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1. Introduction 
 

Although deterministic traffic assignment is a rather mature subject in transport 

modelling, to find an equilibrium on real networks is still a difficult problem to 

solve. In practice, none of the classical algorithms, link-based (e.g. LeBlanc et al., 

1975; Florian et al. 1987) or path-based (e.g. Larsson and Patriksson, 1992; Jaya-

krishnan et al., 1994), converges at the solution in a reasonable time precisely 

enough to allow consistent comparisons between design scenarios. Indeed, appar-

ently small errors due to early termination of the iterative solving procedure do not 

allow the analyst to appreciate the real differences among equilibria and may lead 

to false conclusions in relevant projects, thus vanishing any modelling effort: with-

out precision in the calculation, all attempts to enhance the accuracy of the model, 

i.e. its ability to reproduce reality, may be frustrated (Boyce et al., 2004). 

More recently, a new generation of bush-based algorithms has made possible the 

precise solution of the traffic assignment problem for very large networks, thus al-

lowing an effective comparison of design scenarios (Bar-Gera, 2002; Dial, 2006; 

Gentile, 2009). Lately, also path-based algorithms improved considerably their 

convergence performance (Florian, 2009); but given the non uniqueness of path 

flows, they tend to provide very poor solutions with only few routes loaded per o-d 

pair, compared to the many more that have the same equilibrium cost. 

It is well known that, while the solution in terms of total link volumes is unique 

under standard assumptions, the solution in terms of class/destination link flows in 

not, like for path flows. This arises the problem of selecting a most-likely solution 

among the many existing, such that, for example, the splitting rates for two identi-

cal class/destinations are equal, which corresponds to seeking a minimum entropy 

(Bar-Gera, 2006). Flow balancing is a relevant issue for a set of post processing 

tools, such as the critical link analysis or the o-d estimation from traffic counts, and 

in any case where the path flows are a desired output of the simulation, besides link 

volumes. 

In this paper a new formulation of the multiclass user equilibrium with determinis-
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tic route choice is proposed, which contrary to the classical formulations of the 

problem (Dafermos, 1972; Sheffi, 1985; Van Vliet et al., 1986; Toint and Wynter, 

1996), and similarly to its stochastic version (Bifulco, 1993), has a unique solution 

also in terms of class/destination link flows, thus overcoming from a different per-

spective the issue of flow balancing. This result is attainted at the small modelling 

price of introducing an additional positive term in the non-separable function of arc 

costs, which can be made as small as wanted, compatibly with numerical issues 

that could deteriorate the effectiveness of the approach. 

To solve the proposed formulation the Linear User Cost Equilibrium (LUCE) algo-

rithm (Gentile and Noekel, 2009) has been suitably extended, thus allowing to ob-

tain an extremely precise estimate of the unique solution (e.g. a relative gap of 

10E-8, that is considered enough for any application) in few minutes and iterations, 

also on large networks with many user classes.  

The main idea is to seek at every node a user equilibrium (Wardrop, 1952) for the 

local route choice of travellers belonging to a same class and directed toward a 

same destination among the links of its forward star. The cost function associated 

to each one of these travel alternatives expresses the average impedance to reach 

the destination by continuing the trip with that link, linearized at the current flow 

pattern. 

To allow recursive computations, only the links that belong to the current bush are 

included in the local choice set – a bush is an acyclic sub-graph that connects each 

origin to the destination at hand. The unique solution to the resulting linear user 

cost equilibrium in terms of class/destination flows, recursively applied at each 

node of the bush in a topological order, provides a descent direction with respect to 

the line-integral objective function of the original assignment problem. This postu-

late is proved with reference to any given bush of the class/destination at hand. To 

ensure the convergence of the procedure towards an equilibrium where all paths of 

the graph satisfy Wardrop’s conditions, the current bush is changed before finding 

the search direction, by trying whether is possible (the resulting sub-graph must 

still be acyclic) to exclude unused links that bring away from the destination and to 

include links that improve shortest paths for that class. 

The descent direction obtained for each class/destination is then exploited by rota-

tion in a feasible direction method, where the line search follows the Armijo rule. 

At each iteration, the proposed algorithm requires no shortest tree but two visits of 

the bush links for every class/destination, that is equal to the complexity of the 

STOCH single pass procedure (Dial, 1971) for the Logit network loading.  

Contrary to the classical all-or-nothing assignment to shortest paths, the network 

loading map resulting from the application of the LUCE algorithm is a one-to-one 

function, that combined with the arc cost function yields a well-defined fixed point 

operator, thus offering both computational and theoretical advantages. Moreover, 

the LUCE network loading is performed consistently with the splitting rates result-

ing from the local equilibrium problems, thus assigning the demand flow to a 

whole bush of paths, which prevents the typical Frank Wolf zigzagging near the 

solution, and avoiding explicit path enumeration, which permits a fast computation 

and huge memory savings.  
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In the reminder of the paper we will present the mathematical formulation of the 

multiclass assignment problem and the main aspects of the LUCE algorithm to find 

a descent direction for this case, while the assignment algorithm, its proof of con-

vergence and its numerical testing are addressed in our previous works. 

