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Abstract

In The Consistency of Arithmetic and elsewhere, Meyer claims to “re-
peal” Gödel’s second incompleteness theorem. In this paper, I review
his argument, and then consider two ways of understanding it: from
the perspective of mathematical pluralism and monism, respectively.
Is relevant arithmetic just another legitimate practice among many, or
is it a rival of its classical counterpart—a corrective to Gödel, setting
us back on the path to the (One) True Arithmetic? To help answer,
I sketch a few worked examples from relevant mathematics, to see
what a non-classical (re)formulation of mathematics might look like
in practice. I conclude that, while it is unlikely that relevant arith-
metic describes past and present mathematical practice, and so might
be most acceptable as a pluralist enterprise, it may yet prescribe a
more monistic future venture.

1 Introduction

Circa 1976, Robert K. Meyer1 made a very bold claim. He claimed to have
done nothing less than overturn—“repeal”—Gödel’s second incompleteness

1I met Meyer once, when I was a PhD student, shortly before he died. He asked me
what I was working on. I said “Set theory formulated relevantly.” He said, “That’s a bad
idea. That won’t work.” Then he gave a very charming talk about relevant logic as the
key to the universe. His work and influence have been hugely important to me and it is
an honor to contribute to this volume.
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theorem of 1931.2 In this paper I will consider some ways to make sense of
Meyer’s claim.

Of course, Meyer is far from alone in purporting to disprove (in some
sense) a proven theorem; nor is he alone in making such claims in lengthy, self-
published typescripts circulated (only) privately. I find such announcements
waiting in my in-box once or twice a year.3 But I’ve learned not to respond to
those messages, and I certainly don’t usually write entire papers responding
to such work. Yet here I do respond to Meyer, because his claim—that
arithmetic suitably formulated evades Gödel’s second theorem—is different
than those other typescripts: whereas mathematical crankery inevitably falls
apart upon closer inspection, The Consistency of Arithmetic does not.4 It
involves a coherent mathematical result, and leaves us with the challenge of
how philosophically to understand what it means.

After reviewing his argument, I will present two ways of interpreting
Meyer’s result, a pluralist interpretation and a monist interpretation. Roughly,
a pluralist will say that Meyer’s result is correct but without being rivalrous
to other, incompatible results: for any logic L, there is arithmetic-in-L, and
what Meyer showed is that Gödel’s theorem does not hold for some particular
choice of L, which does nothing to impugn the better-known results about
some other choice of L. A thousand flowers bloom etc.5

A monist, on the other hand, might say that arithmetic (taken absolutely,
without relativisation to some logic) either can prove its own consistency, or
it cannot; Meyer was talking about absolute or True Arithmetic; and so either
Meyer was correct, or he was not. If True Arithmetic is classical, then Meyer
was simply wrong, or at least misrepresenting his results (because [18] is really
about something other than arithmetic). If True Arithmetic is relevant—
or more generally, paraconsistent—then maybe Meyer was correct, and the
reports of the death of Hilbert’s program have been greatly exaggerated.

2“That theorem (or at least the significance usually claimed for it) was a mistake,”
Meyer says in [18]. He puts it in various ways in various papers. The proof “escapes
incautious formulations” [23, p. 917]; it “removes some of the sting” [21, p. 247]. That
1996 paper is a precis of Meyer’s 1970s work, but since it was published 20 years later,
I take it that Meyer never retracted his claims, even after the negative results in [11];
indeed, the 1996 paper says that “Gödel’s theorems are dirty tricks” (boldfacing in the
original).

3See [14].
4I will be primarily focused on [18], though I will also have [17] on hand as well as a

raft of other related works by Meyer.
5This is to echo e.g. Shapiro in [39], not Chairman Mao. (Thanks to a referee here.)
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In presenting these ways of understanding Meyer, I will look at a few new
worked examples from relevant arithmetic and substructural mathematics,
to give us more help in clarifying, or maybe just muddying, the issue. I will
conclude by distinguishing between two projects, one descriptive, the other
normative, and apply the pluralist/monist distinction to them, to try to come
to grips with Meyer’s work and its legacy.

2 The Consistency of Arithmetic

Hilbert didn’t know, but we all do, that arithmetic cannot prove its own
consistency, by Gödel’s second theorem. Or can it? Meyer challenges the
accepted Gödelian facts, essentially on the basis that Peano, Russell, Hilbert,
Gödel et al were using the wrong logic to formalize arithmetic, and that
arithmetic formulated using a better logic will do better. Gödel’s theorems
are “puzzles about the logical superstructure of arithmetic, which do not
infect the properly arithmetic” [18, p. 9]. Meyer’s case can be given in two
steps, a critical argument and positive evidence. Unlike Meyer, I give them
in reverse order.

2.1 The positive case

I think it is fair to say that, whatever doubts or complaints one has about
Gödel’s news of 1931, those opinions are of much more interest if they come
with some constructive alternative suggestions. Meyer can mount a case that
classical arithemtic has got it wrong because he has a clear and cogent rival
system that, he says, gets it right.

The systems in question, of course, are classical Peano Arithmetic PA,
and relevant arithmetic R]. To obtain R], one takes PA and replaces the un-
derlying classical logic with the first order relevant logic R (so the extensional
connectives ∧,∨,¬ and quantifiers are now those of R). Then one replaces
the occurrences of the material conditional ⊃ in the Peano axioms with rel-
evant implication →. (Mostly. Mathematical induction is formulated as a
rule, rather than as an axiom, “in a self-explanatory meta-linguistic way”
[17, p. 14].) The set of theorems is then the closure of the axioms under
logical consequence (as given by R). The details are a little more involved,
but that’s the idea; see [17, p. 13, 14].

