ∞ (3.3)

where, for each h ∈ IN,

ah =
(
3hαp+hdf I(F, 0, f, p)

)1/p
. (3.4)

The norm in Lipα,df
(p, q, F ) is defined as:

‖|f‖|Lipα,df
(p,q,F ) := ‖f‖Lp(F,µ) + ‖{ah}‖lq . (3.5)

In Jonsson’s notations these spaces are denoted by Lip(α, p, q, F ); we modified this notation in Lipα,df
(p, q, F )

to put in evidence also the dependence on the fractal dimension. Moreover, the constant 3 in (3.4) replaces the
constant 2 in Jonsson’s definition: this clearly gives equivalent spaces with equivalent norms.

Considering the Koch curve K we proved the following results in [2] and the statement of Theorem 3.3 may
be given.

Theorem 3.3. Let 1 < p < ∞. Let K denote the Koch curve, F (p) the domain of the associated nonlinear

energy form E(p), then

F (p) = Lipδ,df
(p,∞,K), (3.6)

where δ = log 4
log 3 , with equivalent norms.

We note that the smoothness index δ does not depend on p.

Corollary 3.4. Let K be the Koch curve and δ = ln 4
ln 3 . Then the space Lipδ,df

(p,∞,K) does not consist only

of constant functions.

Remark 3.5. In order to prove that the Lipschitz space Lipδ,df
(p,∞,K) is not trivial it obviously suffices to

construct an explicit example of a non-constant function belonging to this space. For the case considered in
the previous corollary, such a function has been constructed in [15]. A more difficult task is to give significant
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characterizations of all functions belonging to these Lipschitz spaces. Therefore, it is remarkable that such
characterizations are available — in terms of spaces of “finite energy” — both in the linear and in the nonlinear
case considered in the previous mentioned papers. In this regard, this characterization also shows that there
exist a whole family of non-trivial functions, namely the harmonic (or p-harmonic) functions, which can be also
explicitly constructed by a suitable harmonization procedure.

4. THE NONLINEAR ENERGY FORM ON THE INFINITE KOCH CURVE

In this section, we recall the definition of the infinite Koch curve K<∞> (for the general case of expanded
nested fractals, see [7]).

We set K<0> = K, K<n> = 3nK for n ≥ 1 and K<∞> =
⋃∞

n=0 K<n>. We have that

K<n> =
4⋃

i1...in=1

K<n>
i1...in

,

where

K<n>
i1...in

= φi1...in
K

with

φi1...in
= 3nψi1...in

.

We note that the infinite Koch curve is confined to the sector of amplitude π/6. We define the mapping σn by
(σnf)(x) = f(3nx) for x ∈ K which maps a function f on K<n> to a function σnf on the unit Koch curve.

We extend the Hausdorff measure µ of K to K<∞> by defining its value on a Borel set B to be µ(φ−1
i1...in

(B)) if
B ⊂ K<n>

i1...in
.

We also define nonlinear energy forms E(p)
K<n> with domains F (p)

K<n> on Lp(K<n>, µ) by

F (p)
K<n> = σ−1

n F (p) (4.1)

and

E(p)
K<n> [f ] =

4∑
i1...in=1

E(p)[f(φi1...in·)] (4.2)

for f ∈ F (p)
K<n> . We set F (p)

K<0> = F (p) and E(p)
K<0> [f ] = E(p)[f ]; moreover, we set

‖f‖F(p)
K<n>

:= ‖f‖Lp(K<n>,µ) + (E(p)
K<n> [f ])1/p.

From definitions (4.1) and (4.2), we have that if n ≤ m and f ∈ F (p)
K<m> , then E(p)

K<n> [f�K<n> ] ≤ E(p)
K<m> [f�K<m> ].

We recall the following scaling properties from [7].
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Proposition 4.1.

(a) For a function f defined on K<n>,

∫
K<n>

fdµ = 4n

∫
K

σnfdµ.

(b) For a function f ∈ F (p)
K<n> ,

(4p−1)nE(p)
K<n> [f ] = E(p)[σnf ].