 

 

2. Mathematical formulation 
 

In this section we formulate the multiclass traffic assignment as a deterministic us-

er equilibrium. The aim of the problem is then to find a cost-flow pattern which 

satisfies Wardrop’s conditions: rational and perfectly informed users choose only 

shortest paths, in terms of costs, to travel on the network from their origin to their 

destination (the demand model); path costs are the sum of their link costs, which in 

turn are class specific and depend not only on the class flow but also on the link 

volume, thus yielding a non-separable function (the supply model). 

The transport network is represented through a directed graph G = (N, A), where N 

is the set of the nodes and A  NN is the set of the links; Z  N is the set of the 

zone centroids. The forward and backward stars of the generic node iN are denot-

ed, respectively: FS(i) = {jN: ijA} and BS(i) = {jN: jiA}. 

The demand is segmented into a set of user classes U. Without loss of generality, 

all users of the generic class uU are directed toward a same destination d(u)Z, 

since this allows to save one index in the notation. Moreover, they share as usual 

the same cost attributes and perception, such as tolls and value of time, and make-

up an homogeneous flow, with the same vehicle type and occupancy. 

 

For flows and costs we adopt the following notation: 

fij
u
 flow on link ijA of class uU directed to destination d(u)Z, generic 

element of the (|A||U|1) vector f ;  

vij volume on link ijA, that is the total flow of all classes 

vij = uU fij
u
 ;  (1) 

Qo
u
 demand flow of class uU between origin oZ and destination d(u)Z ; 

cij
u
 cost of link ijA for users of class uU directed to destination d(u)Z, 

generic element of the (|A||U|1) vector c ;  

c(f) non-separable arc cost function 

c = c(f) ; (2) 

sij impedance of link ijA ; 

sij(vij)  separable impedance function of link ijA 

sij = sij(vij) ; (3) 

gij impedance derivative of link ijA 

gij = sij(vij) / vij . (4) 

 

In the case of fixed demand and symmetric arc cost functions, the deterministic us-

er equilibrium with multiple classes can be formalized through the following non-

linear optimization problem, which involves no path variables: 
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find f**  arg min (f) = 0
f

c(x)
T
dx (5.1) 

subject to: 

0  fij
u
  oZ Qo

d(u)
 ,  ijA, uU ;  (5.2) 

jFS(i) fij
u
 - jBS(i) fji

u
 = {0, if iZ ;  

                                        -oZ Qo
d(u)

 , if i = d(u) ;  

                                         Qi
d(u)

 , otherwise} ,  iN, uU .  (5.3) 

This particular formulation in terms of class link flows is different from Beckman’s 

mathematical program (Beckman et al., 1956) in terms of link volumes, where the 

consistency of the link flows with the given travel demand is ensured by explicitly 

introducing the path flows. Indeed, the conservation of class flows at nodes, stated 

by constraints (5.3), assures implicitly that each trip traverses a path connecting its 

origin to its destination: the demand flows of a given class uU spring from the 

various origins and circulate on the network until they eventually dwell into their 

common destination d(u). The upper bound defined by constraint (5.2) can be vio-

lated only if some user passes through the same link for more than one time, which 

will be excluded, given that paths with cycles cannot be shortest in the case of 

positive link costs. 

 

To characterize problem (5) we introduce the following assumptions: 

H1. additive path costs, i.e. the cost associated by users of a certain class to a given 

path on the network is the sum of the link costs that belong to it; 

H2. fixed and non-negative demand, i.e. Qo
u
  0 ; 

H3. centroids connected among each other, i.e. there exist a path on G to travel 

from every origin to any destination.  

The link impedance function sij(vij) is assumed to be, as usual: 

H4. separable, meaning that the impedance of a link depends only on its volume;  

H5. continuous; 

H6. strictly monotone increasing; 

H7. nonnegative. 

For the development of the LUCE algorithm, the link impedance function is further 

assumed to be: 

H8. continuously differentiable; 

H9. with a strictly positive derivative, i.e. gij > 0 also at a null volume; 

H10. strictly positive, i.e. sij > 0. 

For the definition of our multiclass assignment model, the arc cost function is re-

lated to the corresponding link impedance function, and is assumed to be: 

H11. spatially separable, i.e. the congestion occurs only among the flows that are 

travelling on the same link; 

H12. with a symmetric Jacobian. 

In particular, we will consider the form: 

cij
u
(f) = sij(vij) + ij  fij

u
 + ij

u
 , (6) 

whose Jacobian c(f) is a symmetric matrix with diagonal blocks, each one rela-

tive to a single link ijA; the generic elements for classes uU and zU are: 

cij
u
(f) / fij

u
 = sij(vij) / vij + ij = gij + ij , cij

u
(fij) / fij

z
 = sij(vij) / vij = gij . (7) 
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Each block can be reduced to a matrix of ones with a “reinforced” diagonal pre-

multiplied by a positive coefficient, which is positive definite, given that: gij > 0 

and ij > 0. Therefore, the entire Jacobian c(f) is also positive definite. 

