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Abstract 
Travel demand assignment to road and/or transit networks is one of the main tools for 

transportation system analysis. Assignment models are usually specified following a user 
equilibrium approach, i.e. searching for reciprocally consistent flows and costs. In Stochastic 
User Equilibrium (SUE) travellers’ routing behaviour is modelled by taking into account 
several sources of uncertainty through discrete choice models, typically derived from random 
utility theory. This paper presents a comprehensive analysis of SUE uniqueness, proposing 
conditions which are weaker than those commonly referred to in literature, and includes other 
existing results. 

1. Introduction 
Assignment models have been first specified following a (Wardrop or deterministic) user 
equilibrium (UE) approach under perfect information and rational behaviour assumptions 
searching for reciprocally consistent flows and costs, as introduced by Wardrop (1952). Later, 
Daganzo and Sheffi (1977) introduced the so-called stochastic user equilibrium (SUE), where 
travellers’ route choice behaviour is reproduced through more realistic behavioural models, 
which take into account several sources of uncertainty by assuming the perceived utility of 
travel alternatives as jointly distribute random variables.   

SUE may effectively be formulated through fixed-point models (Daganzo, 1983; Cantarella 
1997), which can be easily extended to deal with several types of assignment (variable 
demand, multi-mode congestion, multi-classes, …) and allow for weaker uniqueness 
conditions when compared with optimization models and/or Wardrop user equilibrium.  

This paper presents a comprehensive analysis of SUE pattern uniqueness, proposing 
conditions which are weaker than those in Daganzo (1983) and Cantarella (1997), and include 
other existing results (Cantarella, 2002; Gentile, 2003; Cantarella and Velonà, 2009). For 
instance, according to the proposed conditions, the arc cost (vector) function does not need to 
be monotone increasing. Weak uniqueness conditions may not be stated for Wardrop user 
equilibrium, as can be shown by very simple examples, thus UE is not addressed. 

In this paper user’ choice behaviour includes route choice only, assuming constant demand 
flows. Extension of presented results to assignment with variable demand will be discussed in 
a future paper. Moreover, (within-day) steady-state conditions are assumed. 

Section 2 reviews basic definitions, notations and equations, whilst section 3 describes 
some fixed-point models for SUE useful to state the SUE uniqueness conditions proposed 
described in section 4. Then, section 5 describes results of applications to a toy networks 
which allow for pictorial representation. Finally, major findings are reviewed in section 6 
together with some research perspectives. 
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2. Definitions, Notations, Equations1 
This section briefly reviews definitions, notations, and equations underling most approaches 
for modelling supply-demand interaction, that is travel demand assignment. Users travelling 
between the same origin-destination pair with common behavioural features are assumed 
grouped into user classes. User choice behaviour concerns routing alternatives. Let 
 
Ki  be the set of available route for user class i, assumed non-empty and finite with mi = | Ki |; 

each set Ki can be assumed containing at least two routes with no loss of generality (flows 
resulting from a user class connected by one route only can be included within the vector 
of arc base flows, see below). 

 
Connections between origins and destinations are modelled through a directed graph, i.e. a 

collection of arcs (each one connecting one node to another node) in the simple case of pre-
trip choice behaviour, where each route is represented by a path. In the more general case of 
mixed pre-trip en-route strategic behaviour (Spiess and Florian, 1989), where each route is 
represented by a hyperpath (Nguyen and Pallottino, 1988), it is necessary to introduce instead 
a hypergraph, i.e. a collection of hyperarcs, each one connecting one node to several nodes 
(Gallo et al., 1993). The latter case typically occurs in transit networks to reproduce 
passengers waiting at stops to board the first arriving carrier of an attractive set of lines. 
Results in this paper apply to both cases, an arc may also represent a hyperarc, depending on 
the context. Let 

 
Bi  be the arc-route matrix for user class i; with entries bak ∈ ]0,1] if arc a belongs to route k 

(bak = 1 if route k is represented by a path), bak = 0 otherwise; with no loss of generality in 
the following it is assumed that in matrix Bi no row is null, each arc belongs to at least one 
route, and no column is null, each route contains at least one arc. 

 
Only elementary (or with a limited number of internal loops) routes will be considered in the 
following to guarantee that upper bounded route flows imply upper bounded arc flows. 
 

2.1 Modelling Transportation Supply. 
Under steady-state conditions transportation supply is usually modelled through a flow 

network, where a transportation cost ca and a flow fa are associated to each arc a. (Node costs 
can be introduced by duly modifying the graph). Let 

 
hi ≥ 0 be the vector of route flows for user class i, with entries hk, k ∈ Ki; 
c be the vector of arc costs, with entries ca; 
f ≥ 0 be the vector of arc flows, with entries fa; 
fb ≥ 0 be the vector of arc base flows, with entries fb,a, that is the flow that traverses arc a in 

any case, and does not result from the modelled demand-supply interaction (e.g. trucks, …); 
wi be the vector of route costs for user class i, with entries wk, k ∈ Ki; 
wo,i  be the vector of specific route costs for user class i, with entries wo,k, k ∈ Ki, that is route 

cost which cannot be obtained by summing up arc costs (e.g. O-D based tolls, …). 
 
