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Abstract

Hybrid deduction-refutation systems are presented for four first degree
entailment based logics. The hybrid systems are shown to deductively and
refutationally sound and complete with respect to their logics. The proofs
of completeness are presented in a uniform way. This paper builds on work
in [7], where Goranko presented a deductively and refutationally sound
and complete hybrid system for classical logic.

1 Introduction

Traditional deductive systems employ rules and axioms to generate all the va-
lidities of a logic. One may invert the question and ask for a logical calculus
which computes not the validities, but rather the nonvalidities of the logic.
Such systems are called refutation systems. In [7], Goranko combined the ma-
chinery of deductive systems and refutation systems to create so-called hybrid
deduction-refutation systems, also called hybrid deductive systems or hybrid
systems for short. Applying his system to classical logic, he created a logical
calculus that is able to syntactically deduce all the validities and refute all the
nonvalidities of classical logic, using only a few simple rules and axioms. His
system is deductively and refutationally sound and complete for classical logic,
(also called  L-sound and complete, after  Lukasiewicz,) which intuitively means
that it deduces all and only the valid entailments, and refutes all and only the
nonvalid entailments.

In this paper, we extend this approach to the case of first degree entailment
and three extensions of first degree entailment - the logic of paradox, Kleene’s
strong three-valued logic, and classical logic. We present an  L-sound and com-
plete hybrid deductive system for each of the four logics. We prove  L-soundness
and completeness for all four logics in one uniform approach. Our proof for
classical logic differs from Goranko’s in a way to be discussed later.

In Section 2 we outline the historical development of refutation systems
and hybrid deduction-refutation systems. In Section 3 we review first degree
entailment, and present some basic facts about the four logics in question. In
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Section 4 we provide definitions and results related to hybrid systems, mostly
coming from Goranko’s paper [7]. Our contribution comes in Section 5, where
we present hybrid systems for the four FDE based logics and prove  L-soundness
and completeness for each. We end with some thoughts and conclusions in
Section 6.

2 Hybrid deductive systems

2.1 Overview

Consider a logical system L, with corresponding deductive system `L and seman-
tics |=L. If our logic is sound and complete (in the traditional sense, hereafter
called deductively sound and complete,) then Γ `L φ⇔ Γ |=L φ. The complete-
ness theorem in particular means that by only using axioms and rules of `L,
one may derive all valid formulas.

The idea of having a syllogism to compute all nonvalidities of a logic goes
back to Aristotle. He realized that one did not need to produce a counterexample
to show that a given expression was not valid. Instead, nonvalidity could be
derived in a procedural way through its own system of rules.

Following Aristotle the subject was largely ignored, until it was revived by
 Lukasiewicz and his followers. In [11],  Lukasiewicz considered a logic which
treated acceptance and rejection on par. He showed Aristotle’s system was
refutationally incomplete for syllogisms, in that it did not reject every nonvalid
syllogism. He created a system which did reject all nonvalid syllogisms of Aris-
totle’s logic.  Lukasiewicz’ system itself was refutationally incomplete, though,
in that there were meaningful non-syllogistic expressions in the language which
were neither accepted nor rejected. His student S lupecki added two rules to the
system to make it refutationally complete.

 Lukasiewicz’ system was perhaps the first refutation system in modern logic.
A refutation system is a deductive calculus where rules are used to refute, or
reject, expressions in the language. To refute here means to assert the nonvalid-
ity of an expression. Denoting refutation with the symbol a, refutation systems
work analogously to traditional deductive calculi. If a is refutationally sound
with respect to a logic |=L, then Γ a φ⇒ Γ 6|=L φ. If a is refutationally complete
with respect to |=L, then Γ 6|=L φ ⇒ Γ a φ.  Lukasiewicz’ and S lupecki there-
fore created a system which is refutationally sound and complete for Aristotle’s
logic.

 Lukasiewicz also created a system that was both refutationally sound and
complete, and deductively sound and complete for classical logic. As mentioned
in the introduction, such systems are now called  L-sound and complete. Denote
classical logic with semantics |=CL along with some sound and complete deduc-
tive system for it `CL. Denote  Lukasiewicz’ system with the two operators `,a.
Here is his system.

Γ ` φ iff Γ `CL φ
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a σ(φ)
(reverse substitution)a φ

where σ is any uniform substitution, and

` φ→ ψ a ψ
(Modus Tollens).a φ

Since then, the study of refutation systems has grown tremendously. Refu-
tation systems have been developed for a number of systems, including intu-
itionistic logic [15], intermediate logics [17], as well as major modal logics [8].

Refutation systems may be viewed as pure or hybrid. Pure refutation systems
employ only the notion of a in their rules. They are concerned exclusively with
deriving nonvalidities. Hybrid refutation deduction systems use both ` and a,
and seek to derive the validities and nonvalidities of a logic.  Lukasiewicz’ system
for classical logic was a hybrid system. Since then, however, much of the research
in the literature has focused on pure refutation systems.

One advantage a hybrid system may enjoy over its competitors is that by
using purely syntactic means one may deduce the validities and nonvalidities
of the logic. One does not have to appeal to model theory once the system is
proven  L-sound and complete. In particular, one does not need to produce a
countermodel to determine that a sentence is not valid, as one may syntactically
derive that fact. From an aesthetic perspective, a hybrid deduction system also
enjoys a certain elegance with it’s symmetric treatment of ` and a, coinciding
with the equal status of accept and reject in the philosophical underpinnings of
refutation calculi.

