

Article

A Practical Nonbinary Decoder for Low-Density
Parity-Check Codes with Packet-Sized Symbols

Usana Tuntoolavesta,* and Visuttha Manthamkarnb

Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
E-mail: a,*usana.t@ku.th (Corresponding author), bvisuttha.m@ku.th

Abstract. This paper presents a practical decoder for regular low-density parity-check
(LDPC) codes with flexible packet-sized symbols. The proposed hMP-VSD (Combined
hard-decision message-passing with vector symbol decoding) is much less complex than
the conventional VSD and has the same decoding performance. Regular LDPC codes with
systematic encoding are selected for implementation. The channel is assumed to be the q-
ary symmetric channel (q-SC). Different code lengths and column weights of LDPC codes
are investigated. The results show that the codes with a column weight of 7 provide the
best performance for hMP-VSD, while hMP works best with codes having a column
weight of 5. With packet-sized symbols, even the rather short (60, 30) code structure has
code lengths of 1,920 to 245,760 bits with symbol sizes of 32 to 4,096 bits. Both the
decoder and its encoder were implemented on Raspberry-pi 4 model B boards and these
results confirm that the computation time of hMP-VSD is 60% to 70% lower than that of
VSD for pe in the range 0.05 to 0.1.

Keywords: Nonbinary decoder, hard-decision message-passing, low-complexity decoder,
packet-sized symbol, Raspberry-pi, low-density parity-check codes.

ENGINEERING JOURNAL Volume 26 Issue 9
Received 7 February 2022
Accepted 20 September 2022
Published 30 September 2022
Online at https://engj.org/
DOI:10.4186/ej.2022.26.9.35

DOI:10.4186/ej.2022.26.9.35

36 ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/)

1. Introduction

Low-density parity-check (LDPC) codes, which are

widely used error-correcting codes, were first proposed
by Gallager in 1963 [1]. After being long forgotten,
possibly because of a lack of computing power at that
time, they were rediscovered by Mackay and Neal in
1996 [2]. These codes have many applications because
they achieve performance close to Shannon’s limit in the
additive white-Gaussian noise channel [3], [4], [5]. Some
applications of LDPC codes are: the 802.11n/ac (Wi-Fi)
standard [6], ship-based satellite communications on the
move [7], and 2D and 3D NAND flash memories [8].
The message-passing (MP) technique is a common
decoder for LDPC codes [3], [9]. LDPC codes usually
use binary symbols and soft-decision decoding. The code
length can be extremely long, up to thousands of bits,
and codewords can be used as a packet in the data
network. However, MacKay, who rediscovered LDPC
codes, stated that nonbinary LDPC codes in the binary
symmetric channel and binary Gaussian channel had
better decoding performance than the binary LDPC
codes [10]. That study showed the results for GF(q) for 2i;
i = 2, 3, 4, which were two bits per symbol to four bits
per symbol. Nonbinary LDPC codes were also
investigated by other researchers, such as Cho et al. [3],
who proposed the design of nonbinary LDPC codes with
message-passing algorithms. They considered GF(q) for q
= 2i; i = 2, 3, 4, 5, 6, having two bits per symbol to six
bits per symbol. Nonbinary LDPC codes were also
considered in the fountain-coding scheme in the erasure
channel by Kasai [11].

The current paper considers LDPC codes on a much
larger scale by applying them to packet-sized symbols
with a minimum of 32 bits per symbol and no upper
limit on the symbol size. In this case, a packet is
considered as a symbol in a codeword; therefore, a
codeword consists of many data packets and parity-check
packets. With packet-sized symbols, soft-decision
message-passing (sMP) is no longer practical because the
complexity increases rapidly with the symbol size. Hard-
decision message-passing (hMP) becomes attractive
because of its low-complexity. hMP requires less power,
fewer hardware resources, and provides higher speed
than sMP [12]. The tradeoff is that the performance of
hMP is lower than sMP for all SNR levels [13].

The bit-flipping (BF) algorithm is well-known in
hard-decision decoding for LDPC codes. The first BF
method was proposed by Gallager in 1962 [14]. In each
iteration, the syndromes were computed. Then, the most
suspicious bit was selected and flipped if the number of
corresponding unsatisfied check nodes was higher than
or equal to a fixed threshold. However, its performance
was not sufficient. To improve the performance of BF,
soft-information-aided BF decoding, such as the gradient
descent BF (GDBF) [15], noisy-GDBF (NGDBF) [16],
and adjustment factor-aided-NGDBF (A-NGDBF)
algorithms [17] have been proposed. In addition,
multibit-flipping (MBF) [18] based on the hard-decision

BF algorithm was proposed to improve the performance
for NAND storage systems. For MBF, the decoder
allowed multiple bits to be flipped during each iteration.
Although the proposed method uses hard-decision
decoding as does BF, it uses large nonbinary symbols
from GF(2r) where r ≥ 32 bits, while BF uses binary
symbols. Therefore, it is based on a different concept
from BF. The proposed method is based on verification-
based decoding [19] and does not need information from
the channel.

Even though hMP cannot provide excellent
decoding performance by itself, it can be very helpful
when used in combination with another nonbinary
decoder called vector symbol decoding (VSD). VSD is a
verification-based decoding technique for codes that use
r-bit nonbinary symbols from GF(2r), where r ≥ 32 bits
[20]. Examples of 446, 892, and 1,784 bits per symbol
were used in [21] for VSD with convolutional codes.
Larger sizes can be extended with the same number of
computations because the decoding does not depend on
the symbol size. The complexity of VSD depends on the
number of erroneous symbols.