The arc-route flows consistency is expressed by an affine transformation of route flows: 
 f = Σi  Bi  hi + fb (2.1) 

                                                           
1 The contents of this section are intentionally similar to the second section of other papers authored or co-authored by 
Giulio E. Cantarella. The aim is twofold: helping readers to catch  original contributions of different papers about 
related topics, and proposing standard definitions and notations to the community of transportation system analysis. 
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Congestion is generally modelled assuming that arc costs depend on arc flows, through the 
arc cost function: 

 c = c(f) (2.2) 
This vector function is assumed continuous and continuously differentiable w.r.t. arc flows, 
with Jacobian matrix Jac[c(f)]. (In order to get continuity and c. differentiability a function 
with a vertical asymptote at capacity can be substituted by a polynomial approximation from a 
point close to the capacity.) 

The arc-route cost consistency for each user class i is expressed by an affine transformation 
of arc costs: 

 wi = Bi
T c + wo,i   ∀i (2.3) 

2.2 Modelling Travel Demand. 
Route choice behaviour can be modelled assuming that a user of class i 
∼ examines all routes in the (non-empty) choice set Ki,  
∼ associates to each route k ∈ Ki a value of perceived utility Uk,  
∼ chooses a route with the maximum perceived utility.  
If the perceived utilities are modelled by a continuous jointly distributed random variable, 

to represent several sources of uncertainty, the demand model complies with random utility 
theory (Domencich and McFadden, 1975). These hypotheses imply that the probability that a 
user of class i chooses route k is the probability that route k has the highest utility. The 
perceived utility can be expressed as the sum of two terms, the expected value, or systematic 
utility vk, and the random residual. In this paper probabilistic choice models are considered, 
which are obtained when the co-variance matrix of perceived utilities is non-singular. Let 

 
vi be the vector of route systematic utilities for user class i, with entries vk, k ∈ Ki; 
pi ≥ 0 be the vector of route choice probabilities for user class i, such that 1T pi = 1, with 

entries pk, given by the probability pk that a user of class i chooses route k∈ Ki; 
di ≥ 0 be the demand flow for users belonging to class i; it is assumed that demand flows are 

measured in common units, using homogenization coefficients for users with different 
effects on congestion. 

 
The systematic utility values depend on the corresponding route costs through the route 

utility function, generally expressed by an affine transformation of route costs: 
 vi = −βi wi + vo,i   ∀i 

where 
vo,i is the vector of the part of route systematic utilities for user class i depending on attributes 

other than costs; it has entries vo,k, k ∈ Ki; in the following this vector is assumed included 
into vector wo,i thus it is not explicitly reported for the  sake of simplicity; 

βi > 0 is a positive coefficient. 
 
For above assumptions, with no loss of generality,  the route utility function is given by: 

 vi = −βi wi    ∀i (2.4) 
According with the random utility theory the route choice probabilities depends on route 

choice systematic utilities for each user class i, through the route choice function: 
 pi = pi(vi)    ∀i  (2.5) 

This function is continuous and c. differentiable for usually adopted probabilistic choice 
models. Strictly positive choice functions always give probability greater than zero to all 
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routes considered by the user class i, pi(vi) > 0, whichever are the systematic utilities. An 
example is the well-known Logit model: 

 pk =  exp(vk / θi) / ∑j∈Ki exp(vj / θi) 
where θi = (√6 / π) σi

  > 0 is the scale or dispersion parameter, and the variances for all routes 
are assumed equal: Var[Uk]  = σ i

 2.  
A choice function is called invariant if the choice set Ki of all user classes and the 

parameters of perceived utility distribution, such as θi  for a Logit model, do not depend on the 
route systematic utilities. In such models the route choice probabilities depend on differences 
between systematic utility values only, moreover  the resulting route choice functions (for 
proofs see Cantarella, 1997): 

∼ are monotone increasing with respect to systematic utility vi;  
∼ have symmetric positive semi-definite Jacobian, Jac[pi(vi)] � 0. 
 
Demand conservation for each user class i can be expressed by the following equation 

regarding route flows: 
 hi = di pi    ∀i  (2.6) 
Combining equations (2.4-6) leads to the route flow function for each user class i: 
 hi(wi)  = di pi(−βi wi)    ∀i     (2.7) 

Properties of the route flow function the can be derived from those of the route choice 
function, such as the Jacobian Jac[hi(wi)] = −di βi Jac[pi(−βi wi)]. This function is continuous 
and c. differentiable for usually adopted probabilistic choice models; moreover, for invariant 
choice functions,  it 

∼ is monotone decreasing w.r.t. route costs, wi;  
∼ has symmetric negative semi-definite Jacobian, Jac[hi(wi)] � 0. 
 
2.3 Modelling Travel Demand through Independent Route Variables. 
The set of available routes for each user class i, Ki, has been assumed containing at least 

two routes, thus flows for the first (mi – 1) routes, called independent route (iro) flows, are 
enough to define the route flow vector, due to the demand conservation equation (2.6). Let 

 
p ̃i ≥ 0 be the vector of the choice probabilities for the independent, say the first (mi – 1), routes 

of user class i, with 1T pĩ ≤ 1; 
hĩ ≥ 0 be the vector of the first (mi – 1) route flows for user class i; 
  

Demand conservation yields: 
 h ̃i = di pĩ    ∀i  (2.6’)  
Assuming that the route choice probabilities depend on systematic utility differences only, 

as for invariant choice models, the independent route choice function may be introduced as: 
 pĩ = pĩ(v ̃i)   ∀i  (2.5’) 

where ṽi is the vector of the differences between the first (mi – 1) route systematic utilities and 
the last one for user class i. 

