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Abstract. This paper presents a practical decoder for regular low-density parity-check 
(LDPC) codes with flexible packet-sized symbols. The proposed hMP-VSD (Combined 
hard-decision message-passing with vector symbol decoding) is much less complex than 
the conventional VSD and has the same decoding performance. Regular LDPC codes with 
systematic encoding are selected for implementation. The channel is assumed to be the q-
ary symmetric channel (q-SC). Different code lengths and column weights of LDPC codes 
are investigated. The results show that the codes with a column weight of 7 provide the 
best performance for hMP-VSD, while hMP works best with codes having a column 
weight of 5. With packet-sized symbols, even the rather short (60, 30) code structure has 
code lengths of 1,920 to 245,760 bits with symbol sizes of 32 to 4,096 bits. Both the 
decoder and its encoder were implemented on Raspberry-pi 4 model B boards and these 
results confirm that the computation time of hMP-VSD is 60% to 70% lower than that of 
VSD for pe in the range 0.05 to 0.1. 
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1. Introduction 
 
Low-density parity-check (LDPC) codes, which are 

widely used error-correcting codes, were first proposed 
by Gallager in 1963 [1]. After being long forgotten, 
possibly because of a lack of computing power at that 
time, they were rediscovered by Mackay and Neal in 
1996 [2]. These codes have many applications because 
they achieve performance close to Shannon’s limit in the 
additive white-Gaussian noise channel [3], [4], [5]. Some 
applications of LDPC codes are: the 802.11n/ac (Wi-Fi) 
standard [6], ship-based satellite communications on the 
move [7], and 2D and 3D NAND flash memories [8]. 
The message-passing (MP) technique is a common 
decoder for LDPC codes [3], [9]. LDPC codes usually 
use binary symbols and soft-decision decoding. The code 
length can be extremely long, up to thousands of bits, 
and codewords can be used as a packet in the data 
network. However, MacKay, who rediscovered LDPC 
codes, stated that nonbinary LDPC codes in the binary 
symmetric channel and binary Gaussian channel had 
better decoding performance than the binary LDPC 
codes [10]. That study showed the results for GF(q) for 2i; 
i = 2, 3, 4, which were two bits per symbol to four bits 
per symbol. Nonbinary LDPC codes were also 
investigated by other researchers, such as Cho et al. [3], 
who proposed the design of nonbinary LDPC codes with 
message-passing algorithms. They considered GF(q) for q 
= 2i; i = 2, 3, 4, 5, 6, having two bits per symbol to six 
bits per symbol. Nonbinary LDPC codes were also 
considered in the fountain-coding scheme in the erasure 
channel by Kasai [11]. 

The current paper considers LDPC codes on a much 
larger scale by applying them to packet-sized symbols 
with a minimum of 32 bits per symbol and no upper 
limit on the symbol size. In this case, a packet is 
considered as a symbol in a codeword; therefore, a 
codeword consists of many data packets and parity-check 
packets. With packet-sized symbols, soft-decision 
message-passing (sMP) is no longer practical because the 
complexity increases rapidly with the symbol size. Hard-
decision message-passing (hMP) becomes attractive 
because of its low-complexity. hMP requires less power, 
fewer hardware resources, and provides higher speed 
than sMP [12]. The tradeoff is that the performance of 
hMP is lower than sMP for all SNR levels [13]. 

The bit-flipping (BF) algorithm is well-known in 
hard-decision decoding for LDPC codes. The first BF 
method was proposed by Gallager in 1962 [14]. In each 
iteration, the syndromes were computed. Then, the most 
suspicious bit was selected and flipped if the number of 
corresponding unsatisfied check nodes was higher than 
or equal to a fixed threshold. However, its performance 
was not sufficient. To improve the performance of BF, 
soft-information-aided BF decoding, such as the gradient 
descent BF (GDBF) [15], noisy-GDBF (NGDBF) [16], 
and adjustment factor-aided-NGDBF (A-NGDBF) 
algorithms [17] have been proposed. In addition, 
multibit-flipping (MBF) [18] based on the hard-decision 

BF algorithm was proposed to improve the performance 
for NAND storage systems. For MBF, the decoder 
allowed multiple bits to be flipped during each iteration. 
Although the proposed method uses hard-decision 
decoding as does BF, it uses large nonbinary symbols 
from GF(2r) where r ≥ 32 bits, while BF uses binary 
symbols. Therefore, it is based on a different concept 
from BF. The proposed method is based on verification-
based decoding [19] and does not need information from 
the channel. 