Even among hybrid systems, `, a are often treated separately, that is, they
do not interact. Moreover, in establishing the rules and axioms for a, one
often has an underlying logical system in mind. (Consider the trivial refutation
calculus for classical logic with axiom schema Γ a φ iff Γ 6|=CL φ.) In such
systems ` can, in a sense, be seen as privileged over a. Yet, there remains a
desire to see accept and reject, as much as is possible, as equal and interacting
players. Therefore, there is motivation to produce a calculus which treats them
as such.

In [7], Goranko explores the use of interacting `, a operators in such a way.
Treating the two operators on par, he creates a logical system which is  L-sound
and complete for classical logic, which does not apriori reference classical logic,
as in the trivial example above.

Though Goranko’s system is for classical logic, the framework he puts for-
ward is fairly general, and can be applied to a wide class of logics. He lays out
a procedure to create a hybrid deductive-refutation system from an underlying
purely deductive system. In this paper, we extend the techniques in that paper
to a family of logics based on first degree entailment.

2.2 Other studies of hybrid refutation-deduction systems

Previous works that dealt with rejection and assertion on par include the fol-
lowing, presented in chronological order.
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López-Escobar in [12] consider a Brower-Heyting-Kolmogorov style seman-
tics for a propositional calculus, where ¬A is claimed by demonstrating a refu-
tation of A, with refutation being a primitive concept on par with proof. El-
ementary number theory is then studied in this context, with the underlying
logic being the one just put forth.

In [2], Bonatti and Varzi define the notion of complimentary systems, which
are proof systems where that which is derivable in one system is exactly that
which cannot be derived in the other.

In [18], Tamminga and Tanaka develop the analogy between accept/reject in
 Lukasiewicz’ systems, and true/false in first degree entailment. They create a
natural deduction system for FDE with mixed use of ` and a operators, where
` φ is interpreted as φ takes true as a truth value, and a φ is interpreted as φ
takes false as a truth value. This system, interesting in its own right, may be seen
as a precursor of ideas in this paper and in [7]. However, it does not syntactically
prove nonvalidity of entailment relations. That is, ` is not extended to a relation
between sets of formulas and formulas so that Γ a φ ⇔ Γ 6|= φ, and thus the
natural deduction system here would not be considered a hybrid system in the
sense used in this paper.

In [16], Skura considers a logic being essentially characterized by a positive
part (valid sentences) and a negative part (nonvalid sentences,) with rules and
closure conditions for generating the respective parts.

In [4], Cafrera and Peltier consider a wider notion of entailment than the
usual true to true. In terms of assertion and rejection, they analyse the four
possible types of entailment that can be described - asserted to asserted, asserted
to rejected, rejected to rejected, and rejected to asserted. They then apply their
results to practical applications, for example, use in theorem provers.

Brady in [3] puts forth a relevant logic deductive system L1, and develops
for it a Hilbert-style hybrid system called L1r , with interacting `L1r

and aL1r
.

Among other things, L1r proves all the theorems of EFDE and rejects all the
non theorems of EFDE. To be more precise, let α be a first degree entailment,
that is α is β → γ, where β and γ do not contain the symbol →. Then `L1r

α
iff `EFDE

α, and aL1r
α iff 6`EFDE

α. Since EFDE theorems correspond to FDE
entailments, Brady’s system can be seen as a precursor to the hybrid system for
FDE developed in this paper. Brady’s system can also be seen as an extension
of our system, as L1r additionally considers formulas which are not first degree
entailments. The proof technique used by Brady is rather different than the one
used here, though. He uses the concept of metavaluations to prove his results.
Roughly speaking, a metavaluation is a kind of truth-functional valuation of
formulas where the inductive clause defining the truth value of a formula may
depend also on the provability of some of its subformulas.

One important conceptual difference between Brady’s system and Goranko’s
hybrid systems, however, is that in Goranko, ` and a are used, respectively, to
represent valid and nonvalid entailments, whereas in Brady, ` and a are used
to represent the less general concept of theorems and nontheorems. That is,
Brady establishes aL1r

α iff 6`L1
α, but it is not established that Γ aL1r

α iff
Γ 6`L1 α. We suspect the difference between proving and refuting entailments
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versus sentences in a hybrid system is closely related to the usage of sequents
or a Hilbert-style formulation in the underlying calculus.

In [19], Wansing studies the relations between the speech acts of assertion
and denial, and the corresponding inferential claims of proof and disproof, as
well as their duals. He develops a semantics for bi-intuitionistic logic using
proof, disproof, and their duals as primitives.

Goré and Postniece in [10] fruitfully employ a hybrid refutation-derivation
system to create, for the first time, a cut-free sequent calculus for bi-intuitionistic
logic.

Citkin in [5] creates a metalogical system to uniformly handle assertions and
rejections, as well as multiple conclusion rules.

For more sources and discussion of hybrid systems, see [7]. For a history of
refutation systems, see [9] or [5].