Now, if we assume that R] is at least a plausible candidate for being a
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formalization of arithmetic, then Hilbert’s question for it would be: “Okay,
well is this system reliable, and if so, can it confirm its own reliability?”6 To
show basic reliability, semantically-minded logicians ask to see a model of R].
Ideally, this would be the abstract structure R] is describing, intended to be
the natural numbers N; but, much like its first order classical counterpart,
R] does not pin down only the desired omega chain of N; cf. [24]. So,
failing a categorical interpretation, we will settle for any non-trivial model
which R] is sound with respect to: a structure that at least satisfies every
theorem of R], and which at most leaves at least one (false) sentence of
R] unsatisfied. The key discovery from this period of the development of
inconsistent mathematics is that this can be had very easily, as follows.

R] would appear to be describing an infinite structure—but it may be
soundly interpreted in the positive integers modulo two. That is, take s to
be the successor function, and {0, 1} as the domain of interpretation, with
s(0) = 1 and s(1) = 0. If we use a three-valued logic7 to interpret the
sentences 0 = 0 and 1 = 1 as both taking the value b (true (but not only
true)), then “it is readily observed that” all the true sentences of R] take
designated (i.e. ‘at least true’) values. But by construction, the sentence
0 = 1 is assigned the value f (false), an undesignated value. So, once the
details are filled in, we have a model that satisfies R] but without satisfying
0 = 1. This shows that, at the least, R] is absolutely consistent, or as we say
more usually, non-trivial. Cf. [28, ch. 1].

Hilbert asked for a finitary proof of the reliability of arithmetic, a demon-
stration by elementary and ordinary means. But what could be more finitary
than a model of arithmetic that looks like this:

0 1

6As I write that now, and after reading Meyer’s papers, the first part of Hilbert’s
question seems eminently reasonable, but the second part looks odd. If the system in
question is arithmetic, why are we expecting it “to be muttering introspectively about
itself at all” [18, p. 3]? But nevermind.

7Since we are only looking for soundness in a model, not completeness, the task of
dealing with the logic is simplified too; cf. [23]. The conditional for R does not have
a truth table, but the nearby three valued logic rm3 does, with truth values true (t),
false (f), and both (b), making rm3 “the laboratory of relevant logic” according to Meyer
(according to [9, p. 81]). rm3 is Priest’s logic LP with a better conditional attached [33,
p. 125].
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? So R] has a finitary consistency proof—an argument that it is coherent,
that anyone who can count to two should be able to recognize as legitimate.8

Of course, absolute consistency—non-triviality—is proven at the cost of sim-
ple consistency: the induced interpretation says that both 1 + 1 = 0 and
1 + 1 6= 0 are true, for instance. Meyer does not establish that there is a
finitary consistency proof in the sense that at least one of A, ¬A is unprov-
able for all A, or of the system showing its own soundness (all theorems are
true); these are just as out of reach as ever.9 Indeed, we’ve just seen that
there are models of R] where some A,¬A are both satisfied, the so-called
inconsistent models of arithmetic (so called even though they are completely
consistent models of inconsistent theories). But, Meyer suggests, one should
not get too worked up over these sorts of inconsistencies; they represent low
probability, low cost, contingencies.

We do not think of such negated formulas as 2+2 6= 4 as true. But
the point is, even if we did, it still wouldn’t follow that 2 + 2 = 5.
That’s the idea, anyway [Meyer and Urbas 1986].

So we have a proof that R] is not completely unreliable, because it may be
satisfied by some structure, and not only that, it is paraconsistent. To people
of discerning taste, this tastes like good news. Because PA “fails to account
for relevance as a constituent in valid arithmetical arguments,” says Meyer,
it is “unable to discriminate between logical anomaly and total arithmetical
breakdown” [18, p. 9]; not so for PA’s relevant rival.

That’s where Meyer gets the nerve to challenge Gödel’s theorem. What
does he say against it?

2.2 The critical case

The positive part of the case, just canvassed, makes clear that R] is more
than just PA with a better entailment connective. What is really doing the
work is not, in fact, much about → at all but rather negation, and the fact

8Meyer says the proof “will be recognized as correct by anyone who can count to 3”
[18, p. 1] but this unduly excludes people who cannot count that high.

9Priest has taken the matter further with the idea that ‘naive’ arithmetic can prove
its own soundness [32, ch. 17]: since the argument for soundness is a simple induction, “if
something is naively proved then this fact itself constitutes a proof that A is provable”
[32, p. 238].
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that negation in R is paraconsistent. That’s why R] can have a finite model:
there can be a lot of inconsistent noise without total collapse.10 The difference
between formalizations of arithmetic turns on negation. Meyer argues that
classical negation is not negation, by the following argument.

Whether arithmetic can prove its own consistency, or not, is a matter of
whether or not it can prove some sentence CON that expresses ‘arithmetic
is consistent’. Any statement of consistency will involve the particle ‘not’ in
some respect. E.g. CON may be the sentence ‘It is not provable that A and
not A’ or ‘If A is provable then not-A is not provable’. If the language of
arithmetic does not include a connective that faithfully expresses ‘not’, then
it cannot even express a consistency statement CON. Failing to prove some
sentence that inadequately expresses consistency does not count as failing to
prove consistency. “No one expects us to prove what we cannot say” [18,
p. 4]. So, if there is evidence that the particle representing ‘not’ in classical
logic is not not, then can it express the genuine consistency of arithmetic?
It cannot. Here is Meyer’s evidence (from [18, p. 3], [21, p. 3]).