Even though hMP cannot provide excellent 
decoding performance by itself, it can be very helpful 
when used in combination with another nonbinary 
decoder called vector symbol decoding (VSD). VSD is a 
verification-based decoding technique for codes that use 
r-bit nonbinary symbols from GF(2r), where r ≥ 32 bits 
[20]. Examples of 446, 892, and 1,784 bits per symbol 
were used in [21] for VSD with convolutional codes. 
Larger sizes can be extended with the same number of 
computations because the decoding does not depend on 
the symbol size. The complexity of VSD depends on the 
number of erroneous symbols. 

The conventional method for encoding LDPC code 
uses a systematic generator matrix derived from the 
parity-check matrix by Gaussian elimination. However, 
this method is inefficient because its complexity is O(n3) 
for preprocessing and O(n2) for actual encoding, where n 
is the codeword length. Therefore, the encoding 
complexity is high for LDPC codes, which generally use 
a large block-size n [22]. Another encoding method 
proposed in [23] can be applied to any LDPC code with 
much lower complexity than the conventional method. 
In addition, the codeword is still separated into a data 
part and a parity part. However, its complexity still 
increases linearly with the block size. For packet-sized 
symbols, shorter codes can accommodate the same 
amount of binary data as long binary codes because each 
symbol consists of many bits. With systematic encoding 
[23], the codeword is separated into the data part and the 
parity part. Therefore, VSD can identify the positions of 
the data symbols without using a systematic parity-check 
matrix H. 

The current paper proposes a new suboptimal, low-
complexity decoding algorithm for packet-sized symbols 
called combined hard-decision message-passing with 
vector symbol decoding (hMP-VSD). This hMP-VSD 
consists of two parts, namely, hMP (the pre-decoder) and 
VSD (the main decoder). The overall complexity of MP-
VSD is lower than that of VSD, but the performance 
remains the same. The preliminary idea of using hMP to 
reduce the complexity of VSD has been presented in [24]. 
However, then, it was impractical, because only a 
nonsystematic code was investigated. Since the decoder 
outputs the decoded codeword, it is troublesome to map 
this to the decoded data. An example of a method to 
map decoded codewords into decoded data for 
convolutional VSD was patented in [25]. However, the 
encoding part was not addressed in [24]. To make it 
practical, systematic LDPC codes were considered in [26] 
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by converting the nonsystematic regular LDPC codes to 
their systematic pairs with row operations. However, 
only the hMP part was investigated in [26] without the 
VSD part. The implementation of hMP-VSD in 
Raspberry-pi boards for systematic LDPC codes was 
introduced in [27].  

The current paper presents the complete coding 
system, including both the encoder and hMP-VSD 
decoder with regular LDPC codes. Regular LDPC codes 
with systematic encoding are selected instead of the 
systematic codes in [26], [27] because they provide better 
decoding performance. The decoding performance of the 
complete hMP-VSD for regular LDPC codes with 
systematic encoding is investigated in detail for various 
code lengths and rates. From the effect of the density of 
bit 1s in H discovered in [26], this paper considers codes 
with different densities of 1s in H as well. The reduced 
complexity of the decoder is shown for these codes. In 
the simulations, the q-ary symmetric channel (q-SC) 
model is used to represent a packet-based erroneous 
channel [28], [29]. Furthermore, the encoder and decoder 
for regular LDPC codes with systematic encoding have 
been implemented on Raspberry-pi boards to show that 
the number of computations is low enough to be 
practical. 
 

2. Materials and Method 
 

2.1. Background 
 

2.1.1. Hard-decision message-passing 
 
MP is a decoding technique for LDPC codes [3], 

conveniently used with Tanner graph. Tanner graph is a 
bipartite graph consisting of two groups of disjointed 
nodes, namely, the set of variable nodes and the set of 
check nodes. Figures 1 and 2 show the relationship 
between H and its corresponding Tanner graph. For 1 in 
position (i, j) of H, there is a line linking a check node ci 

to the variable node vj. During the decoding with MP, 
messages are passed back and forth between the variable 
and check nodes. The decoding is done iteratively. For 
binary LDPC codes, sMP is normally used and the 
messages are probabilistic values. However, for packet-
sized symbols, hMP is used instead of sMP because sMP 
is impractical. A packet contains many bits; therefore, 
numerous possible values could occur. sMP must 
calculate the probabilities for all values and pass them to 
another node. If 32 bits per packets are used, there are 
232 = 4.29 × 109 different possible values. For longer 
packets, the number of possible values increases 
substantially.  

