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1. INTRODUCTION 

This paper presents the application of a within-day Dynamic Traffic Assignment 
(DTA) Model to simulate ordinary, evacuation and emergency scenarios for 
downtown Vancouver during the forthcoming Winter Olympic Games. 
Within this context, the main problem was to reproduce different kinds of 
pedestrians and vehicles-pedestrians interactions; these congestion 
phenomena can occur in presence of the unusual demand produced by 
important public events, such as sport games, music concerts and political 
rallies, when significant levels of pedestrian and vehicle flows are concentrated 
in space and time, i.e. converge to or diverge from one point/area in a relatively 
short time interval. 
Additionally to the above, other phenomena that needed to be addressed 
where: 
- pedestrian route choice, since several routes are available to reach and 

leave event locations; 
- special event temporal demand, with time peaks concentrated around begin 

and end of events; 
- pedestrian capacity constraints, due to the limited capacity of road and 

sidewalks; 
- short term closure of streets, due to Olympic security measures. 
In order to address the above modelling needs, different approaches where 
considered, from classical static assignment, to meso simulation (Di Gangi and 
Velonà, 2007), to micro simulation applied to pedestrians (Cepolina, 2005; 
Cepolina et al., 2008) and vehicles (Vitetta et al., 2007). Finally, a Macroscopic 
Dynamic Assignment model calculating Dynamic User Equilibrium was 
adopted, suitably extended in order to represent pedestrian flows and 
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vehicle-pedestrian interactions. 
Aim of this paper, beside briefly presenting the Dynamic Assignment Model 
adopted, is thus to outline the modelling solutions devised to represent 
pedestrian and vehicle-pedestrian congestion. 
The rest of the paper is structured as follows: section 2 is devoted to a brief 
recall of the dynamic traffic assignment model adopted within this paper; 
section 3, after introducing the formalization of the network performance model, 
illustrates all the model devised to properly represent pedestrian and 
vehicle-pedestrian interaction phenomena; section 4 finally presents dynamic 
equilibrium formulations based on the supply models previously introduced.  

2. DYNAMIC USER EQUILIRBIUM MODEL 

The adopted Dynamic Traffic assignment (DTA) model for road networks, 
named DUE (Dynamic User Equilibrium) and presented in Gentile et al. (2007), 
is based on a macroscopic representation of time-continuous flows, where the 
DTA is regarded as a User Equilibrium and is expressed as a fixed point 
problem in terms of maneuver flows at nodes. The fixed point problem, 
represented in Figure 1, is indeed formalized by combining the Network 
Loading Map, yielding the maneuver flow temporal profiles corresponding to 
given arc travel time and cost temporal profiles, and the Arc Performance 
Function, yielding the arc travel time and cost temporal profiles corresponding 
to given maneuver flow temporal profiles. On this basis, it is possible to devise 
efficient assignment algorithms, whose complexity is equal to the one resulting 
in the static case multiplied by the number of time intervals introduced. 
 

 
Figure 1. Scheme of the fixed point formulation for the DTA with spillback congestion. 

The dynamic arc performance function adopts link-based macroscopic flow 
models (Gentile et al., 2005) and is capable to represent spillback congestion, 
that is propagation of congestion among adjacent arcs, achieved through the 
introduction of time-varying exit and entry capacities that limit the inflow on 
downstream arcs in such a way that their storage capacities are never 
exceeded. Specifically, the Network Performance Model (NPM), depicted in 
Figure 2, is specified as a circular chain of three models, which can be 
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formulated and solved as a system through a fixed point problem to determine 
the exit capacity temporal profiles, and thus the arc travel times and costs, for 
given maneuver flows. 
 

 
Figure 2. Scheme of the fixed point formulation for the NPM. 

While the DUE model has a time continuous formulation, its numerical solution 
requires, as usual, the discretization of time in intervals. However, a key feature 
of the above approach is that no upper bound is set on the interval length by the 
solution method itself; in fact, this approach is intended to work with time 
intervals of several minutes, and allows the modeller to choose the time 
discretization based on the best trade-off between results accuracy and 
calculation times. 

