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Abstract

Kabzinski in [6] first introduced an extension of BCI-logic that is isomorphic to
BCI-algebras. Kashima and Komori in [7] gave a Gentzen-style sequent calculus
version of this logic as well as another sequent calculus which they proved to be
equivalent. They used the second to prove decidability of the word problem for BCI-
algebras. The decidability proof relies on cut elimination for the second system, this
paper provides a fuller and simpler proof of this. Also supplied is a new decidability
proof and proof finding algorithm for their second extension of BCI-logic and so for
BCI-algebras.
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1 BCI-Algebra and Logic

BCI-algebras were first defined by Iseki in [5]. His work mentions the connection between
theorems of the algebras and the axioms of BCI-logic, which are the types of the combi-
nators B,C and I. (For more on combinators and implicational logics see Bunder [2]). The
following formulation, which is equivalent to that of [5], but uses the notation of Kashima
and Komori [7], having a → b for the b ∗ a and 1 for the 0 of [5], brings this out most
clearly.

Definition 1 A BCI-algebra is an algebra 〈A;→, 1〉 of type (2, 0) such that for every
a, b, c ∈ A the following hold:

(1) (a→ b)→ (c→ a)→ c→ b = 1
(2) (a→ b→ c)→ b→ a→ c = 1
(3) a→ a = 1
(4) a→ b = b→ a = 1 =⇒ a = b

The formulas of the implicational logic formed by omitting the = 1 in (1), (2) and (3)
are the types of the combinators B, C and I and the Hilbert-style axioms of BCI-logic.

1 → a = 1 =⇒ a = 1, which is derivable from these axioms, and the unstated
substitution of equality rule give the algebraic counterpart to the modus ponens or →e

∗I wish to thank Lloyd Humberstone and Tomasz Kowalski for pointing out a deficiency in an earlier
version of the proof finding algorithm in Section 4.
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rule. Interestingly, Iseki had a different axiom (2) (corresponding to the type of the
combinator CI), but still called his algebras BCI-algebras, even though he only had the
(2) above as a theorem.

Given the→ notation, the general notion of an isomorphism between an implicational
logic and an algebra (for any set A), given in Bunder [3], simplifies to:

A logic L is isomorphic to an algebra 〈A;→, 1〉 if ` α iff α = 1.

Note that the above only considers theorems of the logic and equations of the form
α = 1 of the algebra that are provable from the axioms, so isomorphism is independent
of A. We could also say that such a logic L is isomorphic to the class of all such algebras
that have 1 ∈ A. Note too that this use of the word isomophic is an extension of the
standard one which is between mathematical structures of the same type.

It was shown in [3] that BCI-logic and algebra are not isomorphic but that BCK-logic,
which has the extra axiom ` a → b → a, is isomorphic to BCK-algebra, which is BCI-
algebra with the extra axiom a → 1 = 1. Also, in [3], it was shown that BCI-logic, with
the extra axiom ` a → a → b → b is isomorphic to BCI-algebra with the extra axiom
a → a → 1 = 1. These were thought to be the minimal strength isomorphic logic and
algebra.

In the same year however, Kabzinski in [6] improved upon this by showing that BCI-
algebra is strongly adequate, i.e. a model for BCI-logic with the extra rule:

→+ ` a, ` b =⇒ ` a→ b

The addition of this rule makes the extended BCI-logic isomorphic to BCI-algebra.
BCI-logic, with the rule →+, we will call BCI+, as it is in Humberstone [4]. In [4]

Humberstone shows that→+ can be replaced by ` a =⇒ ` a→ b→ b. Work in [4] and
in Kowalski and Butchard [9], shows that BCI+ is equivalent to BCI-logic with the extra
axiom ` (a→ a)→ b→ b. The latter is probably the simplest form of a logic isomorphic
to BCI-algebra.

Some years after [3] and [6], in [1], Blok and Pigozzi introduced algebraizable logics,
which can include connectives other than →. They show that a class of algebras is
the equivalent algebraic semantics of a logic if the consequence operator ` of the logic
corresponds to the equational consequence operator of the class of algebras.(An extension
of) BCI-logic being algebraizable is equivalent to being isomorphic to (an extension of)
BCI-algebra, in the sense defined above.

In Section 2 of this paper we outline the sequent-style calculus version of BCI+, due
to Kashima and Komori [7], called BCI-pw. This uses a provably weakening rule, similar
to the one later used by Humberstone in [4]. They also proved BCI+ to be isomorphic to
BCI-algebra.

