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Abstrak 
 

Dalam implementasinya, robot humanoid soccer terdiri lebih dari tiga robot di lapangan ketika sedang bermain 

bola. Semua robot diharapkan dapat memainkan sepak bola seperti manusia seperti mencari, mengejar, 

menggiring bola dan menendang bola. Untuk melakukan semua perintah tersebut, diperlukan sistem lokalisasi 

real-time sehingga setiap robot tidak hanya memahami posisi robotnya sendiri tetapi juga robot-robot lain bahkan 

objek yang berada di sekitar lapangan. Namun dalam implementasi real-time dan karena keterbatasan kemampuan 

komputasi robot, diperlukan suatu metode komputasi yang cepat dan mampu menghemat banyak memori. Oleh 

karena itu, dalam makalah ini menyajikan metode implementasi lokalisasi real-time dengan menggunakan metode 

odometry and Monte Carlo Localization (MCL). Untuk memverifikasi kinerja metode ini, beberapa percobaan 

telah dilakukan dalam aplikasi real-time. Dari hasil percobaan, metode yang diusulkan mampu mengestimasi 

koordinat posisi robot pada posisi X dan Y di lapangan ketika sedang bermain bola. 

 

Kata kunci: Humanoid robot soccer, Localization, Odometry, Monte Carlo Localization (MCL) 

 

Abstract 

In implementation, of the humanoid robot soccer consists of more than three robots when played soccer on the 

field. All the robots needed to be played the soccer as human done such as seeking, chasing, dribbling and kicking 

the ball. To do all of these commands, it is required a real-time localization system so that each robot will 

understand not only the robot position itself but also the other robots and even the object on the field’s environment. 

However, in real-time implementation and due to the limited ability of the robot computation, it is necessary to 

determine a method which has fast computation and able to save much memory. Therefore, in this paper we 

presented a real-time localization implementation method using the odometry and Monte Carlo Localization 

(MCL) method. In order to verify the performance of this method, some experiment has been carried out in real-

time application. From the experimental result, the proposed method able to estimate the coordinate of each robot 

position in X and Y position on the field.  
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1. Introduction 

Humanoid robot soccer is designed to have ability on 

playing soccer like human being. In maneuvering on 

the field, the robot should be agile to track and dribble 

the ball, distinguish opponent and ally goal position, 

pass the ball to friends, and then score a goal. All of 

these movements are absolutely supported by the 

excellent robot navigation and vision system. The 

navigation system is hopped to make the robot able to 

maneuver it-self and do self-localization when the 

robot is playing football on the field. In many years, a 

lot of researchers designed and implemented the 

method to establish the navigation system of the 

humanoid robot soccer in different approach. As 

presented in [1], they developed and designed an 

interactive interface to optimize sound source 

localization (SSL) by using the microphone array to 

order the robot do the localization based on SSL 

command. While in [2], they constructed the 

framework to solve the trade-off problems of the robot 

localization and achieve the perception-during-

Traversing Model system. This framework will be 

used as subdividing and re-integrating the localization 
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and recognition processes based on task-oriented 

frequency. Beside developing the localization based 

on sound and constructed the framework, many 

methods which have been developed by the researches 

utilize the sensor for developing an accurate robot 

pose localization. The pose estimation presented by [3] 

on the other hand, introduced the theoretical 

contribution strengthening the formulation of the IMU 

pre-integration to avoid ambiguity. Fallón, et.al [4] 

introduced the algorithm probabilistic for sensor 

fusion data from inertial, kinematic and LIDAR to 

produce a consistent position estimation for robot 

walking. The LIDAR also been used to assign 

localization which is able to maintain reliable drift-

free using a Gaussian Particle Filter. Moreover, on [5] 

used the combination of the LIDAR sensor and 

odometry to estimate the mapping localization based 

on the kinematics-inertial of the humanoid robot. The 

SLAM, a Simulated Localization and Mapping 

method for the humanoid robot localization also can 

be approached by combining with the RGB-D camera. 

The RGB-D camera is used to construct the 

environment in visual localization [6-8].  