3 Four FDE based logics

First degree entailment (FDE) is a logical system first put forward by Belnap in
[1] and expounded by Bellnap, Dunn, and others in a number of publications, for
example, [6]. It can be considered as a four-valued logic, with truth values true,
false, both, neither, written, respectively, as t, f, b, n. Designated truth values
are t and b. One of the goals of FDE was to develop a reasoning system that
does not fail under the existence of contradiction. The example given in [1] is
that an inconsistency in baseball World Series data should not lead a computer
to mishandle flight information. Yet a computer obeying classical logic would
conclude anything and everything about flight information in the presence of
one inconsistent datum. To this end, the authors develop a paraconsistent logic
– one that does not reduce to triviality in the presence of contradiction.

Belnap considers that for a basic proposition P , a computer might be told
that P is true only, false only, both true and false, or not told anything regarding
P . The truth values of complex formulas are based on the truth values of their
subformulas in a straightforward, reasonable way. Here are the truth tables for
the basic connectives. They are due to Smiley, and can be found in [13]. We
will refer to them later, during our proof of  L-completeness.

α ∧ β t b n f
t t b n f
b b b f f
n n f n f
f f f f f

α ∨ β t b n f
t t t t t
b t b t b
n t t n n
f t b n f

α ¬α
t f
b b
n n
f t

Starting with FDE, one can obtain a number of well known logics. Seman-
tically this can be done by removing truth values from the truth tables of FDE.
Proof theoretically, this can done by adding rules to FDE. We will specify a
proof theory for FDE in Section 5.

The truth tables for the logic of paradox (LP) can be obtained from the
truth tables of FDE by removing the value n. Designated truth values are t and
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b. Here are the truth tables for LP.

α ∧ β t b f
t t b f
b b b f
f f f f

α ∨ β t b f
t t t t
b t b b
f t b f

α ¬α
t f
b b
f t

Proof theoretically, LP can be obtained by adding to the rules of FDE the
axiom scheme representing the law of excluded middle:

∅ ` φ ∨ ¬φ.

Kleene’s strong three-valued logic (K3) can be obtained from FDE semanti-
cally by removing the truth value b. t is the only designated truth value. Here
are the truth tables for K3.

α ∧ β t n f
t t n f
n n n f
f f f f

α ∨ β t n f
t t t t
n t n n
f t n f

α ¬α
t f
n n
f t

Proof theoretically, K3 can be obtained by adding to FDE an axiom scheme
representing the principal of explosion:

φ ∧ ¬φ ` ψ.

Classical logic (CL) can be obtained from FDE by removing the truth values
n and b. t is the only designated truth value. Proof theoretically, CL can be
obtained by adding to FDE both the law of excluded middle and the principal
of explosion.

In some sense, the motivations behind FDE and  Lukasiewicz’ refutation
systems were similar. They sought to develop a system of logic where true/false,
accept/reject are treated in equal standing. A major difference, of course, is that
for  Lukasiewicz, accept and reject are total and mutually exclusive categories.
In FDE, true/false are arbitrary on propositional atoms.

For an introduction to FDE, see [13]. For an overview of paraconsistent logics
in general, see [14].

4 Hybrid systems, definitions and basic results

4.1 Definitions

Now we will define the technical machinery and terminology needed for our
hybrid deduction-refutation systems. We work over a fixed language L, with
associated entailment relation |=L.

A sequent is an object of the form Γ ` α or Γ a α, where Γ∪{α} ⊂ Form(L),
Γ is finite, `/∈ L, and a/∈ L. A sequent of the first kind is called a deduction
sequent. A sequent of the second kind is called a refutation sequent.
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A hybrid rule instance (or just rule instance) is a pair < P,C >, where P is a
(possibly empty) sequence of sequents, and C is a single sequent. The elements
of P are called the premises of the rule instance, and the sequent C is called
the conclusion of the rule instance. If the conclusion is a deduction sequent,
the rule instance is said to be a deduction rule instance. If the conclusion is a
refutation sequent, the rule instance is said to be a refutation rule instance. A
set of hybrid rule instances is called a hybrid rule (or just rule).

A hybrid rule which contains only empty premises is called an axiom. If
the conclusions are all deduction sequents, then it is a deduction axiom. If the
conclusions are all refutation sequents, then it is a refutation axiom.

We typically represent a rule by giving one of its rule instances, and when
necessary giving closure conditions. We do this in the following graphical way:

Γ1 ` φ1, . . . ,Γm ` φm,∆1 a ψ1, . . . ,∆n a ψn
(1)

Ω ` α
or

Γ1 ` φ1, . . . ,Γm ` φm,∆1 a ψ1, . . . ,∆n a ψn
(2)

Ω a α
.

When there is no danger in doing so, we will overload the term “rule” to
mean both “rule” and “rule instance.” Therefore, the above will also be called
simply rules, (1) is a deductive rule, and (2) is a refutation rule.

The typical closure condition for rules is uniform substitution. When rules
are closed under uniform substitution, they are called structural. In particular,
we typically have non-structural refutation axiom schemes, for example p a q,
where p 6= q are literals. Such a rule ought not be closed under substitution, lest
we erroneously derive p a p. In this document, the refutation axiom schemes
will be nonstructural, all other rules will be structural.

A deductive rule of the form of (1) above is said to be sound with respect to
L iff Ω |=L α whenever

Γ1 |=L φ1, . . . ,Γm |=L φm and ∆1 6|=L ψ1, . . . ,∆n 6|=L ψn.