In Section 3 we outline the sequent calculus BCI-bw of Kashima and Komori [7], which
has, a seemingly stronger, balanced weakening rule. They prove BCI-bw to be equivalent
to BCI-pw and use the former to prove the decidability of BCI+. Their decidability proof
relies on cut elimination being provable in BCI-bw (it is not provable in BCI-pw). For the
proof of cut elimination they refer to the cut elimination proof for LJ given in Takeuti
[9]. It is however not fully obvious how this applies when the bw rule is used.

In Section 4 we give a new proof of cut elimination for BCI-bw that takes account of
the bw rule and is also simpler than the Takeuti proof.
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In Section 5 we give a decision procedure for BCI+ (and so for BCI-algebras), which
is also a proof finding algorithm.

2 Kashima and Komori’s Logic BCI-pw

Kashima and Komori, in [7], give the following Gentzen-style sequent calculus formulation
for BCI+.

Definition 2 BCI-pw
Axioms: α => α, => 1
Rules of Inference:

Γ, α, β,∆ => γ

Γ, β, α,∆ => γ
exchange

Γ => α α,∆ => β

Γ,∆ => β
cut

Γ, α => β

Γ => α→ β
→ right

Γ => α β,∆ => γ

α→ β,Γ,∆ => γ
→ left

Γ => α => β

Γ, β => α
provably weakening

They show that => α if and only if α = 1 holds for every BCI-algebra , i.e. that
BCI+ and the class of BCI-algebras are isomorphic.

Below we will use the following natural deduction formulation of BCI-pw or BCI+.
The counterpart of => 1 is omitted as 1 can be defined as a → a for any particular
variable a.

Definition 3 BCI-pwnd
Axiom: α ` α
Rules of Inference:

Γ, α, β,∆ ` γ
Γ, β, α,∆ ` γ

exchange

Γ ` α ∆ ` α→ β

Γ,∆ ` β
→e

Γ, α ` β
Γ ` α→ β

→i

Γ ` α ` β
Γ, β ` α

pw

BCI-pw and BCI-pwnd are equivalent because the → left rule of BCI-pw can be
derived in BCI-pwnd using α→ β ` α→ β,→e,→i, and another use of →e.

Note that if the provably weakening rule is strengthened to

Γ ` α ∆ ` β
Γ,∆, β ` α
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the resultant natural deduction system is theorem equivalent to the Hilbert-style BCI-logic
with the extra axiom ` a→ a→ b→ b of Bunder [3] mentioned above.

.

3 Kashima and Komori’s Logic BCI-bw

In [7], Kashima and Komori also introduce another sequent style extension of BCI logic,
BCI-bw. This uses the notion of a balanced formula, defined below.

Definition 4 If ∪ is multiset union,

(a) pos(a) = {a}, neg(a) = ∅.
(b) pos(α→ β) = neg(α) ∪ pos(β).

neg(α→ β) = pos(α) ∪ neg(β).

(c) pos({α1, . . . , αn}) = pos(α1) ∪ . . . ∪ pos(αn),

neg({α1, . . . , αn}) = neg(α1) ∪ . . . ∪ neg(αn).

Definition 5

(a) A multiset of implicational formulas ∆ is balanced if neg(∆) = pos(∆).

(b) α1, . . . , αn ` α is balanced if α1 → . . .→ αn → α is balanced.

It follows that pos(∆ ` α) = neg(∆) ∪ pos(α), We can now define BCI-bw.

Definition 6 BCI-bw is BCI-pw with the provably weakening rule replaced by the
balanced weakening rule:

∆ => α Γ balanced

∆,Γ => α
balanced weakening.

BCI-bwnd is BCI-pwnd with the pw rule replaced by:

∆ ` α Γ balanced

∆,Γ ` α
bw

As in Kashima and Komori [7] we have:

Theorem 1 If ∆ ` α then ∆ ` α is balanced.

and

Theorem 2 BCI-pw and BCI-bw, and so BCI-pwnd and BCI-bwnd, are equivalent.

In any of these extensions of a BCI proof we can ignore any uses of the exchange rule,
as any ∆ in a ∆ ` α or ∆ => α can be treated as a multiset. So any ∆, α,Γ will be the
same as ∆,Γ, α in the use of the →i rule. By subset of a multi set, we will below, always
mean submultiset.

