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Abstract   

Abiotic stresses are major constraints for plant growth, crop yield and glob-

al food security. Plant physiological, biochemical and molecular processes 

are highly affected under unfavorable environmental conditions, resulting 

in substantial losses to crop productivity and requiring an immediate re-

sponse. Abiotic stress resistant plant growth-promoting rhizobacteria 

(PGPR) are a profitable and sustainable solution because of their efficiency 

in plant growth regulation, crop yield improvement and abiotic stress allevi-

ation. They help plants to cope with growth inhibitory effects of abiotic 

stresses through several mechanisms, mainly phytohormones and osmolyte 

production, improvement of nutrient acquisition, enhancement of antioxi-

dant system. Plant-PGPR interactions are vital for sustainable agriculture 

and industrial purposes, because they are based on biological processes 

and replace conventional agricultural practices. PGPR may play a key role as 

an ecological engineer to solve environmental stress problems. The use of 

microbes is a feasible and potential technology to help meeting the future 

global food needs with reduced impact on soil and environmental quality. 

Present review deals about the abiotic stresses (drought and salinity) affect-

ing plant growth and highlights the impact of PGPR on restoration of plant 

growth under the stressful conditions with the goal of developing an eco-

friendly and cost-effective strategy for agricultural sustainability.    
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Introduction   

The 21st century has been marked by global climate change. Many research 

studies have reported that environmental stresses induced by climate 

change are a major global threat to agricultural production and future food 

security. According to a recent estimate by the United Nations (UN), the 

world's population is currently about 7.3 billion people and is projected to 

reach 9.7 billion by 2050. This growing population requires increasing quali-

ty and quantity of food, which may soon become insufficient to feed the 

world’s population, especially in countries where resources have been dam-

aged by uncontrolled human activities and environmental degradation. 

Increasing climate variations, human population and reduction in available 

land for cultivation are major threats to crop production and agricultural 
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sustainability (1, 2). Agriculture is the main food source for 

humankind and animals and in order to satisfy the increas-

ing global food demand, agricultural production has to 

increase by 70-100% over the next few years (3). However, 

agricultural production and sustainability are continuously 

affected by various biotic and abiotic constraints, which 

cause large crop losses and change soil health and fertility 

(4).  

 Abiotic stresses are stress conditions to plants aris-

ing from the environment. They are among the main limit-

ing factors for agricultural productivity because they affect 

almost all plant functions, in different ways and at differ-

ent developmental stages (5). According to FAO (2007), 

only 3.5% of the global land area has not been affected by 

any environmental stress. Abiotic stresses hamper micro-

bial functions and diversity, soil physicochemical proper-

ties and plant growth by affecting plant morphology, phys-

iology and biochemistry through its gene regulation, thus, 

preventing plants from achieving their full genetic poten-

tial (6). The main abiotic stresses affecting plants are 

drought, salinity, extreme temperatures (high/low), acidic 

conditions, mineral deficiencies or toxicities, heavy metals, 

nutrient depletion and soil erosion (7). The FAO (2015) has 

predicted that, due to global changes, abiotic stresses 

such as drought, salinity and extreme temperature will 

cause crop yield reductions of up to 50% of average 

productivity by 2050. Among these constraints, drought is 

one of the main limiting factors for crop productivity espe-

cially in arid and semi-arid regions. Drought stress is con-

sidered to arise when the critical precipitation level is not 

reached (8). Prolonged water deficit conditions lower the 

soil water potential and cause detriment to plant growth 

and productivity (9). In order to combat drought-induced 

stresses and boost crop productivity and yield, farmers 

resort to the use of irrigation, which indirectly induces soil 

salinity stress. 

 Soil salinity is the second most devastating stress 

for agriculture, following drought. It severely restricts crop 

growth and production, mainly in arid and semi-arid re-

gions (10). It has been estimated that 20% of total cultivat-

ed and 33% of irrigated agricultural land worldwide is 

afflicted by high salinity and 30% of arable land is ex-

pected to be affected by salinity by 2025 and 50% by 2050 

(11, 12). Abiotic factors affect 10 ha of land per min. world-

wide, 3 of which are lost due to soil salinization (13). Salini-

ty costs the world US$ 27.3 billion a year in reduced in-

come in irrigated areas. Saline soil is defined as soil in 

which the  electrical conductivity (EC) (decisiemens/meter 

or millisiemens/centimeter) of the saturation extract (ECe) 

in the root zone exceeds 4 dS m-1 (approximately 40 mM 

NaCl) at 25 °C and an exchangeable sodium percentage 

(ESP) of 15% or more. Detrimental effects on plant health 

and productivity and crop yield losses due to soil salinity 

have been extensively reported. Many strategies have 

been used to mitigate the detrimental effects caused by 

abiotic stresses on plant and to increase crop productivity 

especially those resulting from drought and salinity stress. 

These include i) breeding methods and genetic modifica-

tion to develop new abiotic stress tolerant crop varieties; 

ii) management of the planting time to avoid stress peri-

ods; iii) adjustment and optimization of irrigation; and iv) 

implementation of beneficial microorganisms known for 

their ability of improving plant health, productivity, and 

resistance to abiotic stresses through various mechanisms 

as biological fertilizers  (Fig. 1). 

 The use of microorganisms as biofertilizers is con-
sidered the most important of these solutions, being a 

suitable and eco-friendly solution to alleviate the climate 

changes that threat the global food production and food 

security. Much interest has been directed toward sustaina-

ble agriculture over the last few years, with an emphasis 

on soil inoculation with beneficial rhizospheric microor-

ganisms known for their stress resistance and plant 

growth promotion under various abiotic stresses (14, 15). 

Depending on their effects on plant growth, soil bacteria 

are classified into three groups: beneficial, deleterious and 

neutral. However, the same bacterial species can change 

between groups depending on the local ecology. PGPRs 

are believed to promote plant growth and development 

and maintain soil health under both normal and stress 

condition (16). Stress-tolerant PGPRs alleviate harsh envi-

ronmental conditions and promote plant growth via sever-

al mechanisms. Plant growth promoting microbiomes 

have positive effects on plant health and growth under 

both normal and stress conditions. The rhizosphere is the 

soil zone influenced by plant roots. It is the most dynamic 

and nutrient-rich soil ecological niche resulting from the 

accumulation of root exudates, including amino acids, 

sugars and organic acids, which are used by rhizospheric 

bacteria to support their growth and metabolism. These 

beneficial bacteria colonize the rhizosphere and/or the 

endorhizosphere and promote plant growth and develop-

ment via both direct and indirect mechanisms, therefore 

constituting a potential and promising strategy for sus-

tainable agriculture. Indirect mechanisms are involved in 

decreasing or preventing detrimental effects caused by 

plant pathogens (usually fungal species) through one or 

several mechanisms, including induction of systemic re-

sistance (ISR), generation of extracellular enzymes 

(chitinases, glucanases, cellulases and proteases) that hy-

drolyze the fungal cell wall,  production of siderophores 

that can restrict pathogen growth by reducing iron accessi-

bility, production of antibiotics and/or antifungal sub-

stances, and competition for nutrients and/or space 

(niche) within the rhizosphere (17, 18).  

