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Abstract 

The purpose of this paper is to investigate the possibility of exploiting the hyperpath 
paradigm to model the route choice in congested metropolitan networks, where both regular 
and irregular services are available and where passengers are provided at transit stops with 
information regarding actual waiting times. In this context, we develop different stop models, 
depending on the layout of the stop and also on the congestion level, for reproducing route 
choice strategies: how do passengers compare regular and irregular services, how is their 
choice affected in case of developing queues, which boarding rule is suitable to represent 
different congestion phenomena. Numerical example are provided showing how congestion 
and regularity affect the boarding probabilities in case online information is provided. 

1. Introduction 
The concept of optimal strategy was first introduced by Spiess and Florian (1989) to model 

the travel behaviour of rational passengers in presence of perceived uncertainty in vehicle 
arrivals when several routes are available to reach the destination from a transit stop, 
including the relevant case of common lines (i.e. partly overlapping). Therefore, it is assumed 
that, rather than selecting the shortest single routes or itineraries before the beginning of the 
trip, passengers choose the best strategy, which is defined as “a set of rules that, when applied 
allows the traveller to reach his or her destination”. A strategy is chosen before the 
beginning of the trip and, starting from the origin, it involves the iterative sequence of: 
walking to a transit stop or to the destination, selecting the attractive lines to board and, for 
each of them, the stop where the passenger needs to alight. 

According to Nguyen and Pallottino (1988), a transit assignment reproducing this strategic 
behaviour can be modelled by loading a shortest (i.e. with minimal cost) hyperpath that 
connects the origin of the trip to the destination and represents possible diversions at transit 
stops through waiting hyperarcs, each of which identifies a line set. Traditionally, hyperpaths 
have been exploited to model the frequency-based transit assignment in a static framework, 
where it is assumed that a passenger, after reaching a stop, waits for the first attractive carrier 
among a fixed set of lines. It is known (Billi et al., 2004; Noekel, 2007) that this behaviour is 
rational only when:  

• no information is provided at the stop on actual waiting times and on the available 
capacities of arriving carriers; 

• the vehicle arrivals of different lines at the stop are statistically independent, and 
the same is true for the passenger arrivals with respect to vehicle arrivals (the latter 
meaning that the service is so irregular and/or so frequent that passengers do not 
synchronize their arrival at the stop with carriers arrival); 

• the headway probability distribution function (p.d.f.) between two successive 
vehicles of the same line and hence the waiting time for a passenger randomly 
arriving at the stop are exponential, i.e. memory-less (irregular services). 



 
 
 
 
 
        Dynamic hyperpaths in multimodal transit networks: the stop model with online information 2 
 
 

 
 

In contrast with the previous works, we are interested here in extending the hyperpath 
paradigm in order to develop a route choice model in the case where: 

• intelligent transport systems provide countdown information at transit stops. This 
implies that passengers know the actual waiting time before the first arrival of any 
line serving the stop. 

• the urban transit system comprises not only highly irregular services (such as 
buses), but also regular services (such as underground or LRT) which have 
deterministic headways. In the latter case the p.d.f. of inter-arrival times and, 
therefore, passengers’ waiting times is uniform and not exponential.  

• the transport network is congested, meaning that link travel times and transit 
frequencies vary during the day, and capacity constraints can prevent passengers 
from boarding the first attractive line approaching the stop. 

• passengers know for each attractive line which is the carrier they will be able to 
board. We can assume this information is known due to travel experience, or it is 
dynamically computed off-line by an ITS and communicated to passengers at the 
stop. 

To this aim, the stop model needs to be addressed more specifically in order to describe 
how the waiting process works in case of congestion and how queues and on-line information 
affect route choice. 

Thus, after a brief overview of assumptions, formulation and notation of the stop model 
proposed here (Section 2), in Section 3 we recall models developed to evaluate, separately, 
the effect of online information or congestion on: boarding probabilities, waiting and travel 
times. Afterwards, our model will be presented focussing at first on a single stop (Section 4) 
and then on a specific set of attractive lines (Section 5). Numerical examples will be also 
provided (Section 6) to show the effect of regularity/irregularity and congestion when online 
information is provided. 