3. VEHICLE-PEDESTRIAN CONGESTIONS MODELS 

3.1 Formalization of the Network Performance Model 
In this section we want to achieve a representation of the multimodal network 
such that the relations between road and pedestrian elements, which are 
necessary to formalize non-separable cost functions modeling intra and inter 
modal congestion, can be correctly and univocally identified. In the following, 
we will represent two travelling modes: the road mode R and the pedestrian 
mode P, and we will refer to the generic mode m∈M = {R, P}. 
The road and pedestrian networks are modeled through directed graphs GR = 
(N, AR) and GP = (N, AP), where N is the set of the nodes, each representing 
an intersection or a “centroid” (i.e. a trip terminal, origin or destination), and AR , 
AP are respectively the sets of road and pedestrian arcs, each representing a 
road or pedestrian link or a “connector” between a centroid and the road or 
pedestrian network. 
The generic arc a is univocally identified by its tail TL(a)∈N and head HD(a)∈N, 
that is a=(TL(a), HD(a))∈AR∪AP, and consists of a homogeneous channel of 
length La and physical capacity Qa with a final bottleneck of saturation capacity 
Sa ≤ Qa . 
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Moreover, we define the sidewalk network as an undirected graph GS = (N, AS) 
where the generic undirected sidewalk arc s = {TL(s), HD(s)}∈AS, TL(s)∈N and 
HD(s)∈N, is a longitudinal element where pedestrians may walk in two opposite 
directions, characterized by length Ls and total capacity Qs , where the latter is 
shared by the two possible directions.  
We then identify the following relation among the different elements introduced 
above:   
- each pedestrian arc a∈AP is univocally associated to a sidewalk arc, that is: 

PS(a) = {s∈AS : {TL(s), HD(s)} = {TL(a), HD(a)} } ⊆ AS ; 
- each sidewalk arc s∈S is associated to the set of the corresponding 

pedestrian arcs (which can be at the most 2), that is:  
SP(s) = {a∈AP : { TL(a), HD(a)} = {TL(s), HD(s)} } ⊆ AP ;  

- each pedestrian arc a∈AP may be associated to the opposite pedestrian arc 
sharing the same sidewalk, that is:  
OP(a) = {b∈AP : {TL(b), HD(b)} = {HD(a), TL(a)}; PS(b) = PS(a) } ⊂ AP∪∅ ; 

- each road link a∈AR is associated the set of pedestrian links sharing the 
same final node, that is: 
RPH(a) = {b∈AP : HD(b)} = HD(a) } ⊂ AP∪∅ ; 

- each road link a∈AR may be associated to pedestrian links corresponding to 
sidewalks adjacent to the road, that is: 
RPTH(a) = {b∈AP : {TL(b), HD(b)} = {TL(a), HD(a)} } ⊂ AP∪∅ ; 

 
Finally, the sets of origins and destinations of pedestrian and car trips, referred 
to as origins and destinations, are two subsets ORIG⊆N and DEST⊆N of the 
nodes, with ORIG ∩ DEST = ∅. Each origin o∈ORIG has no entering arcs 
except for one dummy arc, and its exiting connectors have an infinite physical 
capacity; each destination d∈DEST has no exiting arcs except for one dummy 
arc, and its entering connectors have an infinite saturation capacity; dummy 
arcs, which have infinite saturation capacity and zero length, allow defining 
inflows and outflows of connectors in terms of the maneuver flows at centroids. 
Let ϕab(τ) be the maneuver flow at time τ from arc a∈AR[AP] to arc b∈AR[AP] at 
node HD(a) = TL(b). More aggregated and familiar flow variables can be easily 
derived as follows: 

( ( ))

( ) ( )a ba
b BS TL a

f
∈

τ = ϕ τ∑ ,  (1) 

( ) ( ) da aF f
τ

−∞
τ = σ ⋅ σ∫ , (2) 

( ( ))

( ) ( )a ab
b FS HD a∈

φ τ = ϕ τ∑ , (3) 

( ) ( ) da a

τ

−∞
Φ τ = φ σ ⋅ σ∫ , (4) 

where fa(τ) is the inflow, Fa(τ) is the cumulative inflow, φa(τ) is the outflow and 
Φa(τ) is the cumulative outflow of arc a∈AR[AP] at time τ , while BS(i) = 
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{a∈AR[AP]: HD(a) = i} and FS(i) = {a∈AR[AP]: TL(a) = i} are, respectively, the 
forward and the backward star of node i∈N. Note that the dummy arcs relative 
to each centroid are introduced specifically to let (1) and (3) hold also for such 
nodes. 