 PGP microbes directly enhance plant growth by 
facilitating nutrient uptake, fixing atmospheric nitrogen, 

solubilizing and mineralizing nutrients (particularly phos-

phate and potassium), expressing plant growth regulators 

and signal molecules and producing phytohormones   

(e.g., abscisic acid-ABA, gibberellic acid-GA, indole-3-acetic 

acid-IAA and cytokinins-CK) (13, 20).  Amongst the phyto-

hormones, IAA is the most ubiquitous signal molecule in 

plant-microbe interactions, being involved namely in phy-

tostimulation and phytopathogenesis (21, 22). PGPR also 

synthesize ACC (1-aminocyclopropane-1-carboxylate) de-

aminase, an enzyme involved in decreasing the level of 

stress-induced ethylene in roots of developing plants. 
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Through many of these mechanisms, PGPRs help plants to 

maintain their natural growth under stress conditions by 

mitigating the negative effects of stress on plant growth 

and development. The importance of their use in sustaina-

ble agriculture has been therefore increasing in recent 

years. The present review attempts to explore the success 

of stress tolerant PGPRs in abiotic stress alleviation and 

emphasize the PGPR associated mechanisms involved in 

increasing agricultural sustainability and productivity un-

der stress conditions of drought and salinity. 

Fig. 1. Plant growth promoting microbes as biofertilizers for PGP and soil fertility under the natural and stressed conditions. Adapted with permission from Kour, 
Rana (19).  
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Abiotic stresses and their impact on plant growth and 

productivity     

Drought and soil salinity negatively affect plant growth, 

development and productivity, directly or indirectly, there-

fore decreasing crop production. They affect almost all 

plant functions and aspects ranging from germination to 

maturity.  

Drought stress      

Drought is the most common and devastating abiotic 
stress to plant growth and productivity. It results from pe-

riods of unusual decrease in soil moisture content follow-

ing a prolonged period of low rainfall, which is the major 

water source in subsistence agriculture in many parts of 

the world. In some regions, decreases in rainfall event and 

increases in extreme temperatures (leading to higher 

evapotranspiration rates) are becoming more prevalent, 

potentially due to global warming (23, 24). Increasing 

drought severity therefore leads to large economic losses 

and may pose a serious threat to food security. Drought 

stress may decrease the average crop yield worldwide in 

more than 50%, and further limit agricultural productivity 

(25, 26). In recent years, losses related to drought have 

been the main challenge for grain production. In the last 

40 years, drought stress has reduced cereal yields by ap-

proximately 10% (27). In Southern Brazil, for example, 

which is responsible for more than 40% of the national soy 

production, over 25% of soy harvests were lost due to 

drought stress (28). Global climate models have predicted 

increases in drought frequency and severity in the near 

future due to global climate change, indicating the threat 

of water scarcity (27). In order to satisfy global food de-

mands, there is therefore a need to find eco-friendly solu-

tions that help plants to cope with drought stress while 

maintaining their growth and productivity under limited 

water conditions. 

Impact of drought stress on plant growth and productivi-

ty   

Drought is a multidimensional stress that affects plant 

growth and productivity and induces huge crop yield re-

ductions, which may exceed 40%. It has detrimental 

effects on plant growth and metabolic processes in major 

field grown crops, especially during grain filling and the 

reproductive phase (29, 30). Drought stress which is mainly 

caused by water deficiency due to decreases in rainfall 

levels, high temperatures and low moisture contents, 

affects various plant growth parameters and stress respon-

sive genes and induces several changes in morphological 

and physiological plants traits (31, 32). Drought stress 

affects several morphological traits in plants, such as stem 

height, root length, leaf morphology and number, leaflet 

length, leaflet width, fruit number and size, primary and 

secondary branches and fresh and dry weight. It decreases 

germination rates, seedling vigor, cell size and division, 

membrane integrity, seed size and number, seed viability 

and other biomass parameters, induces senescence in 

matured leaves, and delays flowering and fruiting (2, 33). 

Water deficit affects nutrients availability to plant roots, 

because it decreases nutrient diffusion and the mass flow 

of water-soluble nutrients (e.g., nitrate, sulfate, calcium, 

magnesium and silicon). It also affects plant biochemical 

activities such as nitrate reductase (NR) activity due to 

lower uptake of nitrate from the soil. Drought as a multidi-

mensional stress affects plants at the sub cellular com-

partment and whole plant level. It weakens the photosyn-

thesis process by affecting photosynthetic enzymes name-

ly enzymes involved in chlorophyll biosynthesis and induc-

ing stomatal closure. During drought stress stomata close 

in response to decreased leaf turgor, increased atmos-

pheric vapor pressure deficit or root-generated chemical 

signals. In addition, drought stress triggers the production 

and results in accumulation, of free radicals and reactive 

oxygen species (ROS) such as superoxide radicals, hydro-

gen peroxide and hydroxyl radicals which induce oxidative 

stress and affect antioxidant defenses. When the ROS level 

is high, it can damage certain systems, namely through 

lipid peroxidation, membrane deterioration and protein, 

lipid and nucleic acid degradation, leading to cell death 

(33). Drought, like other abiotic stresses increases ethylene 

biosynthesis, which inhibits plant growth through several 

mechanisms. Drought stress also weakens the plant im-

mune system and enhances their susceptibility to microbi-

al infections (34). Plant sensitivity to drought depends on 

plant developmental stage, genetic potential, genotypic 

variability and duration and severity of the drought stress 

(35, 36).  

 Plants have developed diverse mechanisms to deal 

with drought stress, namely: i) drought escape, when there 

is rapid plant growth and development, allowing comple-

tion of the plant life cycle before the beginning of the dry 

season; ii) drought avoidance when there is increased wa-

ter uptake from the soil or decreased water loss via tran-

spiration; and iii) drought tolerance when normal plant 

growth and metabolic activities are maintained even un-

der water stress, e.g., via osmolyte synthesis. Plant adap-

tations to drought stress can be physiological, morpholog-

ical, biochemical, or molecular and the type of plant re-

sponse depends on the plant species (37). However, the 

development of new approaches to improve plant drought 

tolerance is critical for reducing yield losses in water-

deficient environments.  