A refutation rule of the form of (2) above is said to be sound with respect to
L iff Ω 6|=L α whenever

Γ1 |=L φ1, . . . ,Γm |=L φm and ∆1 6|=L ψ1, . . . ,∆n 6|=L ψn.

A hybrid derivation system is a nonempty set of hybrid rules. Note a hybrid
derivation system need not contain any refutation sequents or rules. A purely
deductive system is a hybrid derivation system that contains no refutation se-
quents in any of its rules. A purely refutational system is a hybrid derivation
system that contains no deduction sequents in any of its rules.

A hybrid derivation with respect to a hybrid derivation system D is a finite
sequence of sequents < X1, . . . , Xn−1, Xn >, where for all i ≤ n, Xi is an
instance of an axiom in D, or else there exist i1 < i, . . . , ij < i such that
<< Xi1 , . . . , Xij >,Xi > is an instance of a rule in D. If < X1, . . . , Xn−1, Xn >
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is a hybrid derivation with Xn as the final member of the sequence, then we say
it is a hybrid derivation of Xn, and that Xn is its conclusion.

We say Γ ` θ, (Γ a θ) is derivable in D iff there exists a hybrid derivation
with respect to D of Γ ` θ, (Γ a θ). We may use D to denote provability of
sequents in D. That is, we may write D Γ ` θ or D Γ a θ. This is often
useful in contexts where there may be confusion as to whether Γ ` θ is to be
understood as a sequent – i.e. a construction proved in a hybrid system, or as
a metalogical assertion that in L, θ deductively follows from assumptions in Γ.

When D is understood, and there is no danger in doing so, however, we will
typically write just Γ ` θ and Γ a θ instead of D Γ ` θ and D Γ a θ .

4.2 Types of soundness and completeness

Now that we have ` and a, there are more concepts available besides traditional
“soundness” and “completeness.” Below we give some definitions. The defini-
tions depend on sets of formulas Γ and formulas θ which are in the language L.
For each definition, we should quantify over all such Γ and θ. But to save space,
we only write that explicitly for the first line. Assume the same quantification
style for the other relevant lines.

Definitions: Given a language L with entailment relation |=L and given a
hybrid system D, D is :

• deductively sound for L (D-sound) iff: ∀Γ ⊂ Form(L),∀θ ∈ Form(L)[
D Γ ` θ ⇒ Γ |=L θ],

• refutationally sound for L (R-sound) iff: D Γ a θ ⇒ Γ 6|=L θ,

• deductively complete for L (D-complete) iff: Γ |=L θ ⇒ D Γ ` θ,

• refutationally complete for L (R-complete) iff: Γ 6|=L θ ⇒ D Γ a θ,

•  Lukasiewicz sound for L ( L-sound) iff it is D-sound and R-sound,

•  Lukasiewicz complete for L ( L-complete) iff it is D-complete and
R-complete.

We also may add the qualifer “finitely” to any of these categorizations, by
requiring that the condition holds only for all finite Γ. For example, D is finitely
refutationally complete iff, for all Γ ⊂ L, if Γ is finite then (Γ 6|=L θ ⇒D Γ a θ).

4.3 Derivative rules

The following important definitions and propositions are given and proved in
[7].

Given a deductive rule R, we may form derivative rules in the following way:
swap places between the conclusion and one of the premises, and then “flip” the
direction of the turnstile in both of those sequents.

More formally, given a deduction rule:
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Γ1 ` φ1, . . . ,Γm ` φm,∆1 a ψ1, . . . ,∆n a ψn

Ω ` α
we may define, for i ≤ m, derivative rules of the form

Γ1 ` φ1, . . . ,Γi−1 ` φi−1,Ω a α,Γi+1 ` φi+1 . . .Γm ` φm,∆1 a ψ1, . . . ,∆n a ψn

Γi a φi
and for i ≤ n, derivative rules of the form

Γ1 ` φ1, . . . ,Γm ` φm,∆1 a ψ1, . . . ,∆i−1 a ψi−1,Ω a α,∆i+1 a ψi+1, . . . ,∆n a ψn

∆i ` ψi .

The situation corresponding to derivative rules of refutation rules is analo-
gous, so we omit it here.

Note, derivative rules as defined above require a nonempty set of premises in
the original rules. Therefore, derivative rules of axioms are not defined. In the
following, if we “take the derivative rules of a given rule R,” it may be assumed
that R is not an axiom. If we “take the derivative rules of a set of rules D,” we
mean to take the derivative rules of all rules in D which are not axioms.

Theorem 4.1. Let L be a logical system, and R a hybrid rule in the language
of L which is sound for L , then every derivative rule of R is sound for L.

Proof. We consider the case for a deduction rule. The situation is analogous for
a refutation rule. Suppose the following rule is sound for L.

Γ1 ` φ1, . . . ,Γm ` φm,∆1 a ψ1, . . . ,∆n a ψn

Ω ` α
Then by the definition of soundness of a hybrid rule,

(Γ1 |=L φ1, . . . ,Γm |=L φm and ∆1 6|=L ψ1, . . . ,∆n 6|=L ψn)⇒ Ω |= α.