In a branch of a BCI-bwnd proof that (not counting exchange rules) only has →e and
bw steps, the bw rules can be postponed to the end of the branch as
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∆ ` α Γ1 balanced
bw

∆,Γ1 ` α Γ2 balanced
bw

∆,Γ1,Γ2 ` α

can be replaced by

∆ ` α Γ1,Γ2 balanced
bw

∆,Γ1,Γ2 ` α

and

∆ ` α→ β Γ balanced
bw

∆,Γ ` α→ β ∆′ ` α →e
∆,∆′,Γ ` β

can be replaced by

∆ ` α→ β ∆′ ` α →e
∆,∆′ ` β Γ balanced

bw
∆,∆′,Γ ` β

In the following case a bw step before a →i step can also be postponed.

∆, α ` β Γ balanced
bw

∆,Γ, α ` β →i
∆,Γ ` α→ β

can be replaced by

∆, α ` β →i
∆ ` α→ β Γ balanced

bw
∆,Γ ` α→ β

If α /∈ ∆, in

∆ ` β Γ, α balanced
bw

∆,Γ, α ` β →i
∆,Γ ` α→ β
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the bw step cannot be postponed.

We will call a proof an amended proof if it has no bw steps that can be postponed.

In an amended natural deduction proof a cut is a sequence of steps of the form:

∆1, α ` β →i
∆1 ` α→ β ∆2 ` α →e

∆1,∆2 ` β

The formula α→ β is called the cut formula.

We now prove cut elimination for BCI+.

Theorem 3 All cuts can be eliminated from a BCI+ proof.

Proof Consider the first cut in the proof as shown above.
If the α is first introduced to the left of the ` by means of the axiom α ` α, the proof

can be modified by replacing α ` α by the proof of ∆2 ` α and replacing one α on the
left of the ` by ∆2 in the steps up to ∆1, α ` β which becomes ∆1,∆2 ` β.

The new proof is now shorter by two steps, the axiom step and the final→e step, even
if, as a result of the change, α is now a cut formula.

The only other way of introducing α to the left of the ` is in a bw step from ∆3 ` δ
to ∆3,∆4, α ` δ. We then have, up to and including ∆1, α ` β:

∆3 ` δ ∆4, α balanced

∆3,∆4, α ` δ
...

∆1, α ` β

Now as the proof is in BCI+, ∆2 ` α is balanced, so we have

pos(∆2) ∪ neg(α) = neg(∆2) ∪ pos(α)

and
pos(∆4) ∪ pos(α) = neg(∆4) ∪ neg(α).

i.e. pos(∆2,∆4) ∪ neg(α) ∪ pos(α) = neg(∆2,∆4) ∪ pos(α) ∪ neg(α).
As these are multiset unions pos(∆2,∆4) = neg(∆2,∆4) so ∆2,∆4 is balanced.
The proof can now be rewritten starting with:

∆3 ` δ ∆2,∆4 balanced

∆2,∆3,∆4 ` δ
Now the steps changing ∆3,∆4 to ∆1 and δ to β follow giving ∆1,∆2 ` β. The new

proof is shorter by the steps leading to ∆2 ` α and the final →e step.
So, in either case, if an amended proof contains a cut, it can be replaced by a shorter

proof. So all cuts can be eliminated.
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4 A Decision Procedure / Proof Finding Algorithm

for BCI+

We start this section with an analysis of the form that a cut free amended proof in BCI+

must take. This will lead to the algorithm below and is also a demonstration that the
algorithm is effective.

In this analysis we need the concept of the length of a formula and statement.

Definition 7 The length of a formula and statement are given by:
l(a) = 1, l(α→ β) = l(α) + l(β) + 1
l(α1, . . . , αn ` α) = l(α1 → . . .→ αn → α).

The last steps in a cut free amended proof of

∆ ` α (1)

must include, for some ∆1 and β:
∆1 ` β (2)

which does not come from a →i step and (2) is followed by:

∆1 − {αn} ` αn → β ∆1 balanced
bw

∆2 ` αn → β →i
∆2 − {αn−1} ` αn−1 → αn → β ∆2 balanced

...
∆n − {α1} ` α1 → . . .→ αn → β ∆n balanced

bw
∆ ` α

where n ≥ 0, α = α1 → . . .→ αn → β, ∆ = ∆n−{α1}∪∆n, and ∆i+1 = ∆i−{αn−i+1}∪∆i

for 0 < i < n. Note that if, for 0 < i < n, αi /∈ ∆n−i, the bw step involving ∆n−i would
have been postponed. In that case we will still use the above notation but with ∆n−i = ∅.
So, for each i, αi ∈ ∆n−i or ∆n−i = ∅.