 

For example, the following specification of (6) can be adopted: 

ij =   sij(0) / ij ,  (8) 

ij
u
 = mij / u ,  (9) 

where ij , sij(0) and mij are, respectively, the capacity, the free flow impedance 

and the toll of link ijA, u is the value of time (in this case impedances and costs 

are measured in terms of times) while  is a small positive number (e.g.  = 10
-4

). 

Note that the link volume is a straight sum of the class link flows, without weights, 

since this ensures that (6) has a symmetric Jacobian. If the vehicles used by the dif-

ferent classes have a different impact on the joint congestion, here expressed by the 

impedance function, then the demand flows shall be consistently scaled by an 

equivalency coefficient. In these case, however, c
T
f is not equal to the total cost of 

the network. Analogously, the link impedance is perceived by all user classes in the 

same way. 

For practical applications we can relax hypothesis H6 and H7, allowing the imped-

ance function on some links to be constant and/or null, but assuming that there is 

no more than one path connecting any two nodes on G constituted exclusively by 

such links. Furthermore, hypothesis H8 can be relaxed by assuming that the differ-

entiability holds almost everywhere, thus allowing to consider piecewise linear 

functions. Finally, hypothesis H10 can be removed, thus allowing to consider the 

most used polynomial functions, such as the BPR. 

 

Because the arc cost function is spatially separable, the line integral (5.1) becomes: 

(f) = 0
f

c(x)
T
dx = ijA uU 0

 fij
u

cij
u
( … fij

z < u
 … , xij

u
 , … 0 …)dxij

u
 ,  (10) 

which based on (6) reduced to: 

(f) = ijA 0
 vij

sij(xij)dxij + ijA uU ½  ij  ( fij
u
)

2
 + ijA uU ij

u
  fij

u
 .  (11) 

The gradient and the Hessian of the objective function (11) at f are: 

(f) / fij
u
 = sij(vij) + ij  fij

u
 + ij

u
 = cij

u
(f) , in compact form (f) = c(f) , (12) 


2
(f) = c(f) . (13) 

The line-integral (11) is continuously differentiable, as a consequence of hypothe-

sis H5, and strictly convex (as any level set) in terms of class flows, as a conse-

quence of hypothesis H6 (the integral of a monotone increasing function is con-

vex). Indeed, the Hessian of the objective function is positive definite. Note that 

strict convexity is due to the second term, which is quadratic; otherwise strict con-

vexity for the classical sum-integral objective function holds only in terms of link 

volumes, since these are linear (non strictly convex) functions of the class flows, 

but not in terms of class flows. 

The linear constraints (5.2)-(5.3) make up a feasible set of class link flows  that is 

nonempty, as a consequence of hypothesis H3 (one feasible point can be obtained 

by loading each demand flow on the path whose existence is explicitly assumed), 
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compact and convex. Therefore, the continuity of the objective function, ensured 

by hypothesis H5, guarantees the existence of at least one solution of the optimiza-

tion problem. Moreover, given the strict convexity of the objective function, there 

is only one global minimum f*, which represents with the only stationary point. 

Therefore, problem (5) admits a unique solution in terms of class link flows, as 

well as in terms of link volumes and cost pattern. Moreover, the uniqueness of f* 

allows to choose a balanced solution in terms of path flows, although they remain 

not univocal. For this purpose, it is useful to cast the assignment model into the 

framework of sequential route choices, where the probability Pk
u
 for class uU of 

using a certain path k is given by the product among the flow proportions yij
u
 (for-

mally introduced later on) of its links A(k)  A: 

Pk
u
 = ijA(k) yij

u
. (14) 

 

Theorem 1 – equivalence between stationary point and equilibrium 

The stationary point of problem (5) is a user equilibrium, and vice versa.  

Proof. 

Problem (5) consists in minimizing the continuously differentiable strictly convex 

function (f), subject to linear constraints that make up the nonempty, compact 

and convex set . In this case, the optimality condition for the solution f*, i.e. the 

necessary and sufficient condition for the one local and global minimum, are ex-

pressed by the following variational inequality (see, for example, Bertsekas, 1995, 

page 176):  

(f*)
T
  (f - f*)  0 , f , (15) 

stating that at point f* any feasible direction must have a nonnegative directional 

derivative. 

Based on (12), it is easy to observe that (15) coincides with Wardrop’s equilibrium 

condition; indeed, at f* no other feasible flow pattern can yield lower total costs, 

implying that each user is travelling along a shortest path (in the case of scaled 

demand the same condition must be considered separately for each class): 

c(f*)
T
  f  c(f*)

T
  f* , f . (16) 

On this basis, any stationary point, and therefore any solution, to problem (5) is a 

user equilibrium, and vice versa. This also implies that the equilibrium is unique. ■  

 

To solve this kind of convex optimization problem we can rely on the feasible di-

rection method (Bertsekas, 1995, pages 192). The method starts with a feasible 

point f1 and generates a sequence of feasible vectors {fk} for which the objec-

tive function does not increase: 

(fk+1)  (fk) , k = 1, 2, … . (17) 

At each k the new iterate is found along a search direction ek - fk based on a new 

feasible point ek by making a step k[0,1], according to the algorithm: 

fk+1 = fk + k  (ek - fk) , k = 1, 2, … . (18) 

The feasible direction method then requires a function to provide a search direction 

and an algorithm to perform the line search. 