In contrast with [9-10], they developed the visual 

memory based on topological map for autonomous 

navigation scheme for path planning and path 

following. In this work, they also used the RGB-D 

camera which is mounted on the NAO robot. The 

other work used the vision system for the self-

localization by making the landmark field to 

determine the coordinate position of the robot. The 

landmark which is used as the point reference lays on 

the corner pole and goal [11-13]. The vision based 

path planning also developed by Mahdi, et.al [14], 

which is obtained the unknown environment from 

sensory and vision information and then approach the 

decision by using the Fuzzy Markov Decision 

Processes (FMDP). The indoor hybrid map based 

localization by combining a camera and a laser range 

finder, was introduced by Xu, et.al [15]. In this work, 

they constructed the topological map by natural 

landmarks, and local metrical maps which determined 

by using the improved Rao-Blackwellized particle 

filter. While Tian, et.al [16] provide an 

implementation of the particle filter algorithm for self-

localization by employing a fish-eye camera lens. In 

this work also introduced some series solution in order 

to oscillation effect caused by the locomotion 

movement of the robot. And in [17], they used a 

Kinect sensor to obtain the digital map of the global 

environment and the position and orientation of the 

head of the robot. The position and orientation was 

used to determine the foot placement and calculated 

based on the spatial geometric relationship between 

head and the target foot. Moreover, the 3D 

environment localization model is able to generated 

by using the depth camera. The depth camera is able 

to maintain a 3D environment representation, and 

estimate the robot pose. Which is produced an optimal 

result when the head angle of the humanoid robot is 

around 20° and 29° [18-19]. 

In [20-21], they proposed a vision-based odometric 

system for robot localization. The position and 

orientation of the torso are predicted based on the 

differential kinematic map and apply the prediction-

correction structure method of an Extended Kalman 

Filter. And then, they presented an averaged motion 

for canceling the sway oscillation of the torso motion. 

The other visual odometry (VO) method for 

localization as presented by Minami, et.al [22] 

included the three different sparse VO algorithm for a 

function of step length such as a direct, a semi-direct 

and an indirect algorithm for improving the footstep 

planning speed. Using the depth camera, stereo 

camera, or visual odometery are able to improve the 

precision, however it needs an expensive sensors and 

request higher computational capacity. Therefore, 

Carrillo, et.al [23] proposed a gentle algorithm to 

locate the robot localization by using the odometry 

information and general regression with Nadayara-

Watson kernel. A robust learning method for the robot 

localization called Lightweight Humanoid robot 

Odometric Learning method (LHOL) presented by 

Saeedvand, et.al [24].  In this approached, they used 

the kinematic computational data, IMU (roll and pitch) 

data, and robot’s actuator load data as the input of the 

artificial neural network method.   

Moreover, the usage of the vision for the localization 

is presented the other method so called the Monte 

Carlo Localization (MCL). This localization able to 

deal with the limited landmarks given by the field. 

There are many methods of implementing the MCL 

algorithm on the robot. As presented in [25], they 

proposed a state-driven MCL which is able to deal 

with kidnap problem by divided the states of particles 

into four types: messy, approach, cluster and error. 

Nagi, et.al [26], on the other hand, used the MCL 

algorithm to deal with the limited landmarks such as 

yellow goal post and field marks. In this work they 

improve the resampling step and then process the 

estimation localization. In [27], the MCL has been 

done by virtual robot agents to estimate the global 

pose of the robot and added the filtering algorithm and 

stochastic modeling to deal with kidnapping problem. 

The same as [27], Almeida, et.al [28] also validated 

the MCL algorithm by simulation. However, in this 

work they proposed motion and observed models 

design for the domain to determine the quality of 

particle needed. In [29], the MCL was integrated with 

localization information retrieved by 2D RGB image 

and then combine with simulation data to the pose 

estimation. The MCL algorithm estimate the position 

and orientation of the robot used the known map of 

the environment, range sensor data, and odometry. 

Therefore, we also implemented the MCL algorithm 

to our humanoid robot soccer called BarelangFC. In 

our work, we proposed the MCL algorithm by 

understanding the heading of the robot from yaw IMU 

sensor and spread the particle around the field. In 
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order to implement the real-time localization, we 

transform the field into grid coordinate to estimate the 

position of the robot. 