Let Prov(x) be a provability predicate, an expression definable within
arithmetic meaning that x is provable in arithmetic. Let p·q be a coding
device. Let ` A be read as ‘A is a theorem of arithmetic’. Well, then

Prov(pAq) iff ` A

And any connective in the language of arithmetic that faithfully represents
‘not’ would, says Meyer, have to validate

¬Prov(pAq) iff not ` A

because the ‘¬’ on the left is meant to be capturing the ‘not’ on the right.
But not just this; Prov is a provability predicate in arithmetic, i.e. Gödel
showed

` Prov(pAq) iff ` A

And yet the connective that represents ‘not’ in classical arithmetic does not
validate

` ¬Prov(pAq) iff not ` A
10And that’s why Priest has been able to carry off many of the same results for his

paraconsistent arithmetic formulated in just the extensional logic LP [30, 31], [32, ch. 17]—
and that’s why the potential for Meyer’s contribution goes beyond just relevant logic, but
for paraconsistent logic more generally.
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(“on pain of total bankruptcy otherwise of standard mythology”). For exam-
ple, from the Gödel sentence g that says ¬Provpgq, if PA is consistent then
it is not the case that ` g, but it is also not the case that ` ¬Prov(pgq).
Therefore, the connective that represents ‘not’ in classical arithmetic does
not faithfully express ‘not’ and so the failure to prove some expression CON
in terms of this not-really-not is not a concern.

[T]he little sign ‘∼’ is supposed to mean ‘not’. The real import
of Gödel’s arguments may be summed up succinctly thus: ‘∼’
never means what it is supposed to mean, within a particular
sufficiently strong system intended seriously to formalize mathe-
matics [21, p. 248].

What Meyer seems to be taking issue with is the failure of classical negation
to commute with `; from

Exclusive If ` ¬Prov(pAq) then not ` Prov(pAq)

Exhaustive If not ` Prov(pAq) then ` ¬Prov(pAq)

Meyer seems to expect that any ‘natural’ arithmetic should validate at least
the second, exhaustion, as an adequacy condition for formalizing ‘not’. For
what it’s worth, I think that both of these directions are highly desirable and
intuitive, and dropping either ends up suggesting that our (meta)linguisitc
‘not’ is not fully captured by (the object level) ‘¬’. (A similar issue arises in
discussion of a truth predicate.) Still, this is not too far away from simply
insisting that, as above, any decent formalization of arithmetic should not
succumb to Gödel’s theorems, so it isn’t likely to preach to the unconverted.
Rather what we should just say, with Meyer, is that our ‘not’ is not mysticism
or irrational noise, and so it should have a precise formulation; and if we want
arithmetic to prove a sentence CON that really means ‘consistency’ then
formulation of ¬ in arithmetic should really mean ‘not’. Everyone agrees
that what shows up in PA is, in some sense not the whole truth—that’s
what Gödel proved—so it’s then a matter of deciding whether to expect the
precise formulation of genuine negation to show up exhaustively in arithmetic.
Or not.

Rather than answer that question, I would like to stop and investigate
what we are even asking when we ask that question. If we are asking “Is this
or that formalization getting it right?” what do we mean?
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3 Mathematical Pluralism and Monism

3.1 A Pluralist View

Meyer claims that he is repealing Gödel’s second theorem. Many readers, I
suspect, would be inclined to say that this claim is misleading. For Gödel’s
second theorem, as we all know, says that classical PA cannot prove its
own consistency; but this is not what Meyer challenges. Rather, he intends
to show that a different system, relevant arithmetic R], can prove its own
(absolute) consistency. So would it not have been more transparent for Meyer
to phrase his results as saying that Gödel’s second theorem does hold of some
formalizations of arithmetic and not others? For indeed, this seems the likely
way that his result is understood. And one way of understanding that is via
mathematical pluralism.11

Like logical pluralism, there are different accounts of mathematical plu-
ralism. Like logical pluralism, they all circle around the idea that different
and apparently rival mathematics may be in fact non-rivalrous, and are at
least equally legitimate qua mathematics.

One can be a mathematical pluralist without straying outside of conven-
tional mathematics. One may just think of questions like ‘do parallel lines
ever meet?’ or ‘how many points are there on a line?’ and observe that there
are multiple independently consistent models (of geometry, of set theory)
that yield different answers. According to Hamkins [13], for example, there
just is no one answer to the question ‘is the power of the continuum ℵ1?’
There isn’t a single universe of mathematical truths but rather a multiverse,
and that’s okay. There are many interesting structures to explore, even just
within classical models of ZFC. An even more open-minded version of math-
ematical pluralism is an ecumenical view akin to Carnapianism about logical
tolerance (cf. [36]): that all abstract structure is, qua structure, equally
legitimate.

An apparently less moderate version of pluralism recognizes various un-
conventional mathematical practices, using non-classical logic, such as smooth
infinitesimal analysis, or paraconsistent set theory [39]. In smooth infinitesi-
mal analysis, where the law of excluded middle fails, all functions are contin-
uous [4], unlike in standard analysis; in paraconsistent set theory, the Russell
set exists and is both in itself and not12, unlike in standard set theory; but

11For different presentations, see [7, 12] and references below.
12As in [38], also [6] in [3], also [5, ch. 8§4].
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there is no conflict here. Priest encourages us to view these as sorts of lan-
guage games, or just games.13 And all games are equally games. So, there is
no sense in trying to de-legitimise one or another, or to view the existence of
Go as a threat to Trivial Pursuit.

A conventional pluralist can try to absorb the apparently more radical
pluralist, just by noting that what, say, a constructive mathematician is doing
is in fact using a (classical) Heyting algebra, and a relevant mathematician
is hanging their reasoning on (classical) Routley-Meyer frames14: so it can
all be viewed as just more (standard) mathematics. Now, the fact that one
can translate one language into another does not mean that one can reduce
one practice (carried out in that language) to another [26]. But once one
puts on pluralistic spectacles, so to speak, apparently radical practices begin
to seem not just legitimate, but not radical, because again it is all abstract
structure in the void. Some arithmetics can be modeled with two elements,
some cannot, and a thousand flowers etc.

