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Abstract 
Urban signal timing is a non-convex NLP problem. Finding an optimal solution on not very small 
and simple networks may take long time, wherever possible. The present paper focuses on signal 
synchronization, thus creating fast-flow corridors on one or more network road arterials. To do this, 
a genetic-like algorithm is applied, in which new solutions generation follows heuristic conceptions. 
This can be carried out thanks to the specific formulation adopted, suitable for synchronization 
problems. The objective function is evaluated by the General Link Transmission Model, a very fast 
macroscopic dynamic simulator referring to the kinematic waves theory. Through this, queues 
dynamic evolution, spillback phenomenon and vehicles travel times are explicitly taken into 
account. 
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1. Introduction 
Urban traffic is mainly characterized by ground-level intersections, where manoeuvres of drivers 
(and pedestrians, too) often conflict. Traffic signal allows them, alternating conflicting manoeuvres. 
Traffic signals settings are determined by real-time or fixed time schemes. The first procedure 
needs real-time traffic surveys and an algorithm subsequently calculating the best solution basing 
on detected flows. The second one determines the best signal settings on a given time period, basing 
on demand flows obtained by historical surveys. A mixed procedure has been sometimes adopted, 
selecting real-time the best signal settings inside a given set previously built. Finding a fast, 
effective, real-time algorithm is nowadays still an hard task, so heuristic methods often occur. The 
algorithm here proposed finds a sub-optimal solution for a given demand data, synchronizing traffic 
signals. Synchronization is a specific traffic signal setting problem: it consists in coordinating the 
timing of successive intersections along one specific route (or more, if not competing), to improve 
the movement of vehicles through this path. 
A traffic signal is described by its timing variables. First of all, the time duration of its lights (red, 
yellow/amber, green). The sum of these times expresses the signal cycle, i.e. the time period before 
the same light turns on again. Having the cycle time, lights duration is often expressed as its split, 
i.e. the ratio of cycle time. Considering more signals, we need to introduce the offset, i.e. the time 
period between a common reference instant and the cycle start. To avoid hypothetically any stop 
along a path, traffic signals should have identical cycle and green times and offset equal to the 
travel time from one signal to the next one. The time period in which every light of one signal is 
kept unchanged is called phase. A phase thus enables a specific set of non-conflicting manoeuvres 
amongst all possible manoeuvres on the intersection. 
Depending on goal the problem formulation and thus the solving algorithm vary subsequently. 
Traffic lights improve drivers safety, but they unavoidably introduce delays in travel times, too. So, 
minimizing total delay, as sum of all vehicles delays, may be an intuitive objective. Total delay 
minimization is a non-convex problem, so global optimum can not be found analytically. On the 
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other side, another goal in the past was maximizing the bandwidth, i.e. the number of vehicles able 
to run their path without stops. Bandwidth maximization is a quasi-concave problem, thus analytic 
solving algorithms can be used to find the optimum; unfortunately, it does not take into account 
demand data, so it is a good-engineering practice, but it yields not minimum delay. Further goals 
can be minimizing traffic congestion, vehicles’ number of stops, vehicle externalities or multi-
criteria functions. 
First approaches to traffic synchronization were minimizing separately each intersection’s cycle 
time, constrained to satisfy respective flows, then adopting the maximum cycle time found, or 
maximizing network capacity, i.e. ordinary demand matrix multiplier, keeping the intersections 
under-saturated. Cohen (1983) used maximum bandwidth solutions as starting points of its 
optimization. Cohen and Liu (1986) constrained the minimum delay problem with maximum 
bandwidth solutions. Messer et al. (1987) used a Passer-II simplified node delay model to maximize 
bandwidth. The work has been later extended by Malakapalli and Messer (1993), expressing nodes 
delay as a function of the difference between offsets of contiguous nodes. Gartner et al. (1991) and 
later Gartner and Hou (1994) developed a flows-dependant objective function, to maximize 
bandwidth. Hadi and Wallace (1993) first introduced a genetic algorithm using Transyt to maximize 
bandwidth. Park et al. (1998) used a genetic algorithm and mesoscopic simulator to optimize traffic 
signal settings for oversaturated intersections. De Schutter (2001) formulated the problem as a 
complementarity problem. Dazhi et al. (2006) proposed a bi-level programming formulation and a 
heuristic solution approach for dynamic demand with user stochastic route choice. Ying et al. 
(2007) minimized total travel time using a sensitivity analysis algorithm. 