2. BarelangFC Design 

In order to implement the proposed algorithm, we 

designed a humanoid robot named as BarelangFC 

which design presented on Figure 1 with has 

dimension about 66 cm x 28 cm. The robot consists of 

20 units of servo motor as a robot’s actuator. The servo 

motor placed on each joint of the robot and generated 

20 degree of freedom (DOF), where 12 DOF at the leg 

joint, 3 DOF for each arm joint, and 2 DOF at the neck 

joint. The robot equipped with webcam camera for the 

vision system, NVIDIA Jetson TX1 for the vision 

system generator, in order to command the servo 

motors the robot also has the servo controllers and 

also for the main controller we used the intel NUC. All 

the placement of the hardware which been used in this 

work presented on Figure 2. The number on the robot 

body which presented on Figure 2 represented the 

servo ID for simplify the command send by the servo 

controller.  

The whole block diagram system of the BarelangFC 

figured on Figure 3, at first the webcam camera will 

capture the object surrounded then the raw image used 

as the input of vision system on the NVIDA Jetson 

TX1 to generate the ball and goal detection. Beside 

detecting the ball and goal, vision system not only 

generated the coordinate (X, Y) of the ball and goal 

but also heigh and width of the object. All the 

coordinates and the heigh or width information will be 

sent to the main controller which is Intel NUC to 

process the data and translate the data into a signal to 

servo controller so that the servo motor able to move 

the robot according to the coordinate given by the 

vision system. 
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Figure 1: The construction of the Barelang-FC humanoid 

robot. 
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Figure 2: The specification of the Barelang-FC humanoid 

robot soccer. 
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Figure 3: The block diagram system of the BarelangFC. 

3. The Self-Localization Prediction  

In generating the localization, the MCL which is 

derived from the Bayes Filter through the Markov 

Localization and Particle Filter, commonly work with 

four steps such as: initialization, prediction, update 

and resample which constructed on Figure 4. The 

MCL algorithm used the random particle or sample 

from the robot posed where the coordinate generates 

by MCL is ((𝑥, 𝑦, 𝜃)𝑇 , 𝑝) , the 𝑥, 𝑦, 𝜃  denotes to the 

robot orientation and position on the field and 𝑝 

represents the weight of the sample. 

In order to estimate the robot position on the field, the 

first process is to set the robot at initial coordinate 

position. In this position, robot should be able to 

initiate 100 particles which are spread on the field, 

where the 90% of the particles centralized from the 

robot initial position and the 10% of the particles was 

spread randomly on the field. The illustration of the 

initialization process can be seen on Figure 5. The 

blue dotted on Figure 5, represented as the robot 

estimation position while the red dotted to the particle 

which spread on the field. 

In addition, when the robot moves on the field, each 

particle will move to follow the robot's movement as 

well. Therefore, in order to estimate the robot 

movement position (x,y), at first, the heading of the 

robot is needed to be understood by the robot. In 

previous work [30], we used the vision and apply the 

trigonometry algorithm to predict the heading of the 
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robot keeper. In spite of using the vision, in this work, 

the heading of the robot was generalized by the yaw 

data from the IMU sensor. And the robot movement 

estimation position is calculated by using the angle of 

the servo leg joint odometry system which produced 

the distance per step of the robot. The fusion of robot 

movement estimation and the robot heading, 

generated the predict step which can be seen on 

Figure 4. As for the movement of the particle samples, 

it which is taken from the odometry data of the robot 

where the position and orientation are obtained from 

equation (1). 

(
𝑥′

𝑦′

𝜃′

) =  (

𝑥
𝑦
𝜃

  ) + (
𝑑𝑥
𝑑𝑦
𝑑𝜃

  ) + ( 
𝑟𝑛𝑑𝐺𝑥
𝑟𝑛𝑑𝐺𝑦
𝑟𝑛𝑑𝐺𝜃

  )            (1) 

The (𝑟𝑛𝑑𝐺𝑥, 𝑟𝑛𝑑𝐺𝑦, 𝑟𝑛𝑑𝐺𝜃)𝑇 , is the error random 

zero-mean Gaussian value. This value will simulate 

the error which is happened from the odometry data 

measurement. The p-value uses the same sampling 

data when the robot walked on the field without 

scanning the filed landmark.  

As presented on Figure 4, after the robot step or 

motion prediction is done, then the next is to update 

the step. The update step will be proceeded after the 

heading and the robot distance per step is added to the 

particle filter. Because these two data are needed to 

update the weight of the particle sample to calculate 

the distance between robot position and the landmark 

which is detected by the robot through vision system, 

which is implemented the XNOR-YOLO [32]. The 

update step in this work, has three main procedures as 

follows: 

1. Transformation, which is done to translate the 

prediction step ( 𝑿𝑳𝒐𝒄𝒂𝒍, 𝒀𝑳𝒐𝒄𝒂𝒍)  become the 

coordinate (𝑿𝑮𝒍𝒐𝒃𝒂𝒍, 𝒀𝑮𝒍𝒐𝒃𝒂𝒍)  on the field by 

using these two matrix rotation equation. 