Our stop models will allow us to evaluate the expected waiting time of the corresponding 
hyperarc, as well as the probability to board each attractive line, addressing the case of 
exponential or uniform p.d.f. for inter-arrival times and availability of on-line information at 
stops. In this situation, even if there is no queue, it is not always convenient to board the first 
attractive carrier approaching the stop, but the best strategy is to keep waiting (Gentile et al., 
2005). Hence the boarding probability and under saturation delay (or waiting time) cannot be 
computed according to the formula given by Spiess and Florian (1989) for the classic case of 
exponential headways and no information. 

Moreover, if the flow willing to board is over the available capacity on the approaching line 
vehicle, passengers have to queue until the service becomes actually accessible to them, thus 
suffering an additional over saturation delay. Therefore, the model has to be adjusted to 
represent the dynamic queue, which depends also on the layout of the stop. 

2. Hyperpaths: formulation and notation 
The transit network is formally represented here by an oriented hypergraph G = (N, A), where 
N is the set of nodes and A is set of arcs and hyperarcs.  

As usual, the generic arc a⊆A is identified by an ordered pair of nodes, referred to 
respectively as the tail, denoted by TL(a)∈N, and the head, denoted by HD(a)∈N; that is a = 
(TL(a), HD(a)). While for the generic hyperarc the head can be a set of nodes, i.e. HD(a)⊆N. 
We distinguish the following different types of arcs and hyperarcs: 

• AP pedestrian arcs, used by passengers to walk from the origin to a boarding stop, 
from a stop to another stop, and from the alighting stop to the destination; 

• AH waiting hyperarcs, used to model the under saturation delay due to the 
discontinuity of the service. Passengers at the stop do not know which attractive 
carrier will arrive first, therefore they associate a probability to each head of the 
hyperarc that represents the boarding on a particular line; 
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• AQ queuing arcs, used to model the over saturation delay due to passenger flow 
exceeding the available capacity of the line at the stop; 

• AA alighting arcs, used to model the alighting process; 
• AL line arcs, connecting two subsequent stops of a same line; 

Therefore we have: A = AP∪AH∪AQ∪AA∪AL.  
Note that the assumption of representing first the waiting process and then the queuing 

process as in Figure 1 is questionable from a phenomenal point of view, since exactly the 
opposite occurs in reality; however this proves to be a valid choice from a modeling point of 
view.  

First of all, doing so allows us to develop a model with separate queues. On the contrary, if 
queues were not separate, the model should also represent overtaking among passengers 
wanting to board different attractive lines and therefore FIFO rule would not hold true.  

Secondly, both the expected waiting time and the expected travel time once boarded affect 
passenger choices as part of the generalized travel costs. Instead, representing the waiting 
process after the queuing process impedes to include the queuing time in the computation of 
the optimal strategy.  

Finally, adopting the approach proposed by Meschini et al. (2007), transit frequencies are 
conceived here as a continuous flow of line carriers. This allows representing explicit 
capacity constraints on line vehicles and reproducing “over saturation” queuing times of 
passengers at transit stops. On the other hand, we have to force into the model the simulation 
of the “under saturation” waiting time of passengers at transit stops, due to the intrinsic 
discontinuity of the service. Under this consideration, we can add this term wherever it is 
more convenient from a modelling point of view, in this case associating it to hyperarcs 
before the queuing time, as far as all components of generalized costs are correctly taken into 
account. 

A support hyperarc a is associated with all the lines serving the stop. However, a passenger 
directed to a given destination d will consider only a subset of services. Therefore, we 
associate a specific hyperarc b to each possible attractive line set, i.e. HD(b) ⊆ HD(a), as 
shown in Figure 2.  

A hyperpath h is an acyclic sub-graph on G connecting a single origin o to a single 
destination d, where there is one single arc or hyperarc exiting from each node (except for the 
destination) and all nodes are connected to d; that is, diversions occur only at waiting 
hyperarcs. 