If hMP is used, the message to be passed is only the 
bit sequence of each packet. The sum of values from 
many nodes will use the modulo-2 addition and this can 
be done simply with any length of the packets, as 
illustrated in Fig. 2. 

 
 

 
 
2.1.2. Systematic encoding for nonbinary block codes 

 
For any block code, the codeword can be computed 

from the data sequence and generator matrix. For binary 
codes, it involves the multiplication of a vector by a 
matrix as in Eq. (1). For nonbinary codes, it is the 
multiplication of a matrix by a matrix, as in Eq. (2).  

 

 = v G u  (1) 
 

 = V G U  (2) 
 
where v is the column vector of a codeword, u is the 
column vector of a data sequence, V is the codeword 
matrix, U is the data matrix and G is the generator matrix. 

Note that a bold small letter represents a vector, and a 

bold capital letter represents a matrix. 

As v and u are column vectors, Eq. (1) is in a 
different form than the usual encoding equation normally 
seen where v and u are row vectors. These are chosen 
because it is more convenient to perform operations 
using V and U as matrices. 

With systematic encoding, the data symbols can be 
transmitted out as the first part of the codeword. Then, 
the parity-check symbols can be computed from the 
vector modulo-2 sum of the data symbols specified by 

 
 

Fig. 1. Relationship between H and nodes of Tanner 
graph in Fig. 2.  
 

H = 

 
 

Fig. 2. Tanner graph with calculation of check node 
values from modulo-2 addition of variable node values.  
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each parity-check equation in H, substantially simplifying 
the encoding of large nonbinary symbols. 
 
2.1.3. VSD 

 
VSD is suitable for linear codes with packet-sized 

symbols because its decoding complexity remains the 
same for any large symbol size. However, it is not 
designed for small-sized symbols because it assumes that 
all error patterns are linearly independent. Thus, the 
typical symbol size is 32 bits per symbol or more. The 
VSD algorithm has been described many times [24], [30]; 
therefore, it is only briefly explained here. The flowchart 
of the complete hMP-VSD and an example will be 
described later in the Method section. 

VSD accepts the received symbols yj; j = 1, 2, …, n 
and places them as rows of the received matrix Y. The 
syndrome matrix is then calculated from Eq. (3). 

 

 = S H Y  (3) 
 
where S is the syndrome matrix of size (n – k) × r. 

H is the parity-check matrix of size (n – k) × n. 
Y is the received matrix of size n × r. 
n is the number of total symbols in a code word 
of an (n, k) code. 
k is the number of data symbols in a code word 
of an (n, k) code. 
r is the size in bits of each symbol. 

If S equals a zero matrix, the decoder concludes that 
there is no error. If it is not a zero matrix, an error-
locating vector σ will be found to verify the correct 
symbol positions and the erroneous symbol positions. To 
find σ, null combinations are discovered first because σ 
equals the result of the OR operations of null 
combinations. Each null combination can verify some 
symbols; therefore, the OR operations of the null 
combinations will verify all verifiable symbols. The null 
combination idea has also been applied in rateless code 
decoding [31]. 

The null combinations are a row of H or the 
modulo-2 sum of rows of H. The row or sum of rows to 
be null combinations can be identified by the index of a 
zero-syndrome vector or by the index of the set of 
syndrome vectors that sum to a zero vector, explained 
with the example in the Method section. More examples 
of VSD can be found in [24]. Once the error-locating 
vector is discovered, the bit 1s in this vector refer to the 
correct symbols and the bit 0s refer to the unverified or 
apparent erroneous symbols. The decoder will compute 
the erroneous symbol values from Eq. (4). 

 
 1−= sub sub subE H S  (4) 

 
where  
Esub is the submatrix of the error matrix E that contains 

only the erroneous symbol values. 
Hsub is the square submatrix of the parity-check matrix 

H that contains only the columns corresponding 

to the error positions and the rows corresponding 
to linearly independent rows of S. 

