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Abstract   

Worldwide, it is known that abiotic and biotic stresses can affect the pro-

duction of crops by a declining trend. To control the situation, SnRK2 (a sub-

family 2 of SNF1-related protein kinase) overexpression levels can induce 

salt tolerance. This study used a dataset for 2 types of Arabidopsis thaliana 

including the wild and PtSnRK2.7 overexpressed in mock and salt condi-

tions to compare and identify the salt stress-responsive genes. A computa-

tional systems biology approach was employed to identify the differentially 

expressed genes and determine their mechanisms in terms of molecular 

functionalities, cellular components, KEGG enrichment pathways and plant 

ontology analyses. The results indicate that the 15 genes identified for 

PtSnRK2.7 overexpressed type in mock against salt conditions were upregu-

lated (AT1G19180 and AT2G23150 were downregulated) and related to vari-

ous environmental stresses. Furthermore, 8 out of 15 identified genes were 

downregulated for the wild type exposed to salt stress and the rest were 

upregulated. And, the only upregulated gene found differentially expressed 

between wild and overexpressed types in salt stress conditions was 

AT4G15110. In contrast, the other two AT1G15010 and AT4G19430 were 

downregulated and involved in transient stress and inactivation of chloro-

plast, respectively. Taken together, it has been shown that A. thaliana 

PtSnRK2.7 overexpressed type can resist salt stress. Finally, more experi-

mental studies and computational systems biology methodologies are 

needed to reveal and confirm the responsive gene for salt stress in A. thali-

ana.    

 

Keywords   

Systems biology, Arabidopsis thaliana, differentially expressed genes, function, plant 

ontology, gene ontology    

 

Introduction   

Globally, the agricultural products suffer from stressful environmental con-

ditions such as high temperature, high soil salinity and drought, which ham-

per a lot of accounting for large cultivable areas in many countries like In-

dia, the US and China (1, 2). Among various types of abiotic stressors limit-

ing the productivity of the crop, salt stress is considered plant toxicity that 

interferes significantly with cellular and physiological processes such as 

photosynthesis, chlorophyll contents, chlorosis and necrosis due to ion tox-

icity (3-5). So, the management of modern agriculture in the presence of salt 

stress, which increases annually due to the prolonged shortages in the wa-
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ter supply, is essential. Hence, several biotechnological 

techniques (e.g., Arbuscular mycorrhizal fungi (AMF)) are 

needed to alleviate the adverse effects of salinity (6). The 

plants are structured as a nonlinear model such that any 

input can impose a complicated output. This property of 

plants' nature makes them be reprogrammed in physio-

logical, molecular, and developmental processes to opti-

mize salt stress response (7). One of the well-known plant 

model systems is Arabidopsis thaliana from the Brassica-

ceae family, with 120 Mbp of DNA organized into five chro-

mosomes. That has specifically become the focus of mo-

lecular genome-based analysis research for over forty 

years to provide the most basic information for all eukary-

otes (8, 9). Several studies were performed on inducing 

various stressors in A. thaliana to investigate the changes 

in the microarray gene expression levels (10-12).  

 SnRKs (sucrose non-fermenting related protein ki-

nase) with 3 subfamilies of SnRK1, SnRK2 and SnRK3 are 

involved in associating abiotic stresses and their corre-

sponding metabolic responses (13). Among these, mem-

bers of SnRK2 (i.e., subfamily 2 of SNF1-related protein 

kinase) family, plant-specific serine/threonine kinases, 

have taken special interests of researchers while studying 

the plant responses to various stressors (e.g., abiotic 

stresses and abscisic acid-dependent signaling pathway) 

(13).  Several genome-wide analysis studies were per-

formed on the SnRK2 family using some plant models such 

as Gossypium hirsutum and Populus trichocarpa to ap-

praise the overexpression levels of SnRK2 members          

Arabidopsis thaliana dealing with environmental stresses 

(14, 15).  

 Moreover, the rationale of the current systems biol-

ogy research to study the overexpressed Arabidopsis thali-

ana with PtSnRK2.7 overexpression is to investigate the 

differentially expressed genes (DEGs) in the presence and 

absence of the overexpression in salt stress situations. 

However, the control of the position will bring the policy-

makers many advantages in terms of commercial or eco-

nomic purposes.    

 

Materials and Methods   

The overall flowchart of the current study, starting from 

the dataset selection, pre-processing steps, and post-

processing to analysis procedures, were depicted in Fig. 1. 