The conventional method for encoding LDPC code
uses a systematic generator matrix derived from the
parity-check matrix by Gaussian elimination. However,
this method is inefficient because its complexity is O(n3)
for preprocessing and O(n2) for actual encoding, where n
is the codeword length. Therefore, the encoding
complexity is high for LDPC codes, which generally use
a large block-size n [22]. Another encoding method
proposed in [23] can be applied to any LDPC code with
much lower complexity than the conventional method.
In addition, the codeword is still separated into a data
part and a parity part. However, its complexity still
increases linearly with the block size. For packet-sized
symbols, shorter codes can accommodate the same
amount of binary data as long binary codes because each
symbol consists of many bits. With systematic encoding
[23], the codeword is separated into the data part and the
parity part. Therefore, VSD can identify the positions of
the data symbols without using a systematic parity-check
matrix H.

The current paper proposes a new suboptimal, low-
complexity decoding algorithm for packet-sized symbols
called combined hard-decision message-passing with
vector symbol decoding (hMP-VSD). This hMP-VSD
consists of two parts, namely, hMP (the pre-decoder) and
VSD (the main decoder). The overall complexity of MP-
VSD is lower than that of VSD, but the performance
remains the same. The preliminary idea of using hMP to
reduce the complexity of VSD has been presented in [24].
However, then, it was impractical, because only a
nonsystematic code was investigated. Since the decoder
outputs the decoded codeword, it is troublesome to map
this to the decoded data. An example of a method to
map decoded codewords into decoded data for
convolutional VSD was patented in [25]. However, the
encoding part was not addressed in [24]. To make it
practical, systematic LDPC codes were considered in [26]

DOI:10.4186/ej.2022.26.9.35

ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/) 37

by converting the nonsystematic regular LDPC codes to
their systematic pairs with row operations. However,
only the hMP part was investigated in [26] without the
VSD part. The implementation of hMP-VSD in
Raspberry-pi boards for systematic LDPC codes was
introduced in [27].

The current paper presents the complete coding
system, including both the encoder and hMP-VSD
decoder with regular LDPC codes. Regular LDPC codes
with systematic encoding are selected instead of the
systematic codes in [26], [27] because they provide better
decoding performance. The decoding performance of the
complete hMP-VSD for regular LDPC codes with
systematic encoding is investigated in detail for various
code lengths and rates. From the effect of the density of
bit 1s in H discovered in [26], this paper considers codes
with different densities of 1s in H as well. The reduced
complexity of the decoder is shown for these codes. In
the simulations, the q-ary symmetric channel (q-SC)
model is used to represent a packet-based erroneous
channel [28], [29]. Furthermore, the encoder and decoder
for regular LDPC codes with systematic encoding have
been implemented on Raspberry-pi boards to show that
the number of computations is low enough to be
practical.

2. Materials and Method

2.1. Background

2.1.1. Hard-decision message-passing

MP is a decoding technique for LDPC codes [3],

conveniently used with Tanner graph. Tanner graph is a
bipartite graph consisting of two groups of disjointed
nodes, namely, the set of variable nodes and the set of
check nodes. Figures 1 and 2 show the relationship
between H and its corresponding Tanner graph. For 1 in
position (i, j) of H, there is a line linking a check node ci

to the variable node vj. During the decoding with MP,
messages are passed back and forth between the variable
and check nodes. The decoding is done iteratively. For
binary LDPC codes, sMP is normally used and the
messages are probabilistic values. However, for packet-
sized symbols, hMP is used instead of sMP because sMP
is impractical. A packet contains many bits; therefore,
numerous possible values could occur. sMP must
calculate the probabilities for all values and pass them to
another node. If 32 bits per packets are used, there are
232 = 4.29 × 109 different possible values. For longer
packets, the number of possible values increases
substantially.

If hMP is used, the message to be passed is only the
bit sequence of each packet. The sum of values from
many nodes will use the modulo-2 addition and this can
be done simply with any length of the packets, as
illustrated in Fig. 2.

2.1.2. Systematic encoding for nonbinary block codes

For any block code, the codeword can be computed

from the data sequence and generator matrix. For binary
codes, it involves the multiplication of a vector by a
matrix as in Eq. (1). For nonbinary codes, it is the
multiplication of a matrix by a matrix, as in Eq. (2).

 = v G u (1)

 = V G U (2)

where v is the column vector of a codeword, u is the
column vector of a data sequence, V is the codeword
matrix, U is the data matrix and G is the generator matrix.

Note that a bold small letter represents a vector, and a

bold capital letter represents a matrix.

As v and u are column vectors, Eq. (1) is in a
different form than the usual encoding equation normally
seen where v and u are row vectors. These are chosen
because it is more convenient to perform operations
using V and U as matrices.

With systematic encoding, the data symbols can be
transmitted out as the first part of the codeword. Then,
the parity-check symbols can be computed from the
vector modulo-2 sum of the data symbols specified by

Fig. 1. Relationship between H and nodes of Tanner
graph in Fig. 2.

H =

Fig. 2. Tanner graph with calculation of check node
values from modulo-2 addition of variable node values.

=

= ⊕ ⊕ …

= ⊕ ⊕ …

= ⊕ ⊕ …

DOI:10.4186/ej.2022.26.9.35

38 ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/)

each parity-check equation in H, substantially simplifying
the encoding of large nonbinary symbols.