We define the space F (p)
K<∞> of functions f defined on the infinite Koch curve K<∞> by

F (p)
K<∞> = {f : f�K<n>∈ F (p)

K<n> for each n and lim
n→∞ E(p)

K<n> [f�K<n> ] < ∞}
⋂

Lp(K<∞>, µ).

We let

E(p)
K<∞> [f ] = lim

n→∞ E(p)
K<n> [f�K<n> ]

for f ∈ F (p)
K<∞> and

‖f‖F(p)
K<∞>

:= ‖f‖Lp(K<∞>,µ) + (E(p)
K<∞> [f ])1/p.

Denote by C(K<∞>) the space of continuous functions on K<∞> and by C0(K<∞>) the space of continuous
functions with compact support on K<∞>. We have F (p)

K<∞> ⊂ C(K<∞>).

We recall the following property (see [7]): if f ∈ C0(K<∞>), suppf ⊂ K<n> and f ∈ F (p)
K<n> , then f ∈ F (p)

K<∞>

and E(p)
K<∞> [f ] = E(p)

K<n> [f ]. By the previous property, the spaces F (p)
K<∞> are not trivial: it is sufficient to

consider functions f ∈ F (p), f ∈ C0(K<∞>) with suppf ⊂ K. Moreover, by proceeding as in [7], it turns out
that the forms E(p)

K<∞> with domains F (p)
K<∞> are regular on Lp(K<∞>, µ).

5. THE LIPSCHITZ SPACES Lipα,df
(p,∞,K<∞>)

In this section, we give the definition of Lipschitz spaces on K<∞> and we prove that for 1 < p < ∞
the domains F (p)

K<∞> coincide with the spaces Lipδ,df
(p,∞, K<∞>) where δ = log 4

log 3 (see for p = 2 also [16]).
In order to define the spaces Lipα,df

(p,∞, K<∞>) we now first define the Lipschitz spaces Lipα,df
(p,∞,K<n>)

on K<n>.

Definition 5.1. Let c0 > 0, α > 0, 1 < p < ∞, n ∈ IN. We denote by Lipα,df
(p,∞, K<n>) the space of those

functions f such that f ∈ Lp(K<n>, µ) and

sup
h≥−n

(
3h(αp+df )I(K<n>, 0, f�K<n> , p)

) 1
p

< ∞.



Raffaela Capitanelli  and  Maria Rosaria Lancia

The Arabian Journal for Science and Engineering, Volume 29, Number 2C. December 2004108

We also let

|||f |||Lipα,df
(p,∞,K<n>) = ‖f‖Lp(K<n>,µ) + sup

h≥−n

(
3h(αp+df )I(K<n>, 0, f�K<n> , p)

) 1
p

for f ∈ Lipα,df
(p,∞, K<n>).

Definition 5.2. Let c0 > 0, α > 0, 1 < p < ∞. We denote by Lipα,df
(p,∞,K<∞>) the space of those functions

f such that f ∈ Lp(K<∞>, µ), f�K<n>∈ Lipα,df
(p,∞,K<n>) for each n and

lim
n→∞ |||f |||Lipα,df

(p,∞,K<n>) < ∞.

We also let

|||f |||Lipα,df
(p,∞,K<∞>) = ‖f‖Lp(K<∞>,µ) + sup

h∈Z

(
3h(αp+df )I(K<∞>, 0, f, p)

) 1
p

for f ∈ Lipα,df
(p,∞, K<∞>).

In order to prove Theorem 5.5, we now prove some scaling properties of the terms that appear in the definitions
of the Lipschitz spaces on K<n>.

Proposition 5.3. Let f be a function defined on K<n>, with fixed n. Let δ = log 4
log 3 . Then

3hδp+hdf I(K, 0, σnf, p) = (4p−1)n3(h−n)(δp+df )I(K<n>, n, f, p).