3.2 Pedestrian Concordant interaction model 
Accordingly with Gentile et al. (2007), flow states are determined accordingly 
with the Simplified Theory of Kinematic Waves (STKW) assuming the 
parabolic/trapezoidal fundamental diagram depicted in Figure 3, where KQa > 0 
is the critical density, KJa > KQa is the jam density, Va ≥ Qa / KQa is the free flow 
speed, and wa is the absolute value of the kinematic wave speed corresponding 
to hypercritical conditions, that is for k∈[KQa , KJa] (see Gentile et al., 2005). 
 

 

Figure 3. The Fundamental diagram adopted within the DUE model. 

In this section the above macroscopic flow model is suitably extended to 
represent the interactions between pedestrians in presence of explicit capacity 
constraints on sidewalks. To this end, the model proposed by Daamen and 
Hoogendoorn (2003) was utilized, expressing the following empirical relation 
between the longitudinal space used by pedestrians and their speed over the 
generic pedestrian arc a: 

( ) 0.52ln 1 a
a a

a

v
A v AJ

V

 
= − − 

 
 (5) 

where va is the walking speed, Va is the average free walking speed (Va ≈ 1.34 
m/s), A denotes the required area, and AJa is the largest area for which walking 
is impossible (JAa ≈ 0.19 m2, as depicted  on left side of Figure 4). 
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Figure 4 - (left side) minimal area for a single pedestrian; (right side) pedestrian 
fundamental diagram for a 1 m wide sidewalk 

The above relation and values yield the fundamental diagram depicted on right 
side of Figure 4, which is valid for a 1 m wide sidewalk, where the capacity Qa is 
about 1.2 ped/s, that is 4,320 ped/h, and the pedestrian jam density KJa is , of 
course, 1 / 0.19 ≈ 5.26 ped/m. 

3.3 Pedestrian discordant interaction 
This section addresses the problem of correctly allocating to each direction the 
capacity of a sidewalk used by opposite pedestrian flows. This phenomenon is 
clearly dependent on directional pedestrian flows conflicting with each other, 
which means that the pedestrian capacity for each direction of a sidewalk is an 
endogenous variable resulting from the assignment itself. 
Then, two entities are to be determined: the entry capacity Qa(τ) of arc a∈AP at 
each time τ; and the jam density KJa(τ) of arc a at each time τ. 
 
The entry capacities Qa(τ) and QOP(a)(τ) of the two directional arcs belonging to 
the same sidewalk are determined as follows: 

( )
( )

min{ ( ); }
( )

min{ ( ); } min{ ( ); }
a

a s a
a OP a

f
Q Q

f f
τ ετ = ⋅

τ ε + τ ε
 (6) 

τ ε
τ = − τ = ⋅

τ ε + τ ε
( )

( ) ( ) ( )
( )

min{ ( ); }
( ) ( )

min{ ( ); } min{ ( ); }
s a

o a s a a s a
a s a

f
Q Q Q Q

f f
 (7) 

Where: fa(τ) and fOP(a)(τ) are the two directional inflows of the sidewalk; Qs(a) is 
the total sidewalk capacity; and ε is a number greater than zero and much 
smaller than the total sidewalk capacity, that is: 

< ε << ( )0 s aQ  (8) 

The directional capacity model defined by (6) and (7), which is non-separable, 
shares the total capacity between the two directions proportionally to the 
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directional inflows, in such a way that the sum of the directional capacities is 
always equal to the total sidewalk capacity. Note that when the sum of the 
directional inflows at time τ is smaller than the total sidewalk capacity, meaning 
that flows are not constrained, (6) and (7) yield Qa(τ) > fa(τ) and QOP(a)(τ) > 
fOP(a)(τ), thus not constraining directional flows, as expected; in particular, if both 
directional flows are zero, it results from the above model: 

( ) ( )( ) ( ) 0.5 0a OP a s aQ Q Qτ = τ = ⋅ >  (9) 

As a matter of fact, ε is introduced within the model specifically to guarantee the 
correctness of the model also in presence of null directional flows; its effect is to 
reserve anyhow to each direction a minimum capacity, even if it is not 
completely used (as it wouldn’t be in reality, if the constraint is active on the 
opposite direction). However, ε can be set small enough so that the possible 
wasted capacity would be negligible in practice. 
Combining relations (6) and (7) with (1) the sidewalk capacity allocation model 
can be expressed in the following compact form for all the arcs at once: 

Q = Q(ϕϕϕϕ) (10) 

where bold symbols denote temporal profiles of vector variables. 
 