𝑿𝑮𝒍𝒐𝒃𝒂𝒍 = (𝒄𝒐𝒔 𝜽 x 𝑿𝑳𝒐𝒄𝒂𝒍) − (𝒔𝒊𝒏 𝜽 x 𝒀𝑳𝒐𝒄𝒂𝒍)   (2) 

𝒀𝑮𝒍𝒐𝒃𝒂𝒍 = (𝒔𝒊𝒏 𝜽 x 𝑿𝑳𝒐𝒄𝒂𝒍) + (𝒄𝒐𝒔 𝜽 x 𝒀𝑳𝒐𝒄𝒂𝒍)     (3) 

2. Association, this procedure is needed to be done 

because when the robot detected the landmark 

through the vision system, sometimes the result 

did not match to the real distance robot navigation. 

Therefore, the system will make the distance of 

the closest landmark to the robot for updating the 

particle weight as the priority. 

3. Update weight, is the process of calculating the 

final particle weight by using the Multivariate-

Gaussian probabilistic density. This probabilistic 

density generates two dimensions coordinate 

which are x and y. The mean value is obtained by 

the landmark position and the deviation of the 

Multivariate-Gaussian. To evaluate this 

probability distribution, it can be used the 

equation as follow: 

Output = 
𝟏

𝟐𝝅𝝈𝒙𝝈𝒚
 𝒆

−(
(𝒙−𝝁𝒙)2

𝟐𝝈𝒙
𝟐 +

(𝒚−𝝁𝒚)
2

𝟐𝝈𝒚
𝟐 )

                (4) 

Where, x and y denoted to the global landmark 

coordinate. The µx and µy represented the global 

landmark measurement. And the σx and σy 

produced the deviation of the x and y. 

 

The last process before obtaining the estimate position 

is the resample process. In this process, all the 

previous particle will be replaced by the new one with 

consider to the weight value of each particle. The 

higher particle remained on the landmark field while 

the lower one will be erased. The result of the robot 

estimation position presented on Figure 5, where the 

global and estimation position of the robot depicted on 

this figure. 

 
Figure 4: The system architecture of robot localization. 

 

Figure 5: The MCL localization prediction result. 

4. Experimental Results 

In this experiment, we set the robot on the field based 

on the Robocop 2019 [33] rules which can be seen on 

Figure 6, while the description of the field described 

on TABLE I. The field has 9m x 6m for the dimension 

and each of area will be notated as a landmark for the 

localization. The notated area list on TABLE I consist 

of area A to I, where all the area has own dimension 

and location. The robot will be played in this field to 

seek and kick the ball towards the goal. To ensure that 

the robot able to recognize the ball, we put some balls 

on the field and monitored it through our monitoring 

system which can be seen on Figure 7. The 

information of the robot monitoring system on Figure 

7, consists of the last data receive which is used to 

determine which robot already connected to the 

monitoring system. Then it also has the data of each 
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robot and the ball coordinate that send by the robot 

which already connected to the monitoring system. 

The monitoring system also present the side position 

of the robot whether it was on the magenta side or blue 

side. 

 

Figure 6: The soccer field area for verifying the proposed 

method. 

TABLE I 

THE FOOTBALL FIELD DESCRIPTION 

Notation Description Dimension (m) 

A Field length 9 

B Field width 6 

C Goal depth 0.6 

D Goal width 2.6 

 Goal height 1.8 

E Goal area length 1 

F Goal area width 5 

G Penalty mark distance 2.1 

H Center circle diameter 1.5 

I Border strip width (min.) 0.7 

 

Figure 7: The robot monitoring system. 