Proof. From (a) of Proposition 4.1

3hδp+hdf I(K, 0, σnf, p) = 3h(δp+df )4−2nI(K<n>, n, f, p)

= 3(h−n)(δp+df )3n(δp+df )4−2nI(K<n>, n, f, p). �

Proposition 5.4. Let δ = log 4
log 3 , 1 < p < ∞, and c0 > 0. Then there exist two positive constants c1 and c2 such

that

c1‖f‖F(p)
K<n>

≤ |||f |||Lipδ,df
(p,∞,K<n>) ≤ c2‖f‖F(p)

K<n>
. (5.1)

Proof. By Theorem 3.3, there exist two positive constants c1 and c2 such that

c1

(
E(p)[σnf ]

) 1
p ≤ sup

h≥0

(
3hδp+hdf I(K, 0, σnf, p)

) 1
p ≤ c2

(
E(p)[σnf ]

) 1
p

.

From (b) of Proposition 4.1 and Proposition 5.3, we obtain that there exist two positive constants c1 and c2 such
that

c1

(
E(p)

K<n> [f ]
) 1

p ≤ sup
h≥−n

(
3hδp+hdf I(K<n>, 0, f, p)

) 1
p ≤ c2

(
E(p)

K<n> [f ]
) 1

p

. �
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Theorem 5.5. Let 1 < p < ∞. Let K<∞> denote the infinite Koch curve, F (p)
K<∞> the domain of the associated

nonlinear energy form E(p)
K<∞> , then

F (p)
K<∞> = Lipδ,df

(p,∞,K<∞>),

where δ = log 4
log 3 , with equivalent norms.

Proof. Let f ∈ F (p)
K<∞> . By definition, f�K<n>∈ F (p)

K<n> for each n, f ∈ Lp(K<∞>, µ) and
limn→∞ E(p)

K<n> [f�K<n> ] = supn E(p)
K<n> [f�K<n> ] < ∞. Passing to the limit in (5.1) we have that

Lipδ,df
(p,∞, K<∞>) ⊂ F (p)

K<∞> . We proceed in a similar way for the other inclusion. �

Corollary 5.6. Let K<∞> be the infinite Koch curve and δ = log 4
log 3 . Then the space Lipδ,df

(p,∞,K<∞>) does

not consist only of constant functions.

5.1. The “Bilateral” Infinite Koch Curve K̂.

We now define the “bilateral” infinite Koch curve K̂. For every fixed n, let K<n>
− be the curve obtained

by symmetrization with respect to the origin of the axes the curve K<n>. Let K<∞>
− =

⋃∞
n=0 K<n>

− . Clearly,
K<∞>

− is symmetric with respect to the origin of the axes of the curve K<∞>. Set now K<∞>
+ = K<∞>, we

define

K̂ = K<∞>
+

⋃
K<∞>

− .

As in section 4, we define the nonlinear energy forms E(p)

K<∞>
−

with domains F (p)

K<∞>
−

. Similarly to Theorem 5.5,

a characterization in terms of Lipschitz spaces on K<∞>
− holds, namely, F (p)

K<∞>
−

= Lipδ,df
(p,∞,K<∞>

− ).

By analogy with the Euclidean case, on the domains

F (p)

K̂
=

{
f : K̂ → IR, f�K<∞>

−
∈ F (p)

K<∞>
−

, f�K<∞>
+

∈ F (p)

K<∞>
+

, f continuous in (0, 0)
}

we can define the energy forms

E(p)

K̂
= E(p)

K<∞>
−

+ E(p)

K<∞>
+

.

Finally, we define by

Lipα,df
(p,∞, K̂)

(with α > 0, 1 < p < ∞) the space of those functions f such that f : K̂ → IR,

f�K<∞>
−

∈ Lipα,df
(p,∞,K<∞>

− ),

f�K<∞>
+

∈ Lipα,df
(p,∞,K<∞>

+ ),

f continuous in (0, 0).

With this characterization, Theorem 5.5 can be extended to the case of K̂ as follows.
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Corollary 5.7. Let 1 < p < ∞. Let K̂ denote the bilateral infinite Koch curve, F (p)

K̂
the domain of the associated

nonlinear energy form E(p)

K̂
, then

F (p)

K̂
= Lipδ,df

(p,∞, K̂)

where δ = log 4
log 3 , with equivalent norms.
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