  
 
FIGURE 1 – Representation of a stop in the hypergraph.  
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FIGURE 2 – Waiting hyperarcs defining the attractive set associated with the support 
hyperarc of all available lines 
 

3. The new Stop Model 
Adopting the approach of Nguyen and Pallottino (1988), the shortest hyperpath search 
represents the choice of the best travel strategy, where, at every stop, each attractive line is 
associated with a probability to board. Probability to board line )( ll π depends, in general, on: 
its inter-arrival times, its line travel time, which is the expected travel time from the stop to 
destination, once boarded line l ; inter-arrival times and line times of other attractive lines. 

In the following section we highlight how the stop model for hyperpath search should be 
changed in order to compute probabilities to board (or diversion probabilities) and expected 
waiting times in a number of alternative scenarios. 

3.1 Stop model for multimodal transit networks with online information at stops: the 
uncongested case 

Dynamic passengers’ information systems are nowadays able to give simultaneously the next 
departure time for all lines serving a stop. Consequently, it is no longer possible to rely on a 
stop model based on the assumption that the only information available is the observation of 
the next line to be served, as in the original works by Spiess and Florian (1989) and Nguyen 
and Pallottino (1988). 

The basic assumptions of the new model are therefore (Gentile et al. 2005): 
• Passengers arrive randomly at the stops; 
• Transit line waiting times are statistically independent with continuous 

distributions, namely exponential for irregular and uniform for regular services; 
• Passengers can retrieve at the stop the actual line waiting times lw ; 
• For each attractive line l serving the stop, passengers evaluate with sufficient 

accuracy the expected travel time from the stop to destination, ls . 
In this context, the rational user would choose the line l associated with the minimum total 

travel time: 
 { }Lhswsw hhll ∈+=+ :min  (3.1) 

Any value lw showed by the count-down system is a stochastic variable of which the 
p.d.f. )(wfl is known.  

Therefore, when a carrier of line l arrives at time w , the boarding condition not only 
requires that line h has not arrived before w , but, if h is a faster line, it must not even arrive 
before )( hl ssw −− . Given the independency of headways of different lines (and, 
consequently, of waiting times) the joint probability that the total time of line l is shorter than 
or equal to any other line, when the actual waiting time displayed for the first service of 
l is, w is:

← support 
hyperarc 
 
→ waiting 
hyperarcs 
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)Pr(

\ lhlLh h swswi
n

+≥+∏ ∈
 (3.2) 

Where { } 21 n,...,,Li
n =  is the set of lines serving the generic stop i . Probability to board 

line l is, hence, computed as: 

 
{ }

dwswswwf lhlLh hll i
n∫ ∏

+∞

∈ ⎭
⎬
⎫

⎩
⎨
⎧ +≥+⋅=

0

  )Pr()(
\

π  (3.3) 

If { }
)(Pr)(

\ lhlLh hl swswobwf i
n

+≥+⋅∏ ∈
is interpreted as the p.d.f. of the waiting time at 

the stop, conditional to boarding line l , the expected waiting time conditional to board the 
same line is: 

 
{ }

dwswswwfwEW lhlLh hll i
n∫ ∏

+∞

∈ ⎭
⎬
⎫

⎩
⎨
⎧ +≥+⋅⋅=

0

  )Pr()(
\

 (3.4) 

Therefore, the expected waiting time at the considered stop i is given by the summation of 
hEW over all the attractive lines: 

 ∑
∈

=
i
nLh

hEWEW  (3.5) 

While the expected travel time once boarded is: 

 h
Lh

h sES
i
n

⋅= ∑
∈

π  (3.1) 

As pointed out by Nökel and Wekeck (2009), in this context, given that a generic stop i is 
served by L lines, the attractive set *L consists of all lines which are “optimal at least in the 
extreme case that a vehicle of the line arrives after zero wait time, while the wait time for any 
other line amounts to its full headway”. To determine *L we can therefore apply the approach 
proposed by Gentile et al. (2005), computing in turn ,jLET  for nj ,...,1=  and then 

choose { }njETL jL ,...,1:minarg* == . 

3.2 Stop model for multimodal transit networks when congestion occurs 
The previous sub-section presented a stop model for multimodal transit networks (regular and 
irregular services), where online information is provided at the stops. 

A second important issue to address is the formation and dispersion of queues, in case not 
all the passengers can board the first approaching carrier because of capacity constraints. 