What becomes of truth, according to a pluralist? For it is one thing
to say that there are many formal geometries (indisputable), and another
to ask which one is true. This appeal to truth might mean to ask which
theory, say geometry, describes the actual world; or it might mean which
formalizations correspond to our actual ‘real’ practice; or both; we return to
this below. But a pluralist might try to steer around the issue altogether,
and say that pluralism can perfectly well account for ‘truth’. For example,
Balaguer argues that “...there can be different theories of the same kind, that
seem to be competitors, or incompatible, that are both true” [2], where by
‘true’ he means either a fictionalism about mathematics (in which case, they
are all non-rivalrous stories) or plenitudinous platonism about mathematics

13“There is a plurality of mathematical practices: category theory, intuitionist analysis
and inconsistent calculus. Each of these is governed by a set of rules... and engaging in
the practice means following the rules. The (institutional) point of following the rules
is establishing (proving) certain—hopefully interesting—things within the rules of the
practice. The rules may be explicit, as they typically are in contemporary mathematics;
or implicit, as they were with number theory until the late 19th century. One may absorb
the rules simply by being trained to follow them, as one learns a first language; arithmetic
is usually learned in this way. Or one may learn the rules more reflectively, as one learns
a second language; the way that a classically trained mathematician has to struggle with
intuitionistic proof when they first meet intuitionist mathematics is like this. Just as with
games, some practices may be more interesting, fruitful or whatever; but all practices, qua
practices, are equally legitimate” [34].

14See [37].
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(in which case, they are all describing different parts of platonic heaven and
are again non-rivals).15 Truth, a pluralist can argue, is always relativised to
some theory or practice, and on that view Meyer’s work in relevant arithmetic
is legitimate and valuable, but no challenge to the accepted wisdom about
Gödel’s theorems, which are about classical arithmetic. One can no more
overturn the results of one mathematical practice via another than one could
checkmate a chess opponent by outrunning them in a footrace. So on one
pluralist reading, Meyer’s results are interesting, but not revolutionary.

3.2 A Monist View

Mathematical monism I take to be a familiar and well-trodden view. The
most common way to think of monism is as some version of mathematical
Platonism, where there is a singular universe of mathematical objects ‘out
there’ to be discovered, but the metaphysics don’t matter much; monism
could also be about mathematics as a deflated or nominalistic exercise which
is nevertheless a unified practice. The key thing about monism, as I will
understand it, is that unqualified mathematical questions have unambiguous
answers (if they have answers at all), and mathematical singular terms have
unambiguous meanings or referents. So the term ‘the linear continuum’ is
not contextual, and neither is the question of whether it has ℵ1 points or
not: either it does, or it doesn’t. According to monism, if you want to
know whether there are infinitely many primes, it does not make sense to
ask “According to what arithmetic’?” and it does make sense to ask, “Which
formalization of arithmetic is correct?” The prevailing (but by no means
necessary) view of monists16 is that something like ZFC set theory and its
sub-theories like PA, all couched in classical logic, are mostly the correct
formalization and foundation for all of mathematics.

A monist need not adhere to classical ZFC as a (singular) foundation,
though. To see this, let’s ask: how does relevant mathematics, and in par-
ticular Meyer’s project, fare under a pluralist understanding? In terms of
textual interpretation of the Great Relevant Literature and Meyer as a ma-
jor exponent, pluralism would appear to be a misreading. Meyer does not

15Following the strategy from his book [1] where fictionalism and plenitudinous platon-
ism are singled out as the best options for a philosophy of mathematics.

16A referee observes that graduate mathematicians today who are interested in foun-
dations are often socially conditioned by their mentors, who are by and large steeped in
classical orthodoxy.
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phrase things in a pluralistic or relativistic way because he is concerned about
‘intuitive’ or true arithmetic, and he wants to claim that classical PA is not
true arithmetic. Meyer sees formal logic as something imposed upon intuitive
arithmetic, an attempt to interpret or describe the “logical superstructure”
of the arithmetic facts. And for Meyer (as with contemporaneous Routley),
PA has got the logical “superstructure” wrong. Real mathematics is not
classical mathematics.17

A decent logic should avoid Gödel’s theorems, Meyer seems to think;
if a logic leads arithmetic into Gödel’s theorems, this itself is a reason to
doubt the logic as a good formal base for arithmetic. If a logic avoids Gödel,
meanwhile, while still supporting ‘natural’ arithmetic reasoning, then this is
a reason in favor of the logic. The Gödel “anomalies” are the result of a bad
theory about logic, not a fact about arithmetic. The very fact that classical
arithmetic is susceptible to Gödel “must certainly count as evidence” that
there is something wrong with classical logic “as a rational approach to the
formalization of arithmetic” [18, p. 26]!

This does not read as ecumenical pluralism. Different logical approaches
are rivals; Gödel’s theorems are a check on the success (or failure) of an
attempted logical formalism. “What we wish to be sure of, as Hilbert might
have put it, is that excursions through general logical laws...do not render
dubious what we rightly regard as indubitable” [18, p. 11]. If a formalization
of arithmetic cannot be shown to be reliable through elementary, finitary
means that everyone can recognize, then it is not a successful formalization,
because intuitive mathematics should admit of a formalization, on pain of
mysticism. As he puts it,

From the present viewpoint, the task of furnishing a non-mythological
and demonstrably secure reconstruction of all mathematics was
interrupted over trivia, and it is time that these trivia were placed
once more in proper perspective. Again, I do not propose to
change the logical superstructure—only to understand it more
clearly, by making explicit in a formal way features that have
belonged to our intuitive logic all along [18, p. 11].

And as far as determining which formal logic captures the intuitive logic
of arithmetic goes, it is no good to appeal to classical arithmetic to try
to mediate this debate; that would be circular: “If we impose a certain

17This is emphasized at length in [38].
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logic upon arithmetic, we cannot justify this imposition on the ground that
arithmetic (among other things) respects this logic.”