2. Formulation 
We aim to minimize total delay. To do this, it is useful remarking that users total travel time can be 
expressed as sum of two terms: the free flow travel time on the non-signalized network, which is a 
constant term, and an additional delay due to the interaction between flows and traffic signals, i.e. 
congestion, stops and queues. Considering this, it is immediate that minimizing total delay and total 
travel time are equivalent problems. On urban networks most delays are spent on main arterial 
roads, as there are larger flows and thus higher congestion. So, our objective is fastening flows 
along these corridors. 
Total delay is a non-convex function, and optimal signal setting feasible set comprehends non-linear 
constraints and sometimes integer variables (phases optimization). More, as dynamic assignment is 
simulated and has not an analytical formulation, no derivative is available, nor any convexity 
information. So, finding a global optimum can not be carried out by analytic optimization 
algorithms. In such problems, genetic algorithms are considered efficient methods to determine sub-
optimal solutions. 
We assumed the following simplifications. First, only two lights signals are considered: an effective 
green, indicating the time period vehicles can actually cross the intersection, and a residual red, 
when vehicles intersection crossing is prohibited. Second, phases definition and ordering is 
supposed as fixed. Obviously, synchronization requires cycle time to be the same for all signals. 
The first simplification is very common in traffic works; the second one is often adopted to neglect 
the discrete optimization problem of phase setting; the third one is intrinsic in synchronization 
itself. The main assumption comes from focusing on synchronized path. We define main phase all 
signal phases allowing the flow to run along the defined path and secondary phase any other one. 
We focus on main phases, calculating subsequently the secondary phases green splits through an 
heuristic rule. So, the problem’s variables are the common cycle time and green and offset of main 
phases of every synchronized intersection. Having more than one corridor is possible, considering 
every corridor main phases. Obviously no “concurrent” couple of corridors may exist. Without any 
loss of generality we will refer to one single corridor. 
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We introduce the following notation: 
 
TD( f )  total delay time 
TTT( f ) total travel time 
FFTT  free flow travel time (constant) 
s  number of synchronized intersections 
c  cycle (unique) 
gi  i-th intersection main phase green time 
oi  i-th intersection main phase offset 
nPi   i-th intersection number of phases 
gi 

p  i-th intersection green time of phase p (gi 
1 = gi ) 

oi 
p  i-th intersection green time of phase p (oi 

1 = oi ) 
f  traffic flows 
cmin  minimum cycle 
cmax  maximum cycle 
gmin  minimum green time 
gmax  maximum green time 
 
The problem can be written as: 
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This way, it is possible to reduce problem complexity, having no more 2·s·m, having m the average 
number of phases per intersection, but just 2·s variables (green and offset of every intersection main 
phase). Every solution is in fact composed by 2·s + 1 variables (c, g1, o1, … , gs, os). 

2.1 Secondary phases heuristic 
Having the main phases signal settings, calculating secondary phases ones is outperformed by a 
good-engineering practice. Residual green can be split among secondary phases either by a 
predefined proportion or by the Webster’s equisaturation rule, i.e. proportionally to each phase of 
that intersection historical flows. Secondary phases’ offset comes subsequently, as the phase 
sequence is supposed to be fixed, through the following algorithm: 
 
     for i = 1 to s do 
               for p = 2 to nPi do 
                         oi(p) = oi(p-1) + gi(p-1) 
                         if oi(p) >= c then oi(p) = oi(p) - c 
 

3. The dynamic traffic model 
Every solution’s quality is evaluated by a macroscopic dynamic traffic model, the General Link 
Transmission Model (Gentile, unpublished). This model improves the Cell Transmission Model 
(Daganzo, 1994) idea, adopting the Simplified Theory of Kinematic Waves, but not discretizing the 
space into cells, considering the link as a channel with bottlenecks on enter and exit. The entering 
bottleneck capacity is reduced by the flow on the link, if equal to the link capacity, while the exiting 
bottleneck is traffic signal controlled; link performances depend by flow on it. The whole model 
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substantially bases on an algorithm returning link flows travel time, for a given entering time and 
cumulated entering and exiting flows. 

3.1 Link performances 
Let q(x, τ) be the flow of vehicles crossing point x∈[0, L] at time τ, and let t(τ) be the leaving time 
of a vehicle arriving to the element at time τ. The cumulative flow Q(x, τ) is given by: 
Q(x, τ) = 0∫τ q(x, σ) ⋅ dσ . 
Thus, based on the fluid paradigm, the FIFO rule holds, and can be expressed formally as: 
Q(0, τ) = Q(L, t(τ)) . 
On this basis, once the cumulative flow temporal profiles at the initial and end points of any 
element, or series of elements, are known, the exit time temporal profile can be easily determined. 
 