1−

subH is the inverse matrix of Hsub. 

Ssub is the submatrix of the syndrome matrix S 
containing only the linearly independent rows of S 
that correspond to the row of Hsub. 

 
After Esub is known, the error matrix E is also 

known because, for a correct symbol, the row of E for 
the symbol position is a zero vector. The decoder will 

obtain the decoded codeword matrix 𝑽 from Eq. (5) and 
the decoding process is finished. 

 

 𝑽 = 𝒀 ⊕ 𝑬 (5) 
 

where   is the vector modulo-2 sum. 
 
2.1.4. Channel model 

 
Assume a q-ary symmetric channel (q-SC) model for 

packet-based erroneous channel. This channel model is 
suitable for LDPC codes with symbols from GF(q); q = 

2m; m ∈ ℕ for large q [28], [29]. 
Let the random variable X be the input and random 

variable Y be the output of the q-SC with transition 
probabilities of: 

 
 ( | ) 1 ;P Y y X x p x y= = = − =  (6) 

 
 ( | ) /( 1);P Y y X x p q x y= = = −   (7) 

 

where x, y ∈ GF(2m). 
 
2.2. Method 
 
2.2.1. Flowchart 

 
The hMP-VSD algorithm is described with the help 

of the flowchart in Fig. 3. The hMP is the first part of the 
decoding process and could be considered as the pre-
decoder. It can easily correct some simple error patterns. 
Then, the output of hMP will be input to VSD. Thus, the 
decoding performance of hMP-VSD is the same as VSD. 
The benefit of adding hMP is to reduce the number of 
erroneous symbols that VSD needs to correct. The 
algorithm description shows that VSD is required to 
invert a square matrix of size e × e, where e is the number 
of erroneous symbols. Since the complexity of matrix 
inversion is O(n3) for a n × n matrix [32], reducing the 
matrix size substantially reduces the complexity. 

The flowchart in Fig. 3 shows the proposed hMP-
VSD decoder. The algorithm starts with the received 
matrix Y, containing the received symbols yj; j = 1, 2, …, 
n as its row vectors. Then, the decoder evaluates if there 
are any new yj values. At the beginning of the hMP 
decoding process, all yj values are new; therefore, each 
check node will compute its value using the vector 
modulo-2 sum of all variable node values connected to it. 
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The check node value is the same syndrome value as 

the linear block codes. If a check node value ci is equal to 
a zero vector, all variable nodes connected to it are 
verified to have correctly received symbol values. If all ci; 
i = 1, 2, …, n – k are zero vectors, all received symbols 
are verified to be correct, and the decoder can output the 
decoded data directly for systematic encoding. 

For each nonzero ci, evaluation only occurs if there 
is only one unverified symbol connected to it. If there is, 
the decoded received symbol value yj will be corrected as 
shown in Eq. (8). 

 

 yj =  yj  ci (8) 
 
This new received symbol value will be used to 

calculate the values of all check nodes connected to it. 
If there is more than one unverified symbol 

connected to a check code, the decoder will evaluate 

whether there is only one common unverified symbol 
connected to at least two identical check nodes. If there 
is, the common received symbol value will be decoded as 
the received symbol yj and corrected using Eq. (8). This 
new received symbol value will be used to calculate the 
values of all check nodes connected to it. 

If there is no more correctable unverified symbol, 
the hMP part will be completed and the received matrix 
will be input to the VSD part. Since the check node 
values (the syndromes) have been calculated in the hMP 
part, VSD can start with finding the null combinations. 
These syndrome values are placed as row vectors of a 
syndrome matrix S for VSD. If the number of unverified 
symbols, which are considered erroneous symbols, from 
the null combinations is the same as the rank of S, VSD 
can correct the errors with Eq. (4). If the number of 
erroneous symbols from the null combinations is not 
equal to the rank of S, the decoder fails. 

After the erroneous symbol values are found, the 
decoder will add them to the received symbol values. The 
result will be the decoded codeword. For systematic 
encoding, the data symbol positions are known; therefore, 
the decoded codeword can output the decoded data 
symbols directly from the decoded codeword. 