 
A strictly positive route choice function, say p̃i(ṽi) > 0, yields: 1T p̃i(ṽi) < 1. An invariant s. 

positive independent route choice function (Gentile, 2003; Cantarella and Velonà, 2009): 
∼ is monotone strictly increasing with respect to systematic utilities ṽi;  
∼ has symmetric positive definite Jacobian, Jac[p ̃i(ṽi)] � 0. 
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If it also assumed that systematic utilities are linearly decreasing with costs, as in eqn (2.4), 
it turns out: 

 ṽi = −βi wi    ∀i (2.4’) 
where wi be the vector of the differences between the first (mi – 1) route costs and the last one, 

for user class i. 
The independent route flow function for each user class i may be defined by combining 

equations (2.4’- 2.6’) as: 
 h ̃i(wi) = di p̃i(−βi wi)   ∀i (2.8) 

This function is continuous and c. differentiable for usually adopted probabilistic choice 
models; moreover, for invariant strictly positive choice functions,  it 

∼ is strictly monotone decreasing (thus invertible) w.r.t. route cost differences, wi;  
∼ has symmetric negative definite (thus non-singular) Jacobian, Jac[h̃i(wi)] � 0. 
 
It is noteworthy that the vector of the iro flows it is linked to the vector of route flows by an 

affine transformation: 
 hi = Li hĩ + hbi   ∀i (2.9) 

where Li and hbi are a suitable matrix and vector respectively (details in Gentile, 2003; 
Cantarella and Velonà, 2010). Far any given vector  h̃i vector  hi can be easily obtained. 

In addition, the vector of the iro cost differences is linked to the vector of route costs by a 
linear transformation: 

 wi = Li
T wi    ∀i (2.10) 

It is noteworthy that there exist infinite many cost vectors, wi that yield the same cost 
difference vector, wi.  

Combing equation (2.8) with the two above equations (2.9, 2.10) eqn (2.7) can be 
expressed in a different way: 

 hi(wi) =  Li hĩ(Li
T wi) + hbi   ∀i 

It should be stressed that the above formulation w.r.t to independent route variables holds 
only when for each user class: 

∼ route choice probabilities depend on systematic utility differences only, as for invariant 
choice models, 

∼ utility function is linear w.r.t. costs. 

3.  Specification of fixed-point models 
Probabilistic route choice functions lead to the stochastic user equilibrium (SUE) which may 
effectively be formulated through fixed-point models. In sub-section 2.1 transportation supply 
has been described by three equations, then in sub-section 2.2. travel demand has been 
described by three further equations. Thus when all the equations (2.1-6) are put together a 
standard six equation assignment model (SEAM) is obtained w.r.t. to six unknown vectors. 
This model might be analysed and solved as such, but it is easier to reduce it to a fixed-point 
problem w.r.t. to one unknown vector through successive substitution of one of the six 
equations into the others. Moreover, according to subsection 2.3, if route choice probabilities 
depend on systematic utility differences only, as for invariant choice models, and the utility 
function is linear w.r.t. costs, as in equation (2.4) is linear, models may be formulated w.r.t. 
independent route variables.  
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Several equivalent models may be obtained this way, which provide consistent solutions, 
thus the selection among them mainly is a matter of mathematical convenience. Existence or 
uniqueness of any vector of flows or costs assure existence and uniqueness of all the others. 
(Actually, there exist infinite many cost vectors, w, for any single cost difference vector, w, 
nonetheless given the vector w* at the equilibrium, the corresponding route flows, arc flows, 
arc costs and route cost w* can be computed univocally.) 

Fixed-point models w.r.t. iro variables are described below, after useful notations.   
Let  m =  ∑i mi be the total number of routes. Route flow vectors belong to the feasible 

route flow set given by: Sh = {h = [hi]i : hi ≥ 0, 1T hi = di  ∀i} ⊆ Rm ;+, which is compact 
(closed and bounded) and convex,  and also non-empty if each user class is connected by at 
least one route (connection hypothesis). The interior Sh° of this set is empty.  

Let m =  ∑i (mi − 1), be the total number of iros. Iro flow vectors belong to the feasible iro 
flow set  given by: Sh ̃= {h ̃ = [hĩ]i : h ̃i ≥ 0, 1T hĩ ≤ di  ∀i} ⊆ Rm ; +, which is compact and convex, 
and also non-empty if connection hypothesis holds. In this case the interior Sh̃° is non-empty 
and, for s. positive choice function, is a bounded open set {h ̃ = [h̃i]i : h̃i > 0, 1T hĩ < di  ∀i}. 