There are now two options.

(a) (2) can come by a bw step from Γ balanced and ∆0 ` β (which doesn’t come by a
→i step or a bw step), where αn ∈ Γ, αn /∈ ∆0 (as the proof is amended) and ∆1 = ∆0,Γ.

We then have:

∆, α1, . . . , αn = ∆0,Γ,∆1, . . . ,∆n. (3)

As for each choice of β,∆, α1, . . . , αn are known, this gives a finite number of choices of
∆0,Γ,∆1, . . . ,∆n where Γ,∆1, . . . ,∆n and ∆0 ` β must all be balanced and for 0 < i < n,
either αi ∈ ∆n−i or ∆n−i = ∅.

(b) Otherwise (2) must come from

Γ0 ` δ1 → . . .→ δk → β (4)
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which doesn’t come by a →e step, and k(≥ 0) →e steps using Γ1 ` δ1, . . . ,Γk ` δk. As
the proof is amended and cut free, Γ0 = δ1 → . . .→ δk → β i.e. (4) is the axiom

δ1 → . . .→ δk → β ` δ1 → . . .→ δk → β. (5)

The instance of δ1 → . . . → δk → β introduced on the left of the ` in (5) will either be
one of the αis or end up as an element of ∆.

We then have:

∆, α1, . . . , αn = Γ1, . . . ,Γk, δ1 → . . .→ δk → β,∆1, . . . ,∆n. (6)

As, for each choice of β, ∆, α1, . . . , αn are known, this gives a finite number of choices
of δ1 → . . . → δk → β and then, for each of these, a finite number of choices of
Γ1, . . . ,Γk,∆1, . . . ,∆n where for 0 < i < n, either αi ∈ ∆n−i or ∆n−i = ∅.

If there is to be a proof of (1) there must be, in case (b), cut free amended proofs of
Γ1 ` δ1, . . . ,Γk ` δk for at least one of these choices or, in case (a), such a proof of ∆0 ` β.

Clearly each possible Γi ` δi or ∆0 ` β is shorter (i.e. of lesser length) than ∆ ` α,
so the finding of a proof for (1) can be reduced to the finding of proofs for a finite
number of shorter statements. This process converges resulting in either a proof of (1) or
a demonstration that there can be no proof.

The BCI+ Decision Procedure / Proof Finding Algorithm

Aim To find a proof for

∆ ` α. (7)

or show that it has no proof.

Step 1 If (7) is not balanced it has no proof.
Step 2 If ∆ = {α}, (7) is the axiom.
If α ∈ ∆ and ∆ − {α} is nonempty, as (7) is balanced, ∆ − {α} is also balanced, so

(7) is proved by:

α ` α ∆− {α} balanced
∆ ` α

bw

Step 3 For every n such that α = α1 → . . .→ αn → β:
(a) Determine if there are ∆0,Γ,∆1, . . . ,∆n which satisfy (3) and its restrictions and

prove ∆0 ` β. If this can be done the rest of the proof of (2) is

∆0 ` β Γ balanced

∆1 ` β
bw

which is followed by the n →i steps and up to n bw steps to prove (7).
(b) For each selection of appropriate Γ1, . . . ,Γk, δ1, . . . , δk,∆1, . . . ,∆n, which satisfy

(6) and its restrictions, prove Γ1 ` δ1, . . . ,Γk ` δk.
If there is such a set of k proofs the proof of (7) is:
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Γk ` δk

Γ1 ` δ1 δ1 → . . .→ δk → β ` δ1 → . . .→ δk → β →e
Γ1, δ1 → . . .→ δk → β ` δ2 → . . .→ δk → β

...
Γ1, . . . ,Γk−1, δ1 → . . .→ δk → β ` δk → β →e

∆1 ` β →i
∆1 − {αn} ` αn → β ∆1 balanced

bw
∆2 ` αn → β

...
∆n − {α1} ` α1 → . . .→ αn → β ∆n balanced

bw
∆ ` α

If there is no set of proofs Γi ` δi for terms satisfying (6) and no proof of ∆0 ` β for
terms satisfying (3), there is no proof of (7).

Note 1 If ∆ = ∅,∆n = ∅ and also n > 0. (If ∆ = ∅ and n = 0, (6) can’t hold and if
(3) holds we have Γ = ∅, which is impossible as we must have αn ∈ Γ).