In order to properly reproduce this phenomenon, a dynamic model has to be built where 
passengers’ demand, line frequency and travel times depend on the time of the day (Trozzi et 
al. 2009). 

Therefore, in the following we introduce the variables utilized to describe the stop model. 
 

)(tlλ  Frequency of line l departing from the terminal at time t  

)(tT i
l  Instant when the carrier of line l departed from the terminal at time t reaches stop i  

)(ti
lϕ  Frequency of line l at stop i at time t ; it is the inverse of the headway expected 

value 
)(tQi

l  Available capacity on line l at stop i at time t  
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)(tN i
l  Number of passengers waiting in a queue to access line l at stop i at 

time t (namely, the number of passengers exceeding the available capacity of the 
approaching carrier) 

)(tM i
l  Number of passengers waiting for service at stop i at time t that are able to board 

the next carrier of line l  
)(tW i

L  Expected waiting time of the hyperarc identified by the set of attractive lines L  
serving stop i at time t  

)(tiLl∈π  Probability of boarding line l among the attractive set L at stop i at time t ; equal to 
the internal coefficients of the corresponding hyperarc 

)(tei
l  Flow of passengers on line l approaching stop i at time t   

lΦ  Vehicle capacity of line l  

)(tPi
l  Probability to be able of boarding the next vehicle of line l approaching stop i at 

time t  
)(ti

lψ  Effective frequency of line l at stop i at time t   

 
The temporal profile )(ti

lϕ of the frequency at a given stop can be determined on the basis 
of the temporal profile )(tlλ of the frequency departing from the terminal and of the travel 
times on the network by applying a basic dynamic formula: 

 )/)(/()())(( dttdTttT i
ll

i
l

i
l λϕ =  (3.7) 

The available capacity is then given by: 

 )t(e)t()t(Q i
l

i
ll

i
l −⋅= ϕΦ  (3.8) 

Therefore, we have:  

 )(/)()( ttQtM i
l

i
l

i
l ϕ=  (3.9) 

Based on the above equations, all variables are time-varying, including the main 
characteristic of the headway distribution, which is the frequency. However, it is very 
difficult to consider this feature in the computation of expected waiting time and line 
probabilities, which require integration over time. We will henceforth refer to the values of all 
the variables at the instant when the passenger reaches the stop and consider them to be 
constant during the wait. 

Now that the basic formulation is introduced, we will focus, for the sake of clarity, on a 
single line stop. In this case the waiting hyperarc collapses into a normal arc and probability 
to board the only attractive line is equal to one. Consequently, we are only interested in 
describing the variation of waiting times due to temporary oversaturation. 

4. The stop model for a single line 

4.1 Mingling queue 
If the stop is designed as a platform (namely, in the underground case), passengers mingle on 
it and cannot respect any boarding order, as they do not know exactly where the carrier is 
going to stop. Thus, if a passenger stands just in front of the point where the doors will open, 
then he will probably board on the next carrier approaching the stop. But if he stands far from 
that point, he may have to wait for a subsequent arrival. Therefore, the waiting time does not 
decrease only because a passenger has already missed one or two runs due to congestion. 
These are the same assumptions made in Schmoecker et al. (2008). On such basis, a 
passenger has the same probability of boarding at each carrier arrival, that can be evaluated 
as: 
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 ))()(/()()( tNtMtMtP i
l

i
l

i
l

i
l +=  (4.1) 

Therefore, passengers perceive a service with the following effective frequency: 

 )t(P)t()t( i
l

i
l

i
l ⋅= ϕψ  (4.2) 

Given the hypothesis of exponential arrivals with rate )(ti
lϕ it can be proved by simulation 

that the p.d.f. of the waiting time for the generic line l is still exponential with a rate equal to 
the effective frequency: 

       
otherwise                              0

0  wif       
⎪⎩

⎪
⎨
⎧ ≥⋅=

∗−

,
,e)t()t,w(f

w)t(i
li

IRR,l

i
lψψ  (4.3) 

Hence the expected waiting time is: 
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)(, tQ
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IRRl +==

ϕψ
11  (4.4) 

If we assume that the same rule holds true also in the deterministic case, the p.d.f. of the 
waiting time for the generic line l is still uniform with a rate equal to the effective frequency: 

 
⎪
⎩

⎪
⎨

⎧ ≤≤
=

 otherwise                 ,0
)(

10  if           ),(
),(, t
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twf i

l

i
li

REGl ψ
ψ

 (4.5) 
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i
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i
l

i
l

i
REGl

⋅
+

⋅
=

⋅
=

22
1

2
1

ϕψ
 (4.6) 

This is consistent with the intuition that calls for scaling the frequency by the probability to 
be able of boarding. Moreover the waiting time can be decomposed into a service time and a 
queuing time. 