2.1.3. VSD

VSD is suitable for linear codes with packet-sized

symbols because its decoding complexity remains the
same for any large symbol size. However, it is not
designed for small-sized symbols because it assumes that
all error patterns are linearly independent. Thus, the
typical symbol size is 32 bits per symbol or more. The
VSD algorithm has been described many times [24], [30];
therefore, it is only briefly explained here. The flowchart
of the complete hMP-VSD and an example will be
described later in the Method section.

VSD accepts the received symbols yj; j = 1, 2, …, n
and places them as rows of the received matrix Y. The
syndrome matrix is then calculated from Eq. (3).

 = S H Y (3)

where S is the syndrome matrix of size (n – k) × r.

H is the parity-check matrix of size (n – k) × n.
Y is the received matrix of size n × r.
n is the number of total symbols in a code word
of an (n, k) code.
k is the number of data symbols in a code word
of an (n, k) code.
r is the size in bits of each symbol.

If S equals a zero matrix, the decoder concludes that
there is no error. If it is not a zero matrix, an error-
locating vector σ will be found to verify the correct
symbol positions and the erroneous symbol positions. To
find σ, null combinations are discovered first because σ
equals the result of the OR operations of null
combinations. Each null combination can verify some
symbols; therefore, the OR operations of the null
combinations will verify all verifiable symbols. The null
combination idea has also been applied in rateless code
decoding [31].

The null combinations are a row of H or the
modulo-2 sum of rows of H. The row or sum of rows to
be null combinations can be identified by the index of a
zero-syndrome vector or by the index of the set of
syndrome vectors that sum to a zero vector, explained
with the example in the Method section. More examples
of VSD can be found in [24]. Once the error-locating
vector is discovered, the bit 1s in this vector refer to the
correct symbols and the bit 0s refer to the unverified or
apparent erroneous symbols. The decoder will compute
the erroneous symbol values from Eq. (4).

 1−= sub sub subE H S (4)

where
Esub is the submatrix of the error matrix E that contains

only the erroneous symbol values.
Hsub is the square submatrix of the parity-check matrix

H that contains only the columns corresponding

to the error positions and the rows corresponding
to linearly independent rows of S.

1−

subH is the inverse matrix of Hsub.

Ssub is the submatrix of the syndrome matrix S
containing only the linearly independent rows of S
that correspond to the row of Hsub.

After Esub is known, the error matrix E is also

known because, for a correct symbol, the row of E for
the symbol position is a zero vector. The decoder will

obtain the decoded codeword matrix 𝑽 from Eq. (5) and
the decoding process is finished.

 𝑽 = 𝒀 ⊕ 𝑬 (5)

where  is the vector modulo-2 sum.

2.1.4. Channel model

Assume a q-ary symmetric channel (q-SC) model for

packet-based erroneous channel. This channel model is
suitable for LDPC codes with symbols from GF(q); q =

2m; m ∈ ℕ for large q [28], [29].
Let the random variable X be the input and random

variable Y be the output of the q-SC with transition
probabilities of:

 (|) 1 ;P Y y X x p x y= = = − = (6)

 (|) /(1);P Y y X x p q x y= = = −  (7)

where x, y ∈ GF(2m).

2.2. Method

2.2.1. Flowchart

The hMP-VSD algorithm is described with the help

of the flowchart in Fig. 3. The hMP is the first part of the
decoding process and could be considered as the pre-
decoder. It can easily correct some simple error patterns.
Then, the output of hMP will be input to VSD. Thus, the
decoding performance of hMP-VSD is the same as VSD.
The benefit of adding hMP is to reduce the number of
erroneous symbols that VSD needs to correct. The
algorithm description shows that VSD is required to
invert a square matrix of size e × e, where e is the number
of erroneous symbols. Since the complexity of matrix
inversion is O(n3) for a n × n matrix [32], reducing the
matrix size substantially reduces the complexity.

The flowchart in Fig. 3 shows the proposed hMP-
VSD decoder. The algorithm starts with the received
matrix Y, containing the received symbols yj; j = 1, 2, …,
n as its row vectors. Then, the decoder evaluates if there
are any new yj values. At the beginning of the hMP
decoding process, all yj values are new; therefore, each
check node will compute its value using the vector
modulo-2 sum of all variable node values connected to it.

DOI:10.4186/ej.2022.26.9.35

ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/) 39

The check node value is the same syndrome value as

the linear block codes. If a check node value ci is equal to
a zero vector, all variable nodes connected to it are
verified to have correctly received symbol values. If all ci;
i = 1, 2, …, n – k are zero vectors, all received symbols
are verified to be correct, and the decoder can output the
decoded data directly for systematic encoding.

For each nonzero ci, evaluation only occurs if there
is only one unverified symbol connected to it. If there is,
the decoded received symbol value yj will be corrected as
shown in Eq. (8).

 yj = yj  ci (8)

This new received symbol value will be used to

calculate the values of all check nodes connected to it.
If there is more than one unverified symbol

connected to a check code, the decoder will evaluate

whether there is only one common unverified symbol
connected to at least two identical check nodes. If there
is, the common received symbol value will be decoded as
the received symbol yj and corrected using Eq. (8). This
new received symbol value will be used to calculate the
values of all check nodes connected to it.

If there is no more correctable unverified symbol,
the hMP part will be completed and the received matrix
will be input to the VSD part. Since the check node
values (the syndromes) have been calculated in the hMP
part, VSD can start with finding the null combinations.
These syndrome values are placed as row vectors of a
syndrome matrix S for VSD. If the number of unverified
symbols, which are considered erroneous symbols, from
the null combinations is the same as the rank of S, VSD
can correct the errors with Eq. (4). If the number of
erroneous symbols from the null combinations is not
equal to the rank of S, the decoder fails.