The first experiment was set to verify the distance 

estimation based on the odometry system to determine 

the amount of robot steps for estimating the walking 

distance of the robot. In order to determine the amount 

of robot steps, at first, we collected the angle 

generated by the servo motor when the robot in stood 

still, walked, and kicked the ball. As the kinematic 

generated by the LUA, then it is necessary to transmit 

all the servo data to the main program based on the 

servo ID mounted to the robot. Each of servo ID from 

the robot can be seen on Figure 8. On Figure 8, the 

left picture presented each servo ID while the other 

side described the variable data of the servo ID from 

LUA. Moreover, the LUA kinematic will be command 

to transmit the angle data of the robot when the robot 

in stood position, moved forward and backward, also 

moved to the left and right side. All the collected data 

presented from Figure 9 to Figure 13. As seen on 

each figure from Figure 9 to Figure 13, the data 

which send by the LUA shown in the red box for the 

left foot and the green box for the other foot consist of 

each angle data of the servo motors as presented on 

Figure 8. All these angle data will be used to discover 

the robot foot step, then we will calculate a robot 

distance estimation displacement. In order to testify 

the distance estimation, we collected the data on the 

distance of each speed of the robot’s displacement and 

controlled it by the angular speed of the servo with 

variable function (x, y, α). From the data collection, it 

can be concluded that the characteristic of robot 

movement was, when the higher variable of an 

angular velocity was generated then the robot step 

height will be greater and affected the distance 

traveled by the robot.  

The collected data can be seen on TABLE II which 

denoted that the robot moved backward in negative 

sign and positive sign for the other movement for the 

X position. If we made the relation between robot 

steps and the angular velocity of the robot the graph 

can be seen on Figure 14. While the Y position 

denoted to the robot moved to the right and left side 

can be seen on TABLE III. The same as before, in 

TABLE III also has a negative and positive sign which 

mean the right-side movement for the positive sign 

and the negative sign for the other movement. And the 

graph relation presented on Figure 15. From the 

Figure 14 and Figure 15, each of graph can be 

generated the linear regression and assumed that the 

servo angular velocity become x and the actual 

distance for the y. The equation presented in (4) and 

(5). The equation (4) was used to get the distance 

traveled of the robot from the start position by using x 

function, and the equation (5) for the y function.  

                        

(4) 

                 

(5) 

As the example when we command the robot to move 

forward with 20 footsteps, then our system will 

provide the information as seen on Figure 16. On 

Figure 16 it has the label such as “Jarak” which mean 

distance, “Jumlah Maju” denoted to amount of robot 

steps and “Robot Bergerak” represented as robot 
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movement. The experiment which presented on 

Figure 16, command the robot to move about 20 steps, 

then the system will calculate the distance traveled of 

the robot. When the robot got command for step 

forward in 20 steps, the system record the distance 

traveled about 133.44 cm.  

After the distance traveled of the robot able to 

determine, then the position coordinate of the robot 

can be estimate by using the MCL algorithm. Before 

adding the MCL algorithm, we need to update the 

sample pose of the robot by using the motion model. 

On the MCL algorithm, we implemented the particle 

filter in order to identify the motion model from the 

odometry model. The odometry was used to determine 

the pole position of the robot. The robot position 

estimation, therefore generated by using the degree 

heading of the robot, and the X, Y coordinate and 

calculate the estimation coordinate by using the 

simple trigonometry function. Moreover, to simplify 

the implementation of the localization, we assumed 

some grid on the field which can be seen on Figure 

17 which has 54 grids and each dimension was 

100cmx100cm. To testify the robot moved to each 

grid, as presented on Figure 18 and Figure 19, where 

Figure 18 presented the results on the monitoring 

system when we command the robot to moved 200 to 

coordinate X and 154 to Y coordinate from the center 

of the field with the degree movement was 37 degree. 

The simulation of the robot movement on the gird can 

be seen on Figure 19, where at first the robot stand in 

the middle of the field denoted with orange dotted and 

then move forward to coordinate (200, 154) with 

angle 37 degree. If we can see on Figure 19, the robot 

moved to grid 41 and the heading of the robot refers 

to the center of the goal which represented by cyan 

line. To verify the estimation system by using the grid 

on the field, we commanded the robot to move 

according to the coordinate that send to robot and 

compared the estimate coordinate to the actual 

coordinate distance which presented on TABLE III. 

From TABLE III, it has deviation between the 

estimate coordinate and the actual distance coordinate 

with the deviation around <100 cm for each 

coordinate X and Y. It is because of the tolerance 

range of the sensor heading about ± 5 degree and the 

tolerance to the destination coordinate about ± 10 cm 

for tolerance the sensor reading data.  