Clearly, when the congestion level is extremely high the queue may spill back from the 
platform and can assume FIFO behaviour; this phenomenon can be modelled by a link to 
access the platform with a final bottleneck. 

4.2 FIFO queue 
If the stop is designed so that passengers have to respect a FIFO service order, then the 
passenger who arrives first at the stop is the first to board. Hence, the )(tN i

l -th queuing 

passenger will have to wait for the )(tk i
l -th arrival, when the service will be truly available to 

him:  

 )](/)([)( tMtNINTtk i
l

i
l

i
l += 1  (4.7) 

where INT[x] is the first integer not smaller than x. 
Headways are independently and equally distributed according to an exponential 

distribution of parameter )(ti
lϕ . Therefore, the waiting time before the )(tN i

l -th arrival is 

distributed according to a Gamma ),( βα , where parameter n=α  and )(/ ti
lϕβ 1= . 
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Hence the expected waiting time is: 
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Consequently, the expected waiting time at the stop is the same as in the mingling case, 
given by the service time and a queuing time. The variance of the Gamma function is instead 
lower than the variance of the Exponential function for the same expected value. 

On the other hand, if headways are deterministic, the waiting time before )(tk i
l -th vehicle 

can be computed as the waiting time before the first arrival (uniformly distributed) plus the 
(deterministic) waiting time from the second up to the )(tk i

l -th vehicle: 
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Therefore the expected waiting time is: 
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5. The stop model for multiple lines  
When passengers wait at a stop served by several attractive lines, they do have the possibility 
to choose the best one and, therefore, their travel behaviour can be regarded as strategic. 

In this case, not only we are interested in understanding which is the exact boarding rule 
characterizing different dynamic phenomena of congestion. In fact, we also want to represent 
comparisons between regular and irregular services and the way online information at stops 
affects users’ route choice. In the following, different models are proposed depending on the 
layout of the stop and on the congestion level. 

5.1 Mingling queue 
Let us firstly consider a stop where passengers mingle while waiting to board the first 
attractive line. When the available capacity of approaching carriers is lower than the number 
of passengers at the stop willing to board a line, the waiting time has a continuous distribution 
with rate equal to the effective frequency computed by equation (4.2). 

The second assumption we now have to take into account is that passengers are provided at 
the stop with online information regarding the actual waiting time before the first arrival of all 
attractive lines. 

On this basis it is possible to compute as in Gentile et al. (2005) the probability of line l to 
be the chosen one among all the attractive lines, given the capacity constraints due to transit 
congestion. 

Therefore, the internal coefficient of the corresponding hyperarc is equal to the probability:  
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While the expected waiting time is: 
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In the previous two equations, if line l is irregular, ),( twf i
l is given by equation (4.3), 

while, if it is a regular one, then ),( twf i
l is given by equation (4.5). 

REG
hF and IRR

hF rrespectively represent the complement of the cumulative distribution 
function (c.d.f) of the waiting time before being able to board a regular or an irregular line. It 
is possible to compute them in the following way: 

 { } ))()(()()(Pr tstswFtswtswF hl
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hlhh
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5.2 FIFO queue 
A different case is the one of transit stops, served by a bunch of attractive lines, where 
passengers queue until the chosen service becomes truly available to them. 

In this case, the presence of online information, not only affects diversion probabilities and 
the expected waiting time, but thoroughly changes the way of modelling passengers’ 
behaviour. The following example helps to clarify. 