After the erroneous symbol values are found, the
decoder will add them to the received symbol values. The
result will be the decoded codeword. For systematic
encoding, the data symbol positions are known; therefore,
the decoded codeword can output the decoded data
symbols directly from the decoded codeword.

Ex1. Consider a regular LDPC code with the parity-
check matrix H in Eq. (9) and suppose the received
matrix Y containing sixteen 5-bit symbols in Eq. (10) is
received.

1

2

3

4

5

6

7

8

0 0 10 0 10 1 10 0 10 0 0 1
0 10 0 0 0 10 10 0 0 10 1 1
0 0 0 10 10 0 0 0 1 1 10 0 1
1 10 0 0 0 10 0 1 10 0 10 0
10 10 10 0 0 0 1 10 0 0 10
0 10 10 0 0 1 10 0 10 10 0
10 0 0 1 1 1 10 10 0 0 0 0 0
0 0 1 1 10 0 0 0 0 0 0 1 1 10

   
   
   
   

= =   
   
   
   

  

h
h
h
h

H
h
h
h
h

 (9)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 10 1
10 10 0
0 0 10 0
10 0 0 1
0 0 1 1 1
0 1 1 10
1 10 0 1
10 10 0
10 1 10
0 0 0 10
0 10 0 1
0 0 10 0
1 1 10 0
0 0 10 0
0 0 0 0 1
0 10 1 1

   
   
   
   
   
   
   
   

= =   
   
   
   
   
   
   
   

  

y
y
y
y
y
y
y
y

Y
y
y
y
y
y
y
y
y

 (10)

Part I: hMP

Figure 4 illustrates how the check node values are

calculated in the hMP algorithm. From the vector
modulo-2 sum of the connected variable nodes, the

Fig. 3. Flowchart of hMP-VSD algorithm.

DOI:10.4186/ej.2022.26.9.35

40 ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/)

check node values are found to be c1 = 00111, c2 =
01101, c3 = 00101, c4 = 01111, c5 = 00100, c6 = 00111, c7

= 01011, and c8 = 01011.
No check node is equal to a zero vector; therefore,

no received symbol is verified. However, there is a
common unverified symbol y5 connecting to both c7 and
c8. These two check nodes also have the same value.
Consequently, the decoder will correct y5 by adding the
value of c7 or c8 to it, as in Eq. (11), showing the
decoded y5.

 𝑦5 = 𝑦5 ⊕ 𝑐7 = 00111 ⊕ 01011 = 01100 (11)

Next, the check node values c7 and c8 connected to
y5 are recomputed to be zero vectors. These zero vector
check nodes verify all variable symbols connected to
these check nodes. In this case, y1, y5, y6, y7, y8, and y10
are verified by c7. In addition, y3, y4, y5, y13, y14, and y15

are verified by c8. After these verifications, there is one
unverified variable symbol, y11, connected to c5. Then,
the decoder corrects y11 by adding the value of c5 to it, as
shown in Eq. (8). Then, the new check node value c5 will
be a zero vector, verifying all symbols connected to it.

Since there are no more unverified symbols that can
be corrected by hMP, hMP will output these updated
received symbols to VSD, which is the part II of this
hMP-VSD algorithm.

Part II: VSD

The decoder computes the syndrome matrix S from
Eq. (3). For this example, the calculation and the result
are shown in Eq. (12) and Eq. (13), respectively.

0 1 10 1
10 10 0
0 0 10 0
10 0 0 1

0 0 10 0 10 1 10 0 10 0 0 1 0 1 10 0
0 10 0 0 0 10 10 0 0 10 1 1 0 1 1 10
0 0 0 10 10 0 0 0 1 1 10 0 1 1 10 0 1
1 10 0 0 0 10 0 1 10 0 10 0 10 10 0
10 10 10 0 0 0 1 10 0 0 10 10 1 10
0 10 10 0 0 1 10 0 10 10 0 0 0 0 10
10 0 0 1 1 1 10 10 0 0 0 0 0 0
0 0 1 1 10 0 0 0 0 0 0 1 1 10

 
 
 
 

=  
 
 
 
 

S

0 1 10
0 0 10 0
1 1 10 0
0 0 10 0
0 0 0 0 1
0 10 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (12)

1

2

3

4

5

6

7

8

0 0 1 1 1
0 1 10 1
0 10 10
0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

   
   
   
   

= =   
   
   
   

  

s
s
s
s

S
s
s
s
s

 (13)

The null combinations are shown by one or more

syndromes that sum to the zero vector with modulo-2

addition. These are s4, s5, s7, s8, s1⊕s6, s1⊕s2⊕s3, and

s2⊕s3⊕s6. The corresponding null combinations are h4,

h5, h7, h8, h1⊕h6, h1⊕h2⊕h3, and h2⊕h3⊕h6. The
values of these null combinations are shown in Eq. (14)–
(20). The error-locating vector (σ) is computed from the
OR operations of null combinations, as shown in Eq.
(21).

4 1100001001100100=h (14)

5 1010100001100010=h (15)

7 1000111101000000=h (16)

8 0011100000001110=h (17)

1 6 0111010000000101 =h h (18)

1 2 3 0111001100100011  =h h h (19)

2 3 6 0000011100100110  =h h h (20)

  =1111111101101111 (21)

For larger matrices, the syndrome matrix is modified
to contain rows of at most one bit of “1” with column
operations starting from the first row of S until it can no
longer generate new linearly independent rows. The new
matrix is called a modified syndrome matrix S’. An
example of S and its corresponding S’ are

Fig. 4. Calculations of check node values.