Data Source      

The GSE79997 dataset was downloaded from the NCBI 
GEO database (i.e., https://www.ncbi.nlm.nih.gov/geo/) 

with twelve samples consisting of 4 groups of wild and 

SnRK2.7 overexpressed types in mock and salt treatment 

status, which was the only available GEO dataset. The plat-

form of this microarray dataset was GPL198 [ATH1-121501] 

Affymetrix Arabidopsis ATH1 genome array which includes 

twelve CEL files (GSM2109727, GSM2109728, GSM2109729, 

GSM2109730, GSM2109731, GSM2109732, GSM2109733, 

GSM2109734, GSM2109735, GSM2109736, GSM2109737, 

GSM2109738). The four groups were denoted by wild-mock

-salt, wild-over-mock, wild-over-salt, over-mock-salt. Con-

sidering the group naming, it should be noted that the ital-

ic format of the font represented the mock and salt stress 

conditions and the wild and SnRK2.7 overexpressed types 

used the normal font. 

DEGs determination through pre-processing and statisti-

cal tests    

The BRB-ArrayTools version 4.6.0, developed by Dr. Rich-
ard Simon and the BRB-ArrayTools Development Team, 

was used as a free and non-commercial integrated excel 

toolbox for microarray analyses. The Affymetrix Arabidop-

sis ATH1 genome array annotation data (chip ath1121501) 

"ath1121501.db"(16) developed for the R programming 

environment was also utilized for the corresponding gene 

symbols retrieval of probe ids. Moreover, for pre-

processing procedures, the Microarray Suite version 5.0 

(MAS 5.0) algorithm and pre-defined settings for enabling 

the spot filtering, quantile normalization and gene filtering 

were considered where the fold change parameter was set 

to less than 2. To identify the significant differentially ex-

pressed genes (DEGs), the "class comparison between 

groups" menu of BRB-Array Tools was selected by setting 

the univariate permutation tests and fold change thresh-

olds as 10000 and 2. The additional outputs from the anal-

yses include the illustrations of the volcano plot and box 

plot based on the microarray data. 

Fig. 1. Flowchart of step by step approaches to achieve the final validated 
genes in terms of Arabidopsis salt stress.  

https://plantsciencetoday.online
https://www.ncbi.nlm.nih.gov/geo/


775 

Plant Science Today, ISSN 2348-1900 (online) 

Analyses of GO, PO and KEGG pathway and functional 

enrichment   

To determine the molecular and cellular functional pro-

cesses of the obtained significant gene lists as well as their 

enriched pathways, the online tool, PlantGSEA (Plant Gene 

Set Enrichment Analysis) website (i.e., http://

structuralbiology.cau.edu.cn/PlantGSEA), was applied 

(17). This website took advantage of gene ontology (GO) 

annotation analysis, plant ontology (PO), and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) to cover the 

required assessment properties. Moreover, the results 

were tested and analyzed with hypergeometric statistical 

test and Bonferroni multi-test adjustment methods and a 

significant level of 0.05. The input queries consisted of two 

gene lists: (i) the list of probe ids retrieved from potential 

significant DEGs and (ii) customized background corre-

sponding to anatomy type of TAIR (The Arabidopsis Infor-

mation Resource) genes.  However, the temporal type of 

TAIR gene list was not considered due to the full coverage 

of genes overlapped with anatomy type related to the salt 

stress (i.e., with "salt" keyword). 

Construction of protein-protein interaction network and 

identification of significant genes   

For further analysis of the identified DEGs in their intra-

protein interactions, the STRING database (with 5090 or-

ganisms, over 24.6 million proteins and over 2000 million 

protein-protein interactions) plugin for Cytoscape 3.9.0 

was used (updated on October21, 2021). The confidence 

score cutoff default value was set to 0.4. After, the Clus-

terOne v.1.0 as one of the well-known graph clustering 

algorithms was used to generate overlapping clusters of 

PPI network (18) to determine the modules with p-value ≤ 

0.05  where the genes with the highest degrees of connec-

tivity were introduced as the potential biomarkers or the 

most involved gene in the expression of the differences 

between two defined groups (e.g., the wild types at mock 

and salt conditions). 