Role of PGPR in drought stress alleviation    

Plant growth promotion rhizobacteria are well known to 

stimulate plant growth and increase crop yield under both 

normal and stress conditions. Their role in abiotic stress 

management has been acquiring increasing importance in 

recent years (38). Under water deficient conditions, 

drought stress tolerant plant growth promotion rhizobac-

teria may enhance plant growth and development. They 

help plants cope with negative drought impacts through 

various mechanisms including production of phytohor-

mones, ACC deaminase, osmolytes, antioxidants and ex-

opolysaccharides (EPS), and by inducing systemic toler-

ance (IST) (39) (Table 1). Phytohormones help plants to 

withstand abiotic stresses by mediating a wide range of 

adaptive responses. However, one of the ways in which 

abiotic stresses decrease plant growth is by decreasing 

endogenous plant hormone levels. PGPR enhance plant 
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tolerance to drought by synthesizing and secreting plant 

hormones. Among plant hormones, IAA is a signal mole-

cule of great importance being the main regulator of many 

aspects of plant growth and development, e.g., seed ger-

mination, cell division, tissues differentiation, leaf expan-

sion, lateral and adventitious root initiation, root hair   

Table 1. Role of plant growth promoting rhizobacteria in drought stress alleviation  

Organism Mechanisms Crop Reference 

Achromobacter xylosoxidans ACC deaminase producing Maize Danish, Zafar-ul-Hye (45) 

Acinetobacter calcoaceticus Phosphate solubilization, product of siderophore Foxtail millet Kour, Rana (46) 

Arthrobacter protophormiae ACC deaminase producing Wheat Barnawal, Bharti (47) 

Azospirillum brasilense Higher carbon, nitrogen, and chlorophyll levels; and lower levels 
of abscisic acid and ethylene Maize Curá, Franz (48) 

Azospirillum lipoferum Increased accumulation of soluble sugars, free amino acids and 
proline. Maize Bano, Ilyas (49) 

Bacillus amyloliquefaciens  Production of indole-3-acetic acid (IAA), indole-3-carboxylic acid 
(ICA) and indole-3-lactic acid (ILA) Wheat Raheem, Shaposhnikov (50) 

Bacillus haynesii ACC deaminase activity and siderophores production Rice Joshi, Chaudhary (51) 

Bacillus licheniformis ACC deaminase activity and siderophores production Rice Joshi, Chaudhary (51) 

Bacillus paralicheniformis ACC deaminase activity Rice Joshi, Chaudhary (51) 

Bacillus thuringiensis Decreased GR and APX activity, increased K+ content and micro-
nutrient uptake Lavandula dentate Blanco-Montenegro, De Ritis 

(52) 

Bradyrhizobium japonicum Improved soil water content, cell membrane stability and root 
nodulation and plant growth Soybean Silva, Zoz (53) 

Burkholderia seminalis Chlorophyll content, root length, catalase activity, and guaiacol 
peroxidase Tomato & Bell pepper Tallapragada, Dikshit (54) 

Curtobacterium herbarum  Reducing oxidative stress, lipid peroxidation and Al accumulation 
in plant parts Lettuce Silambarasan, Logeswari (55) 

Enterobacter cloacae ACC deaminase producing Maize Danish, Zafar-ul-Hye (45) 

Ochrobactrum anthropic Synthesis of Siderophore, ACC deaminase activity, indole-3-acetic 
acid production, and phosphate solubilization. Soybean Susilowati, Puspita (56) 

Pseudomonas fluorescens 

increasing relative water content (RWC), accumulated metabo-
lites such as sugar, free amino acids and enhanced the activity of 
non-enzymatic antioxidants; phenolics, ascorbate (AsA) and 
glutathione (GSH) and reactive oxygen species scavenging en-
zyme like superoxide dismutase (SOD), catalase (CAT), ascorbate 

peroxidase (APX) and guaicol peroxidase (GPX) 

 Okra Pravisya, Jayaram (57) 

Pseudomonas jessenii High SOD, CAT and POD expression Rice Gusain, Singh (58) 

Pseudomonas libanensis 
Solubilization of potassium and zinc, production of siderophores, 
hydrogen cyanide, ammonia and 1-aminocyclopropane-1-
carboxylate deaminase 

Wheat Kour, Rana (59) 

Pseudomonas moraviensis ACC-deaminase activity Wheat Yaseen, Zafar-ul-Hye (60) 

Pseudomonas putida 

Downregulation of ethylene biosynthesis (ET), abscisic acid (ABA) 
and auxin signaling, superoxide dismutase, catalase, and peroxi-
dase; genes involved in β-alanine and choline biosynthesis, heat 
shock proteins, and late embryogenesis abundant (LEA) proteins 

Maize SkZ, Vardharajula (61) 

Pseudomonas simiae Production of abscisic acid (ABA) and salicylic acid (SA) hormones 
and reduction of ethylene emission Soybean Vaishnav and Choudhary (62) 

Pseudomonas stutzeri 

Increased plant biomass, leaf water potential, relative water 
content, root adhering soil/root tissue ratio, aggregate stability, 
mean weight diameter, and proline, sugar, and free amino acid 
contents and decreased  ranspiration rates 

Maize (63) 

Pseudomonas synxantha High SOD, CAT and POD expression Rice Gusain, Singh (58) 

Pseudomonas syringae 

Increased plant biomass, leaf water potential, relative water 
content, root adhering soil/root tissue ratio, aggregate stability, 
mean weight diameter, and proline, sugar, and free amino acid 
contents and decreased  ranspiration rates 

Maize Sandhya, Ali (63) 

Rhizobium tropici Increased nodulation and nitrogen content Common bean Figueiredo, Burity (64) 

Streptomyces laurentii Solubilization of zinc and potassium; production of Fe - chelating 
com pounds, in dole acetic acid, hydrogen cyanide and ammonia Great millet Kour, Rana (59) 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/oxidative-stress
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development, root and stem elongation and resistance to 

stressful conditions. As already mentioned drought stress 

negatively affects roots and reduces their growth. Under 

such condition, IAA-producing PGPR stimulate root growth 

(increase the number of root tips and root surface area) 

leading to increased nutrient, mineral and water uptake, 

which is expected to alleviate the drought stress effects on 

plants (40).  

 ABA is an important plant growth regulator with 

crucial role in drought stress alleviation. It is involved in 

modulation of various key physiological processes during 

drought stress. Namely, it is involved in regulation of leaf 

transpiration by inducing stomatal closure to reduce water 

losses, stimulation of root hydraulic conductivity, up-

regulation of aquaporins and alleviation of ROS produc-

tion. ABA is also involved in increasing water absorption by 

enhancing root growth and branching and regulating os-

molytes to maintain osmotic adjustments. Increased ABA 

contents were associated with enhanced osmotic stress 

tolerance and decreased leaf transpiration in Arabidopsis 

thaliana inoculated with Phyllobacterium brassicacearum 

strain STM196 (41) and with increased stomatal conduct-

ance in Platycladus orientalis seedlings inoculated with 

Bacillus subtilis (42).  