Note 2 This algorithm can be reduced to a BCI algorithm by leaving out the options
involving the bw rule, i.e. the second part of Step 2 and the part of Step 3 involving
equation (3). When using equation (6), ∆1 = . . . = ∆n = ∅.

In the examples below we omit, the by now obvious, indications of the rules that are
used.

Example 1 To find all amended cut free proofs of ` α, where

α = (a→ a)→ (a→ a)→ a→ a.

Step 1 ` α is balanced.
Step 2 {α} 6= ∅ and α /∈ ∅.
Step 3 Case 1 If n = 1, α1 = a → a and β = (a → a) → a → a, so (6) cannot be

satisfied.
If (3) holds, Γ = a→ a, ∆0 = ∆1 = ∅, so we must prove ` (a→ a)→ a→ a, by this

same algorithm. However any cut free amended proof of this ends in a →i step, which is
excluded by the conditions on (3).

Case 2 If n = 2, β = α1 = α2 = a→ a. (6) then holds only if k = 0 and ∆1 = a→ a.
The proof is then:

a→ a ` a→ a
` (a→ a)→ a→ a a→ a balanced

a→ a ` (a→ a)→ a→ a

` (a→ a)→ (a→ a)→ a→ a

If (3) holds with Γ = a→ a, a→ a, ∆0 = ∆1 = ∅ or Γ = ∆1 = a→ a and ∆0 = ∅ we
need a cut free amended proof of ` a→ a not ending with a→i step, which is impossible.

We also can’t have Γ = ∆0 = a→ a and ∆1 = ∅, as in that case the bw step involving
Γ could have been postponed.
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Case 3 If n = 3, β = α3 = a, α1 = α2 = a → a. (3) doesn’t hold as it requires a ∈ Γ
where Γ is balanced. (6) holds, with k = 1, δ1 = a, Γ1 = a → a, a and ∆1 = ∆2 = ∅, so
the proof is

a ` a a→ a ` a→ a
a→ a, a ` a a→ a ` a→ a

a→ a, a→ a, a ` a
a→ a, a→ a ` a→ a

a→ a ` (a→ a)→ a→ a

` (a→ a)→ (a→ a)→ a→ a

Note that the proof in Case 2 is a BCI+ proof, but that in Case 3 is (the only) cut free,
amended, BCI proof.

Example 2 To find all minimal length amended cut free proofs of ` α where

α = a→ (b→ b)→ a.

Step 1 ` α is balanced.

Step 2 ∆ = ∅ 6= {α}.
Step 3 If n = 1, α1 = a, β = (b → b) → a, (3) can’t hold as Γ must be balanced and

contain α1 = a. (6) also can’t hold.

If n = 2, α1 = a, α2 = b→ b and β = a. If (6) holds k = 0 and ∆1 = b→ b. But then
∆1 ` β is a ` a and must be followed by an immediate →i step, which doesn’t give the
result.

(3) holds with ∆0 = a and Γ = b → b. So the proof comes by a bw step after a ` a
and two →i steps.

Note that this, the only amended cut free BCI+ proof of a → (b → b) → a, is not a
BCI proof.

The final example shows that not all balanced theorems of H→ are theorems of BCI+.

Example 3 To find all minimal length amended cut free proofs of ` α where

α = (γ → γ → b)→ γ → b and γ = ((a→ c)→ c)→ a

Step 1 ` α is balanced.

Step 2 ∆ = ∅ 6= {α}.
Step 3 If n = 1, α1 = γ → γ → b and β = γ → b. (3) would require and α1 = Γ, so it

can’t hold as Γ must be balanced. (6) also can’t hold as it would require δ1 = γ, Γ1 = ∅
and ` γ, which is not balanced.

If n = 2, α1 = γ → γ → b, α2 = γ and β = b.

If (6) holds, k = 2, δ1 = δ2 = γ and either Γ1 = γ and Γ2 = ∅ or Γ2 = γ and Γ1 = ∅.
For α to have a BCI+ proof we also need ` γ, which is not possible as it is not even a
theorem of H→

(3) requires ∆0 = γ → γ → b and Γ = γ. So a BCI+ proof of α requires γ → γ → b ` b.
To test this we need to reuse the algorithm. Steps 1 and 2 are satisfied, so we need a

new Step 3 with n = 0. As neither (3) nor (6) can hold neither γ → γ → b ` b nor ` α
are provable.
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