Analysis of DEGs identified from this study and literature   

This section includes the identified DEGs from BRB-array 

tools and those identified from the literature for further 

analysis and comparison (15). However, the significant 

DEGs from the literature were available for only 3 groups 

denoted by wild-mock-salt, wild-over-mock, over-mock-

salt. And, the calculation for wild-over-salt was separately 

performed using the data obtained in the current investi-

gation. For achieving a robust comparison procedure, the 

TAIR IDs were of interest as some of them might not have a 

corresponding official gene symbol. First, the target DEGs 

included in the groups mentioned above were used to con-

struct the PPI network based on the STRING database us-

ing the Cytoscape 3.9.0. Then, the cytoHubba plugin was 

utilized to determine the most significant DEGs by per-

forming eleven topological methodologies (19). 

 Moreover, Maximal Clique Centrality (MCC), Maxi-

mum Neighborhood Component (MNC), Degree, Edge Per-

colated Component (EPC) and EcCentricity were consid-

ered to obtain ten top-ranked genes for each ranking score 

distinctly. After overlapping the top 10 ranked list of genes, 

5 ranking score algorithms were extracted for the 4 groups 

mentioned above. Finally, the shared genes between our 

study and the literature would be identified and were the 

target of interest for being analyzed for their functionality 

using the literature researches.  

 

Results    

The numbers of those genes that passed the filtering crite-

ria after the microarray dataset import for wild-mock-salt, 

wild-over-mock, wild-over-salt and over-mock-salt groups 

are 2216, 86, 234 and 1573 respectively. Additionally, the 

outcomes of pre-processing procedure obtained from 

class comparison of BRB-ArrayTools for 4 groups men-

tioned above demonstrate the significant differentially 

expressed genes (DEGs) using the two-sample T-test. The 

numbers of DEGs for wild-mock-salt, wild-over-mock, wild-

over-salt and over-mock-salt groups are 1288 (730 down-

regulated genes and 558 upregulated genes), 33 (30 down-

regulated genes and 3 upregulated genes), 3 (0 downregu-

lated genes and 3 upregulated genes) and 1525 (884 down-

regulated genes and 641 upregulated genes) respectively. 

Fig. 2 shows the boxplot, a representation of gene expres-

sion levels and volcano plots (i.e., the fold change values) 

of the microarray data for four groups after pre-processing 

approach.  The list of top upregulated and downregulated 

genes for 4 groups is shown in Supplementary Table 1. 

 The output of the plant GSEA online tool provides 

several gene ontology functional analyses and plant ontol-

ogy assessments on the DEGs of four groups. The analyses 

results include gene ontology cellular components (GO-

CC), gene ontology molecular functions (GO-MF), the KEGG 

pathway as well as the plant ontology (PO) assessments 

(Fig. 3).  

 According to over-mock-salt, several cellular com-

ponents (e.g. cell, cell part), molecular functions (e.g. cata-

lytic activity, binding), KEGG pathways (e.g. metabolic 

pathways, biosynthesis of phenylpropanoids) and plant 

ontology (e.g. fluorescence meristem, petiole) can be sig-

nificantly enriched by DEGs based on the identified p-

values. Moreover, the wild-mock-salt group demonstrates 

the DEGs enrichment by cellular components (e.g. cell, cell 

part), molecular functions (e.g. binding, catalytic activity), 

KEGG pathways (e.g. metabolic pathways, biosynthesis of 

plant hormones) and plant ontology (e.g. petiole, flo-

rescence meristem). Finally, the wild-over-mock set offers 

only the plant ontology assessment such as stamen and 

collective leaf structure. 

 The construction and visualization of protein-
protein interaction networks for the 4 groups have result-

ed in PPI networks for over-mock-salt with 850 nodes and 

4895 edges, for wild-mock­-salt with 667 nodes and 3300 

edges and wild-over-mock with 20 nodes and 23 edges. 

However, due to only one DEG for the wild-over-salt group, 

no PPI network has been determined. Supplementary Ta-

ble 2 shows the list of the top 10 genes which have been 

ranked based on their interconnectivity degree consider-

ing the 4 constructed PPI networks. Among them, JAZ1  
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Fig. 2. Boxplot and volcano plots of four groups. (a) wild-mock-salt, (b) wild-over-mock, (c) over-mock-salt and (d) wild-over-salt.  