 Cytokinins (CK) stimulate cell division and enlarge-

ment and shoot growth, and induce stomatal opening. 

Under drought conditions, it plays a vital role in delaying 

premature leaf senescence and death and has been con-

sidered to enhance plant drought tolerance by several re-

searchers. Inoculation with CK-producing Bacillus sp. In-

creased shoot biomass of 12-days-old lettuce seedlings 

growing in drying soil. Inoculation with CK-producing Ba-

cillus subtilis alleviated water deficit stress in Platycladeus 

orientalis seedlings, but increased CK levels led to sto-

matal opening, which was reversed by increased ABA lev-

els (42). Recently, (43) reported a drought tolerance en-

hancement effect of a drought-tolerant CK-producing 

Methylobacterium oryzae isolate in lentil plants. Likewise, 

JA behaves as an antioxidant, protecting plants from oxi-

dative stress damages. Similarly, GA is involved in several 

developmental and physiological processes, such as seed 

germination, stem elongation, flowering and senescence 

(44).  

 Ethylene is an important modulator of normal plant 

growth and development. It is involved in the regulation of 

several plant metabolic activities, and its biosynthesis in-

creases under environmental stresses such as drought. 

High ethylene accumulation adversely impacts plant phys-

iology and growth. It regulates plant homeostasis resulting 

in restricted root and shoot growth. Rhizospheric bacteria 

prevent ethylene damage by sequestering and hydrolyzing 

1-aminocyclopropane-1-carboxylate (ACC), the immediate 

precursor of ethylene, therefore interfering with its synthe-

sis and decreasing ethylene accumulation (65, 66). The 

sequestered ACC is hydrolyzed into ammonia and                 

α-ketobutyrate by bacterial ACC deaminase to supply ni-

trogen and energy. Plant inoculation with ACC deaminase-

producing PGPR increases seed yield, number and nitro-

gen content, and restore root nodulation inhibited by 

drought (13). Ethylene reduction induces root system de-

velopment, leading to increased plant access to water and 

nutrients, therefore increasing plant drought resistance. 

Alleviation of drought stress by ACC deaminase-producing 

PGPR has been reported in tomato (Lycopersicum esculen-

tum cv. F144)  and pepper (Capsicum annuum L. cv. Maor) 

seedlings inoculated with Achromobacter piechaudii ARV8 

(67) and wheat inoculated with Pseudomonas palleroniana 

DPB16, Pseudomonas sp. UW4 and Variovorax paradoxus 

RAA3 (68). 

 Plant adaptation to drought stress is associated 

with metabolic adjustments leading to accumulation of 

several compatible solutes or osmolytes, such as proline, 

soluble sugars, polyamines, betaines, quaternary ammoni-

um compounds, polyhydric alcohols and other amino-

acids and water stress proteins like dehydrins. Some PGPR 

also produce osmolytes to combat severe stress condi-

tions. These osmolytes act synergistically with those pro-

duced by plants and promote plant growth. Proline is a 

major osmolyte, produced in plants via protein hydrolysis 

to counter osmotic stress. It is a multifunctional molecule 

which helps increase plant tolerance to stress by adjusting 

cytosolic acidity, stabilizing proteins and membranes, 

maintaining cell water status, reducing lipid peroxidation 

by scavenging ROS and acting as an antioxidant defense 

molecule. High proline accumulation in plants therefore 

indicates high drought tolerance. Inoculation of tomato 

plants with Bacillus polymyxa (69), maize plants with Pseu-

domonas putida GAP-P45 (63) or with Pseudomonas fluo-

rescens (70) resulted in increased plant biomass, relative 

water content and leaf water potential due to proline ac-

cumulation under drought conditions. Observations are on 

the increased proline contents in basil plants (Ocimum 

basilicum L.) inoculated with Azotobacter chrocoocum, 

leading to improved water uptake and water use efficiency 

and photosynthetic efficiency (71). Trehalose is another 

osmolyte that confers osmoprotection to plants through 

membrane and protein stabilization (72). Trehalose me-

tabolism in PGPR is important for signaling plant growth, 

yield, and adaptation to abiotic stresses and its manipula-

tion has a major agronomical impact on plants (73). It was 

reported that priming maize plants with Azospirillum bra-

silense over-expressing genes involved in trehalose biosyn-

thetic enhanced trehalose accumulation, conferring 

drought tolerance (73). Polyamines such as cadaverine, 

spermidine, spermine and putrescine are low molecular 

weight compounds involved in increasing osmotic toler-

ance in drought-affected plants and are implicated in cell 

division, root elongation, floral development, fruit ripen-

ing, DNA synthesis, transcription and translation and in 

programmed cell death (74, 75). Likewise, Glycine betaine 

is involved in inhibition of ROS accumulation, protein and 

cell membrane stabilization, photosynthesis enhance-

ment, induction of stress-responsive genes and prevention 

of water loss during osmotic stress (76, 77). 

 Drought stress induces ROS production including 

superoxide anion radicals (O2
−), hydrogen peroxide (H2O2), 

hydroxyl radicals (OH), singlet oxygen (O12) and alkoxy rad-

icals (RO) (78). Increased ROS levels in plants, above 
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threshold have results in oxidative stress. It causes inhibi-

tion of protein synthesis, protein disruption, lipid peroxi-

dation, decreased membrane fluidity, DNA damage and 

impairs the normal functioning of plant cells leading to cell 

death. To protect themselves against the harmful effects 

of ROS, plants are equipped with antioxidant defense sys-

tems by both non-enzymatic (e.g., ascorbate, cysteine, 

tocopherols and glutathione) and enzymatic components, 

such as monodehydroascorbate reductase (MDHAR), su-

peroxide dismutase (SOD), peroxidase (POD), glutathione 

reductase (GR), catalase (CAT) and ascorbate peroxidase 

(APX) (79). These enzymes play a crucial role in drought 

stress alleviation. Bacillus thuringiensis has been reported 

to increase GR, CAT and SOD activity in wheat under 

drought stress (39) and Pseudomonas aeruginosa GGRJ21 

to increase SOD, POD and CAT activity in mung bean (80). 

Similarly, Pseudomonas mendocina increased CAT activity 

in lettuce (Lactuca sativa) plants, protecting them from 

oxidative damage caused by drought stress (81). Some 

studies reported lower levels of antioxidant enzymes, 

namely APX, CAT, GR and glutathione peroxidase (GPX) in 

plants inoculated with PGPR, suggesting that they experi-

enced lower oxidative stress than uninoculated plants 

(82). 