Ex1. Consider a regular LDPC code with the parity-
check matrix H in Eq. (9) and suppose the received 
matrix Y containing sixteen 5-bit symbols in Eq. (10) is 
received.  
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= =   
   
   
   

  

h
h
h
h

H
h
h
h
h

 (9) 

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 10 1
10 10 0
0 0 10 0
10 0 0 1
0 0 1 1 1
0 1 1 10
1 10 0 1
10 10 0
10 1 10
0 0 0 10
0 10 0 1
0 0 10 0
1 1 10 0
0 0 10 0
0 0 0 0 1
0 10 1 1

   
   
   
   
   
   
   
   

= =   
   
   
   
   
   
   
   

  

y
y
y
y
y
y
y
y

Y
y
y
y
y
y
y
y
y

 (10) 

 
Part I: hMP  

 
Figure 4 illustrates how the check node values are 

calculated in the hMP algorithm. From the vector 
modulo-2 sum of the connected variable nodes, the 

 
 

Fig. 3. Flowchart of hMP-VSD algorithm. 
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check node values are found to be c1 = 00111, c2 = 
01101, c3 = 00101, c4 = 01111, c5 = 00100, c6 = 00111, c7 

= 01011, and c8 = 01011. 
No check node is equal to a zero vector; therefore, 

no received symbol is verified. However, there is a 
common unverified symbol y5 connecting to both c7 and 
c8. These two check nodes also have the same value. 
Consequently, the decoder will correct y5 by adding the 
value of c7 or c8 to it, as in Eq. (11), showing the 
decoded y5. 

 

 𝑦5 = 𝑦5 ⊕ 𝑐7 = 00111 ⊕ 01011 = 01100 (11) 
 

Next, the check node values c7 and c8 connected to 
y5 are recomputed to be zero vectors. These zero vector 
check nodes verify all variable symbols connected to 
these check nodes. In this case, y1, y5, y6, y7, y8, and y10 
are verified by c7. In addition, y3, y4, y5, y13, y14, and y15 

are verified by c8. After these verifications, there is one 
unverified variable symbol, y11, connected to c5. Then, 
the decoder corrects y11 by adding the value of c5 to it, as 
shown in Eq. (8). Then, the new check node value c5 will 
be a zero vector, verifying all symbols connected to it. 

Since there are no more unverified symbols that can 
be corrected by hMP, hMP will output these updated 
received symbols to VSD, which is the part II of this 
hMP-VSD algorithm. 
 

 
 
 
 
 

Part II: VSD 
 

The decoder computes the syndrome matrix S from 
Eq. (3). For this example, the calculation and the result 
are shown in Eq. (12) and Eq. (13), respectively. 

 

 

0 1 10 1
10 10 0
0 0 10 0
10 0 0 1

0 0 10 0 10 1 10 0 10 0 0 1 0 1 10 0
0 10 0 0 0 10 10 0 0 10 1 1 0 1 1 10
0 0 0 10 10 0 0 0 1 1 10 0 1 1 10 0 1
1 10 0 0 0 10 0 1 10 0 10 0 10 10 0
10 10 10 0 0 0 1 10 0 0 10 10 1 10
0 10 10 0 0 1 10 0 10 10 0 0 0 0 10
10 0 0 1 1 1 10 10 0 0 0 0 0 0
0 0 1 1 10 0 0 0 0 0 0 1 1 10

 
 
 
 

=  
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 (12) 
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0 0 1 1 1
0 0 0 0 0
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= =   
   
   
   

  

s
s
s
s

S
s
s
s
s

 (13) 

 
The null combinations are shown by one or more 

syndromes that sum to the zero vector with modulo-2 

addition. These are s4, s5, s7, s8, s1⊕s6, s1⊕s2⊕s3, and 

s2⊕s3⊕s6. The corresponding null combinations are h4, 

h5, h7, h8, h1⊕h6, h1⊕h2⊕h3, and h2⊕h3⊕h6. The 
values of these null combinations are shown in Eq. (14)–
(20). The error-locating vector (σ) is computed from the 
OR operations of null combinations, as shown in Eq. 
(21).  