Applying some classical logic in the meta-theory, we get

(Γ1 |=L φ1, . . . ,Γi−1 |=L φi−1,Ω 6|=L α,Γi+1 |=L φi+1Γm |=L φm

and ∆1 6|=L ψ1, . . . ,∆n 6|=L ψn)

⇒ Γk 6|= φk.

Thus the corresponding derivative rule is sound.

Given a hybrid deductive system D, its canonical extension H(D) is obtained
by adding to D all the derivative rules of D.

Corollary 4.1.1. If D is  L-sound for L , then H(D) is  L-sound for L.

Proof. This follows from the fact that if a rule is sound, its derivative rules are
sound, combined with the fact that if D is  L-sound, then D Γ ` φ implies
Γ |=L φ, D ∆ a ψ implies ∆ 6|=L ψ. We need to be assured that when we
have a derivation involving a derivative rule, if Γ ` φ is one of its premises, then
Γ |=L φ, and if ∆ a ψ is one of its premises, then ∆ 6|=L φ. This is guaranteed
if D is  L-sound.
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Corollary 4.1.2. If D is  L-sound and D-complete for L, then H(D) is  L-sound
and D-complete. If D is  L-sound and R-complete for L, then H(D) is  L-sound
and R-complete.

Proof. If D is  L-sound then since H(D) is also  L-sound, we have that H(D) is a
conservative extension of D with respect to both ` and a, and therefore is also
 L-sound. If D is then D-complete, since we cannot add any deduction sequents,
H(D) is also D-complete. Similarly, if D is  L-sound and R-complete, since we
cannot add any refutation sequents, H(D) is R-complete.

Corollary 4.1.3. If D is a purely deductive system, and D is D-sound and D-
complete with respect to L, then H(D) is  L-sound and D-complete with respect
to L. If D is a purely refutational system, and D is R-sound and R-complete
with respect to L, then H(D) is  L-sound and R-complete with respect to L.

Proof. If D is a purely deductive system, since it has no refutation sequents, D
is trivially R-sound with respect to L. Therefore, if D is also D-sound, then it is
 L-sound. If D is also D-complete, then by Corollary 4.1.2 H(D) is  L-sound and
D-complete. The case is analogous for purely refutational systems.

Lemma 4.2. If a recursive set of rules and axioms D is  L-sound and  L-
complete, then the set of validities of D and the set of nonvalidities of D are
both decidable.

Proof. If D is  L-sound and  L-complete, and if the set of rules and axioms of D
is recursive, then we have a decision procedure for the determining the validities
and nonvalidities of D.

To decide if Γ |= φ or Γ 6|= φ, enumerate all the proofs of D Γ ` α and
D Γ a α, varying α over all formulas, which we may do since D is recursive. In
the enumeration sequence alternate between proofs of deduction sequents and
refutation sequents. Due to D-soundness and D-completeness of D, Γ |= φ if
and only if D Γ ` φ. Due to R-soundness R-completeness of D, Γ 6|= φ if and
only if D Γ a φ. If Γ |= φ, the algorithm will eventually produce D Γ ` φ
in the enumeration. If Γ 6|= φ, then D Γ a φ will appear in the enumeration.
Either way, we have a procedure to decide if Γ |= φ or Γ 6|= φ.

Corollary 4.2.1. If the set of validities of D is not decidable, or the set of
nonvalidities of D is not decidable, then there is no  L-sound and  L-ccomplete
extension of D.

As noted in Goranko’s paper, H(D) is too weak to be R-complete if D is a
purely deductive system. This is because, having no refutation axioms, H(D)
will not prove any refutations.

A more general question is: given a hybrid system D, is there an algorithm
by which we may establish an  L-sound and  L-complete hybrid system E which
is an extension of D, for those logics D which admit an  L-sound and  L-complete
extension? Would the canonical extension play a role here?
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5 Hybrid deduction systems for four FDE based
logics

5.1 Defining the hybrid deductive systems

The goal of this paper is to work out a uniform treatment for FDE based systems,
so let us specify a natural deduction system which is D-sound and D-complete
with respect to FDE. The following is due to Font, taken from [13]. We will call
the following deductive system FDED.

A ` A (Reflexivity Axiom)

Γ ` A (Monotonicity (Mon))
Γ, B ` A

Γ ` A Γ, A ` B
(Cut)

Γ ` B

Γ, A,B ` C
(∧ `)

ΓA ∧B ` C
Γ ` A Γ ` B (` ∧)

Γ ` A ∧B

Γ, A ` C Γ, B ` C
(∨ `)

Γ, A ∨B ` C

Γ ` A (` ∨)
Γ ` A ∨B

Γ ` B (` ∨)
Γ ` A ∨B

Γ, A ` B
(¬¬ `)

Γ,¬¬A ` B
Γ,¬¬A ` B

(` ¬¬)
Γ, A ` B

A ` B (¬)¬B ` ¬A .

For LP, K3, and CL we will need available the following axioms.

Γ ` A ∨ ¬A (Excluded Middle (EM)) A ∧ ¬A ` B (Explosion (Exp))

Let LPD = FDED + EM, K3D = FDED + Exp, CLD = FDED + EM + Exp.

Lemma 5.1. LPD is D-sound and D-complete with respect to LP. K3D is D-
sound and D-complete with respect to K3. CLD is D-sound and D-complete with
respect to CL.

Proof. See, for example, [14].