The route cost function is given by combining equation 2.1-3: 
 w(h) = BT c(B  h + fb) + wo ≥ 0    ∀ h ∈ Sh (3.1) 

The iro cost difference function is given by combining (3.1) with (2.9) and (2.10): 
 w( h ̃) = LT BT c(B  L h ̃ + B hb + fb) + LT wo  ∀ h ̃ ∈ Sh̃ (3.2) 

where B = [Bi]i , L = [Li]i. 
Models w.r.t. to independent route variables can be written down by combining the iro flow 

function (2.8), with the iro cost difference function (3.2) w.r.t. flows or costs as: 
 h ̃* = h ̃(w(h ̃*))    with h ̃* ∈ Sh̃ (3.3) 

 w̃* = w(h ̃(w̃*)) (3.4) 
where h̃(w) = [h ̃i(wi)]i,  

Fixed-point models w.r.t. arc variables are described below, after useful notations.  
Let  n be the total number of arcs. Arc flow vectors belong to the feasible arc flow set given 

by: Sf = {f  = ∑i Bi hi + fb: hi ≥ 0, 1T hi  = di   ∀i} ⊆ Rn ;+, which is compact and convex, and 
also non-empty if connection hypothesis holds. 

The arc flow function (aka network loading map), yielding arc flows for a given arc costs, 
can be defined by combining equations (2.1, 2.3-6): 

 f(c) = ∑i Bi hi(Bi
T c + wo,i) + fb ∈ Sf    ∀ c ≥ 0 (3.5) 

where the arc costs have been assumed non-negative, c ≥ 0. This function is continuous and c. 
differentiable for usually adopted route choice models; it 
∼ is monotone decreasing with respect to arc costs c 
∼ has a symmetric negative semi-definite Jacobian for invariant choice models, Jac[f(c)] =  

= − ∑i βi di Bi Jac[pi(−βi (Bi
T c + wo,i ))] Bi

T � 0.  
 
The arc flow function can easily be computed when route can explicitly be enumerated and in 
several cases, also without explicit route enumeration. 

Models w.r.t. to arc variables can be easily written down by combining the arc cost function 
(2.2) with the arc flow function (3.5), remembering that the latter actually is a combination of 
equations (2.1, 3-6). SUE can be formulated w.r.t. flows or costs: 

 f* = f(c(f*))    with f* ∈ Sf (3.6) 

 c* = c(f(c*))    with c* ∈ Rn ;+ (3.7) 
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4.  Existence and uniqueness conditions 
Sufficient conditions for existence of solutions can be easily derived by applying model (3.6), 
through Brouwer theorem (theorem E in appendix), requiring that set Sf is non-empty and both 
the arc cost function and the arc flow function (i.d. the path choice functions) are continuous.  

Applying models (3.6) or (3.7) uniqueness conditions w.r.t arc variables can be derived; 
some of them are discussed below (details and other conditions are in Cantarella and Velonà, 
2010). Proofs are based on reductio ad absurdum. If the route choice functions, pi(vi), and the 
arc cost function, c(f), are c. differentiable2 conditions can be expressed w.r.t. Jacobians. 

 
CONDITION Ar-arc (Daganzo, 1983). According to most literature, uniqueness is guaranteed 

if the arc flow function is monotone decreasing, as for invariant probabilistic route choice 
functions, and the arc cost function is strictly monotone increasing. For differentiable 
functions sufficient conditions are: 

 Jac[c(f)] � 0 (4.1a) 

 Jac[f(c)] � 0    (as it occurs for invariant choice functions) (4.1b) 
CONDITION A-arc (Cantarella, 2002). The above condition Ar-arc turns out to be a 

particular instance of a more general condition which refer to the composed function obtained 
combining together the arc cost and the arc flow functions: 

 (c(f1) – c(f2))T (f1 – f2) > (f(c(f1)) – f(c(f2)))T (c(f1) – c(f2)) 

 ∀ f1 ≠ f2 ∈ Sf : c(f1) ≠ c(f2)   
Condition A-arc also allow us to support conditions for the convergence of algorithms based 
on the method of successive averages (Cantarella and Velonà, 2009). If the arc cost function is 
invertible with  q(c) = c−1(c) the above condition become: 

 (c1 – c2)T (q(c1) – q(c2)) > (f(c1) – f(c2))T (c1 – c2)   ∀c1 ≠ c2 ∈ c(Sf) ⊆ Rn ;+ 

with f1 = q(c1) ≠ q(c2) = f2 ∀c1≠c2∈c(Sf). For differentiable functions a sufficient condition is3: 
 Jac[c(f = q(c))]−1 − Jac[f(c)]  � 0    ∀c ∈ c(Sf) ⊆ Rn ;+ (4.2) 

CONDITION Br-arc. Other conditions, without any relationship with the previous ones, can 
be derived from Banach theorem (THEOREM Br in appendix), requiring that the composed 
function c(f(c)) ∀c ∈ c(Sf) ⊆ Rn ;+  is strictly non-expansive. For differentiable functions a 
sufficient condition is: 

 || Jac[c(f = f(c))] Jac[f(c)] ||2  < 1    ∀c∈c(Sf) ⊆ Rn ;+ (4.3) 

Similar conditions hold w.r.t. the composed function  f(c(f))  ∀f∈Sf . Condition Br may rarely 
be applied, since generally involved functions are not strictly non-expansive. 