For Meyer, formalizing arithmetic well means distinguishing between de-
scriptive facts, and constitutive laws. In terms of formalism, descriptive facts
are ‘extensional’ and phrased in terms of ∧,∨,¬, whereas laws are given in
terms of the ‘intensional’ modal →. Descriptions are mathematically stag-
nant, inert, whereas laws generate or underwrite the facts. For example,
Meyer says that axiom A14

s(x) 6= 0 ∨ 1 = 0

that zero is not a successor (or else!), may be an arithmetic fact (in terms of
a material conditional) but it is not a law (in terms of a relevant conditional),
because it is negative and negation belongs to logic, which Meyer has already
separated from arithmetic.18

So for Meyer, there is such a thing as True Arithmetic, and there are more
or less successful attempts to theorize it. First there is natural reason and
mathematical practice, on which “we are informally more or less agreed” [17,
p. 6]. Then, like accountants come to check the books or grammarians sorting
out the ‘rules’ of language (post hoc, of course, even if then ergo propter hoc)
the logicians arrive to attempt to lend certainty to the indubitable, and are
judged harshly if they fail.19

Priest’s pluralism is consistent with this project, of finding the correct
formalism for arithmetic: “There is a received practice, number theoretic
reasoning, set theoretic reasoning or whatever. But there can be legitimate

18Similarly, Meyer expresses doubt about axiom A13, that if x and y have the same
successor then they are equal, as the sort of thing that we should not need to say and
which has a “collapsing effect” from the standpoint of R].

19Here is how Meyer sees the connection between formal logic and rationality, with
respect to the issue of logic itself: “I’ve heard enough of the widespread assumption
that one cannot bring an objective rationality to bear on the claims of competing logics,
presumptively because logic itself is involved in judging those claims ... Such pessimism
is on a par with a view that, because we are components of physical systems, we cannot
make rational judgments between competing physical theories. For we do not need logical
theory to make us rational, any more than we need physical theory to make us physical
objects. Logic is a product of our rationality, not its cause. While we may hope also that
it will cause an improvement in the product, ... we can still stand outside [claims about
logic], equipped with our everyday reason—fallible, error-prone, imprecise, self-interested,
and even biased though it may be....” [19, p. 583].
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disputes about what, exactly, the correct norms of that practice are.”20 Qua
Meyer, this makes the issue a dispute about how arithmetic is actually prac-
ticed by working mathematicians, and who, if anyone, gets it right.

3.3 Ways to view Meyer’s results

Did Meyer overturn Gödel’s second theorem? It looks like Meyer thought so;
but here from the vantage of the 21st century, it looks like the considered
interpretation of his work can break in at least the following ways.

Yes (monist) There is a true arithmetic, and relevant arithmetic is it; the
classical formulation PA is not arithmetic. The fact that classical PA
succumbs to Gödel’s theorem only shows that it is not true arithmetic.
True arithmetic, which is relevant, can prove its own reliability. Update
as of 1992: there is good evidence that this means some propositions
thought to be proven arithmetic theorems, like the quadratic residue
formula, are not in fact truths of arithmetic. (They may be truths
of some stronger (and hence less reliable) system.) Gödel’s second
theorem is repealed.

Yes (pluralist) ‘Gödel’s second theorem’ is a non-rigid designator that is
in fact relative to a particular system. There is no such thing as ‘arith-
metic’ independent of some formal system, and so there is no absolute
fact of the matter about whether or not Gödel’s second theorem—
taken unrestrictedly—is true. On this conception, Meyer successfuly
established that arithmetic formulated relevantly can prove its own reli-
ability in a way that classical PA cannot. There are two related results,
Gödel-in-PA and Gödel-in-R], and Meyer’s result addresses the latter.

20He goes on: “We formulate different sets of rules, trying to capture these. There can
be a fact of the matter about who, if anyone, gets it right. In the same way, linguists can
take a spoken language and try to formulate a set of rules which capture its grammar.
Some grammars can just be wrong. Of course, once a set of formal rules is set up, they do
characterize some language or other; and even if it is not the one targeted, it can still be
spoken. Similarly, once rules for a mathematical practice are explicitly formulated, it can
be followed. Thus, an advocate of paraconsistent set theory with unlimited comprehension
does not have to claim that ZF(C) is wrong. ZF(C) is just as good a practice (qua practice)
as paraconsistent set theory. It is just that those who adhere to it are wrong if they claim
that it correctly characterizes our naive practice about sets” [34, p. 10].
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No (monist) There is a true arithmetic, but relevant arithmetic is not it.
Meyer proved that there is a formal system that has a finitary non-
triviality proof, but that formal system is not arithmetic. Indeed, any
theory with a finite model cannot be a theory of arithmetic, for that
very reason. The monist here can be agnostic as to whether classical
PA (or some second order variant) is true arithmetic or not, and can
leave as an open question whether or not Gödel’s second theorem holds
for true arithmetic. They just need to hold that there is some absolute
notion of being able to prove the reliability of arithmetic by finititary
means, and that Meyer’s proof does not address that notion. Such
a monist may even dispute that Meyer’s result holds, because it uses
classical model theory and this monist is non-classical (see below).

No (pluralist) ‘Gödel’s second theorem’ is a non-rigid designator that is
relative to a particular system, and in fact its meaning in different sys-
tems (especially when those systems are couched in different languages)
may so radically vary as to be incommensurable. The very fact that
Meyer can use ‘arithmetic’ to refer to a system with a finite model, or
that classical logicians can use ‘arithmetic’ to refer to a system with
Löb’s theorem, shows they are talking about such different things as
to make any shared meaning impossible. So Meyer did not overturn
Gödel’s second theorem because there is no such thing to overturn.
There is just Gödel-in-L for different values of L, and the fact that the
words look the same should not mislead us into thinking there is some
overlap, any more than the homophones ‘bank’ (as in river) and ‘bank’
(as in financial) overlap.