At each iteration k of the method we consider a specific class, by rotating u among 
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U. If only efficient links are used, we modify the current bush B(u) to improve the 

scope of the search. Then, we determine the LUCE search direction ek - fk  0, with 

ek
u
 = 

u
(fk) and ek

z
 = fk

z
 for each zU such that z  u, based on the current link 

flows fk and the possibly new bush B(u). Since the feasible set  is convex, we 

can finally move the current solution along the segment fk + k(ek - fk) and take a 

step k[0,1] such that the objective function  is sufficiently lowered. 

To this end, we consider the following backtracking line search: determine the 

largest step k = 0.5
h
, for any non-negative integer h, such that the objective func-

tion satisfies, for a fixed 0 <  < 0.5 (e.g.  = 10
-4

), the well-known Armijo rule 

(fk + (ek - fk))  (fk) +   k  (fk)
T
  (ek - fk) . (19) 

 

Because the objective function is continuously differentiable, by Taylor’s theorem 

a direction is descent (i.e. small steps along it guarantee that  is reduced) if and 

only if its directional derivative is negative; the necessity derives from the convexi-

ty of the problem. Based on (12), the direction e-f is descent and only if: 

c(fk)
T
  (ek - fk) < 0 . (20) 

In other words, to decrease the objective function and maintain feasibility we nec-

essarily have to “shift flows” getting a lower total cost with respect to the current 

cost pattern. This approach to determine a descent direction can also be applied to 

each o-d pair separately, to each origin, or to the whole network jointly. Here, since 

the proposed formulation is based on class link flows, the assignment problem will 

be partitioned by classes. 

Based on the above general rule, setting the flow pattern ek by means of an all-or-

nothing assignment to shortest paths clearly provides a descent direction. If such a 

direction is adopted for all o-d pairs of the network jointly, and a line search with 

minimization rule is applied along it, we obtain the classical Frank-Wolfe algo-

rithm. However, at equilibrium each o-d pair typically uses several paths, implying 

that any descent direction that loads a single path per o-d is intrinsically myopic; in 

fact it is well known that the FW algorithm tails badly. 

 

 

3. Linear User Cost Equilibrium 
 

In this section we introduce a new approach to determine a descent direction, 

which is based on shifts of flows that lower the total cost while loading multiple 

paths. This is obtained by exploiting the inexpensive information provided by the 

derivatives of the arc costs with respect to link flows, in the context of local equi-

libria at nodes based on linear cost approximations, for users of a given class di-

rected toward a same destination. 

 

To grasp immediately the underlying idea, we can refer to the simplest network 

where one o-d pair with demand Q is connected by two links with arc cost function 

c1( f1) and c2( f2), respectively. At the current flow pattern f
 
 = (Q/2, Q/2), it is      

c1 < c2 (see Figure 1, below), so that an all-or-nothing approach would lead to a 
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descent direction (Q, 0), which is far away from the equilibrium f* (black circle in 

the Figure). 

The LUCE approach, instead, is to consider the first order approximations of the 

arc cost functions at the current flow pattern, i.e. ca + ca( fa)/fa  ( fa - fa), with 

a{1,2}, and determine a user equilibrium e among these lines (white circle in the 

Figure): this descent direction efficiently approaches the equilibrium f*, and in 

most cases can be taken as the new iterate with a step one. 

 

 
Fig. 1 – Linear Cost User Equilibrium between two paths. 

 

From an optimization point of view, the linearization of the arc cost functions leads 

to a quadratic approximation of the sum-integral objective function, so that LUCE 

seems to resemble a gradient projection or a Newton-like method. However, this is 

true only for the above trivial example, where paths (the travel alternatives) and 

links (the congested elements) coincide. Indeed, for a general network where path 

costs are non separable functions of the path flows, the resulting quadratic program 

would not be very much easier to solve than the original one. 

The LUCE approach is then translated, as we will explain in reminder of the paper, 

in a dynamic programming procedure, where the focus is on local choices at nodes 

for users directed toward a given destination. In that framework, we will introduce 

all the necessary assumptions to keep the cost functions associated to the travel al-

ternatives separable. Finally, LUCE is not conceived as an approximation of some 

nonlinear optimization method but as a behaviourally driven approach. 

 

A (reverse spanning) bush (Dial, 2006) rooted at the generic destination dZ is a 

subset of links that make up an acyclic sub-graph of G, comprising one or more 

paths from each node iN to d (if any, since a node could be not connected to d). 

Referring to a given class of users uU, since the class link costs are strictly posi-

c1 

c2 

 f1  f2 

c1( f1) 

c2( f2) 

f
 
  e  f* 

Q / 2 

c2 

Q 

c1 



 9 

tive, the shortest paths to d(u)Z form a bush. On this base, when seeking a user 

equilibrium where only shortest paths are utilized, instead of dealing with the en-

tire graph G, we can limit our attention to a current bush for each uU, denoted 

B(u)  A, and introduce an updating mechanism to make sure that eventually any 

shortest path is included into it, i.e., the bush is optimal. Indeed, only in this case 

we can guarantee that an equilibrated bush represents also a user equilibrium on 

the whole graph, for that class of users. Following this approach, no link out of the 

current bush can carry destination flow: 

fij
u
 = 0 ,  ijB(u) .  (21) 

Because the bush is an acyclic graph, it’s possible to define a topological order of 

its nodes, i.e. a positive integer O(i, u) for every iN, such that for each link 

ijB(u) the following relation holds true: O(i, u) < O( j, u).  