 
CONDITION B-arc (Cantarella, 2002). Condition Br turns out to be a particular instance of a 

more general condition requiring that function c − c(f(c)) is s. monotone increasing: 
 (c1 – c2)T (c1 – c2) > (c(f(c1)) – c(f(c2)))T (c1 – c2)    ∀c1 ≠ c2 ∈ c(Sf) ⊆ Rn ;+  

For differentiable functions a sufficient condition is: 
 (I – Jac[c(f = f(c))] Jac[f(c)]) � 0      ∀c∈c(Sf) ⊆ Rn ;+     (4.4) 

                                                           
2 Differentiability is assumed to hold over an open set; if this is not the case, an open superset of the relevant set 
and/or an extrapolation of derivatives to the boundary is considered. 
3 It is noteworthy that this expression appeared in Daganzo (1983) only to prove conditions called Ar in this paper. 
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CONDITION U-arc. Both conditions A-arc and B-arc are instances of the general uniqueness 
condition (THEOREM U in appendix) requiring that the composed function  
(c − c(f(c))) is invertible for c ∈ c(Sf) ⊆ Rn ;+. 

 
CONDITION K-arc. For differentiable functions, a condition, somehow related to condition 

U-arc, can be expressed by applying the Kellogg4 theorem (THEOREM K in appendix).  
At this aim let us assume that existence conditions hold: set Sf ⊆ Rn ;+ is non-empty and the 

arc cost function and the arc flow function are continuous. Since arc cost function c(f) is 
continuous over the non-empty, bounded (since  compact) set Sf, set c(Sf) ⊆ Rn ;+ is non-empty 
and bounded, hence there exists a non-empty, compact (say bounded and closed), convex 
superset S° ⊃ c(Sf); moreover if arc cost function c(f) is strictly positive, c(f) > 0, superset S° 
may be chosen as a proper subset of the set of non-negative real vector, S° ⊂ Rn ;+.  

Now let us apply the Kellogg theorem (THEOREM K in appendix) to the fixed-point model 
(3.7) defined over set S° ⊆ Rn ;+: c* = c(f(c*))  with c* ∈ S° ⊆ Rn ;+. At first it is noteworthy 
that 1) set S° is non-empty, 2) the composed function c(f(c)) has no fixed-point c* on the 
boundary of set S°, since all fixed-points must belong to set c(Sf) ⊆ S°. Thus if 3) the 
composed function c(f(c)) is c. differentiable on S° with Jacobian Jac[c(f(c))] = Jac[c(f = 
f(c))] Jac[f(c)], uniqueness is guaranteed if 4) matrix Jac[c(f(c))] has no eigenvalue equal to 
one, that is: 

 | I − Jac[c(f = f(c))] Jac[f(c)] | ≠ 0  ∀c∈S° ⊆ Rn ;+ (4.5) 

Condition K-arc (4.5) includes as special case condition A (4.2). 
Under the assumptions of c. differentiable functions, due to the Bolzano (sign-preserving)  

theorem, condition (4.5) actually yields either of the following two conditions, but not both: 
K1-arc | I − Jac[c(f = f(c))] Jac[f(c)] | > 0  ∀c∈S° ⊆ Rn ;+ (4.5.1) 

K2-arc | I − Jac[c(f = f(c))] Jac[f(c)] | < 0  ∀c∈S° ⊆ Rn ;+ (4.5.2) 

Condition K1-arc (4.5.1) includes as special case conditions Ar (4.1), Br (4.3), B (4.4). 
 
Applying models (3.1) or (3.2) other uniqueness conditions w.r.t independent route (iro) 

variables can be derived. Some of them are discussed below (details and other conditions are 
in Cantarella and Velonà, 2010) under the assumption of invariant strictly positive choice 
functions, which leads to s. monotone, hence invertible, iro flow function h̃(w̃). Proofs are 
based on reductio ad absurdum. If the iro choice functions, pĩ(ṽi), and the arc cost function, 
c(f), are c. differentiable, conditions can be expressed w.r.t. Jacobians matrices. 

 
CONDITION Ar-iro. For invariant strictly positive probabilistic route choice functions, 

uniqueness is guaranteed if the arc cost function is monotone increasing (but not necessarily s. 
monotone), thus Ar-arc implies Ar-iro. For differentiable functions a sufficient condition is: 

 Jac[w̃(h ̃)] � 0 (4.6a) 

 Jac[h ̃(w̃)] � 0    (as it occurs for invariant s. positive choice functions) (4.6b) 
CONDITION A-iro. The above condition Ar-iro turns out to be a particular instance of a more 

general conditions which refer to the composed function combining together the inverse of the 
iro flow function and the iro cost difference function: 

  (h ̃1 – h2̃)T (h ̃−1(h ̃1) – h ̃−1(h ̃2)) < (w̃(h1̃) – w̃(h ̃2))T (h1̃ – h2̃) 

                                                           
4 Gentile (2003) pointed out that Kellogg theorem can be used to assess uniqueness conditions of fixed-points. 
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 ∀ h̃1 ≠ h2̃ ∈ Sh̃      (thus  w̃1 = h ̃−1(h ̃1) ≠ h ̃−1(h ̃2) = w2) 
Since the iro flow function is invertible, for differentiable functions a sufficient condition may 
be written down as: 

 Jac[h ̃(w̃ = w̃(h ̃))]−1 – Jac[w̃(h̃)]  � 0      ∀h̃ ∈ Sh̃  (4.7) 
CONDITION Br-iro. From Banach theorem (THEOREM Br in appendix), uniqueness is 

guaranteed if the composed function h ̃(w̃(h ̃)) is strictly non-expansive for h̃ ∈ Sh̃. For 
differentiable functions a sufficient condition is: 

 || Jac[h̃(w̃ = w̃(h ̃))] Jac[w̃(h ̃)] ||2  < 1                ∀h ̃ ∈ Sh̃ (4.8) 
CONDITION B-iro. Condition Br turns out to be a particular instance of a more general 

condition requiring that function h ̃ − h ̃(w̃(h ̃)) is strictly monotone increasing for h ̃ ∈ Sh̃ : 
 (h1̃ – h2̃)T (h ̃1 – h̃2) > (h ̃(w̃(h ̃1)) – h ̃(w̃(h2̃))T (h1̃ – h̃2)   ∀ h̃1 ≠ h2̃ ∈ Sh̃ 