The jam densities KJa(τ) and KJOP(a)(τ) of the two directional arcs corresponding 
to the same sidewalk are determined similarly with the entry capacities, that is: 

( )
( )

min{ ( ); }
( )

min{ ( ); } min{ ( ); }
a

a s a
a OP a

k
KJ KJ

k k
τ ετ = ⋅

τ ε + τ ε
 (11) 

( )
( ) ( ) ( )

( )

min{ ( ); }
( ) ( )

min{ ( ); } min{ ( ); }
s a

OP a s a a s a
a OP a

k
KJ KJ KJ KJ

k k

τ ε
τ = − τ = ⋅

τ ε + τ ε
 (12) 

Where: KJs(a) is the maximum density of the sidewalk; ε is defined as above; 
ka(τ) and kOP(a)(τ) are the two directional average densities of the sidewalk at 
time τ, defined as: 

( )
( )

1
( ) ( ) ( )a a a

SP a

k F
L

τ = τ − Φ τ  (13) 

( )( ) ( ) ( )
( )

1
( ) ( ) ( )OP a OP a OP a

SP a

k F
L

τ = τ − Φ τ  (14) 

Combining relations (11)÷(14) with relations (1)÷(4) the sidewalk jam density 
allocation model can be expressed in the following compact form for all the arcs 
at once: 

KJ = KJ(ϕϕϕϕ) (15) 

where bold symbols denote temporal profiles of vector variables. 
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We conclude this section pointing out that within the above models, directional 
entry capacities and jam densities are determined assuming, at each instant 
and for each direction, a unique flow state along the whole sidewalk, which in 
general is not true in reality. 

3.4 Vehicle-pedestrian transversal interaction 
The following model represents the effect of vehicle pedestrian transversal 
interaction, that is the delay suffered by vehicular flows due to pedestrian 
crossings, assuming that pedestrians would have priority over car when 
crossing roads. 
In order to represent this phenomenon, we define the following saturation 
capacity reduction model, reducing the final capacity of road link a∈AR as a 
function of flows on pedestrian links sharing the same head node, identified by 
set RPH(a) defined previously. 

( )
1 ( )

a
a

bb RPH a

SM
S

f β
∈

=
+ α ⋅ ∑

 , (16) 

where SMa is the maximum saturation capacity. 
The above function, combined with (1), can be expressed in the following 
compact form for all the road arcs at once: 

SR = S(ϕϕϕϕP) (17) 

where bold symbols denote temporal profiles of vector variables, and  subscript 
R and P denote respectively road and pedestrian elements. 

3.5 Vehicle-pedestrian longitudinal interaction 
Longitudinal interaction occurs in presence of highly crowded sidewalks, where 
pedestrian may randomly and discontinuously occupy part of the car lane near 
to the sidewalk, since faster pedestrians “hop-off” and “hop-on” it in order to 
pass slower people. This partially chaotic pedestrian behaviour leads both to a 
loss of road capacity and to a reduction of the road free-flow speed, since 
drivers have to reduce their speed for safety reasons. 
Then, this phenomenon is represented by the following physical capacity, jam 
density and free-flow speed reduction models, were the physical capacity, the 
jam density and the free-flow speed of the generic road arc a∈AR are reduced 
by the pedestrian flows on sidewalks adjacent to the road: 

( )
1 ( )

a
a

bb RPTH a

QM
Q

f δ
∈

=
+ γ ⋅ ∑

 , (18) 

( )
1 ( )

a
a

bb RPTH a

KJM
KJ

f δ
∈

=
+ γ ⋅ ∑

 , (19) 
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( )
1 ( )

a
a

bb RPTH a

VM
V

f κ
∈

=
+ η⋅ ∑

 , (20) 

where QMa, KJMa and VMa are respectively the maximum physical capacity, the 
maximum jam density and the maximum free-flow speed on arc a. 