Now let us take the canonical extensions of our logics. Note that since FDED

differs from the other three logics only by inclusion of various axioms, and since
derivative rules are not defined on axioms, all four will have the same set of
derivative rules. Each rule with one premise will produce one derivative rule.
Each rule with two premises will produce two derivative rules. Here are the
derivative rules.
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Γ, B a A
(antimonotonicity (antimon))

Γ a A
Γ a B Γ, A ` B

(anticut1)
Γ a A

Γ a B Γ ` A (anticut2)
Γ, A a B

Γ, A ∧B a C
(∧ a)

Γ, A,B a C

Γ a A ∧B Γ ` B (a ∧)
Γ a A

Γ a A ∧B Γ ` A (a ∧)
Γ a B

Γ, A ∨B a C Γ, B ` C
(∨ a)

Γ, A a C
Γ, A ∨B a C Γ, A ` C

(∨ a)
Γ, B a C

Γ a A ∨B (a ∨)
Γ a A

Γ a A ∨B (a ∨)
Γ a B

Γ,¬¬A a B
(¬¬ a)

Γ, A a B
Γ, A a B

(a ¬¬)
Γ,¬¬A a B

A a B (anti¬)¬B a ¬A

It is possible some of these rules are redundant. Finding the most economical
expression for an  L-sound and  L-complete hybrid deduction system is not the
goal here.

In order to capture FDE, LP, K3, CL in one uniform treatment, we introduce
a special shorthand. Let Γ = {γ0, . . . , γn−1},∆ = {δ0, . . . , δm−1} be finite sets
of formulas. Γ may be empty, but ∆ is nonempty. Let ./∈ {`,a}. Then

Γ ./ ∆ := {γ0 ∧ · · · ∧ γn−1} ./ (δ0 ∨ · · · ∨ δm−1).

Essentially, take the conjunction of the formulas on the left, and the disjunction
of the formulas on the right. This is one reason why we require Γ,∆ to be finite.
Note, Γ ./ ∆ is a sequent.

We are going to specify conditions for Γ a ∆ which will count as our non-
structural refutation axiom schemes. In the left column we give the name and
in the right column we give the condition on Γ and ∆.

Property Condition
literals For all ψ ∈ Γ ∪∆, ψ is a literal.
disjoint Γ ∩∆ = ∅

noncomplementary antecedent For no i 6= j ≤ n does γi = ¬γj .
noncomplementary consequent For no i 6= j ≤ m does δi = ¬δj .
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Here are the refutation axiom schemes (RefAx) for the logics.

RefAx(FDE) = {Γ a ∆ |Γ,∆ are finite sets of formulas that satisfy the

literals and disjoint properties. }

RefAx(LP) = {Γ a ∆ |Γ,∆ are finite sets of formulas that satisfy the

literals, disjoint, and

noncomplementary consequent properties. }

RefAx(K3) = {Γ a ∆ |Γ,∆ are finite sets of formulas that satisfy the

literals, disjoint, and

noncomplementary antecedent properties. }

RefAx(CL) = {Γ a ∆ |Γ,∆ are finite sets of formulas that satisfy the

literals, disjoint,

noncomplementary antecedent, and

noncomplementary consequent properties.}

Theorem 5.2. For L ∈ {FDE,LP,K3,CL}, RefAx(L) is R-sound with respect
to L .

Proof. Let L be a logic among FDE, LP, K3, CL. Let Γ a ∆ be an instance of
RefAx(L). We wish to show Γ 6|=L ∆. We will argue by cases for each logic. For
each L we demonstrate a model ∗ which satisfies Γ and does not satisfy ∆.

• Case: L=FDE:

– Let γ∗ = b for all γ ∈ Γ and let δ∗ = n for all δ ∈ ∆. This is possible
to do since Γ,∆ are disjoint sets of literals.

• Case L=LP:

– Let γ∗ = b for all γ ∈ Γ. If q = δ ∈ ∆ for some propositional variable
q, then let q∗ = f . If δ = ¬q, let q∗ = t. This is possible to do
since Γ,∆ are disjoint sets of literals, and because ∆ contains no
complementary literals.

• Case L= K3:

– Let δ∗ = n for all δ ∈ ∆. If p = γ ∈ Γ for some propositional
variable p, then let p∗ = t. If γ = ¬p, let p∗ = f . This is possible to
do since Γ,∆ are disjoint sets of literals, and because Γ contains no
complementary literals.

• Case L=CL:
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– If p = γ ∈ Γ for some propositional variable p, then let p∗ = t. If
γ = ¬p, let p∗ = f . If q = δ ∈ ∆ for some propositional variable
q, then let q∗ = f . If δ = ¬q, let q∗ = t. This is possible to do
since Γ,∆ are disjoint sets of literals, and neither Γ nor ∆ contains
complementary literals.

We now define the hybrid derivation systems for our logics. In the next
section we will prove their  L-soundness and  L-completeness for finite antecedent.

• FDEH = H(FDED) + RefAx(FDE).

• LPH = H(LPD) + RefAx(LP).

• K3H = H(K3D) + RefAx(K3).

• CLH = H(CLD) + RefAx(CL).