For differentiable functions a sufficient condition is: 
  (I – Jac[h ̃(w̃ = w̃(h̃))] Jac[w̃(h ̃)])  � 0      ∀h ̃ ∈ Sh̃ (4.9) 
CONDITION U-iro. Both conditions A-iro and B-iro are instances of the general uniqueness 

condition (THEOREM U in appendix) requiring that the composed function h ̃ − h ̃(w̃(h ̃)) is 
invertible for h ̃ ∈ Sh̃ . 
 

CONDITION K-iro (from Gentile, 2003). For differentiable functions, a condition, somehow 
related to condition U-arc, can be expressed by applying the Kellogg theorem (THEOREM K in 
appendix) to fixed-point model (3.1). At this aim let us assume that existence conditions hold, 
thus set Sh̃ is non-empty and the iro cost difference function and the iro flow function are 
continuous. For (invariant) strictly positive choice functions Sh̃ is also a bounded open convex 
set (see sub-section 2.4), therefore the fixed-point model (3.1) is defined over 1) a non-empty 
set  Sh̃ and 2) the composed function h̃(w̃(h ̃)) has no fixed-point h̃* on the boundary of Sh̃. 
Thus if 3) the composed function h̃(w̃(h̃)) is c. differentiable on Sh̃ with Jacobian Jac[h̃(w̃(h ̃))]  
= Jac[h ̃(w̃ = w̃(h ̃))] Jac[w̃(h ̃)], uniqueness is guaranteed if 4) matrix Jac[h ̃(w̃(h ̃))]  has no 
eigenvalue equal to one, that is: 

 | I − Jac[h ̃(w̃ = w̃(h̃))] Jac[w̃(h ̃)] | ≠ 0  ∀h ̃∈ Sh̃  (4.10) 
Condition K-arc (4.10) includes as special case condition A (4.7). 

Under the assumptions of c. differentiable functions, due to the Bolzano (sign-preserving) 
theorem, condition (4.10) actually yields either of the following two conditions, but not both: 

K1-iro | I − Jac[h ̃(w̃ = w̃(h̃))] Jac[w̃(h ̃)] | > 0  ∀c∈S° ⊆ Rn ;+ (4.10.1) 

K2-iro | I − Jac[h ̃(w̃ = w̃(h̃))] Jac[w̃(h ̃)] | < 0  ∀c∈S° ⊆ Rn ;+ (4.10.2) 

Condition K1-arc (4.5.1) includes as special case conditions Ar (4.6), Br (4.8), B (4.9). 
 
It should be noted that, generally conditions w.r.t. iro variables are not equivalent to those 

w.r.t. arc variables, even though they may appear formally similar. A relationship between the 
two groups of conditions can be exploited through the following conditions, which hold under 
the assumption of invariant strictly positive choice functions. 

 
CONDITION G (from Gentile, 2003). Uniqueness is guaranteed under the following 

condition about the Jacobian, Jac[c(f)], of the cost function: 
 (Jac[c(f)] + γ I) 0 � 0 ∀ f ∈ Sf (4.11) 

where 0 < γ ≤ γ* = –max{(u / || B L u ||2)T  Jac[h ̃(w = w(h ̃))]–1 (u / || B L u ||2),  
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with u ∈ {u  : || u || = 1, || B L u ||2 > 0} ⊆ Rm ̃.} 
Proof (extended from Gentile, 2003). Jacobian matrix of the composed function: h ̃(w (h ̃)) is given by: 
 Jac[h ̃(w  = w (h ̃))] = (LT BT Jac[c(f = B  L h ̃ + B hb + fb)] B L). 
According to (4.11): aT (Jac[c(f = B  L h ̃ + B hb + fb)] + γ I) a > 0  ∀a ≠ 0 ∈ Rn, ∀ h ̃ ∈ Sh ̃  
It is shown below that this condition implies condtions A-iro (4.7): 
LTBT Jac[c(f = B  L h ̃ + B hb + fb)] B L – Jac[h ̃(w  = w (h ̃))]-1) � 0  ∀ u ∈ Rm ̃, || u || = 1 
It is worth to distinguish two cases: 
• ∀ u ∈ Rm ̃, || u || = 1, || B L u ||2 = 0, assumptions yield 
uT (LTBT Jac[c(f = B  L h ̃ + B hb + fb)] B L – Jac[h ̃(w  = w (h ̃))]-1) u   = 
uT (– Jac[h ̃(w  = w (h ̃))]-1) u > 0  ⇒  A-iro (4.7) 
• ∀ u ∈ Rm ̃, || u || = 1, || B L u ||2 > 0 
Let a  = B L u / || B L u ||. Hence:  
(B L u / || B L u ||2)T (Jac[c(f = B  L h ̃ + B hb + fb)] + γ I) (B L u / || B L u ||2) > 0 ⇒ 
⇒ (B L u / || B L u ||2)T (Jac[c(f = B  L h ̃ + B hb + fb)]) (B L u / || B L u ||2) > –γ ≥ –γ* ≥   
≥ (u / || B L u ||2)T Jac[h ̃(w  = w (h ̃))]-1 (u / || B L u ||2) ⇒ 
⇒ (u / || B L u ||2)T (LTBT Jac[c(f = B  L h ̃ + B hb + fb)] B L – Jac[h ̃(w  = w(h ̃))]-1)  for (u /|| B L u ||2) > 0 ⇒ 
⇒ uT (LTBT Jac[c(f = B  L h ̃ + B hb + fb)] B L – Jac[h ̃(w = w (h ̃))]-1)  u > 0  ⇒  A-iro  (4.7)  