 
 

4 1100001001100100=h  (14) 

 
5 1010100001100010=h  (15) 

 
7 1000111101000000=h  (16) 

 
8 0011100000001110=h  (17) 

 
1 6 0111010000000101 =h h  (18) 

 
1 2 3 0111001100100011  =h h h  (19) 

 
2 3 6 0000011100100110  =h h h  (20) 

  =1111111101101111 (21) 
   

For larger matrices, the syndrome matrix is modified 
to contain rows of at most one bit of “1” with column 
operations starting from the first row of S until it can no 
longer generate new linearly independent rows. The new 
matrix is called a modified syndrome matrix S’. An 
example of S and its corresponding S’ are 

 

 
 

Fig. 4. Calculations of check node values.  
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 =
 
 
  

1 1 10 0
1 1 0 10
0 1 0 0 1
0 1 0 0 1
0 0 0 0 0
0 1 0 0 1
0 1 0 0 1

S  and 

 
 
 
 =
 
 
  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0'
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0

S  

 
The detail on how to obtain S’ is in [33]. Notice that 

it is now obvious, which set of rows in the modified 
syndrome matrix S’ sums to a zero vector. They are row 

3 ⨁ row 4, row 5, row 3 ⨁ row 6, row 3 ⨁ row 7 etc. 
The same sets of rows in the syndrome matrix will also 
sum to a zero vector. This technique was used in the 
actual programming of the decoder. 

The number of erroneous symbols is equal to the 
number of 0s in σ that is equal to 2, as shown in Eq. (21). 
Since this is equal to the rank of S, the decoder can 
compute the error values from Eq. (4) as follows: 

 

 1

2

0 0111
0 1101

   = =
     

sub

s
S

s  (22) 

 
11
10
 =
  

subH  (23) 

 
1

0 1

1 1

−  
=  
 

subH  (24) 

 
1 9

12

0110 1
010 10

−    =  = =
     

sub sub sub

e
E H S e  (25) 

 

The decoded codeword matrix (V) can be computed 
by adding the error matrix (E) to the Y with the modulo-
2 sum, as shown in Eq. (26). 
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0 1 10 0 0 0 0 0 0
0 1 1 10 0 0 0 0 0
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0 1 1 10
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 (26) 

 
2.2.2. LDPC codes 

 
The parity-check matrix in this paper is constructed 

using the (γ, ρ)-regular LDPC code [34], where γ is the 
column weight and ρ is the row weight. The simulation 
results use the column weights γ = 3, 5, 7, and 9 because 
γ = 3 is one of the most common column weights for 

regular LDPC codes [34] and γ ≥ 5 is suitable for the bit-
flipping algorithm [35]. 

 
2.2.3. Codes with packet-sized symbols 

 
In different data networks, packets can differ in size, 

but they are at least several bytes. Given that the symbol 
is at least 32-bits long to satisfy the linearly independent 
erroneous symbols of VSD, the number of computations 
hMP-VSD remains the same when the symbol size 
increases. Specifically, r-bit symbols with higher values of 
r only lead to vector modulo-2 arithmetic of longer 
vectors. The main complexity depends on the matrix 
inversion part of VSD to recover error values, with the 
size of the matrix inversion being the number of 
erroneous symbols. 

To limit the decoder complexity, rather short codes, 
such as (60, 30) and (120, 60) LDPC codes, are selected. 
This will keep the number of erroneous symbols in each 
codeword quite small for a given channel condition. For 
example, if the probability of packet errors from the 
channel is 0.1, a (60, 30) code will have an average of six 
erroneous symbols, whereas a (120, 60) code will have an 
average of 12 erroneous symbols. Inverting a 12 × 12 
matrix is much more complex than inverting two 6 × 6 
matrices. Since there is usually a built-in standard binary 
code to correct random errors in each packet, the 
remaining erroneous packets are burst errors or too 
many random errors. Therefore, the probability of packet 
errors around 0.1 reflects a channel with problems 
including excessive noise and/or fading and/or 
interference. 

The total size of the codeword in binary depends on 
the symbol size. For example, with 32-bit symbols, the 
codeword will have 60 × 32 = 1,920 bits. The vector 
modulo-2 sum will be performed on 32-bit vectors. If a 
packet contains 100 bytes, it will be an 800-bit symbol 
and the codeword will have 60 × 800 = 48,000 bits. The 
vector modulo-2 sum will be performed on 800-bit 
vectors. Since the symbol size is adjustable, there is no 
need to use a long code structure. 