Note that the monist position need not be the same as a classical position;
one can be a relevantist monist. Note too that the two pluralist positions are
very similar, except that the first maintains some room for communication
between different parties, while the latter is persuaded by Quinean concerns
about the inscrutability of reference and sees no justification for assuming
we mean the same thing; changing the logic has changed the subject.

I am not chiefly concerned, in this paper, with textual interpretation
or trying to discern through the dark glass of time what Robert K. Meyer
actually thought about any of this, in 1976 or ever. I am not very able to
discern what my contemporaries believe about things, let alone those who
can no longer answer for themselves. Instead what I now plan to do is run
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through a few exercises in relevant/paraconsistent mathematics, now with
these distinct above readings in the forefront of our minds, to see if any
more clarity is gained once we see some non-classical mathematics in action.
Calculemus.

4 Relevant arithmetic in practice: theory and

metatheory

What does formalization of arithmetic with a relevant logic amount to?
Meyer, and possibly others, seemed to think that a shift to
relevant/paraconsistent logic for the practice of mathematics would be, on the
whole, relatively painless—that the ordinary proofs we teach and use would
on the whole survive unchanged when logic is reformulated from, let’s say,
classical to relevant.21 But Routley said to Meyer (according to Meyer) that
perhaps the project of “a ‘minimal mutilation’ of the orthodox standpoint
is too conservative; perhaps classical logic undermines classical mathematics
more thoroughly than I have undertaken here to believe...” [18, p. 29]. I
think that is correct—that a relevant (or just substructural paraconsistent)
formulation of arithmetic, or its metatheory, is not going to be a matter
of some minor aesthetic tweaks to the more classical versions—and in this
section I will give some evidence why.

Here are two concrete examples of ‘real’ relevant arithmetic in action. I
will approach these examples from the standpoint of a ‘pure’ relevant mathe-
matician reasoning as informally and intuitively about schoolroom arithmetic
as possible. One example is from elementary number theory, about prime
numbers, and one is from metatheory, about models for relevant arithmetic.
Both examples bring out the effect of using a relevant/paraconsistent logical
superstructure.22 A third example is relegated to the appendix.

21“[I]f we are to think relevantly about mathematics, what is to be hoped for most of
all are not new routes to old truths but an expansion of the pragmatic imagination” [17,
p. 5].

22Invaluable sources on working within substructural arithmetic ‘in the wild’, are [10,
40], [35, ch. 11].
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4.1 Prime numbers in relevant arithmetic

As you know, a number is prime iff it is only divisible without remainder
by itself.23 Let us try to formalize this in R], in two different ways, for two
different results. Let sx be the successor of x and × be multiplication, with
standard properties (cf. [17, pp.92-97]). Let div(x, y) mean that x divides y
without remainder: that ∃n(x× n = y) for n ∈ N.

4.1.1 Option 1: As a logical law

Let us say that a number p > 1 is prime iff

∀x(div(ssx, p)→ ssx = p)

This looks relatively promising; it treats being prime as a logical law (fol-
lowing Meyer’s distinction) and reads as “for p greater than 1, p is prime iff
to divide p is just to be p.”24 Actually this is a very strong statement when
stated with →, as Dunn explored with such relevant identity statements [8],
but then, prime numbers are very strong so maybe that’s okay.

Okay, that is, until one asks, what about composite numbers? A com-
posite number is one that can be divided: a number n > 1 is composite iff
∃x(div(ssx, n) ∧ ssx 6= n). If that is taken as the definition of ‘composite’
then we appear to lose the fact that every number greater than 1 is either
prime or composite. This is because ¬(A→ B) does not entail A∧¬B, and
neither does ¬(A ∧ ¬B) entail A → B. So the familiar duality fails. If a
number p is not prime, then ∃x¬(div(ssx, p) → ssx = p), but that’s all one
can say; negated conditionals are an inferential dead-end in relevant logic.
And if a number is not composite, then ∀x(¬div(ssx, n)∨ ssx = n), but that

23But wait—that makes 1 a prime number, as Aristotle would have approved. For
reasons of nicety, it is better for 1 not to be prime. So a number is prime is it is not
divisible without remainder by any numbers other than 1 or itself. So the definition
of prime number is negotiable, even before getting to logical issues; cf. [15]. For brief
comments on prime numbers by Meyer, see [18, p. 63].

24The trick of using the successor of x is inspired by Slaney in [40]. It avoids the need
for caveats about 0 and 1, or

∀x(x > 0 ∧ div(x, p)→ x = p ∨ x = 1)

which is handy because otherwise there is an extra disjunct in the consequent, and the
contrapositive ends up as x 6= p ∧ x 6= 1 → ¬(x > 0) ∨ ¬(div(x, p)). Disjunctions become
cumbrous without disjunctive syllogism.
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won’t get us up to being prime without disjunctive syllogism. Of course, one
could simply define composite numbers as those which are not prime, and
regain that every number is either prime or composite, but at the cost of
being able to use composite numbers for much of anything, because they are
defined as negated conditionals.

4.1.2 Option 2: As a descriptive fact

Let us say that a number p > 1 is prime iff

∀x(¬div(ssx, p) ∨ ssx = p)

Then it would be quite natural to say that a number n > 1 is compos-
ite iff ∃x(div(ssx, n) ∧ ssx 6= n). Doing so, we find immediately that ev-
ery number greater than 1 is either prime or composite by the duality of
conjunction/disjunction and existential/universal quantifiers, and the law of
excluded middle. Excellent.