=

=

=

=

=

=

=

=

DOI:10.4186/ej.2022.26.9.35

ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/) 41

 
 
 
 =
 
 
  

1 1 10 0
1 1 0 10
0 1 0 0 1
0 1 0 0 1
0 0 0 0 0
0 1 0 0 1
0 1 0 0 1

S and

 
 
 
 =
 
 
  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0'
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0

S

The detail on how to obtain S’ is in [33]. Notice that

it is now obvious, which set of rows in the modified
syndrome matrix S’ sums to a zero vector. They are row

3 ⨁ row 4, row 5, row 3 ⨁ row 6, row 3 ⨁ row 7 etc.
The same sets of rows in the syndrome matrix will also
sum to a zero vector. This technique was used in the
actual programming of the decoder.

The number of erroneous symbols is equal to the
number of 0s in σ that is equal to 2, as shown in Eq. (21).
Since this is equal to the rank of S, the decoder can
compute the error values from Eq. (4) as follows:

 1

2

0 0111
0 1101

   = =
     

sub

s
S

s (22)

11
10
 =
  

subH (23)

1

0 1

1 1

−  
=  
 

subH (24)

1 9

12

0110 1
010 10

−    =  = =
     

sub sub sub

e
E H S e (25)

The decoded codeword matrix (V) can be computed
by adding the error matrix (E) to the Y with the modulo-
2 sum, as shown in Eq. (26).

0 1 10 1 0 0 0 0 0
10 10 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0
10 0 0 1 0 0 0 0 0
0 1 10 0 0 0 0 0 0
0 1 1 10 0 0 0 0 0
1 10 0 1 0 0 0 0 0
10 10 0 0 0 0 0 0
10 1 10 0 1 10 1
0 0 0 10 0 0 0 0 0
0 0 1 10 0 0 0 0 0
0 0 10 0 0 10 10
1 1 10 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 10 1 1 0 0 0 0

 
 
 
 
 
 
 
 

=  =  
 
 
 
 
 
 
 
 

V Y E

0 1 10 1
10 10 0
0 0 10 0
10 0 0 1
0 1 10 0
0 1 1 10
1 10 0 1
10 10 0
1 10 1 1
0 0 0 10
0 0 1 10
0 1 1 10
1 1 10 0
0 0 10 0
0 0 0 0 1

0 0 10 1 1

   
   
   
   
   
   
   
   

=   
   
   
   
   
   
   
   
   

 (26)

2.2.2. LDPC codes

The parity-check matrix in this paper is constructed

using the (γ, ρ)-regular LDPC code [34], where γ is the
column weight and ρ is the row weight. The simulation
results use the column weights γ = 3, 5, 7, and 9 because
γ = 3 is one of the most common column weights for

regular LDPC codes [34] and γ ≥ 5 is suitable for the bit-
flipping algorithm [35].

2.2.3. Codes with packet-sized symbols

In different data networks, packets can differ in size,

but they are at least several bytes. Given that the symbol
is at least 32-bits long to satisfy the linearly independent
erroneous symbols of VSD, the number of computations
hMP-VSD remains the same when the symbol size
increases. Specifically, r-bit symbols with higher values of
r only lead to vector modulo-2 arithmetic of longer
vectors. The main complexity depends on the matrix
inversion part of VSD to recover error values, with the
size of the matrix inversion being the number of
erroneous symbols.

To limit the decoder complexity, rather short codes,
such as (60, 30) and (120, 60) LDPC codes, are selected.
This will keep the number of erroneous symbols in each
codeword quite small for a given channel condition. For
example, if the probability of packet errors from the
channel is 0.1, a (60, 30) code will have an average of six
erroneous symbols, whereas a (120, 60) code will have an
average of 12 erroneous symbols. Inverting a 12 × 12
matrix is much more complex than inverting two 6 × 6
matrices. Since there is usually a built-in standard binary
code to correct random errors in each packet, the
remaining erroneous packets are burst errors or too
many random errors. Therefore, the probability of packet
errors around 0.1 reflects a channel with problems
including excessive noise and/or fading and/or
interference.

The total size of the codeword in binary depends on
the symbol size. For example, with 32-bit symbols, the
codeword will have 60 × 32 = 1,920 bits. The vector
modulo-2 sum will be performed on 32-bit vectors. If a
packet contains 100 bytes, it will be an 800-bit symbol
and the codeword will have 60 × 800 = 48,000 bits. The
vector modulo-2 sum will be performed on 800-bit
vectors. Since the symbol size is adjustable, there is no
need to use a long code structure.

2.2.4. Implementation in Raspberry-pi board

The Raspberry-pi4 Model B uses Broadcom

BCM2711, Quad-core Cortex-A72 (ARM v8) 64-bit SoC
and runs at a frequency of 1.5 GHz. It has 4 GB
LPDDR4 of SDRAM and a Micro-SD card slot for data
storage and its operating system. The operating system,
Raspbian, is optimized for the Raspberry-pi board and
based on Debian, which is a Linux distribution. This
paper uses Raspberry-pi boards as an encoder and a
decoder of hMP-VSD. The implementation of hMP-
VSD on the Raspberry-pi board has been presented in
[27] with a systematic code. In the current paper, a
regular LDPC code with systematic encoding is
implemented. In addition, the channel model is changed
from the Gilbert-Elliot model to q-SC. Moreover, the
computational time for decoding is investigated.