 
2.2.4. Implementation in Raspberry-pi board 

 
The Raspberry-pi4 Model B uses Broadcom 

BCM2711, Quad-core Cortex-A72 (ARM v8) 64-bit SoC 
and runs at a frequency of 1.5 GHz. It has 4 GB 
LPDDR4 of SDRAM and a Micro-SD card slot for data 
storage and its operating system. The operating system, 
Raspbian, is optimized for the Raspberry-pi board and 
based on Debian, which is a Linux distribution. This 
paper uses Raspberry-pi boards as an encoder and a 
decoder of hMP-VSD. The implementation of hMP-
VSD on the Raspberry-pi board has been presented in 
[27] with a systematic code. In the current paper, a 
regular LDPC code with systematic encoding is 
implemented. In addition, the channel model is changed 
from the Gilbert-Elliot model to q-SC. Moreover, the 
computational time for decoding is investigated. 
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3. Results 
 
This section presents a performance comparison 

between hMP and hMP-VSD in terms of the probability 
of decoding failure. The computational time for 
decoding using a Raspberry-pi 4 board is presented to 
show the effectiveness of using hMP as the pre-decoder. 

Table 1 shows the density of (γ, ρ)-regular LDPC 
code where γ = 3 and 5. The density of a code is shown 
as the percentage of bits 1s in its H matrix. For instance, 
a (60, 30) LDPC code with (3, ρ) contains 60 × 3 = 180 
bits of 1s in 30 × 60 = 1,800 total elements in H, which 
equates to a density of 10%. 

Figure 5 shows the probability of decoding failure of 
hMP and hMP-VSD for (60, 30) with γ = 3, 5, 7, and 9. 
The simulations were applied in the q-SC model with a 
range of pe from 0.05 to 0.20. Figure 6 shows the 
probability of decoding failure of the decoder with the 
same parameters as Fig. 5, except that the codes are 
changed to (120, 60). For both the (60, 30) and (120, 60) 
codes, codes with γ = 3 provide almost the same 
decoding performance for hMP and hMP-VSD. Its 
decoding performance of hMP-VSD is the worst 
compared to the other γ values. hMP works best with the 
codes having γ = 5; however, codes with γ = 7 provide 
the best performance for hMP-VSD. 

Figure 7 shows the probability of decoding failure of 
hMP and hMP-VSD for (60, 30) codes with γ = 7 for 
three different symbol sizes (32 bits per symbol, 1,024 
bits per symbol, and 4,096 bits per symbol). In all cases, 
the performance results for both hMP and hMP-VSD are 
the same. Only the green lines are seen in Fig. 7 because 
all hMP plots overlap and all hMP-VSD plots overlap. 
This emphasizes that the decoding performance of VSD 
does not depend on the symbol size, given that the 
symbol size is large enough to satisfy the assumption that 
the erroneous symbols are linearly independent. A typical 
symbol size for VSD is at least 32 bits per symbol. 

The main complexity of VSD is the number and size 
of the matrix inversion required to obtain the error 
values. The size of the matrix inversion is equal to the 
number of erroneous symbols that VSD must correct. By 
adding the hMP part, the number of erroneous symbols 
input to VSD is decreased and this reduces the overall 
complexity. Figure 8 illustrates the percentage reduction 
in the number of matrix inversions required for VSD 
when hMP is used as the pre-decoder for the two 
different codes (60, 30) and (120, 60) with γ = 3, 5, 7, and 
9. Different numbers of erroneous symbols from 2 to 10 
symbols in each received sequence are investigated. The 
channel model is the q-ary symmetric channel with pe = 
0.05. 

 
Figure 9 shows the comparison between the hMP-

VSD and VSD decoders for an average decoding time 
per code word of the 32-bit symbol case using the 
Raspberry-pi 4 Model B board with a range of pe from 
0.05 to 0.1 for an (60, 30) code with γ = 7. In all cases, 

 
 

 
 

 

Table 1. Density of H for each γ. 
 

H γ Density (%) 

(60, 30) 

3 10 
5 16.67 
7 23.33 
9 30 

(120, 60) 

3 3 
5 5 
7 11 
9 15 

 
  

 
 

Fig. 5. Probability of decoding failure with decoders of 
hMP and hMP-VSD for (60, 30) codes.  
 

 
 

Fig. 6. Probability of decoding failure with decoders of 
hMP and hMP-VSD for (120, 60) codes. 
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the hMP-VSD decoder takes substantially less time than 
the VSD decoder because hMP corrects errors using only 
the vector modulo-2 sum, whereas VSD must perform 
the matrix inversion to find the error values, which is 
considerably more complex than the vector modulo-2 
sum. Based on these results, hMP-VSD takes 
approximately 60% less time than VSD (around 55% 
when pe = 0.1 and up to 65% when pe = 0.05). 