If the transit system is highly crowded, the stops shared by several lines can be designed to 
have physically separate queues for the different lines. In this case, if no information is 
provided, each line where )(tN i

l >0 cannot be considered for a strategic behaviour, since the 
passenger has to join the corresponding queue as soon as he/she reaches the stop and then it 
may be difficult for him/her to change row. This case thus reduces to that of a FIFO queue for 
a single line that we already have examined in section 4.2. By contrast, if at a multiple line 
stop passengers wait together in a single queue their behavior can be regarded as strategic 
(Trozzi et al. 2009). 

However, if passengers were provided with information at the stop regarding the arrival 
times of carriers and the available capacity on-board (or the passenger has sufficient 
experience to guess it), whichever is the stop layout (separate or mixed queues) we can 
always model passengers’ behaviour through hyperpaths. Indeed, the information anticipates 
the event of vehicle’s arrival to the moment when the passenger reaches the stop; hence, his 
optimal travel strategy comes true at this instant, when he/she actually chooses which line to 
board taking into account the number of passengers waiting for the different lines. 

For the sake of simplicity, we will refer in the following only to separate queues, as the 
model for mixed queues can easily be developed on this basis. 

As in the mingling case, the stop model in case of FIFO separate queues can be developed 
by applying the general formulas due to Gentile et al. (2005).  
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Case 1 is when l is an irregular line. 
In this case, when computing boarding probabilities (equation 5.1) and expected waiting 

times (equation 5.2), the complements of c.d.f. assume the following expressions: 
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where we recall that ϑ is a function such that:  
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where )()( tstsw hlhl −+=β . 

Case 2 is when l is a regular line. 
In this case, when computing equations (5.1) and (5.2), the complements of c.d.f. are: 
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6. Numerical Example and Conclusions  

A numerical example is provided here in order to demonstrate the stop models proposed in 
this paper. We only consider three cases with separate queues where the FIFO rule applies. In 
the first case we assume no congestion; therefore the first carrier is always available. In the 
second case, there is congestion and passengers need to wait for the second carrier, while in 
the last case only the third carrier is available. We assume three separate lines one of which is 
regular and the other two irregular. The details of the lines are shown in Table 1 below.  

 

Line i Line frequency iϕ  Regularity Travel time si 

1 1/20 min -1 regular 30 min 
2 1/15 min -1 irregular 40 min 
3 1/10 min -1 irregular 45 min 

TABLE 1.  Line attributes 

 
The probability to board the first available carrier for each line, together with the expected 

waiting time, line travel time and total travel time are calculated using the formulas developed 
in section 5.2. The results of the computation are shown in the following table.  

 

 1π  2π  3π  EW ES ET 
k = 11 0.834 0.131 0.035 9.049 31.831 39.470 
k = 2 0.044 0.433 0.523 14.480 42.179 56.659 
k = 3 0.002 0.389 0.61 24.48 43.023 67.508 

TABLE 2.  Boarding probabilities and expected waiting times 

 
Line 1, which is the service with the longest average headway, is the most attractive only in 

the case without congestion. By contrast, if passengers have to wait for the second or third 
carrier, line 3, which is the one with the shortest average headway, becomes the most 
attractive line. 

The results obtained in this study, where lines with different level of regularity are 
considered together, are being compared to results of the paper by Gentile et al (2005), where 
for the case without congestion, only lines with the same level of regularity were considered 
together. The results are compared in table 3. 

 

Line 
regularity 

1π  2π  3π  EW ES ET 

Irr-Irr-Irr 0.587 0.257 0.156 6.81 34.92 41.73 
Re-Irr-Irr 0.834 0.131 0.035 7.63 31.83 39.47 
Re-Re-Re 0.805 0.160 0.035 7.27 32.12 39.39 

TABLE 3.  Results comparison in the case of no congestion 

In the absence of congestion, it can be seen that there is an improvement in the expected 
total travelling time (i.e. ET) of 2.26 minutes in respect to the case where all lines are 
irregular. However, there seems to be not a great improvement when all the lines are regular 

                                                 
1 This is the case where there is no congestion and the first carrier is always available  
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compared to the case considered here. This can be due to the fact that the only regular line has 
the lowest travelling time.  

 
In this study, we have shown how regularity and the congestion level affect route choice.  
The next steps of our research will address the possibility to include in the same route 

choice model also timetable-based services and, then, embedding this model in an assignment 
procedure. 
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