Fig. 3. Gene ontology cellular components (GO-CC), gene ontology molecular functions (GO-MF), the KEGG pathway as well as the plant ontology (PO) assess-
ments. (a), (b), (c) and (d) are related to over-mock-salt for CC, MF, KEGG and PO respectively. (e), (f), (g) and (h) are related to wild-mock-salt for CC, MF, KEGG 
and PO respectively. (i) is the PO analysis for wild-over-mock.  

https://plantsciencetoday.online
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(degree=89, downregulated), CYP38 (degree=36, upregu-

lated), and ATSDI1 (degree=5, downregulated) have the 

highest connectivity degrees for the PPI networks, includ-

ing over-mock-salt, wild-mock­-salt and wild-over-mock 

respectively.  The module analyses using the ClusterOne 

algorithm on the constructed PPI networks demonstrate 

significant clusters (p-value < 0.05) including 11, 9 and 4 

protein modules for the over-mock-salt, wild-mock­-salt 

and wild-over-mock groups respectively (Fig. 4). Detailed 

information on the properties of the potential genes with 

the highest degree of connectivity within the clustered hub 

genes is specified in Supplementary Table 2 for the target 

groups. 

 The analysis and comparison results of the current 

study and the literature are depicted as Venn diagrams for 

three groups: wild-mock-salt, wild-over-mock and over-

mock-salt (Fig. 5). Additionally, the properties of over-

Fig. 4 A. Significant protein modules for over-mock-salt (a)-(k) 
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lapped genes between current and earlier studies (15), 

including TAIR IDs, gene symbols, fold changes, up/down 

regulated status of genes, and the significant p values, are 

listed in Supplementary Table 3. And, the genes listed as 

the last group in Supplementary Table 3 are those only 

identified through the BRB-array tool as significant DEGs. 

However, the PPI network analysis is not applicable due to 

the low number of DEGs (with only three critical genes).  

 

Discussion 

The extensive need for food is directly linked with human 
life, which can be affected by various environmental risk 

factors such as abiotic and biotic stresses (20). So, provid-

ing food production security for the whole world is of the 

top-most requirements that policymakers of the countries 

should be aware of and make thoughtful decisions for in-

creasing the plants' stress tolerance. Because the plants 

are always immobile and affected mainly by stressful situ-

ations, they need more attention in manipulating mecha-

nisms and functionalities through upregulating or down-

regulating the gene expression levels to achieve optimal 

productions (21, 22). In the current study, salt stress as one 

of the substantial abiotic stresses in Arabidopsis thaliana 

was investigated for 2 types, including wild and PtSnRK2.7 

over expression. 

Fig. 4B. Wild-mock­-salt (a)-(i) .  

https://plantsciencetoday.online
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 In the case of wild and PtSnRK2.7 overexpression 

types (7-day-old seedlings) by 200mM NaCl treatment for 

two days (wild-over-salt), the survival rate of the latter was 

improved by 2.5 as reported in the literature (15); while the 

Fig. 4C. Wild-over-mock (a)-(d)  

Fig. 5. The number of overlapping genes between current and Song et al. studies.  
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chlorophyll contents were also higher than that of wild 

type due to the effects of PtSnRK2.7 over expression on 

chlorophyll biosynthesis. And, this shows a direct relation-

ship between chlorophyll contents and survival rate. The 

comparison outcomes of the current study in terms of wild 

and PtSnRK2.7 overexpression types showed that the only 

upregulated differentially expressed gene was CYP97B3 

(i.e., AT4G15110 at chromosome 4). The 2 others were 

AT1G15010 (at chromosome 1 affected mostly in transient 

stress conditions (23)) and AT4G19430  (at chromosome 4 

related to inactivation of the chloroplast (24)) without any 

annotated gene symbols. CYP97B3 as a member of plant 

cytochrome P450 involved in several biosynthetic reac-

tions that can result in the production of defensive com-

pounds (25). And, this can be almost regarded as no 

changes between wild and PtSnRK2.7 over expression 

types while treated by NaCl. Additionally, it induces the 

fact that the wild type will overexpress the level of 

PtSnRK2.7 gene to get adapted to the salt tolerance condi-

tion by consuming some resources resulting in a lower 

survival rate and chlorophyll contents.  

 It has been reported that in the absence of salt 

stress, significant changes were not observed in the chlo-

rophyll contents of both types (15). This study also demon-

strates that the 2 types have only changes in 8 downregu-

lated genes with the highest interconnectivity degree, 

which can be the reason for the PtSnRK2.7 overexpression 

processes. It is worth noting that 5 out of 8 identified genes 

were also determined in a previous study for this condition 

(15). The other 3 were novel ones At1g73010, ATRNS1 and 

ATSPX1, which have been reported in the literature for 

stresses such as hypoxia and reoxygenation (23), plant 

defensive response (26) and transient stress (23). 