 
Figure 1: Computation of the link exit time based on the cumulative leaving flow from the initial bottleneck and the 

cumulative exit flow from the link by applying the FIFO rule. 

The solution of kinematic waves equations is based on time discretization in adjacent intervals (τi-1 , 
τi] , with i = 1, … , n. Under the classical numerical approximation that the flows are constant 
during each interval, we can apply the following algorithm, where we assume that 
Q(0, τn) = Q(L, τn),  
Q(0, τ0) = Q(L, τ0) = 0,  
and T0 is the free flow travel time of the element, or series of elements. 
 
t(τ0) = τ0 +T0 
j = 1 
for i = 1 to n do 
    until Q(L, τj) ≥ Q(0, τi) do j = j + 1 (A) 
    if Q(0, τi) = Q(0, τi-1) then 
        t(τi) = τi + T0 
        if t(τi) < t(τi-1) then t(τi) = t(τi-1) 
    else 
        t(τi) = τj-1 + [Q(0, τi) - Q(L, τj-1)] ⋅ (τj - τj-1) / [Q(L, τj) - Q(L, τj-1)]  (B) 
 
The input of the algorithm is Q(0, τi) and Q(L, τi), while the output is t(τi), for i = 0, … , n. The 
cycle (A) aims at finding, for each instant τi in chronological order, the earliest instant τj such that: 
Q(L, τj-1) < Q(0, τi) ≤ Q(L, τj) 
Since the leaving flow is by definition constant during the interval (τj-1 , τj], the cumulative leaving 
flow increases linearly with slope:  
[Q(L, τj) - Q(L, τj-1)] / (τj - τj-1) 
Therefore, in the general case where Q(0, τi) > Q(0, τi-1), the exit time t(τi) results from the simple 
proportion in (B). In the particular case where no flow arrives at the element in the interval (τi-1 , τi], 

Γ(τ) 

τ' t(τ') 

Γ(τ') =                      Λ(σ') =            Φ(t(τ')) 

time 

  vehicles 

σ' 

Λ(τ) 

Φ(τ) 
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the exit time t(τi) may be undetermined; it is thus set by definition as the maximum between the free 
flow exit time τi + T0 and the exit time t(τi-1). 

3.2 Bottlenecks 
Bottlenecks allow simulating explicitly the formation and dispersion of vehicle queues, thus letting 
to evaluate the delay due to the presence of intersections, which is an important part of the total 
travel time in highly congested urban networks. To represent the spillback phenomenon, we assume 
that each link is characterized by two time-varying bottlenecks, one located at the initial point and 
the other one located at the end point, called “entry capacity” and “exit capacity”, respectively. 
The entry capacity, bounded from above by the physical capacity which is typically related to the 
number of road lanes, is meant to reproduce the effect of queues propagating backwards from the 
end point of the link itself, that can reach the initial point so inducing spillback conditions on the 
upstream links. In this case the entry capacity is set to limit the current inflow at a value that keeps 
the number of vehicles on the link equal to the storage capacity currently available, which is related 
to the queue density along the link. The latter changes dynamically in time and space as a function 
of the outflows at previous instants. Specifically, any change in the rate of the space freed by 
vehicles exiting the link at the head of the queue takes some time to become actually available at the 
tail of the queue, while the jam density multiplied by the length is just the upper bound of the 
storage capacity, which can be reached only if the queue is not moving. 
The exit capacity, bounded from above by the saturation capacity which is typically related to the 
regulation of the road intersection, is meant to reproduce the effect of queue spillovers propagating 
backwards from the downstream links, which in turn may generate hypercritical flow states on the 
link itself. For given inflows, outflows and intersection priorities, the exit capacities are obtained as 
a function of the entry capacities based on flow conservation at the node. 
Based on the Newell-Luke Minimum Principle the cumulative flow leaving the bottleneck at time τ 
is the minimum among each cumulative outflow that would occur if the queue began at a previous 
instant σ ≤ τ, that is: 
Q(L, τ) = min{Q(0, σ) + Θ(τ) - Θ(σ): σ ≤ τ} , 
where Θ(τ) is the cumulative bottleneck capacity at time τ, that is: 
Θ(τ) = 0∫τ θ(σ) ⋅ dσ . 
The above expression states that if there is no queue at a given time τ, the cumulative leaving flow 
Q(L, τ) is equal to the cumulative arriving flow Q(0, τ). If a queue arises at time σ < τ, from that 
instant until the queue will eventually vanish, the outflow equals the bottleneck capacity, and then 
the cumulative leaving flow Q(L, τ) at time τ results from adding to the cumulative arriving flow       
Q(0, σ) at time σ the integral of the bottleneck capacity between σ and τ, that is Θ(τ) - Θ(σ). Notice 
that, if there is no queue at time τ, the cumulative leaving flow is the same of the case when the 
queue arises exactly at σ = τ. 
Figure 2 depicts a graphical interpretation of the general equation for a bottleneck with a time-
varying capacity, where the temporal profile Q(L, τ) of the cumulative leaving flow is the lower 
envelop of the following curves: a) the cumulative arriving flow Q(0, τ); b) the family of functions 
Q(0, σ) + Θ(τ) - Θ(σ) with τ > σ, for every time σ, each one obtained as the vertical translation of 
the temporal profile relative to the cumulative bottleneck capacity that goes through the point (σ, 
Q(0, σ)). No queue is present when curve a) prevails; therefore, the queue arises at time σ' and 
vanishes at time σ''. 
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Figure 2: Bottleneck with time-varying capacity. 