In [7], Goranko also defined a hybrid derivation system which is  L-sound
and complete for classical logic. He took the canonical extension of a cut-free
formulation for classical logic to produce his system. The advantages of his
system are that it is cut-free, and it does not rely on the anticut rules. One
advantage of our system is that though it does use cut and anticut, it is fairly
general. One proof technique will prove  L-soundness and completness for all four
logics involved. Due to the uniformity of our approach, the major differences
between the calculi appear at the level of their axiom and refutation axiom
schemes.

5.2  L-soundness and  L-completeness

Theorem 5.3. For L ∈ {FDE,LP,K3,CL}, LH is  L-sound and finitely  L-
complete with respect to L .

Proof. Let L be among FDE, KP, K3, CL. We will show that LH  L-sound
and finitely  L-complete. It is enough to show that LH is D-sound, D-complete,
R-sound, and finitely R-complete.

To see that LH is D-complete, note that LH is an extension of LD, which is
D-complete. Therefore, since LD proves all valid entailments, so too does LH.
Thus LH is D-complete.

To see that LH is D-sound, note that if a rule of LH has as its conclusion
a deduction sequent, then that rule was already in LD. Therefore, since LD is
D-sound, so is LH.

To see that LH is R-sound, note that if a rule of LH has as its conclusion a
refutation sequent, then that rule is either a refutation axiom of RefAx(L), or it
is a derivative rule of some rule in LD. In the former case, we have shown that
RefAx(L) is R-sound with respect to L (Theorem 5.2). In the latter case, since
LD is a purely deductive system, then by Corollary 4.1.3 the set of derivative
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rules of LD is R-sound with respect to L. In either case, if LH Γ a α then
Γ 6|=L α, so LH is R-sound.

We will now prove R-completeness for finite Γ.
Suppose for some finite Γ that Γ 6|=L α. We wish to show Γ aL α. We will

omit the L subscript on a moving forward. This is an adaptation of Goranko’s
proof in [7]. His proof did not use anticut. Our’s does, and thus allows us to
prove the same results, without the intermediary lemmas he uses. The problem
is, his lemmas are not true for some of our logics, so we cannot follow his proof
directly.

First assume Γ and α are in conjunctive normal form. That is

Γ =
∧m

i=1A
i Ai =

∨mi

j=1B
i
j α =

∧n
k=1 C

k Ck =
∨nk

l=1D
k
l

where Bi
j and Dk

l are all literals.
Let D(L) be the set of designated values of the logic L . Since Γ 6|= α, there

is a model ∗ such that for all γ ∈ Γ, γ∗ ∈ D(L), yet α∗ /∈ D(L). Fix one such
model ∗.

For a literal p, define p◦ as p◦ = p if p∗ ∈ D(L), and p◦ = ¬p if p∗ /∈ D(L).
For a set of formulas X, define Lit(X) = {p | p is a literal in X}. Then define
Γ◦ = {p◦|p ∈ Lit(Γ)}. It is clear that Γ◦ satisfies ∗, therefore Γ◦ 6|=L α. Then
Γ◦ 6|=L C

k for some k ≤ n. That is, Γ◦ 6|=L

∨nk

l=1D
k
l . Since Dk

1 , . . . , D
k
nk

are all

literals, if we let ∆k = Lit({
∨nk

l=1D
k
l }) we have Γ◦ ∩∆k = ∅.

Depending on our logic, we may have some more conditions on Γ◦ and ∆k.
Since Γ◦ is satisfiable, this means that if we are working in CL or K3, Γ◦ contains
no complimentary literals. Since

∨ni

k=1D
k
l is falsifiable, this means that if we

are working in CL or LP, ∆k contains no complimentary literals. We see that
in all four cases, Γ◦ a ∆k is an instance of a refutation axiom for L.

We pause this train of thought for a moment and turn to Γ. We want to
show Γ◦ ` Γ. Since Γ is satisfied by ∗, Ai is satisfied by ∗ for each i ≤ m.
Then, for each i, there exists a ri ≤ mi such that Bi

ri is satisfied by ∗. Thus
(Bi

ri)
◦ = Bi

ri , so Bi
ri ∈ Γ◦. Thus for each i ≤ m, Γ◦ ` Bi

ri , so Γ◦ ` Ai. Applying
some standard FDE logic, we get Γ◦ ` Γ.

Here, now, is the proof of Γ a α. (Some lines in the proof merely rename
terms in the preceding line. They are included only to aid readability of the
proof.)

Γ◦ a ∆k (RefAx(L))

Γ◦ a
∨nk

l=1D
k
l

Γ◦ a Ck Γ◦,
∧n

j=1 C
j ` Ck

(anticut1)
Γ◦ a

∧n
j=1 C

j

Γ◦ a α Γ◦ ` Γ (anticut2 )
Γ◦,Γ a α

(antimon)
Γ a α

Australasian Journal of Logic (18:6) 2021, Article no. 1



612

Now if Γ is not a single formula in normal form, or if α is not in normal
form, we will show the result still holds.

Let Γ = {γ1, . . . , γn} be a finite set of formulas. Let Γ̃ be the conjunctive
normal form of the conjunction of all formulas in Γ. Let α̃ be the conjunctive
normal form of α. We have the following proof of Γ a α, given Γ̃ a α̃.

Γ̃ a α̃ Γ̃ ` γ1
(anticut2 )

Γ̃, γ1 a α̃
...