 Despite the existence of few conflicts in terms of the 

relationships between fold changes and the over/under-

expression status of the overlapped genes, which may be 

directly related to the nature of the statistics-based algo-

rithms used in the study for analyzing (15) and identifying 

the initial significant DEGs, the overlapping genes have 

substantial effects on the 3 compared groups wild-mock-

salt, wild-over-mock, over-mock-salt (Supplementary Ta-

ble 3). A variety of statistical tests are commonly used to 

identify differentially expressed genes (DEGs), including 

Welch's t-test, moderated t-test and permutation tests. For 

parametric tests, accurately estimating intra-sample-

group variance is a critical issue; 2 improved variance esti-

mation techniques are the locally pooled error and empiri-

cal Bayes methods. Because Omics data analysis typically 

involves tens of thousands of statistical tests, correcting 

multiple hypotheses is essential (27). To find DEGs, we usu-

ally use the t-test with the ordered set of P values convert-

ed to cumulative false discovery rate (FDR) estimates. A 

typical cutoff would be 10%. Both statistical functions are 

implemented in BRB-Array Tools (28). 

 Furthermore, the remaining group wild-over-salt 

was the only group being analyzed in this study and three 

essential genes (i.e., AT4G15110, AT1G15010, AT4G19430) 

were determined responsible for salt stress and chloro-

plast in similar conditions in such that the salt resistance 

response of SnRK2.7 overexpression can be revealed 

(Supplementary Table 3). Finally, Supplementary Table 4 

lists the overlapping genes, chromosome location and 

function in agreement with their corresponding literature 

studies. 

 Taking in to consideration the wild type exposed to 

salt condition (wild-mock-salt), thirteen unique genes were 

observed within nine statistically significant modules (p-

value < 0.05) from the constructed PPI network. Supple-

mentary Table 5 expounds the genes functions, chromo-

some position, accession no., as well as their cited refer-

ences.  

 Moreover, fifteen genes with the highest intercon-

nectivity with eleven identified gene modules were found 

statistically significant (p-value < 0.05), which are listed in 

Supplementary Table 6, along with their specific function-

alities mostly related to several stresses such as salt stress. 

 A system biology approach was applied for studying 

the responses of A. thaliana to salt stress (abiotic stress) in 

wild and PtSnRK2.7 overexpression types. Furthermore, 

several analyses in terms of gene ontology (cellular com-

ponent and molecular function), KEGG enrichment and 

plant ontology were performed. The outcomes were a set 

of significant genes identified from the PPI networks mod-

ule clustering for four conditions mentioned above. Then, 

the identified genes were further validated through the 

literature findings considering their relations to abiotic 

and biotic stresses.  

 

Conclusion   

To provide salt tolerance in plants specifically A. thaliana, 

various mechanisms at the cellular, molecular, biological 

and whole-plant levels are involved. So, suitable strategies 

are needed to control the plant responses and adaptations 

to salinity stress. Although many studies have been carried 

out in this field, it is required to accumulate their results 

for the plant biologists to identify the responsible genomic 

modifications accounted for different corresponding 

mechanisms and critical pathways. Moreover, a gap exists 

as the investigations are routinely performed on one single 

gene rather than several potential genes. And, this urges 

future studies to take advantage of the retrospective com-

putational-based studies to confirm the previously 

achieved outcomes possibly. 

 In conclusion, our findings suggest that the overex-

pressed PtSnRK2.7 gene primarily involved in resistive salt 

stress responses is, at least partially, responsible for mo-

lecular and functional mechanisms of the A. thaliana plant 

model. One of the significant outcomes of the current 

study, which was not mentioned in previous studies, is the 

effect of over expression in responsive genes related to 

unregulated chloroplast contents. Also, it was found out 

that the number of shared genes between the current 

study and the previous investigation for the 3 groups wild-

mock-salt, wild-over-mock, wild-over-salt were 8, 9, 7. And, 

for the remaining group, only 3 significant genes were 

identified. Thus, additional investigation may be essential 

https://plantsciencetoday.online
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to validate the critical role of PtSnRK2.7 overexpressed 

protein against stress responses to accommodate the re-

quired evidence in improving stress tolerance in several 

plants and trees.   
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