This looks even more promising than the somewhat over-exuberant attri-
bution of lawmaker status to primes .... more promising, that is, until one
asks, what about the prime factorization theorem (that every number has a
unique set of prime factors)? One surely expects ‘true’ arithmetic to deliver
that. Euclid could deliver that by etching diagrams in sand.25 What about a
stepping stone to that fundamental theorem, Euclid’s ‘first theorem’, which
says that if a prime number p divides a product x× y, then either p divides
x or p divides y? Well, you are probably better at proving things than me,
but even arguing in a relatively natural and flexible way (which you can’t
really do in R]), starting from the extensional definition of composites then
all I get is

If p is prime and div(p, xy),
then div(p, x) or div(p, y),
or p 6= p.

Proof: Assume p divides xy. By linear order, where n < m∨m 6 n (see [17,
p. 112]), either the greatest common divisor of p and x, gcd(p, x), is greater
than 1, or identical to 1. (Let’s suppose that if it were 0, that would be
absurd (whence anything, including the result, follows).) If gcd(p, x) = 1,

25Or probably wax, since sand would get too messy [29].
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then there exist u, v such that

1 = pu+ xv

Therefore
y = puy + xvy

by multiplying y to both sides. But since p divides pu, and p divides xy on
assumption, p must divide both puy and xvy. Then p also divides the sum
puy + xvy = y. Super. But if gcd(p, x) > 1 then by the definition of p being
prime, then either gcd(p, x) = p—whence p divides x, which is good—or else
p does not divide p, and so p1 6= p. Well, it would be funny if p1 6= p, but
we can’t rule it out if we are aiming for a paraconsistent arithmetic. So the
proof stops there with that case unresolved.

Thus using the ‘descriptive’ material conditional phrasing leaves us with
some residual possibility of inconsistency that cannot be eliminated. This
residual possibility follows us right along, through the standard sequence of
proofs all the way to the

[Fundamental Theorem of Arithmetic] Let n > 1. Then there are
primes p0, ..., pm such that

n =
m∏
i=0

pi

and for any other such q0, ..., q`, either each pi is identical to
exactly one qj
... or some pi 6= pi.

So one gets ‘uniqueness up to inconsistency’: if p 6= p→ ⊥ for prime p, then
prime factorization is unique; but if not, not.26

The moral here is that substructural arithmetics are very sensitive to the
way notions are formulated, and classically equivalent ways are not equiva-
lent. The negation connective has been designed to permit more possibilities,
an expansion of the imagination—“Let us be free to wonder what it would
be like if 0 were equal to 2, and let us not be stopped short by our conviction
that 0 isn’t 2” [17, p. 5]—but in doing so the old routes to old truths are
obscured. If there is a single true notion of prime number, it is unclear how
to isolate it, except to see how various formulations fare. So the monist must
ask the real prime numbers to please stand up. The pluralist meantime sees
many different prime number games to play.

26For details, see [41, ch. 6].
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4.2 Is relevant arithmetic incomplete with respect to
classical arithmetic?

We’ve just had an example of the complications that arise in doing basic
number theory in R] and related logics. Now lets see what happens when we
try to study R] itself, in a mathematically precise way. We revisit the seminal
“Whither relevant arithmetic?” of 1992, wherein Friedman and Meyer prove a
result that they presented as saying that R] will not ‘recapture’ all of classical
PA [11] . A shift to ‘relevant metatheory’ does not quite repeal this result, but
it does undermine the result, as I will sketch.27 Our various monist/pluralist
readings of Meyer’s Gödel result can be applied to this example, too.

Friedman and Meyer answer the open question of the admissibility of
gamma, in the negative. This was the general question of whether R] could
do everything classical arithmetic can do, via the specific question of whether
there are any theorems obtainable with disjunctive syllogism not obtainable
without it. They answer the question by showing that there is a theorem of
PA that is not a theorem of R].28

I will sketch the Meyer-Friedman argument, and flag where substruc-
turally invalid steps are used (apparently essentially), with a ‘!’. The argu-
ment proceeds by forming a classical theory P+: (1) Form R]+ as all the
positive theorems (with arrow but without negation) of R], and so without
the axiom ‘0 is not the successor of any number’ (since that has a ‘not’ in it);
(2) Get PA+ by adding A→ (B → A) and A ∨ (A→ B); (3) Definitionally
extend to P+ by defining negation as

¬A := (A→ 0 = 1)

and adding
0 is not the successor of 0

which given the definition of negation is the axiom 0 = 1→ 0 = 1, which is
already a theorem. Then all strictly positive theorems of R] are theorems of
P+. It is already known (via a classical argument) that R] is a conservative
extension of its positive fragment (see, e.g. [27].

27Meyer discusses the issue of a ‘relevant metatheory’ at length in [17] and also later in
[20].

28This result can be obtained (classically), basically, because relevant arithmetic is flex-
ible, as the existence of finite models already show. Meyer and Urbas [27] point out that
easy “conservative extension results are characteristic of many relevant theories” in part
because relevant theories have some pretty non-standard models. Indeed.
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Rule γ (detachment for ⊃) is admissible iff adding it as a rule does not
change the set of theorems. This seems required, if R] is to be as strong as
PA. If γ is admissible in R], then the following purely classical condition is
true: every strictly positive theorem of PA is already a theorem of P+. Call
this the fundamental condition (FC). But the FC is false. Thus, by (a very
dubiously valid !) contraposition, γ is not admissible in R]. To see this, we
look at the Complex Ring C, and show it is a model of P+.