 

In the following we will focus on the local route choice at a generic node iN of 

users uU directed to destination d(u)Z. To this end, it is useful to define the 

forward and backward star of the node i on the current bush, denoted, respectively, 

FSB(i, u) = {jN: ijB(u)} and BSB(i, u) = {jN: jiB(u)}. 

For the flow pattern we will use the following notation: 

u feasible set of link flows of class uU satisfying (5.2), (5.3) and (21) ; 

fi
u
 current flow of class uU leaving node iN directed to destination 

d(u)Z, that is obtained by summing up the link flows only on the bush forward 

star, since by construction it is fij
u
 = 0 for each jFSB(i, u) (to handle non connect-

ed nodes we set:  = 0) 

fi
u
 = jFSB(i, u) fij

u
 ; (22) 

yij
u
 current flow proportion for class uU on link ijA, defined as 

yij
u
 = fij

u
 / fi

u
 , if fi

u
 > 0 , (23.1) 

yij
u
 = 0 , otherwise ; (23.2) 

eij
u
 auxiliary flow of class uU on link ijA, for search direction;  

ei
u
 auxiliary flow of class uU leaving node iN, for search direction; 

xij
u
 auxiliary flow proportion for class uU on link ijA, for search direction; 

xij
u
 = eij

u
 / ei

u
 , if ei

u
 > 0 , (24)(24.1) 

xij
u
 = 0 , otherwise . (24.2) 

For the cost pattern we will use the following notation:  

Ci
u
 average cost for class uU to reach destination d(u)Z from node iN ; 

Gi
u
  derivative of the average cost for users of class uU to reach destination 

d(u)Z from node iN, with respect to the node flow, i.e. conceptually 

Gi
u
 = Ci

u
 / fi

u
 . (25) 

 

The node average cost Ci
u
 is the expected impedance that a user encounters by 

travelling from node iN to destination d(u)N. In (26.1) it is defined recursively, 

as if travellers choose paths accordingly with the current flow proportions; while 

(26.2) defines the iterate based on the locally best choice, for the case where the 

node is not used (to handle non connected nodes we set: min{} = ): 
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Ci
u
 = jFSB(i, u) yij

u
  (cij

u
 + Cj

u
) , if fi

u
 > 0 , Ci

u
 = 0 , if i = d(u)u , (26.1) 

Ci
u
 = min{cij

u
 + Cj

u
: jFSB(i, u)} , otherwise . (26.2) 

Under the assumption that an infinitesimal increment of flow of class uN leaving 

node iN directed towards destination d(u)Z would diverge accordingly with the 

current flow proportions yij
u
 toward each jFSB(i, u), we have: 

Gi
u
 = jFSB(i, u) ( yij

u
)

2
  (gij + ij + Gj

u
) , if fi

u
 > 0 , Gi

u
 = 0 , if d(u) = u , (27.1) 

Gi
u
 = jFSB(i, u) [Ci

u
 = cij

u
 + Cj

u
]  (gij + ij + Gj

u
) /  

                          / max{1, jFSB(i, u) [Ci
u
 = cij

u
 + Cj

u
]} , otherwise . (27.2) 

In (27.1) the derivatives (cij
u
 + Cj

u
) / fij

u
 = gij + ij + Gj

u
 are scaled by the share 

yij
u
 of fi

u
 utilizing link ij and then passing through node j, that jointly with the flow 

proportion involved in the weighted average (26.1) yields the square ( yij
u
)

2
. 

If otherwise the node is not used, (27.2) expresses the mean of all the derivatives   

gij + ij + Gj
u
 for which link ij represents a locally best choice; for this purpose, we 

used the notation: [TRUE] = 1, [FALSE] = 0 (the lower bound of 1 in (27.2) is 

needed to avoid indeterminateness when some node is not connected and FSB(i, u) 

can be empty). 

 

The node average costs and their derivatives can be computed by processing on the 

bush each node iN in a reverse topological order O(i, u), starting from the desti-

nation d(u), where Cd(u)
u
 = Gd(u)

u
 = 0. Indeed, the computation of equations (26) and 

(27) for node iN/{d(u)} requires, respectively, the node average cost Cj
u
 and its 

derivative Gj
u
, for each jFSB(i, u), which will have been already calculated, given 

that ijB(u) and thus O(i, u) < O( j, u). 

 

Now all the elements that are needed to address the linear user cost equilibrium for 

the ei
u
 travellers of class uU leaving node iN directed to destination d(u)Z 

have been introduced. The available alternatives in this particular assignment prob-

lem with deterministic choice model are the links of the bush exiting from node i. 