Let N(τ) be the number of vehicles queuing to exit the bottleneck at time τ, that is: 
N(τ) = Q(0, τ) - Q(L, τ). 
The equation can be numerically solved by means of the following algorithm: 
 
N(τ0) = 0 
for i = 1 to n do 
    N(τi) = N(τi-1) + Q(0, τi) - Q(0, τi-1) 
    if N(τi) ≤ Θ(τi) - Θ(τi-1) then 
        Q(L, τi) = Q(L, τi-1) + N(τi) 
        N(τi) = 0 
    else 
        Q(L, τi) = Q(L, τi-1) + Θ(τi) - Θ(τi-1) 
        N(τi) = N(τi-1) - Θ(τi) + Θ(τi-1) 
 
The input of the algorithm is Q(0, τi) and Θ(τi), while the output is Q(L, τi) and N(τi), for i = 0, … , 
n. The number of vehicles desiring to leave the bottleneck during the interval (τi-1 , τi], for short 
called here the demand, is given by the number of vehicles N(τi-1) queuing to exit the bottleneck at 
the beginning of the interval, plus the number of vehicles Q(0, τi) - Q(0, τi-1) that arrive at the 
bottleneck during the interval. But, due to the capacity constraint, only the number of vehicles Θ(τi) 
- Θ(τi-1), for short called here the supply, can at the most exit the bottleneck. If the supply is higher 
than the demand, then all such vehicles will actually leave the bottleneck during the interval, and no 
vehicle will be queuing to exit the bottleneck at the end of the interval; otherwise, only a number of 
vehicles equal to the supply will leave the bottleneck during the interval, and the rest of the demand 
will be queuing to exit the bottleneck at the end of the interval. 

4. Genetic algorithm 
Genetic algorithms are efficient finders of good solutions: they are heuristic methods determining 
sub-optimal solutions through a heuristic exploration of the space of solutions. They require to 
evaluate every selected solution point, so they are particularly useful when its evaluation requires 
low computational times and no derivative information for a faster convergence can be used. 
Genetic algorithms name is due to the parallelism between their scheme and biologic phenomena 
studied by Genetics; actually, they take many terms from this discipline. 

4.1 Initial population 
Genetic algorithms start from a feasible solutions subset, called initial population, composed by r 
feasible solutions. One solution, called individual, is described by its genes, i.e. the problem 
variables. In our study every individual is a specific signal setting, whose 2·s + 1 genes are the 
common cycle time and each intersection green and offset. Each algorithm iteration is called 
generation, at the end of which only most suitable individuals are selected to breed the next 

Q(0, τ) 

σ' τ' 
time 

vehicles 

σ''

Q(L, τ)

Q(0, τ') + Θ(τ) - Θ(τ') , τ > τ'
Q(0, σ) + Θ(τ) - Θ(σ) , τ > σ 
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generation: suitability is evaluated by a fitness function. Fitness function is the optimization 
problem objective function. Without any loss of generality, from now on we will refer to the fitness 
function as the total delay on the network, we aim to minimize. Through the Darwinian “survival of 
the fittest” rule, each generation a set containing individuals better than previous ones is obtained, 
as the best individual objective function is implicitly equal or less to the one of previous 
generation’s best individual. This way only solutions more capable to minimize traffic delays are 
allowed to “survive”. 
Initial population strongly affects the algorithm convergence speed. Often, it is created simply 
selecting r random feasible solutions, forsaking the purpose of increasing its speed. We instead 
chose to breed it with maximum bandwidth solutions. The maximum bandwidth solutions are 
created through the MAXBAND equivalent systems algorithm (Papola and Fusco, 1998); this 
returns optimal offsets, for given cycle time and intersection green times. To obtain r solutions, 
different input variables are evaluated: cycle time interval [cmin , cmax] is split into regular intervals, 
for each cycle value, three green settings are taken: 

• pre-defined green splits (ex.: actual signal settings); 
• maximum green to main phase (accordingly with secondary phases minimum constraints); 
• green splits according to Webster’s equisaturation rule. 