An example of the results from the implementation 
of hMP-VSD on the Raspberry-pi board is shown using 
the original picture from Pexels [36] and a (60, 30) code 
with γ = 7. Figure 10 shows the data part of the received 
pre-decoded image from the Raspberry-pi board with pe 

= 0.2. The received picture contains 46,010 erroneous 
data symbols in the 230,400 total data symbols or an 
input error probability of 1.997 × 10-1. These erroneous 
data symbols are seen in the corrupted image in Fig. 10. 
After decoding using the hMP-VSD decoder, the 
number of erroneous data symbols substantially reduces 
to only 198 symbols or an output error probability of 
8.59 × 10-4, resulting in the good quality image shown in 
Fig. 11. 

 

 
 

 
 

 

 
 

Fig. 7. Performance of hMP and hMP-VSD for (60, 30) 
code with γ = 7 for three sets of symbol sizes (32 bits per 
symbol, 1,024 bits per symbol, and 4,096 bits per 
symbol). 
 

 
 

Fig. 8. Percentage of reduction in number of matrix 
inversion for different numbers of erroneous symbols 
when hMP is added as pre-decoder to VSD. 
 
 

 
 

Fig. 9. Decoding time per code word with (60, 30) code 
with γ = 7 and 32 bits per symbol. 
 
 

 
 

Fig. 10. Image of pre-decoded data part using Raspberry-
pi board. 
 

 
 

Fig. 11. Image of post-decoded data using Raspberry-pi 
board. 
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4. Discussions 
 

Figures 5 and 6 compare the hMP part and hMP-VSD 
for the two sets of code lengths of 60 and 120 symbols 
and four values of γ = 3, 5, 7, and 9 for each code length. 
The simulation results in q-SC show that both the (60, 30) 
and (120, 60) codes with γ = 7 provide the best 
performance in the group. Furthermore, the closer the 
two graphs of the hMP part and hMP-VSD for each 
code, the more useful hMP will be as the pre-decoder 
because it can correct many erroneous symbols and leave  
smaller remaining erroneous symbols for VSD to correct. 
Even though these codes are low-density parity- check 
codes, the results from Fig. 5, Fig. 6, and Table 1 show 
that too low-density may not be preferable because VSD 
uses verification-based decoding, which can verify only 
the symbols involved in each parity-check equation. A 
very low-density results in each parity-check equation 
involving only a few received symbols. Therefore, VSD 
requires a higher number of parity-check equations to 
verify all the correctly received symbols. With a higher 
density, each received symbol has a greater chance of 
being in many parity-check equations and this increases 
the chance of VSD verifying all the correct symbols. 
Although the code density directly affects the 
performance, code with a too high-density does not 
provide good performance, as shown in Fig. 5 and 6. The 
results show that the decoding performance starts to 
drop when γ = 9 for both the (60, 30) and (120, 60) 
codes with regular H. 

Increasing the symbol size could increase the 
codeword length in bits. Because the proposed decoder 
allows the symbol size to increase as desired, the 
codeword length in bits can also be increased as desired. 
The simulation results in Fig. 7 emphasize that the 
decoding performance is maintained with any larger 
symbol size. The complexity of hMP-VSD is 
substantially lower than for VSD due to the reduction in 
the matrix inversion required. This is reflected clearly in 
the decreased computational time. An implementation 
result on a Raspberry-pi board is illustrated with a pre-
decoded image and a post-decoded image (Fig. 10 and 11, 
respectively) to assist with easy visualization of the results.   
 

5. Conclusions 
 
Using hMP as the pre-decoder of VSD substantially 

reduces the complexity of VSD while maintaining the 
same decoding performance. Regular LDPC codes with 
systematic encoding are proposed for the practical use of 
hMP-VSD because VSD outputs the decoded codeword, 
not the decoded data sequence. The decoder can be used 
with flexible packet-sized symbols. Therefore, it can be 
easily adjusted to fit various channel conditions and 
network requirements. The proposed decoder and its 
corresponding encoder were successfully implemented 
on Raspberry-pi boards. The computational time 
confirms that hMP-VSD is considerably less complex 
than VSD. 
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