DOI:10.4186/ej.2022.26.9.35

42 ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/)

3. Results

This section presents a performance comparison

between hMP and hMP-VSD in terms of the probability
of decoding failure. The computational time for
decoding using a Raspberry-pi 4 board is presented to
show the effectiveness of using hMP as the pre-decoder.

Table 1 shows the density of (γ, ρ)-regular LDPC
code where γ = 3 and 5. The density of a code is shown
as the percentage of bits 1s in its H matrix. For instance,
a (60, 30) LDPC code with (3, ρ) contains 60 × 3 = 180
bits of 1s in 30 × 60 = 1,800 total elements in H, which
equates to a density of 10%.

Figure 5 shows the probability of decoding failure of
hMP and hMP-VSD for (60, 30) with γ = 3, 5, 7, and 9.
The simulations were applied in the q-SC model with a
range of pe from 0.05 to 0.20. Figure 6 shows the
probability of decoding failure of the decoder with the
same parameters as Fig. 5, except that the codes are
changed to (120, 60). For both the (60, 30) and (120, 60)
codes, codes with γ = 3 provide almost the same
decoding performance for hMP and hMP-VSD. Its
decoding performance of hMP-VSD is the worst
compared to the other γ values. hMP works best with the
codes having γ = 5; however, codes with γ = 7 provide
the best performance for hMP-VSD.

Figure 7 shows the probability of decoding failure of
hMP and hMP-VSD for (60, 30) codes with γ = 7 for
three different symbol sizes (32 bits per symbol, 1,024
bits per symbol, and 4,096 bits per symbol). In all cases,
the performance results for both hMP and hMP-VSD are
the same. Only the green lines are seen in Fig. 7 because
all hMP plots overlap and all hMP-VSD plots overlap.
This emphasizes that the decoding performance of VSD
does not depend on the symbol size, given that the
symbol size is large enough to satisfy the assumption that
the erroneous symbols are linearly independent. A typical
symbol size for VSD is at least 32 bits per symbol.

The main complexity of VSD is the number and size
of the matrix inversion required to obtain the error
values. The size of the matrix inversion is equal to the
number of erroneous symbols that VSD must correct. By
adding the hMP part, the number of erroneous symbols
input to VSD is decreased and this reduces the overall
complexity. Figure 8 illustrates the percentage reduction
in the number of matrix inversions required for VSD
when hMP is used as the pre-decoder for the two
different codes (60, 30) and (120, 60) with γ = 3, 5, 7, and
9. Different numbers of erroneous symbols from 2 to 10
symbols in each received sequence are investigated. The
channel model is the q-ary symmetric channel with pe =
0.05.

Figure 9 shows the comparison between the hMP-

VSD and VSD decoders for an average decoding time
per code word of the 32-bit symbol case using the
Raspberry-pi 4 Model B board with a range of pe from
0.05 to 0.1 for an (60, 30) code with γ = 7. In all cases,

Table 1. Density of H for each γ.

H γ Density (%)

(60, 30)

3 10
5 16.67
7 23.33
9 30

(120, 60)

3 3
5 5
7 11
9 15

Fig. 5. Probability of decoding failure with decoders of
hMP and hMP-VSD for (60, 30) codes.

Fig. 6. Probability of decoding failure with decoders of
hMP and hMP-VSD for (120, 60) codes.

DOI:10.4186/ej.2022.26.9.35

ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/) 43

the hMP-VSD decoder takes substantially less time than
the VSD decoder because hMP corrects errors using only
the vector modulo-2 sum, whereas VSD must perform
the matrix inversion to find the error values, which is
considerably more complex than the vector modulo-2
sum. Based on these results, hMP-VSD takes
approximately 60% less time than VSD (around 55%
when pe = 0.1 and up to 65% when pe = 0.05).

An example of the results from the implementation
of hMP-VSD on the Raspberry-pi board is shown using
the original picture from Pexels [36] and a (60, 30) code
with γ = 7. Figure 10 shows the data part of the received
pre-decoded image from the Raspberry-pi board with pe

= 0.2. The received picture contains 46,010 erroneous
data symbols in the 230,400 total data symbols or an
input error probability of 1.997 × 10-1. These erroneous
data symbols are seen in the corrupted image in Fig. 10.
After decoding using the hMP-VSD decoder, the
number of erroneous data symbols substantially reduces
to only 198 symbols or an output error probability of
8.59 × 10-4, resulting in the good quality image shown in
Fig. 11.

Fig. 7. Performance of hMP and hMP-VSD for (60, 30)
code with γ = 7 for three sets of symbol sizes (32 bits per
symbol, 1,024 bits per symbol, and 4,096 bits per
symbol).

Fig. 8. Percentage of reduction in number of matrix
inversion for different numbers of erroneous symbols
when hMP is added as pre-decoder to VSD.

Fig. 9. Decoding time per code word with (60, 30) code
with γ = 7 and 32 bits per symbol.

Fig. 10. Image of pre-decoded data part using Raspberry-
pi board.

Fig. 11. Image of post-decoded data using Raspberry-pi
board.