These are not optimal solution, but allow to start from quite good solutions. 

4.2 Space of solutions exploration 
Starting from initial population, genetic algorithms explore the feasible set generating new solutions 
through heuristic procedures and evaluating them. New solution points are produced by mutation 
and crossover operations. Mutation consists in selecting one individual and modifying one or more 
genes. How the modify is carried out on the single gene depends on its coding: if a binary coding is 
adopted then mutation switches one or more bits, if it is a continuous value then mutation increases 
or decreases it. In this case, genes c, gi and oi, are expressed as real numbers: each generic variable x 
is randomly increased or decreased of a quantity between 0 and xint, where xint is the maximum 
accepted variation. 
 
for j = 1 to nCh do 
     Δx = (2 * rnd - 1) * xint 
     x = x + Δx 
     if x < xmin then x = xmin  (C) 
     if x > xmax then x = xmax  (D) 
 
The mutated solution is adjusted by the boundary constraints checks (C) and (D) to produce a 
solution belonging to the feasible set. Usually every existing solution is mutated with a very low 
probability pmut , between 0.001 and 0.05: in this case the original solution is lost. Differently, we 
produce t new individuals starting from selected ones’ genes, creating a mutated copy of original 
individual. This allows to not loose previous solutions and contemporaneously to control the 
mutation rate through the t parameter. 
The crossover consists in selecting two target individuals, denoted as parents, to generate one, 
sometimes two, son individual; the son’s gene is inherited either from one or other parent, 
randomly. The following is the algorithm doing this: 
 
for j = 1 to s 
     if rnd < 0.5 then 
          xj = P1.xj 
     else 
          xj = P2.xj 
     If xj * c < xmin then xj = xmin / c 
     If xj * c > xmax then xj = xmax / c 
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where P1 and P2 are the individual’s parents. Individuals probability to be selected as parents is 
proportional to their fitness function: we can expect the combination of better solutions to be 
statistically more fitting than worse ones. This is usually not granted: it depends on the crossover 
operation actual meaning. Inheriting i-th gene means assuming the i-th intersection traffic signal 
setting (except for the 0-th gene, the cycle time). Thus, taking one intersection traffic signal setting 
from a much better solution is supposed to return a better behavior of that intersection. 
Contemporaneously, this behavior is controlled by two parameters, Gi and Oi, and inheriting just 
one of them would not keep anything about the parent fitness: for this reason the couple (Gi , Oi) is 
entirely inherited in crossover. 
More, each crossover step two mirror-sons are generated: each parental gene goes to one or the 
other son. Parents may be automatically discarded or may be not. Similarly to the mutation process, 
we chose to save parents and to establish to create every generation u new sons individuals through 
crossover operations. This allows us to introduce the parameter u as crossover evolution rate. 
When the new solutions creation stops, a subset of available solutions is selected to produce next 
generation set, while remaining are lost. The selection is usually done randomly, assigning more 
surviving probabilities to best individuals. Sometimes best v solutions directly get surviving 
probability equal to 1: this technique is called elitism and grants best found solutions to be never 
lost. In this study the technique is taken to the extreme, as v = r, the population dimension. I.e. 
exactly the best r individuals are selected to compose next generation, while remaining t + u 
solutions are deleted. 

5. Conclusions 
Reduced computational cost, in memory and time terms, is this algorithm main evidence. This 
allows to quickly obtain the best cycle time, green times and offsets of a set of synchronized traffic 
signals along a traffic corridor. The algorithm can be used offline to determine the best solution for 
one single scenario, i.e. for a given demand data. Unfortunately not only traffic flows, but demand 
has a dynamic evolution, too. So what is best now can be far from the best solution some hours (or 
some minutes!) later. Plan-selection control strategies select real-time the best synchronization 
settings amongst one set of possible strategies, previously established: the evaluation is based on 
traffic real-time surveys to build demand data. The proposed algorithm can be used to populate the 
available solutions set, as well as the General Link Transmission model to evaluate available plans. 
But this would still not take full advantage of its quickness. More advanced control strategies 
completely determine the new synchronization settings, basing on surveys. The setting is then 
updated every time interval, from some dozen of seconds to some minutes. This can be done 
through the genetic algorithm using real-time demand data and finding quickly best settings. The 
same could not be done by previous approaches due to too expensive computational times. 
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