 Exopolysaccharides (EPS) are bacterial compounds 
with an important role in protecting bacteria from inhospi-

table conditions and enable their survival. Under water 

deficit stress, EPS-producing PGPR not only protect them 

but also have a crucial role in enhancing plant tolerance 

(83). EPS can protect plants against desiccation due to the 

formation of hydrophilic biofilms on the root surface (84). 

The EPS-producing PGPR ability for water retention varies 

depending on the polysaccharide constituents of EPS and 

it may exceed 70 g water per 1 g polysaccharide (85). EPS 

provides a microenvironment that holds water and dries 

up less quickly than the surrounding environment, thus 

protecting bacteria and plant roots against desiccation. 

EPS also improve soil structure and aggregation (increase 

the number of soil micro-aggregates in the rhizosphere 

and their stability), leading to higher root adhering soil per 

root tissue (RAS/RT) ratio increasing water and nutrient 

uptake and ensuring higher plant growth and survival un-

der drought stress (86). Several researchers have reported 

the efficiency of EPS-producing PGPR in drought stress 

alleviation for plant growth improvement. 

 Induced systemic tolerance is an important mecha-

nism in growth promotion by PGPR.  It consists of induced 

physical and chemical changes in plants that result in in-

creased tolerance to abiotic stresses, namely through up 

regulation of genes involved in stress tolerance (79). In-

duced expression of the drought responsive genes Early 

Response to Dehydration 15 (ERD 15) and ABA-responsive 

gene (RAB18) was observed in Arabidopsis thaliana inocu-

lated with Paenibacillus polymyxa (87), and priming with 

Bacillus licheniformis K11 induced the expression of six 

different stress proteins in pepper plants, resulting in in-

creased plant growth under drought stress (88). Similarly, 

co-inoculation of wheat (Triticum aestivum) with of Bacil-

lus amyloliquefaciens 5113 and Azospirillum brasilense 

NO40 alleviated the effects of drought stress through up-

regulation of the stress related genes APX1, SAMS1 and 

HSP17.8 in leaves, and increased activity of enzymes in-

volved in the plant ascorbate-glutathione redox cycle (89). 

Drought stress alleviation was also observed in mung bean 

plants inoculated with Pseudomonas aeruginosa GGRJ21 

due to up regulation of three drought stress-responsive 

genes, dehydration responsive element binding protein 

(DREB2A), catalase (CAT1) and dehydrin (DHN) (80). Like-

wise, priming of sugar cane cv. SP70-1143 with Glu-

conacetobacter diazotrophicus PAL5 resulted in activation 

of ABA-dependent signaling genes conferring drought re-

sistance (90). Further studies are however needed in order 

to clarify the main molecular mechanisms behind induced 

systemic tolerance by PGPR in plants.  

Salinity Stress     

Salinity is one of the major land degradation problems. It 
consists on the accumulation of soluble salts (including 

cations such as Na+, K+, Ca2+ and mg2+ and anions such as 

Clˉ, SO4
2ˉ, NO3ˉ, HCO3ˉ and CO3

2ˉ) in soils at levels that nega-

tively affect agricultural productivity, environmental 

health and economic welfare (91). Salinization changes 

soil physicochemical properties causing permanent land 

degradation. It imposes enormous challenges for agricul-

tural production and sustainability because most of crop 

plants are sensitive to high salts concentrations in soil. In 

2005, the FAO estimated that over 6% of the world’s total 

continental area is affected by salinity. Salinity is predicted 

to become a larger problem in the coming decades be-

cause the level of salt-affected land areas is increasing 

daily in several parts of the world, including the Mediterra-

nean Basin, Australia, Central and Southern Asia, the Mid-

dle East, Europe and Northern Africa (92, 93). According to 

FAO (2002), the total land area that can be used for agricul-

ture is decreasing by 1-2% every year, hitting hardest in 

arid and semi-arid regions. This alarming increase in salt-

affected soils is mainly caused by low rainfall, high temper-

atures leading to high surface evaporation, weathering of 

native rocks, irrigation with saline water, exaggerated use 

of fertilizers and desertification processes (94). 

Impact of salinity on plant growth and productivity    

Salinity negatively affects plant growth and development 

and plant metabolism, inducing physiological, morpholog-

ical, biochemical and molecular changes leading to de-

creases in plant yield. It affects almost every aspect of 

plant growth, from seed germination to maturity. Seed 

germination and early seedling growth are the most salt-

sensitive plant growth stages. Seed germination inhibition 

has been observed in various crops, namely soybean, faba 

bean, wheat, rice and maize. High salt concentrations in 

the rhizosphere severely affect plant growth through com-

plex interactions (95). It induces osmotic and nutrient im-

balances, ionic toxicity, reduces photosynthetic capability, 

increases ethylene production, lowers moisture retention, 

affects protein synthesis and lipid metabolism, generates 

ROS, impairs nitrogen fixation, induces stomatal closure 

and early desiccation of flowers and fruits (96). 

 Many water-soluble salts in soil are plant nutrients, 
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but their excessive accumulation in the root zone induces 

nutritional imbalance due to competition between Na+ 

and Cl− and other nutrient ions, such as: K+, NO3
− and 

H2PO4
− for binding sites and transport proteins in root 

cells, and thereafter for translocation, deposition and par-

titioning within the plant (3, 97). Under salinity conditions, 

an increase in Na+ uptake causes metabolic disturbances 

in some processes where low Na+ and high K+ or Ca+2 are 

required for optimal functioning and growth. The replace-

ment of K+ by Na+ induces protein conformational changes 

leading to ionic toxicity. K+ is a co-factor of several en-

zymes and cannot be replaced by Na+. In addition, exces-

sive Na+ accumulation in cell walls can rapidly lead to os-

motic stress and cell death and Clˉ accumulation may dis-

rupt photosynthetic function through inhibition of NR. Na+ 

and Cl− are mostly up taken by the cell vacuoles and organ-

ic solutes (that are compatible with metabolic activity 

even at high concentrations) then accumulated and stored 

in the cytosol. Once the plant cell capacity for storing salts 

is exhausted, salts build up in the intercellular spaces, in-

ducing cell and organ death. Perturbation of plant nutrient 

relations by salinity results in higher susceptibility to inva-

sion by pathogenic microorganisms (98). 

 Under saline conditions, osmotic pressure is higher 

in the rhizosphere soil solution than in root cell making 

water uptake by plants harder resulting in cells dehydra-

tion, loss of turgidity and plant wilting and death. Salinity 

also creates water deficit by changing the soil texture and 

decreasing soil porosity (79). Leaf area, size and produc-

tion decrease whereas plant defoliation and senescence 

accelerate at high salt availability. During salt stress, pho-

tosynthesis is mainly affected by decrease in water poten-

tial, leaf area, chlorophyll and carotenoid contents, photo-

system II (PSII) activity, electron transport, photosynthetic 

enzymes and partial stomata closure. In addition, salt 

stress disturbs photorespiration, affecting normal cell ho-

meostasis and physiological and metabolic processes in 

plants. It also reduces cell division and expansion, triggers 

membrane disorganization and genotoxicity, resulting in 

decreased growth and premature activation of pro-

grammed cell death (99). 