In order to testify further performance of the proposed 

algorithm, the coordinate estimation also verify by 

using the field landmark. The landmark of the field 

generated by the vision system to detect the upper and 

bellow of the goal’s pole which represented on Figure 

20. The upper pole which detected by the object 

detection represented by yellow square and the lower 

pole denoted by the blue square on Figure 20. When 

the vision succeeded to detect the goal’s pole, then the 

coordinate of the upper and lower pole can be 

generated as presented on Figure 21. This 

coordinated pole results will be used as the field 

landmark as simulated on Figure 22 by the cyan 

dotted color and magenta dotted color.  

 
Figure 8: Each of servo ID for receive and transmit servo data 

to the main program. 

 

Figure 9: The servo angle data when the robot stood still. 

 

Figure 10: The servo angle data when the robot moved 

forward. 

 
Figure 11: The servo angle data when the robot moved 

backward. 
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Figure 12: The servo angle data when the robot moved to the 

right side. 

 

Figure 13: The servo angle data when the robot moved to the 

left side. 

 TABLE II 

THE DATA COLLECTION WHEN THE ROBOT MOVED FORWARD 

AND BACKWARD 

Variable 

(x) 

Number of 

Steps 

Measured 

Distance (cm) 

Distance/Step 

(cm) 

0.08 30 220 7.33 

0.07 30 205 2.63 

0.06 30 190 3.36 

0.05 30 155 5.17 

0.04 30 100 6.33 

0.03 30 79 6.83 

0 0 0 0 

-0.01 10 -8 -0.8 

-0.02 10 -12 -1.2 

-0.03 10 -18 -1.8 

 

 
Figure 14: The relation between servo angular velocity and the 

robot distance per steps for the x coordinate. 

 

TABLE III 

THE DATA COLLECTION WHEN THE ROBOT MOVED TO THE RIGHT 

AND LEFT SIDE 

Variable 

(y) 

Number of 

Steps 

Measured 

Distance (cm) 

Distance/Step 

(cm) 

0.03 15 95 6.333333333 

0.02 15 63 4.2 

0.01 15 30 2 

0 15 0 0 

-0.01 15 -28.5 -1.9 

-0.02 15 -61.5 -4.1 

-0.03 15 -95 -6.333333333 

 

 

Figure 15: The relation between servo angular velocity and the 

robot distance per steps for the y coordinate. 
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Figure 16: The results of robot displacement based on its 

footsteps. 

 
Figure 17: Grid coordinate on the field. 

 

Figure 18: Coordinate estimation of the robot position. 

 

Figure 19: The coordinate estimation for the robot position on 

the grid area. 

 

TABLE IV 

THE COMPARISON BETWEEN ROBOT POSITION ESTIMATION AND 

ACTUAL POSITION 

  
Position 

Estimation 

(X, Y) 

Actual 

Position  

(X, Y) Gird 
Coordinate 

(X, Y) 

31 100, -250 93, -250 95, -255 

36 100,250 91,252 90, 262 

38 200, -150 203, -156 208, -152 

41 200,150 200, 154 204, 160 

44 300, -150 305, -155 312, -160 

45 300, -50 308, -49 310, -60 

46 300,50 305, 58 320, 60 

47 300,150 308, 145 305, 155 

50 400, -150 400, -155 405, -160 

53 400,150 401, 158 395, 160 

 

 

Figure 20: The upper and below goal's pole from the vision 

system. 

 
Figure 21: The goal coordinated generated by the vision system. 



89 | Jurnal Integrasi | Vol.14 No.2, October 2022, 81-91 | e-ISSN: 2548-9828 

 

 

Figure 22: The coordinate estimation of robot position using 

the landmark from vision system. 

5. Conclusions and Future Works 

This paper proposed a method which able to estimate 

the localization of the robot in real-time application. 

At first, the distance traveled of the robot has been 

done by using the odometry system. Then, the 

localization of the robot is done by using the MCL 

algorithm. On the MCL algorithm, we add the particle 

filter on the motion model from the odometry to 

estimate the start position of the robot. And the 

localization of the robot was construct by using a 

simple trigonometry function to get the estimation 

from the heading coordinate of the robot. From the 

experimental results, this method able to estimate the 

robot localization in real-time.  In the future, the robot 

balance data when movement in odometry system 

need to be added to optimize the servo angle when 

detecting the robot step.  
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