The above functions, combined with (1), can be expressed in the following 
compact form for all the road arcs at once: 

QR = Q(ϕϕϕϕP) (21) 

KJR = KJ(ϕϕϕϕP) (22) 

VR = V(ϕϕϕϕP) (23) 

where bold symbols denote temporal profiles of vector variables, and  
subscripts R and P denote respectively road and pedestrian elements. 

4. MULTI MODAL DYNAMIC USER EQUILIBRIUM MODELS UNDER 
DIFFERENT VEHICLE-PEDESTRIAN INTERACTIONS 

In this chapter, after recalling briefly the formalization of the dynamic user 
equilibrium model as a fixed point problem, five different types of possible 
vehicle-pedestrian dynamic assignment are defined, each one characterized by 
a different vehicle-pedestrian interaction, namely Normal, Controlled, Random, 
Chaotic concordant, Chaotic conflicting. 

4.1 Road equilibrium model 
We recall preliminarily from Gentile et al. (2007) that  the Network Loading Map, 
yielding vector ϕϕϕϕ of node manoeuvre flow temporal profiles for given vectors c 
and t of arc cost and travel time temporal profiles and given demand vector D of 
origin destination flow temporal profiles, can be formalized as the following 
functional: 

ϕϕϕϕ = ω*(c, t ; D) (24) 

where bold symbols denote temporal profiles of vector variables. 
Analogously, the Arc Performance Function, yielding arc cost and travel time 
temporal profiles for given manoeuvre flow temporal profiles, can be formalized 
as the following functionals: 

t = t*(ϕϕϕϕ) (25) 

c = c*(ϕϕϕϕ) . (26) 

In their turn, c* and t* results from the solution of the fixed point problem 
defining the Netwok Performance Model, as described in details in Gentile et al. 
(2007). 
On this basis, the DTA is formalized as a fixed-point problem in terms of 
maneuver flow temporal profiles by substituting into the Network Loading Map 
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(24) the Arc Performance Function (25)-(26): 

ϕϕϕϕ = ω*(c*(ϕϕϕϕ), t*(ϕϕϕϕ); D) . (27) 

4.2 Road and Pedestrian equilibrium model with normal interaction 
Normal interaction occurs in ordinary condition scenarios, where pedestrians 
use only sidewalks and cross roads at signals or at crossing points; within this 
situation, vehicle-pedestrian interaction can be neglected or taken into account 
through a priori turn delays for cars, while we need to represent pedestrian 
discordant interaction effects. 
However, equilibrium formulation (27) is not well suited to represent pedestrian 
assignment. In fact, the formulation of the network performance model 
expressed by (25) and (26) is not explicitly dependent from supply parameters 
(namely maximum capacity, jam density and speed), since they where 
considered exogenous variables; however, in the previous sections we showed 
how they  may become endogenous variables in presence pedestrian and 
vehicle-pedestrian interactions. Then, in order to formalize the pedestrian 
equilibrium, we modify (25)and (26) explicitly introducing the dependency of the 
supply models from vectors of physical capacities Q (arc physical capacities), S 
(arc saturation capacities), V (arc free-flow speeds) and KJ (arc jam densities): 

t = t*(ϕϕϕϕ, Q, S, V, KJ) (28) 

c = c*(ϕϕϕϕ, Q, S, V, KJ) (29) 

Then, combining the Network Loading Map (24), the Arc Performance Function 
(28)-(29) and the sidewalk capacity allocation models (10)-(15), we obtain the 
following formulation of pedestrian DTA with discordant interaction: 

ϕϕϕϕP = ω*(c*(ϕϕϕϕP, Q(ϕϕϕϕP), SP, VP, KJ(ϕϕϕϕP)), t*(ϕϕϕϕP, Q(ϕϕϕϕP), SP, VP, KJ(ϕϕϕϕP)); DP)  . (30) 

Finally, road-pedestrian DUE with normal interaction is formalized as two 
separate fixed point problem: (30) for pedestrian assignment, and the following 
for road assignment, obtained combining (24), (28) and (29): 

ϕϕϕϕR = ω*(c*(ϕϕϕϕR, QR, SR, VR, KJR), t*(ϕϕϕϕR, QR, SR, VR, KJR); DR)  , (31) 

where subscripts R and P denote respectively road and pedestrian elements. 
To be noted that, in this case, the two assignment are independent from each 
other. 