 Salinity is also known to affect phytohormones syn-

thesis and other plant growth-stimulating factors e.g., it 

significantly increases the rate of ethylene biosynthesis by 

increasing the level of ACC, leading to negative physiologi-

cal changes in plant tissues. Soil salinity negatively affects 

nodulation and nitrogen fixation through inhibition of  

nitrogenase enzyme activity, therefore reducing nitrogen 

contents in legumes. It also decreases plant phosphorus 

uptake because phosphate ions precipitate with Ca ions. 

Like other abiotic stresses, salinity leads to oxidative stress 

due to increased production and accumulation of ROS 

which are potentially harmful to biomembranes, proteins, 

nucleic acids and enzymes (100). Moreover, salinity ad-

versely affects plant reproductive development by inhibit-

ing microsporogenesis and stamen filament elongation, 

enhancing programmed cell death in some tissues, ovule 

abortion and senescence of fertilized embryos (94). The 

edible parts of salt-affected plants have markedly less eco-

nomic and nutritional value due to reduced fruit size and 

shelf life, non-uniform fruit shape and decreased vitamin 

(98). Plant salt tolerance is not easy to quantify because it 

varies considerably with several environmental factors 

(soil fertility, soil physical conditions, salt distribution in 

the soil, irrigation regime and climate) and plant factors 

(growth stage, root stock and plant species and cultivar) 

(101). 

 Several strategies for salt stress alleviation have 

been developed, such as: development of salt-resistant 

cultivars, leaching of excess soluble salts from upper to 

lower soil depths, flushing soils that have soil crusts at the 

surface, reducing soil salt contents through the use of salt-

accumulating plant and harvesting of their aerial parts in 

areas with irrigation or rainfall insufficient for leaching, 

etc. But all these methods showed many disadvantages 

and limits. Crop seed and seedling priming with halotoler-

ant PGPR is a promising alternative for salt stress allevia-

tion. Considering the prospects of crop production losses 

due to salinity stress, tolerance provided by bacterial inoc-

ulants becomes more important. Beneficial effects of 

PGPR under salinity have been associated with phytohor-

mone production, osmolyte accumulation, toxic ion se-

questration Na+, maintenance of higher stomatal conduct-

ance etc. 

Role of PGPR in salinity stress alleviation    

Salinity effects on plant physiology, health and growth can 

be alleviated with the use of halotolerant microbial inocu-

lants (102).  PGPR exhibit various mechanisms which alle-

viates the salinity stress in plants (Table 2). Phytohormone 

production by PGPR is believed to increase root length and 

surface area and the number of root tips, leading to higher 

water and nutrient uptake under salinity stress (103). IAA 

production is relatively common in PGPR, and many re-

ports have showed its role in salt stress alleviation. PGPR 

produce IAA and transfer it into the rhizosphere of salt 

stressed plants, where it acts in combination with the en-

dogenous IAA plant pool to stimulate plant growth. IAA-

producing Azospirillum brasilense NH has been reported to 

promote wheat (Triticum durum var. waha) growth under 

salinity (150 mmol/l and 200 mmol/l NaCl) (104). Priming 

with IAA-producing Pseudomonas strains (P. extremorien-

talis TSAU20, P. aurantiaca TSAU22 and P. extremorientalis 

TSAU6) increased root and shoot growth of wheat seed-

lings by 40% and 52% respectively at 100 mmol/l NaCl, 

when compared to the control plants (103). Inoculation of 

cotton (Gossypium hirsutum) seeds with      P. putida Rs-198 

resulted in increased seed germination and seedling 

growth and inoculation with P. putida R4 and P. chlorora-

phis R5 increased seed germination up to 64 and 73% re-

spectively and root and shoot length (105).  

 In addition to its role as plant growth stimulator 

and salt stress alleviator, IAA can stimulate ACC synthase 

activity (106). ACC synthase converts S-adenosyl methio-

nine  to ACC, which is the ethylene precursor (107). High 

IAA concentrations therefore lead to higher ethylene syn-

thesis, which negatively affects many aspects of plant 
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growth (108). An important amount of plant produced ACC 

is exuded from seeds and roots. Production of ACC deami-

nase is an important PGP trait, especially under salinity 

stress, because PGPR take up the exuded ACC and convert 

it to ammonia and α-ketobutyrate (106). ACC reduction 

therefore leads to lower ethylene contents in plants, allevi-

ating the inhibitory effect of high ethylene concentrations 

and promoting plant growth under salinity stress. ACC-

deaminase producing rhizobacteria have been reported to 

improve plant mineral nutrition, resulting in mitigation 

salt stress (109). Many reports have shown the efficiency of 

ACC-deaminase producing PGPR in alleviating salinity 

effects in different plants. Salt stress alleviation has been 

observed in canola inoculated with Pseudomonas putida 

UW4 strain (110), groundnut seedlings with Pseudomonas 

fluorescens TDK1 (111), bean with P. fluorescens and Rhizo-

bium phaseoli (112) and rice seedling with Enterobacter sp. 

(113). 

 ABA is another plant hormone, known as stress hor-

Table 2. Effects plant growth promoting rhizobacteria in salinity stress alleviation  

PGP Rhizobacteria Mechanisms of actions Crop Reference 

Achromobacter piechaudii Reduced ethylene level and improved plant growth Tomato Mayak, Tirosh (118) 

Acinetobacter bereziniae Activities of antioxidant enzymes  (SOD and POD) Pea Sapre, Gontia-Mishra (119) 

Arthrobacter woluwensis Production of IAA, siderophores, extracellular polymeric Soybean Khan, Sahile (120) 

Azospirillum brasilense Restricted Na+ uptake and increased K+ and Ca2
+ uptake; in-

creased NR and nitrogenase activity Maize Hamdia, Shaddad (121) 

Azotobacter chroococcum Increased chlorophyll, polyphenol and K+/Na+ ratio Maize Rojas-Tapias, Moreno-Galván (122) 

Bacillus amyloliquefaciens Modulation of differential transcription of a set of at least 14 
genes Rice Nautiyal, Srivastava (123) 

Bacillus aryabhattai Decreased ethylene levels of and increased plant growth Canola Siddikee, Chauhan (124) 

Bacillus cereus 
Proline and soluble sugars contents, Na+ and oxidative stress 

biomarkers (e.g., O2
•− and H2O2), and antioxidant activities were 

increased  
Wheat Desoky, Saad (125) 