DOI:10.4186/ej.2022.26.9.35

44 ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/)

4. Discussions

Figures 5 and 6 compare the hMP part and hMP-VSD
for the two sets of code lengths of 60 and 120 symbols
and four values of γ = 3, 5, 7, and 9 for each code length.
The simulation results in q-SC show that both the (60, 30)
and (120, 60) codes with γ = 7 provide the best
performance in the group. Furthermore, the closer the
two graphs of the hMP part and hMP-VSD for each
code, the more useful hMP will be as the pre-decoder
because it can correct many erroneous symbols and leave
smaller remaining erroneous symbols for VSD to correct.
Even though these codes are low-density parity- check
codes, the results from Fig. 5, Fig. 6, and Table 1 show
that too low-density may not be preferable because VSD
uses verification-based decoding, which can verify only
the symbols involved in each parity-check equation. A
very low-density results in each parity-check equation
involving only a few received symbols. Therefore, VSD
requires a higher number of parity-check equations to
verify all the correctly received symbols. With a higher
density, each received symbol has a greater chance of
being in many parity-check equations and this increases
the chance of VSD verifying all the correct symbols.
Although the code density directly affects the
performance, code with a too high-density does not
provide good performance, as shown in Fig. 5 and 6. The
results show that the decoding performance starts to
drop when γ = 9 for both the (60, 30) and (120, 60)
codes with regular H.

Increasing the symbol size could increase the
codeword length in bits. Because the proposed decoder
allows the symbol size to increase as desired, the
codeword length in bits can also be increased as desired.
The simulation results in Fig. 7 emphasize that the
decoding performance is maintained with any larger
symbol size. The complexity of hMP-VSD is
substantially lower than for VSD due to the reduction in
the matrix inversion required. This is reflected clearly in
the decreased computational time. An implementation
result on a Raspberry-pi board is illustrated with a pre-
decoded image and a post-decoded image (Fig. 10 and 11,
respectively) to assist with easy visualization of the results.

5. Conclusions

Using hMP as the pre-decoder of VSD substantially

reduces the complexity of VSD while maintaining the
same decoding performance. Regular LDPC codes with
systematic encoding are proposed for the practical use of
hMP-VSD because VSD outputs the decoded codeword,
not the decoded data sequence. The decoder can be used
with flexible packet-sized symbols. Therefore, it can be
easily adjusted to fit various channel conditions and
network requirements. The proposed decoder and its
corresponding encoder were successfully implemented
on Raspberry-pi boards. The computational time
confirms that hMP-VSD is considerably less complex
than VSD.

Acknowledgement

The Kasetsart University Research and Development

Institute (KURDI), Bangkok, Thailand provided support
with proof reading and comments.

References

[1] R. G. Gallager, “Low-density parity-check codes,”

in Research Monograph Series. Cambridge: MIT Press,
1963.

[2] D. MacKay and R. Neal, “Near shannon limit
performance of low density parity check codes,”
IEEE Power Electron Lett., vol. 32, no. 18, pp. 1645-
1646, 1996.

[3] S. Cho, K. Cheun, and K. Yang, “Design of
nonbinary LDPC codes based on message-passing
algorithms,” IEEE Trans. Commun., vol. 66, no. 11,
pp. 5028-5040, 2018.

[4] T. J. Richardson and R. L. Urbanke, “The capacity
of low-density parity-check codes under message-
passing decoding,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 599-618, 2001.

[5] T. J. Richardson, M. A. Shokrollahi, and R. L.
Urbanke, “Design of capacity-approaching irregular
low density parity-check codes,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 619-637, 2001.

[6] I. Tsatsaragkos and V. Paliouras, “A reconfigurable
LDPC decoder optimized for 802.11n/ac
applications,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 26, no. 1, pp. 182-195, 2018.

[7] B. Wang, P. Chen, Y. Fang, and F. C. M. Lau, “The
design of vertical RS-CRC and LDPC code for
ship-based satellite communications on-the-move,”
IEEE Access, vol. 4, pp. 44977-44986, 2019.

[8] T. Nakamura, Y. Deguchi, and K. Takeuchi,
“Adaptive artificial neural network-coupled LDPC
ECC as universal solution for 3-D and 2-D, charge-
trap and floating-gate NAND flash memories,”
IEEE J. Solid-State Circuits, vol. 54, no. 3, pp. 745-
754, 2019.

[9] X. Zhang and P. H. Siegel, “Quantized iterative
message passing decoders with low error floor for
LDPC codes,” IEEE Trans. Commun., vol. 62, no. 1,
pp. 1-14, 2014.

[10] M. Davey and D. MacKay, “Low density parity
check codes over GF(q),” IEEE Commun. Lett., vol.
2, no. 6, pp. 165-167, 1998.

[11] K. Kasai, D. Declercq, and K. Sakaniwa, “Fountain
coding via multiplicatively repeated non-binary
LDPC codes,” IEEE Trans. Commun., vol. 60, pp.
2077-2083, 2012.

[12] N. Mobini, A. H. Banihashemi, and S. Hemati, “A
different binary message-passing LDPC decoder,”
IEEE Trans. Commun., vol. 57, no. 9, pp. 2518-2523,
2009.

[13] R. Jose and A. Pe, “Analysis of hard decision and
soft decision decoding algorithms of LDPC codes

DOI:10.4186/ej.2022.26.9.35

ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/) 45

in AWGN,” in 2015 IEEE International Advance
Computing Conference (IACC), Banglore, India, 2015.

[14] R. Gallager, “Low-density parity-check codes,” IRE
Trans. on Inf. Theory, vol. 8, pp. 21-28, 1962.

[15] T. Wadayama, K. Nakamura, M. Yagita, Y.
Funahashi, S. Usami, and I. Takumi, “Gradient
descent bit flipping algorithms for decoding LDPC
codes,” IEEE Trans. Commun., vol. 58, no. 6, pp.
1610-1614, 2010.