Γ̃, γ1, . . . , γn−1 a α̃ Γ̃ ` γn
(anticut2 )

Γ̃, γ1, . . . , γn a α̃
(antimon)

γ1, . . . , γn a α̃
Γ a α̃ Γ, α ` α̃

(anticut1)
Γ a α

5.3 Admissibility of rules

Given a hybrid derivation system D, a rule R is admissible with respect to D
if no new sequents are proved in the expanded system D ∪ {R}. A set of rules
E ⊂ D is redundant in D if each rule in E is admissible in D \ E .

Corollary 5.3.1. The set of rules {∧ a,∨ a,a ∨,¬¬ a,a ¬¬, anti¬} are re-
dundant in FDEH , LPH , K3H , CLH .

Proof. In the proofs of R-completeness above, the only rules used were refutation
axioms, anticut1, anticut2, antimonotonicity, and a ∧.

6 Final thoughts

Hybrid refutation deduction systems, though not new, are a relatively unex-
plored area of proof theory. We believe that they warrant further attention,
and are of interest to the logic community for at least three reasons.

First, they are a novel kind of deductive system, and thus intrinsically worth-
while to the curious logician. It would be philosophically interesting and likely
fruitful to follow  Lukasiewicz and consider the consequences of treating “accept”
and “reject” on par.

Second, they offer the logician a new tool, namely the ability to prove va-
lidities and nonvalidities syntactically in the same framework. While for a given
logic we may already have access to countermodels to prove nonvalidity of a
sequent, having a syntactic method to do so provides the logician or automated
theorem prover an additional option. Moreover, for some logics constructing
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countermodels may be difficult or computationally expensive. In such cases a
syntactic approach may be preferable.

Third, being able to prove both deduction and refutation sequents, hybrid
systems offer the possibility of shorter proof lengths and increased computa-
tional efficiency. Though we do not touch on computational matters in this
paper, future studies should seek to quantify the trade-offs and benefits of using
hybrid systems for formal proof writing and proof search.

In this paper, we offer original  L-sound and complete hybrid systems for four
FDE-based logics, namely FDE, LP, K3, and CL. As far as we know, these are
the first  L-sound and complete systems for LP and K3. The main technique used
is a continuation of a key idea in [7] – to create an  L-sound and complete hybrid
system from the canonical extension of a purely deductive system, along with
appropriate refutation axiom schemes. One main contribution of this work is to
demonstrate the creation of multiple  L-sound and complete hybrid extensions
at the same time, using a uniform procedure.

The generality of this technique suggests that it may have fairly wide ap-
plication. Further studies should apply it to more purely deductive systems –
extensions of FDE would be a good place to start. We believe this work is an
early step towards developing a general theory of  L-sound and complete hybrid
extensions of pure systems. The ultimate goal here would be an algorithm to
create an  L-sound and complete hybrid extension whenever possible.

Now if a logic is not decidable, then as discussed earlier no recursively ax-
iomatized hybrid system will be  L-sound and  L-complete for it. But for those
purely deductive systems which are decidable, it would be prudent to explore
in greater depth their canonical extensions. A natural question to ask is, if
D is a purely deductive system, and is D-sound and complete with respect to
a logic |=L, is there a (finite, recursively enumerable) set of refutation axioms
RefAx(L) such that H(D) + RefAx(L) is  L-sound and complete with respect to
|=L? If yes, can we constructively produce such a set of refutation axioms? If
yes again, we have essentially achieved the goal of giving a mechanical procedure
to turn a D-sound and complete purely deductive system into an  L-sound and
complete hybrid system. That goal in the general case may be too ambitious.
Yet, perhaps there are classes of deductive systems for which it is attainable.

Towards the task of specifying refutation axioms, it is interesting to note a
duality between the refutation and deduction axioms of LP and K3.

• Γ ` ∆ is a deduction axiom of LP only if ∆ contains a complementary
pair.

• Γ a ∆ is a refutation axiom of LP only if Γ contains no noncomplementary
pairs.

• Γ ` ∆ is a deduction axiom of K3 only if Γ contains a complementary
pair.

• Γ a ∆ is a refutation axiom of K3 only if ∆ contains no noncomplementary
pairs.
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Does the close symmetry between deduction axioms and refutation axioms
seen here give us a clue as to how to produce refutation axiom schemes for
 L-sound and complete hybrid extensions in the general case?

Finally, to be a tool with practical applications in automated theorem prov-
ing, hybrid systems should allow elimination of cut and anticut rules. We could
of course obtain anitcut free formulations automatically by taking the canonical
extension of a cut-free system. The anticut rules are the derivative rules of cut,
so if there is no cut, there are no anticut rules in the canonical extension. This
is the approach taken in [7]. However, proving  L-soundness and completeness
in such cases appears to be rather idiosyncratic to the logic at hand. Much of
the uniformity of our proofs arose through liberal use of anticut, and it is not
immediately clear how to eliminate anticut from our proofs. Still, future work
should try to develop a uniform procedure to prove  L-soundness and complete-
ness in such hybrid systems. Alternatively, for a given class of hybrid systems
which do contain cut and anticut, develop a uniform procedure to eliminate cut
and anticut in them.

This line of research opens the door to exploring the relationship between
cut and anticut rules in general. For example, if ` admits cut elimination, does
a admit elimination of the anticut rules? Can a cut-elimination procedure be
adapted to produce an anticut-elimination procedure?
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