4.3 Road and Pedestrian equilibrium model with controlled interaction 
Controlled interaction occurs during special events, where we can plan to 
assign some or road lanes to pedestrians, which however can’t spread on lanes 
reserved to vehicles. While we can still reasonably assume that no longitudinal 
interaction occurs, transversal interaction may not be negligible, due to the high 
number of pedestrians involved. 
This case is formalized as two related DTA, (pedestrian and car), where 
pedestrian assignment is expressed again by (30), while road assignment is 
formalized combining the fixed point formulation (31) with the road saturation 
capacity reduction model (17); that is: 
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ϕϕϕϕR = ω*(c*(ϕϕϕϕR, QR, S(ϕϕϕϕR), VR, KJR), t*(ϕϕϕϕR, QR, S(ϕϕϕϕR), VR, KJR); DR)  , (32) 

where subscripts R and P denotes respectively road and pedestrian elements. 
Contrary to the previous case, here the road equilibrium depends on the 
solution of the pedestrian equilibrium. 

4.4 Road and Pedestrian equilibrium model with random interaction 
Random interaction occurs during special event and/or evacuation scenario, in 
which, although pedestrians should stay on sidewalks (or assigned lanes), they 
may randomly and discontinuously occupy part of the car lane near to the 
sidewalk, causing the vehicle-pedestrian longitudinal interaction described in 
section 3.5. 
Also this case is formalized as two related DTA, (pedestrian and car), where 
pedestrian assignment is expressed again by (30), while road assignment is 
formalized combining the fixed point formulation (32) (thus assuming that 
controlled and random interaction occur jointly) with the road capacity and 
speed reduction models (21)-(23); that is: 

ϕϕϕϕR = ω*(c*(ϕϕϕϕR, Q(ϕϕϕϕp), S(ϕϕϕϕP), V(ϕϕϕϕP), KJ(ϕϕϕϕP)), t*(ϕϕϕϕR, Q(ϕϕϕϕP), S(ϕϕϕϕP), V(ϕϕϕϕP), KJ(ϕϕϕϕP)); DR) (33) 

where subscripts R and P denotes respectively road and pedestrian elements. 
Also in this case, the road equilibrium depends on the solution of the pedestrian 
equilibrium. 

4.5 Road and Pedestrian equilibrium model with Chaotic concordant 
interaction 

Chaotic concordant interaction occurs in presence of evacuation scenarios 
where it is not possible to separate pedestrian and car flows, which are then 
completely mixed together; however, on each road, pedestrian and cars will 
flow in the same direction (this assumption may be reasonable if 
evacuation/collecting point are identified and known both by cars and 
pedestrians, so that everybody is basically trying to reach the same point). 
In this case, the sidewalk capacity is assigned to pedestrians, while the entire 
road capacity is assigned to both car and pedestrians, where cars are thus 
forced to travel at pedestrian speed. 
This scenario is formalized through a unique pedestrian DTA, where cars are 
considered as “pedestrian equivalents”; that is: 

ϕϕϕϕP = ω*(c*(ϕϕϕϕP, QRP, SRP, VP, KJRP), t*(ϕϕϕϕP, QRP, SRP, VP, KJRP); DRP)  , (34) 

where the generic component of the generic vector XRP is given by a linear 
combination of the corresponding pedestrian and road variables; for example, 
the generic demand component dod∈DRP from origin o∈ORIG to destination 
d∈DEST at time τ is defined as: 

dod(τ) = dod
P(τ) + ζ ⋅ dod

R(τ)  . 
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4.6 Road and Pedestrian equilibrium model with Chaotic conflicting 
interaction 

Chaotic conflicting interaction is the worst case, occurring in presence of 
evacuation scenarios where it is not possible to separate pedestrian and car 
flows, which are then completely mixed together, and where pedestrians do not 
respect car directions. In this case, cars are basically stuck on the road, while 
pedestrians flow around them. We state that the best (and more conservative) 
way to model this case is to assign to pedestrians sidewalk capacities, plus a 
small part of the road capacities, due to the presence of blocked cars that will 
occupy the rest of it; then, the evacuation time is the time needed to evacuate 
pedestrians, plus the time needed to evacuate cars, both resulting from two 
separate dynamic traffic assignments; then, in terms of equilibrium 
formalization, this case is analogous to the normal interaction case. 
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