  
Condition G implies condition A-iro, as in the proof. Moreover condition A-arc implies G 
since the sum of positive definite matrices is a positive definite matrix. It is also noteworthy 
that condition G does not require features of the composed function h ̃(w(h ̃)). 

 
It is should be noted that uniqueness conditions A, B and U allow for non monotone arc 

cost functions, which may well be the case for functions non-separable w.r.t arc flows; 
moreover, these conditions allow for non-differentiable arc cost functions, such as piecewise 
linear functions (as it may occur when equilibrium assignment is embedded within a 
transportation supply design model). Thus it is worthwhile to introduce some requirements for 
non monotone arc cost functions (these requirements will be referred to in the examples): 

∼ positivity                                     ca(fa) ≥ 0   ∀fa ≥ 0 
∼ monotonicity over capacity Qa   (ca(fa) − ca(fa’))  (fa −  fa’) ≥ 0   ∀fa,  fa’ ≥ Qa  
∼ consistency with capacity Qa ca(fa = Qa ) = α ca(fa = 0)    with α ≥ 1 

Monotone strictly increasing arc cost functions surely meet these requirements if the null-flow 
cost is strictly positive, ca(fa = 0) ≥ 0, as always the case. 

5.  Numerical examples 
In this section all the uniqueness conditions presented above are compared for a two-link 
network, where f = h, h̃ = h1,   c = w, w̃ = c1 − c2. As regarding the supply model, a separable 
cost function is associated to each arc a: ca = ca(fa)   a = 1, 2, with xa = ∂ca(fa) / ∂fa   a = 1, 2. 
Thus the Jacobian of the arc cost vector function is given by the diagonal matrix: 
 

Jac[c(f)] = x1 0 
 0 x2 

 
As regarding the demand model, the choice function is an invariant Logit leading to: 
 pa(c1, c2) = exp(−ca/θ) / (exp(−c1/θ) + exp(−c2/θ))    a = 1, 2 

where θ ∝ σ > 0, and ∂θ / ∂ca  = 0, a = 1, 2. Let y = (d/θ) p1(c1,c2) p2(c1,c2), it yields: 
 

Jac[f(c)] =  −(d/θ) p1 ⋅ (1−p1) −p1  ⋅ p2 =  −y 1 −1 
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 −p2  ⋅ p1 p2 ⋅ (1−p2)  −1 1 
For differentiable functions, each of the five uniqueness conditions Ar, A, Br, B, K defines 

a region over the plane z1 = x1 ⋅ y and z2 = x2 ⋅ y, as shown in figure 1. All the implications 
reported in section 4 are confirmed. It is noteworthy that conditions w.r.t. arc or iro variables 
lead to different regions. Moreover, A-arc region is not connected, thus actually only one sub-
region may actually be considered due to Bolzano (sign-preserving) theorem. Both A-arc and 
B-arc conditions imply conditions K1-arc, whilst in this particular case A-iro, B-iro and K1-
iro conditions match each other. 

Analysis can be further deepened by considering quadratic arc cost functions: 
ca(fa)  = co,a (1 + ηa (fa / Qa) + μa (fa / Qa)2) 

where 
co,a is the null-flow cost;  
Qa is the arc capacity;  
ηa and μa > 0 are two parameters, chosen so that: ca(fa) ≥ 0 and  ca(Qa) = α ca(0) with α ≥ 1, 

leading to – 2 (1 + (α)0.5) ≤  ηa ≤ (α − 1), and μa = α − 1 − ηa. 
 
Each uniqueness condition defines a region over the plane η1 and η2. Figure 2 shows 

uniqueness regions for   d = 100, θ = 5, co,1 = 50,  co,2 = 30,  Q1 = 300,    Q2 = 100, α = 2 . The 
square with thick lines shows condition  to – 2 (1 + (α)0.5) ≤  ηa ≤ (α − 1), for α = 2. Regions 
in figure 2 are consistent with figure 1 and all the implications reported in section 4. It is 
noteworthy that conditions w.r.t. arc or iro variables lead to different regions. Moreover, in 
this particular case A-iro, B-iro and K1-iro conditions match each other. 

Other examples, not reported here, show that decreasing the parameter θ of Logit choice 
function leads to a reduction of uniqueness regions. It is worth recalling that decreasing the 
parameter θ of Logit choice function leads towards Wardrop user equilibrium.   

These results are consistent with condition G, actually in this simple case parameter of 
condition G can explicitly be computed as γ* = 2 θ / d.  Conditions G are compared with 
conditions Ar-arc and A-iro in figure 3.  