To each travel alternative we associate the following cost function:  

vij
u
(eij

u
) = (cij

u
 + Cj

u
) + (gij + ij + Gj

u
)  (eij

u
 - yij

u
  ei

u
) ,  (28) 

resulting from a linearization at the current flow pattern of the average cost en-

countered by a user choosing the generic link ij, with jFSB(i, u). Note that the 

latter is in general a function, not only of the flows on link ij, but also of the flows 

using the other links exiting from node i, since the paths on the bush leaving from 

the nodes of the forward star can partially overlap and merge before reaching the 

destination; however, this “non-separable” dependence will be ignored in the fol-

lowing.  

The deterministic user equilibrium under consideration, such that each alternative 

used by class uU has the same cost Vi
u
 of reaching the destination d(u) from node 

i, can be formulated by the following system of inequalities where the choice set is 

the bush forward star, in analogy to Wardrop’s Principles where the travel alterna-

tives are instead the paths connecting a same o-d couple (Sheffi, 1985): 

eij
u
  (vij

u
(eij

u
) - Vi

u
) = 0  ,           jFSB(i, u)  , (29.1) 

vij
u
(eij

u
)  Vi

u
  ,                           jFSB(i, u)  , (29.2) 
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eij
u
  0  ,                                     jFSB(i, u)  , (29.3) 

jFSB(i, u) eij
u
 = ei

u
  . (29.4) 

If the node flow is null, i.e. ei
u
 = 0, the solution to the above problem is trivially: 

eij
u
 = 0, for each jFSB(i, u), while Vi

u
 can be arbitrarily set equal to 0, if i = d(u), 

and to min{cij
u
 + Cj

u
 : jFSB(i, u)}, otherwise. In the reminder of this section, let 

us then consider the case where ei
u
 > 0. 

Based on the main equation (29.1), either the auxiliary link flow eij
u
 is null, or the 

cost vij
u
(eij

u
) of travelling via jFSB(i, u) is equal to the linear equilibrium cost Vi

u
. 

Since ei
u
 > 0, then the flow eij

u
 on some link ij shall be positive and the correspond-

ing travel cost via jFSB(i, u) must be equal to Vi
u
. Therefore, the inequalities 

(29.2) ensure that Vi
u
 is the minimum among the costs via each jFSB(i, u). Con-

straint (29.3) requires the solution link flows to be nonnegative. Finally, constraint 

(29.4) requires that all and only the node flow shall be assigned to the available 

links. 

To improve readability, based on (28) problem (29) can be rewritten as: 

xj  (aj + bj  xj - v) = 0  ,          jJ  , (30.1) 

aj + bj  xj  v  ,                        jJ  , (30.2) 

xj  0  ,                                    jJ  , (30.3) 

jJ xj = 1  , (30.4) 

where: 

J = {(i, j, u): jFSB(i, u)}  ; 

aj = (cij
u
 + Cj

u
) - (gij + ij + Gj

u
)  ei

u
  yij

u
  ; 

bj = (gij + ij + Gj
u
)  ei

u
  ; 

xj = eij
u
 / ei

u
  ; 

v = Vi
u
  . 

Because the cost derivatives are always positive, given that ei
u
 > 0, each term bj is 

positive; instead, some term aj may be null or negative. 

 

Applying the usual Beckmann approach we can reformulate the assignment prob-

lem (30) as the following quadratic program with linear constraints: 

min{jJ 0
 xj

(aj + bj  x)  dx: xX} = min{jJ aj  xj + 0.5  bj  xj
2
: xX} , (31) 

where X is the nonempty, compact and convex set of all vectors satisfying the fea-

sibility conditions (30.3) and (30.4). The continuity of the objective function en-

sures the existence of a solution. The objective function is strictly convex, being 

the sum of integrals of increasing functions. The gradient of the objective function 

is a vector with generic entry aj + bj  xj , and then the Hessian of the objective 

function is a diagonal matrix with generic entry bj . Since all entries bj are strictly 

positive, the Hessian is positive definite and problem (31) has a unique solution. 

This is a desired property, given that the solution of the problem under considera-

tion is the back bone of the proposed assignment algorithm. Moreover, because the 

constraints that constitute the feasible set are linear and satisfy the independence 

qualification, we can also asses (Still, 2006) that the solution to the LUCE basic 

problem (29) is a continuous one-valued function of the current flow pattern.  
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To solve problem (30) we propose the following simple method. In order to satisfy 

condition (30.1), either it is xj = 0, or it is aj + bj  xj = v. Let H  J be the set of al-

ternatives with positive flow, that is H = { jJ: xj > 0}. 

For any given H, the solution in terms of flow proportions is immediate, since from 

(30.4) it is jH (v - aj) / bj = 1; therefore we have: 

v = (1 + jH aj / bj) / (jH 1 / bj)  , (32.1) 

xj = (v - aj) / bj  ,                    jH  , (32.2) 

xj = 0  ,                                   jJ \ H  . (32.3) 

The flow proportions provided by (32) implicitly satisfy (30.4), but to state that the 

chosen H yields the actual solution of problem (30), we still must ensure the two 

conditions: aj < v, for each jH (as required by (30.3), since xj = (v - aj) / bj > 0), 

and aj  v, for each jJ \ H (required by (30.2), since xj = 0). This implies that at 

the solution the value of v resulting form (32.1) must partition the set J into two 

sub-sets: the set H, made up by the alternatives j such that aj < v , and its comple-

ment J \ H, made up by the alternatives j such that aj  v. 