[16] G. Sundararajan, C. Winstead, and E. Boutillon,
“Noisy gradient descent bit-flip decoding for LDPC
codes,” IEEE Trans. Commu., vol. 62, no. 10, pp.
3385-3400, 2014.

[17] B. Dai, R. Liu, C. Gao, and Z. Mei, “Noisy gradient
descent bit-flipping decoder based on adjustment
factor for LDPC codes,” IEEE Commun. Lett., vol.
22, no. 6, pp. 1152-1155, 2018.

[18] J. Jung and I.-C. Park, “Multi-bit flipping decoding
of LDPC codes for NAND storage systems,”
IEEE Commun. Lett., vol. 21, pp. 979-982, 2017.

[19] M.G. Luby and M. Mitzenmacher, “Verification-
based decoding for packet-based low-density parity-
check codes,” IEEE Trans. Inf. Theory, vol. 51, no. 1,
pp. 120-127, 2005.

[20] U. Tuntoolavest, “A simple method to improve the
performance of convolutional vector symbol
decoding with small symbol size,” in 2004 IEEE
Region 10 Conference TENCON 2004, Chiang Mai,
Thailand, 2004.

[21] U. Tuntoolavest and K. Limchaikit, “Scaling
method to increase data rate with no degradation in
vector symbol decoding performance,” in The 20th
Asia-Pacific Conference on Communication (APCC2014),
Pattaya, Thailand, 2014.

[22] J. Lu and J. M. F. Moura, “Linear time encoding of
LDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no.
1, pp. 233-249, 2010.

[23] T. J. Richardson and R.L. Urbanke, “Efficient
encoding of low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 638-656, 2001.

[24] U. Tuntoolavest, C. Athanan, and K. Panwong,
“Message passing-vector symbol decoding for
LDPC codes with nonbinary symbols,” in 2018
International Conference on Embedded Systems and
Intelligent Technology & International Conference on
Information and Communication Technology for Embedded
Systems (ICESIT-ICICTES), Khon Kaen, Thailand,
2018.

[25] U. Tuntoolavest and T. Chaitanarit, “Mapping
circuits for non-systematic convolutional codes and
the procedure to implement them,” Petty Patent No.
17134, 2018.

[26] U. Tuntoolavest, V. Manthamkarn, and A.
Maheshwari, “Systematic low density parity check
codes with hard decision message passing algorithm
for non-binary symbols,” in 2020 8th International
Electrical Engineering Congress (iEECON), Chiang Mai,
Thailand, 2020.

[27] A. Maheshwari, U. Tuntoolavest, and K. Fukawa,
“Implementation of the nonbinary encoder and
decoder for systematic low density parity check
codes on Raspberry-pi boards,” in 2020 11th IEEE
Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), Vancouver, BC,
Canada, 2020.

[28] C. Weidmann, “Coding for the q-ary symmetric
channel with moderate q,” in 2008 IEEE
International Symposium on Information Theory, Toronto,
Canada, 2008.

[29] F. Zhang and H. D. Pfister, “Analysis of
verification-based decoding on the q-ary symmetric
channel for large q,” IEEE Trans. Inf. Theory, vol. 57,
no. 10, pp. 6754-6770, 2011.

[30] J. J. Metzner, “Vector symbol decoding with list
inner symbol decisions,” IEEE Trans. Commun., vol.
51, pp. 371-380, 2003.

[31] U. Tuntoolavest, N. Shaheen, and V. Manthamkarn,
“Verification-Based Decoding for Rateless Codes in
the Presence of Errors and Erasures,” Eng. J., vol.
26, no. 4, pp. 37-44, Apr. 2022.

[32] L. Ma, K. Dickson, J. McAllister, and J. McCanny,
“QR decomposition-based matrix inversion for
high performance embedded MIMO receivers,”
IEEE Trans. Signal Process. vol. 59, no. 4, pp. 1858-
1867, 2011.

[33] P. Vanichchanunt et al., Channel Coding Theory, 1st ed.
(in Thai) Thailand: TRIDI (Telecommunications
Research and Industrial Development Institute),
2009.

[34] X. Liu, F. Xiong, Z. Wang, and S. Liang, “Design of
binary LDPC codes with parallel vector message
passing,” IEEE Trans. Commun., vol. 66, pp. 1363-
1375, 2018.

[35] S. K. Chilappagari and B. Vasic, “Error-correction
capability of column-weight-three LDPC codes,”
IEEE Trans. Inf. Theory, vol. 55, pp. 2055-2061,
2009.

[36] Skitterphoto. (2017). White daisy closeup photography
[Online]. Available:
https://www.pexels.com/photo/white-daisy-
closeup-photography-597055/ [Accessed 1
December 2020].

DOI:10.4186/ej.2022.26.9.35

46 ENGINEERING JOURNAL Volume 26 Issue 9, ISSN 0125-8281 (https://engj.org/)

Usana Tuntoolavest received the B.S. degree in electrical engineering from Chulalongkorn
University in 1995, and the M.S. and Ph.D. degrees from the Pennsylvania State University, PA,
USA in 1997 and 2002, respectively. She is currently an Associate Professor at Kasetsart University,
Bangkok, Thailand. She has received many awards including the Excellence Lecturer of the 5th
ASAIHL-Thailand Award (2017) from the Association of Southeast Asian Institute of higher
learning, Thailand.

Visuttha Manthamkarn received the B.S. degree in electrical engineering from Kasetsart
University in 2019. He is now working as a researcher at Kasetsart University, Bangkok, Thailand.
His current research interests include channel coding and implementation for the LDPC
encoding/decoding.