It also worth noting that each point over plan η1-η2 matches to a segment of curve over plan 
z1-z2, as shown in figure 4 for two cases. All pairs (η1, η2) analysed in the above examples 
guarantee arc cost functions that are increasing at least at some points, thus at least a part of 
the  curve must belong to the positive orthant (or N-E quadrant) of plan z1-z2. 

6.  Conclusion 
In this paper conditions for SUE uniqueness have been presented. Described conditions are 
weaker than those existing in literature and indicates that monotonicity of arc cost vector 
function is an unnecessarily strong assumption.  

Condition K-iro seems the most promising one. Nonetheless, for a two-link network, non-
uniqueness region can be analytically defined by examining function h̃(w̃(h ̃))/d against h̃/d, see 
figure 5 (left). A comparison with the region for condition K1-iro over plan η1-η2 (center) and 
plan  z1-z2 (right) shows that uniqueness condition weaker than the condition K-iro may exist.  

It may be useful to stress that solution algorithms may be implemented w.r.t. variables (e.g. 
arc costs) different from those (e.g. iro flows) used for checking uniqueness conditions (see 
Cantarella and Velonà, 2009, for considerations about conditions A-arc or A-iro). 

A future paper will deal with implementation issues such as analysis of existing cost 
functions and path choice functions as well as large scale applications; analysis of cost 
functions from Webster method will be also addressed. 
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Several issues seem worth of further research work, including assignment with variable 
demand and/or explicit modelling of path choice set. 
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FIGURE 1.  Regions for uniqueness conditions w.r.t arc (top) and iro (bottom) variables in z1-z2 plan. 
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FIGURE 2.  Regions for uniqueness conditions w.r.t arc (top) and iro (bottom) variables in η1-η2 plan. 
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FIGURE 4. Comparison between uniqueness regions in η1-η2 plan and z1-z2 plan. 
 
 
 
 
 
 
 
 
 
FIGURE 5. Comparison between condition K uniqueness and non-uniqueness regions.
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A.  Appendix: Theorems for existence and uniqueness of fixed-points. 
Let Rn be the set of real vectors with n entries, where Euclidean distance and norm hold. Let 

ϕ(x) be a function with definition set S ⊆ Rn and image set S,  ϕ(x): S → S. This appendix 
reviews most relevant (sufficient) conditions for existence and/or uniqueness of the fixed-
points x* = ϕ(x*) of function ϕ(x). Reported results may hold in a more general space. 

THEOREM E (existence). If set S is non-empty compact convex and function ϕ(x) is 
continuous, then  at least one fixed-point exists. [Proof: it is Brouwer theorem.] 

THEOREM U (uniqueness). If function x − ϕ(x) is invertible, then at most one fixed-point 
exists for function ϕ(x). [Proof: by reductio ad absurdum.] 

REMARK. Sufficient conditions for c. differentiable functions can be derived through the 
global inversion theorem, or by applying the theorem below. 

THEOREM K (existence & uniqueness). Let existence conditions of theorem E hold: S is non-
empty compact convex and  function ϕ(x) is continuous; in this case the interior S° of set S is a 
(possibly empty) bounded open convex set. If  

1) set S° is non-empty,  
2) function ϕ(x) has no fixed-point on the boundary of S, say  x ≠ ϕ(x) ∀x∈ ∂S,  
3) function ϕ(x) is continuously differentiable on S° with Jacobian Jac[ϕ(x)],  
4) matrix Jac[ϕ(x)] has no eigenvalue equal to one, say | I − Jac[ϕ(x)] | ≠ 0 ∀x∈S,  

then exactly one fixed-point exists for function ϕ(x). [Proof: applying Kellogg theorem to a 
finite dimensional space, see Kellogg, 1976.] 

Under the assumptions of c. differentiable functions, due to the Bolzano (sign-preserving) 
theorem, condition K actually yields either of the following two conditions, but not both: 

K1 | I − Jac[ϕ(x)] | > 0 ∀x∈S 

K2 | I − Jac[ϕ(x)] | < 0 ∀x∈S 

THEOREM Br (existence & uniqueness). If set S non-empty compact and  function ϕ(x) is 
strictly non-expansive, say || ϕ(x1) – ϕ(x2) ||2 < || x1 – x2 ||2  ∀x1≠x2∈S, then exactly one fixed-
point exists for function ϕ(x).  [Proof: extension of Banach theorem.]  

REMARK. If function ϕ(x) is continuously differentiable with Jacobian Jac[ϕ(x)], and the 
second norm of its Jacobian is less than one, || Jac[ϕ(x)] ||2 < 1 ∀x∈S,  then function ϕ(x) is 
strictly non-expansive. 

Theorem Br requires a stronger assumption about function ϕ(x) than theorem U (a strictly 
non-expansive function being surely invertible), but it also guarantee existence (and 
convergence of the method of successive approximations).  

An intermediate condition is given below. 

THEOREM B (uniqueness). If function x − ϕ(x) is strictly monotone increasing, then at most 
one fixed-point exists for function ϕ(x).  [Proof: by reductio ad absurdum.]  

REMARK. If function ϕ(x) is c. differentiable with Jacobian Jac[ϕ(x)], and the difference 
between the identity matrix and its Jacobian, (I − Jac[ϕ(x)]),  then function x − ϕ(x) is strictly 
monotone increasing. 
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