Bacillus firmus  Activities of antioxidant enzymes (APX, CAT, SOD and POD) Soybean El-Esawi, Alaraidh (126) 

Bacillus megaterium ACC deaminase and exopolysaccharides EPS secreting Wheat Haroon, Khizar (127) 

Bacillus methylotrophicus EPS production, Sequestration of Na+ ion Wheat Din, Sarfraz (128) 

Bacillus pumilus Increased glycine betaine concentrations and NR activity, de-
creased APX activity Rice Jha, Subramanian (129) 

Bacillus sonorensis Production of NH3, IAA and siderophores Tomato Kapadia, Sayyed (130) 

Bacillus subtilis Increased chlorophyll content and K+ /Na+ ratio White clover Han, Lü (131) 

Bacillus tequilensis ACC deaminase and exopolysaccharides EPS secreting Wheat Haroon, Khizar (127) 

Enterobacter aerogenes ACC deaminase activity Maize Nadeem, Zahir (132) 

Enterobacter ludwigii Activities of antioxidant enzymes (SOD and POD) Pea Sapre, Gontia-Mishra (119) 

Marinobacterlipolyticus Production of EPS Wheat Atouei, Pourbabaee (133) 

Micrococcus yunnanensis Decreased ethylene levels of and increased plant growth Canola Siddikee, Chauhan (124) 

Providencia stuartii EPS production, floc yield production, biofilm formation Rice Shultana, Tan Kee Zuan (134) 

Pseudomonas aeruginosa 
Proline and soluble sugars contents, Na+ and oxidative stress 

biomarkers (e.g., O2
•− and H2O2), and antioxidant activities were 

increased  
Wheat Desoky, Saad (125) 

Pseudomonas anguilliseptica Biofilm formation and exopolysaccharides production Faba bean Mohammed (135) 

Pseudomonas fluorescens ACC deaminase activity Maize Nadeem, Zahir (132) 

Pseudomonas mendocina Increased ACC deaminase activity and plant nutrient uptake Lettuce Kohler, Hernández (136) 

Pseudomonas pseudoalcaligenes Increased glycine betaine concentrations and NR activity, de-
creased APX activity Rice Jha, Subramanian (129) 

Pseudomonas psychrotolerans Production of IAA and gibberellic acid Maize Kubi, Khan (137) 

Pseudomonas putida Decreased transpiration rates, stomatal conductance, and ABA 
and SA levels, and increased plant growth Citrus Vives-Peris, Gómez-Cadenas (138) 

Pseudomonas syringae ACC deaminase activity Maize Nadeem, Zahir (132) 

Pseudomonas fluorescens  Antioxidant enzymes Soybean Abulfaraj and Jalal (139) 

Rhizobium massiliae Activity of antioxidant enzymes (ascorbate peroxidase, guaiacol 
peroxidase, and catalase) Pepper Hahm, Son (140) 

Serratia marcescens  
Proline and soluble sugars contents, Na+ and oxidative stress 

biomarkers (e.g., O2
•− and H2O2), and antioxidant activities were 

increased  
Wheat Desoky, Saad (125) 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/pseudomonas
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mone, responsible for increasing plant resistance to salini-

ty. It is involved in many physiological changes in stressed 

plants. It decreases plant transpiration by inducing sto-

matal closure and mediates root branching to increase 

water uptake (114). Inoculation with ABA-producing PGPR 

resulted in increased growth and nutritional status of soy-

bean seedlings affected by salinity (115). Gibberellins (GA) 

are other important plant growth regulating hormones 

that are produced by numerous PGPR. GA-treated plants 

have been observed to have increased water uptake, 

showing the role of GA under salt stress (116). Exogenous 

application of GA has also been shown to increase germi-

nation and growth of wheat plants (117). 

 Osmotic adjustment is a major mechanism involved 

in salt stress alleviation by PGPR. It consists in accumula-

tion of compatible solutes (e.g., proline, trehalose and Gly-

cine betaine) and helps plants maintaining their cellular 

swelling for normal cellular functioning.  Proline, for exam-

ple, can alleviate salinity stress in salt-affected plants by 

maintaining leaf water potential, eliminating free radicals 

and buffering the cellular redox potential and stabilizing 

sub-cellular structures such as proteins and membranes 

(141). Numerous studies on halophilic and halotolerant 

PGPR showed their ability to increase compatible solute 

contents in plants under salt stress, thus improving plant 

growth. It was observed high proline contents in shoots 

and roots of soybean plants inoculated with PGPR isolates 

Rkh-1, Rkh-4 and Rkh-3 conferring salt tolerance to the 

inoculated plants (115). Similarly, inoculation with Pseudo-

monas pseudoalcaligenes and Bacillus pumilus resulted in 

enhanced salinity tolerance in rice plants, mediated by 

high glycine betaine concentrations in the plant cells (142). 

Likewise, studies are on the efficiency of co-inoculation by 

Bacillus subtilis and Arthrobacter sp. in improving salt 

stress tolerance in wheat and reported that increased pro-

line and total soluble sugar contents are an important de-

fense strategy to cope with salinity stress, since they signif-

icantly contributed to the plant osmotolerance (143). 

Priming with Azospirillum lipoferum FK1 resulted in higher 

accumulation of soluble sugars, proteins, GB and proline 

in salt-treated chickpea plants, leading to salt tolerance 

via osmotic regulation and higher plant biomass (144). 

Positive effects of proline accumulation in chickpea inocu-

lated with Bacillus subtilis under salinity has also been re-

ported by Abd_Allah, Alqarawi (145).  

 Salinity induces oxidative stress via overproduction 

of ROS, causing changes to redox homeostasis of plant 

cells. The role of antioxidants in salt stress alleviation is 

therefore noteworthy. Several studies have reported alle-

viation of oxidative stress in salt-stressed plants by inocu-

lation with PGPR. PGPR inoculation decreased the activity 

of GR and APX in lettuce plants (146). Inoculation with 

Pseudomonas pseudoalcaligenes and Bacillus pumilus re-

duced lipid peroxidation and SOD activity in salt sensitive 

rice GJ-17 during salt stress (147). Inoculated with PGPR 

has been shown to reduce the levels of enzymatic compo-

nents (e.g., APX, CAT, GR and glutathione peroxidase 

(GPX)) (148). This reduction indicates that PGPR-treated 

plants experienced less stress than non-inoculated plants. 