At a first glance the problem to determine the set H of alternatives with positive 

flow may seem to be combinatorial; however, this is not the case. Indeed, equation 

(32.1) can be rewritten as a recursive formula, thus showing the effect of adding an 

alternative k to the set H: 

v(H  {k}) = (v(H)  jH 1 / bj + ak / bk) / (jH 1 / bj + 1 / bk) . (33) 

The right hand side of (33) can be interpreted as an average between v(H) and ak 

with positive weights jH 1 / bj and 1 / bk . Therefore, the linear equilibrium cost 

increases by adding to H any alternative k for which ak is higher than the current 

value v(H), and vice versa it decreases by removing from H such alternatives. Con-

sequently, the correct partition set H can be simply obtained by removing iterative-

ly to an initially complete set each alternative jH such that aj > v, i.e. each alter-

native for which (32.2) yields a negative flow proportion. 

The proposed greedy algorithm terminates in a finite number of steps (at the most 

|J|-1 iterations are required) yielding the unique solution of the basic LUCE prob-

lem (29). 

 

Incidentally, it’s worth noticing the perfect analogy of (32.1) with the expression of 

the total travel time at a stop in hyperpath-based transit assignment, given by the 

waiting time plus the riding time, in the case of independent exponential headways 

whose mean is bj and riding times once boarded equal to aj for each line j. The 

above greedy algorithm is proved to be valid also to determine the attractive lines, 

although in that case we start from an empty set (Pallottino and Nguyen, 1988).  

 

 

4. Bush management 
 

An important issue of any assignment algorithm based on bush equilibration is 

clearly how and when to modify the current bush. For this task LUCE resembles 

the approach of Algorithm B (Dial, 2006), but is rather innovative in both respects. 
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To state precisely our bush management scheme we need to introduce some further 

notation regarding node potentials:  

Wi
u
 minimum cost for users of class uU to reach their destination d(u)Z 

from node iN on graph G ; 

Wi
u
(c) least cost function of node iN for users of class uU to reach their desti-

nation d(u)Z, yielding the node minimum cost 

Wi
u
 = Wi

u
(c) ;  (34) 

Ŵi
u
  minimum cost for users of class uU to reach their destination d(u)Z 

from node iN on the bush B(u) . 

The least cost function Wi
u
(c) is continuous, although non differentiable, and is 

typically computed jointly for all nodes with respect to a same destination d(u)Z 

through a shortest tree algorithm on the whole graph (see, for example, Pallottino 

and Scutellà, 1998), whose map will be denoted as W
u
(c).  

The node minimum cost Ŵi
u
 is instead given by the cost of the shortest path on the 

current bush from iN to the destination d(u)Z, which can be computed, similarly 

to Ci
u
 and Gi

u
, by processing on the bush each node iN in a reverse topological 

order O(i, u), starting from the destination d(u), where Ŵd(u)
u
 = 0, through the fol-

lowing recursive equation: 

Ŵi
u
 = min{cij

u
 + Ŵj

u
: jFSB(i, u)} , if i  d(u) , Ŵi

u
 = 0 , otherwise . (35) 

The computation of equation (35) for node iN/{d(u)} requires the node minimum 

cost Ŵj
u
, for each jFSB(i, u), which will have been already calculated, given that 

ijB(u) and thus O(i, u) < O( j, u). 

Each bush is initialized to the set of efficient links that bring closer to the destina-

tion on the graph: 

B(u) = {ijA: Wi
u
 > Wj

u
} . (36) 

Since the link costs are strictly positive, the resulting initial bush, which is acyclic 

by construction, includes all the initially shortest paths to the destination, thus 

spanning all the nodes connected to d(u). 

However, at the generic iteration the current bush may include non efficient links 

that do not bring closer to the destination and, most important, may exclude short-

est links that would improve its node minimum costs, thus leading to new shortest 

paths. Obviously we shall modify the current bush in order to ensure that eventual-

ly all shortest paths are available in the route choice. 

To this end, if for each ijA such that fij
u
 > 0 holds true that Ŵi

u
 > Ŵj

u
, then we up-

date the bush to: 

B(u) = {ijA: Ŵi
u
 > Ŵj

u
} . (37) 

This way: a) the resulting bush is acyclic, by construction; b) the bush is spanning 

all the nodes connected to the destination; c) all class flows travel on the bush; d) 

all non efficient links ij such that Ŵi
u
  Ŵj

u
 carry zero flow and are removed; e) the 

bush is made only by efficient links ij such that Ŵi
u
 > Ŵj

u
; f) each shortest link ij 

such that Ŵi
u
  cij

u
 + Ŵj

u
 is included into the bush. At equilibrium, since link costs 

are unique, the node minimum costs to reach the destination are also unique, im-

plying that there is only one possible topology of the bush consistent with (37). 