However, some authors have reported increased antioxi-

dant enzyme activities in PGPR-inoculated plants. Tomato 

seedlings inoculated with Enterobacter spp. EJ01 showed 

higher APX activities than uninoculated plants under salin-

ity stress (149), and inoculation of Gladiolus with Bacillus 

spp. resulted in higher SOD and CAT activities under saline 

stress, physiologically protecting plants against oxidative 

damage and promoting plant growth (150). These increas-

es may be explained by the fact that PGPR induce high 

expression of genes encoding antioxidant enzymes in inoc-

ulated plants (151). Gururani, Upadhyaya (152) monitored 

the changes in expression of the genes encoding ROS-

scavenging enzymes in potato plants under salinity stress 

and observed considerably increased mRNA expression of 

the genes encoding for SOD, APX, CAT and GR in PGPR-

inoculated than in non-inoculated plants. PGPR inocula-

tion can therefore be concluded to confer the ability to 

cope with oxidative damages to plants. Further studies are 

needed in order to establish which synthetic and molecu-

lar mechanisms are involved in the production of antioxi-

dant enzymes and how antioxidant activity varies in PGPR-

treated plants under saline and non-saline conditions. 

 Exopolysaccharides (EPS) are responsible for bacte-

rial attachment, often together with other bacteria, to soil 

particles and plant root surfaces (153). They play a signifi-

cant role in drought and salinity stress alleviation because 

they are involved in hydrophilic biofilm formation on plant 

roots, thus conferring protection against desiccation (84). 

It is well known that salt stress causes imbalances in ion 

fluxes in plants. However, application of EPS-producing 

PGPR results in decreased Na+ and increased K+ uptake by 

plants. This is due to an acyl group that confers anionic 

properties to EPS, facilitating their binding to free Na+ cati-

ons. This decreases Na+ availability in the rhizosphere, re-

sulting in improved plant nutrition and growth (154). Inoc-

ulation with the halotolerant PGPR Bacillus amyloliquefa-

ciens, Bacillus insolitus, Microbacterium spp. and Pseudo-

monas syringae led to improved growth in wheat plants 

grown under salinity and the authors attributed this to the 

formation of EPS-derived rhizosheaths, which restricted 

Na+ influx into the stele. Priming with salt-tolerant Halomo-

nas variabilis HT1 and Planococcus rifietoensis RT4 in-

creased the growth of chickpea  plants (Cicer arietinum 

var. CM-98) and soil aggregation with plant roots under 

high salt concentrations (up to 200 mM NaCl) (155). Im-

proved growth of sunflower plants inoculated with Pseu-

domonas aeruginosa and grown under salinity stress has 

been attributed to EPS production by the PGPR (156). Fur-

ther studies and deeper analysis are needed in order to 

understand the role of EPS in salt and other abiotic stress 

alleviation by EPS-producing PGPR and explore the varia-

tions in EPS composition under different stresses, since 

the water retaining capacity and structure of all polysac-

charides are known to vary substantially (16, 79). 

 PGPR induce systemic tolerance in inoculated 

plants by triggering physicochemical changes that in-

crease plant abiotic stress resistance. Numerous studies 

have reported the role of PGPR in the regulation of stress 

responsive genes, either through up or down-regulation 

https://plantsciencetoday.online


70 

Plant Science Today, ISSN 2348-1900 (online) 

during severe environmental stresses. For example, inocu-

lation with Burkholderia phytofirmans PsJN induced high 

salt tolerance in A. thaliana by inducing changes in the 

expression of genes involved in ion homeostasis (KT1, 

HKT1, NHX2, and SOS1) (157). Similarly, priming of maize 

plants with Bacillus amyloliquefaciens SQR9 resulted in 

increased salinity tolerance through down-regulation of    9

-cis-epoxycarotenoid dioxygenase (NCED) gene expression 

which is the key enzyme in ABA synthesis (158). 

Limitations of PGPR in the natural conditions     

The benefits of PGPR in agricultural fields are restricted by 
numerous factors, such as: i) Suboptimal rhizosphere colo-

nization and persistence in foreign soils: despite their ini-

tial proximity to the developing root, after inoculation, 

PGPR must compete for colonization of the rhizosphere 

with resilient resident microbiota that may have become 

well-adapted to the soil conditions over years of evolution-

ary selection. Competitive PGPR may adapt structurally 

and/or metabolically to survive and provide tolerance to 

abiotic stresses; ii) Promiscuous host-specificity: Epiphytic 

and endophytic rhizobacteria lack active mechanisms for 

stringent partner-specificity which could be problematic in 

the field due to promiscuous colonisation and growth pro-

motion of wild or invasive plant species which compete 

with target crops, negatively impacting yield (36). The root 

exudates are known to influence the plant-PGPR interac-

tion. It is difficult to predict root exudates in the field be-

cause they are dynamically influenced by the plant devel-

opmental stage, rhizo-microbiome and abiotic stresses; iii) 

Undesirable regulation of PGP traits: many beneficial pro-

cesses to the plant are energetically costly to PGPR. As 

such, PGPR have evolved tight regulatory systems to con-

trol expression of PGP genes and activity of PGP traits in 

response to environmental or internal conditions, ena-

bling conservation of energy and resources. The existence 

of this undesirable regulation in agriculture can lead some 

PGPR to lose their performance and therefore perform sub

-optimally in the field.    

 

Conclusion   

Plant growth promoting bacteria play a crucial role in en-

hancing plant tolerance to different abiotic stresses. These 

bacteria live in association with plant-roots and induce 

several changes in plants via several mechanisms, leading 

to restoration of plant health, growth and productivity 

under harsh environmental conditions. Bio-inoculants can 

therefore be developed using these microorganisms to 

effectively improve soils affected by abiotic stresses, mak-

ing them productive again. Under field conditions, survival 

and growth promotion activities of PGPR strains are affect-

ed by many constraints such soil conditions (i.e., pH, soil 

nutrient status, water retention capacity etc.), autochtho-

nous microorganisms and environmental stresses (abiotic 

stresses). Climatic changes are the main cause for appear-

ance and progression of several abiotic stresses such as 

drought and salinity. In most agricultural fields, most of 

these stresses are occurring simultaneously. Therefore, in 

order to select the most efficient PGPR strains that could 

improve plant growth under field conditions, it is highly 

recommended to investigate the efficacy of those strains 

in presence of the aforementioned stresses concurrently. 

So, for plant growth restoration in drought-affected fields 

and/or salt-affected ones the use of drought-salinity toler-

ant PGPR is highly recommended. PGPR-mediated abiotic 

stress tolerance in plants has been the focus of many re-

cent studies, but the pronounced changes in phytohor-

mone pools, antioxidant enzyme expression, and other 

changes in PGPR-inoculated plants growing under stress 

conditions has not been explored in detail. In-depth stud-

ies of PGPR-associated mechanisms and plant-PGPR inter-

actions under stress conditions are needed so that PGPR-

mediated ameliorative strategies of abiotic stresses can be 

successfully developed.  
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