It may happen that some node (which for hypothesis H3 is not an origin) is not 
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connected to the destination on the graph. Based on (36) and (37), these nodes with 

infinite minimum costs will not be included in the initial bush, nor in its further 

modifications. 

 

The LUCE algorithm tends to equilibrate the current bush; thus, eventually the 

flow on non efficient paths disappears, and the bush can be properly modified. Af-

ter the modification of the bush through (37), in general some shortest paths on the 

graph may still be partially out of the bush, since the links just added to it may be 

used to further improve the node minimum costs on the bush. We now prove that, 

if all the shortest links belong to the bush already before the update, this is impos-

sible. 

 

Theorem 2 – conditions for bush optimality 

If (before the update) there is no shortest link out of the bush, i.e. {ijA\B(u): Ŵi
u
  

cij
u
 + Ŵj

u
} = , then it includes all the shortest paths on the graph (proved in Gen-

tile, 2009).  

 

Theorem 2 can be seen as a strict version of the correctness proof for the Bellman-

Ford algorithm (Bellman, 1958), originally referred to a spanning tree, which states 

that: if Ŵi
u
  cij

u
 + Ŵj

u
 for each link ijA of the graph, then Ŵi

u
 = Wi

u
 for each node 

iN; moreover, this condition can be reached in a finite number of steps by itera-

tively updating Ŵi
u
 with cij

u
 + Ŵj

u
 where the relation is not satisfied.  

Since by construction Ŵi
u
  cij

u
 + Ŵj

u
 for each link ijB(u), then the condition ac-

tually required is: {ijA\B(u): Ŵi
u
 > cij

u
 + Ŵj

u
} = . Based on Bellman’s Theorem 

some shortest path may be partially out of the bush; although at equilibrium this is 

not critical, since if the path would be used its cost would increase. In any case, 

Theorem 2 overcomes this ambiguity. 

 

The innovation proposed for the bush management scheme with respect to Algo-

rithm B is twofold. First, to compute the node minimum costs we don’t apply a 

shortest tree algorithm on the entire graph, but rely on a recursive procedure on the 

bush that requires a simple visit of such an acyclic sub-graph: the complexity is 

this way reduced from |A|log(|A|) to |A|.  

Second, we don’t wait for a perfectly equilibrated bush before updating it, but 

simply make sure that only efficient links are used: this accelerates the process of 

including in the bush any arising shortest path. 

 

 

5. Search direction 
 

In this section we first sketch the dynamic programming procedure to find the 

search direction for a given class uU and then state that it is descent, if the cur-

rent bush is not equilibrated. This important properties can be used to establish a 

convergent assignment algorithm. 
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The analysis will be developed in the space of link flows of one class, while all 

other class flows are implicitly left unchanged, thus exploiting the natural partition 

of problem (5). 

 

To obtain a complete pattern of link flows e
u
u for a given class uU consistent 

with the LUCE approach we have to solve the basic problem (29) for each node 

iN proceeding on the current bush B(u) in a topological order O(i, u). To this end, 

each time the node flow ei
u
 must be preliminary determined as follows: 

ei
u
 = jBSB(i, u) eji

u
 + Qi

u
 , if i  d(u) , ei

u
 = 0 , otherwise . (38) 

The computation of equation (38) for node iN/{d(u)} requires the link flow eji
u
, 

for each jFSB(i, u), which will have been already calculated by solving the basic 

problem for node j, given that jiB(u) and thus O( j, u) < O(i, u). 

 

In the end, to obtain the search direction we have to: 

- compute the link costs, their derivatives and the current flow proportions; 

- compute the node average costs and their derivatives in reverse topological order; 

- solve the sequence of LUCE basic problems for each node in topological order. 

This procedure can be seen as a continuous one-valued function 
u
(f)u of f, 

from the space of link flows of all classes to the space of link flows of class u only: 

We will denote by f
u
u the projection of f in the latter space; actually 

u
(f) de-

pends on f
u
 and on the link volumes, given the current bush B(u).  

 

In the following two propositions, we state that the direction 
u
(f)-f

u
 is descent for 

any f and any class uU, unless f
u
 is an equilibrium on B(u) with respect to the 

current cost pattern c(f), meaning that all paths used to reach destination d(u) on 

the current bush have minimum cost. This is the cornerstone for the prove of con-

vergence of the LUCE assignment algorithm, given in Gentile (2009). 

 

Theorem 3 – LUCE direction is feasible and descent, or null. 

The direction 
u
(f) - f

u
 is feasible and descent for any f and any class uU, or it 

is not null (proved in Gentile, 2009). 

 

Theorem 4 – LUCE direction is null if and only if the current bush is equilibrated. 

The direction 
u
(f) - f

u
 is (not) null for any f and any class uU, such that f

u
 is 

(not) an equilibrium on B(u) with respect to c(f) (proved in Gentile, 2009). 

 

 

Conclusions 
 

In this paper we have extended the formulation of the LUCE algorithm to the case 

of multiple user classes. The key question addressed is the uniqueness of the model 

also in terms of class/destination flows, which allows to univocally determine a 

balanced solution for path flows. This result was accomplished by introducing an 

additional term in the non-separable arc cost function. 
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