A set α is definable when it satisfies some formula A. A set is cofinite when
its complement is finite. Let C be the ring of complex integers. Friedman
and Meyer prove that every definable subset of C is either finite or cofinite.29

Then C is a model of R], if all the axioms of R], including the following
“powerful” form of induction, hold in it [11, p. 828]:30

∃xAx ∧ ∀x(Ax→ Asx)→ ∀xAx

Proof of induction in C: Assume the antecedent ∃xAx ∧ ∀x(Ax → Asx)
is true, and let α be the subset of C for which A holds. Then α is not
finite (!), so it is cofinite (disjunctive syllogism !); but then C \ α cannot
be cofinite (proof by contradiction !); since on assumption C \ α is closed
under predecessor, it must be empty (proof by contradiction !). Ergo α = C
(because if X \ Y = ∅ then X = Y !).

A check of the other axioms and rules shows that C is a model of P+. But
the quadratic residue formula (QRF)—for every odd n there is an integer that
is not a quadratic residue mod n— is a theorem of PA, and not a theorem
of P+, because it is false in C, which is a model of P+. Then QRF is not a
theorem of R]. Therefore FC fails for P+. Therefore, we are told to conclude
that relevant arithmetic is PA-incomplete and gamma fails for it.

Does our view of the Meyer-Friedman result change if we work in purely
relevant theory and metatheory? The proof that C modelsR] is very classical.
The authors are explicit about this—“it’s a purely classical question!”, they
say, published in the very classical Journal of Symbolic Logic, so I don’t mean

29The proof requires the fundamental theorem of algebra, where an equation of degree
n has at most n roots in C. It is highly dubious (!) that this can be paraconsistently
recaptured as stated.

30This is the form given in Friedman and Meyer’s paper. As a referee points out, the ∃
in the antecedent is funny as the base case for the induction, since e.g. 6 is greater than
5, and for all numbers greater than 5 their successors are too, but not all numbers are
greater than 5. My guess is that Friedman and Meyer are showing that this is indeed a
“surprising” model, which overgenerates (and still comes up short).
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to be criticizing the proof as if Meyer made some kind of mistake here. But
the proof, if it is intended to be persuasive, does assume that the “logical
superstructure” of metatheory (the study of what theorems belong to what
theories) is classical. This proof for the non-admissibility of gamma would
not survive unmutilated into a relevant reformulation of mathematics. It
assumes that the algebra of sets (e.g. subsets of C) is boolean and uses
disjunctive syllogism essentially. More, the proof that C is a model of P+

assumes that a subset in which ∃xAx ∧ ∀x(Ax → Ax + 1) holds cannot be
finite. Can’t it? Have we learned nothing from the finite models of R]?!

Without this last step especially, the whole ‘Whither’ argument breaks
down. It is not at all clear to me that, from the standpoint of a committed
relevant/paraconsistent mathematician, one should take this result as dispos-
itive. I think a (very) committed relevant number theorist could, at present,
say that the status of the Quadratic Residue Formula in relevant arithmetic
remains open. From the standpoint of relevant mathematics (alone), the
adequacy of relevant arithmetic remains undetermined.31

4.3 Is relevant arithmetic arithmetic?

The above excursions illustratively suggest, I think, that the choice of
formalism—imposing a classical versus relevant superstructure—is much more
than a superficial choice between fashion accessories. The ‘not-logic’ part
of arithmetic (and mathematics) Meyer presumes is harder and harder to
see. In the decades since the 1970s, it has become apparent that rele-
vant/paraconsistent mathematics cannot simply absorb standard orthodox
mathematics by making a few minor adjustments.32 The differences are too
pronounced. This isn’t to say that the majority of informal mathematics is
classical. But it isn’t straightforwardly relevant either. So we are thrown
back to the pluralism versus monism question, of how to understand Meyer’s

31What about the admissibility of gamma itself? This depends on how likely one thinks
that any inconsistencies in arithmetic are actually forthcoming, as Priest has argued, versus
being mere possibilities, as Meyer suggests. (Cf. Appendix below.) I’d say that hopes for
keeping all the consequences of disjunctive syllogism while still being paraconsistent are
not merely utopian, but deeply misguided...but rather than argue that, I’ll just ask: would
Meyer class gamma as a ‘descriptive fact’ or a logical law? (Cf. [19].) It seems like it
would be a fact; he is hoping it is just out there in the arithmetic topography, admissible
without being needed. But this leaves open still whether gamma is even true.

32Contra plans outlined in e.g. [38].
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work, and indeed how to understand paraconsistent arithmetic(s) and math-
ematics in general.

Is relevant arithmetic arithmetic? Well, a toy duck is not a duck, so just
calling something “relevant arithmetic” does not arithmetic make. If monism
is correct, then either R] (or some variant) is arithmetic or it isn’t. And then
it’s a matter of what you mean by ‘arithmetic’, which I’ll return to in the
conclusion. But given that different formalizations—precisifications—of our
informal talk about e.g. primes tend in very different directions, and different
inferential norms about e.g. models tend too to give different answers about
the adequacy of R], these exercises might suggest a push toward pluralism
instead—just different ways to do different things.

I’m not sure we should be so quickly satisfied, though. A toy duck is
not a duck. And to push a strong version of the pluralist line, there is no
such thing as unqualified arithmetic, without some relativization. There are
only different toy ducks, of various sorts, and no ducks simpliciter at all. No
ducks? Having reached this alarming question, it is time to conclude.

5 Conclusion: Thither (relevant) arithmetic!

A fair verdict here might be to say that Meyer’s argument (or rhetoric) reads
as monistic, while his results today look primed for a pluralistic reading. Is
there a way to thread this needle?

It depends on targeting exactly what we mean by pluralism v monism
about mathematics. Let’s assume that Meyer is mainly concerned with math-
ematical practice, how mathematicians talk and prove in ordinary informal
contexts. (This is as opposed to concern with outright platonistic mathe-
matical truth, which is a matter of what objects exist and what properties
they have, whether we talk about them or not.) As we’ve seen, first there is
the informal mathematizing at the whiteboard, which Meyer and we believe
has a logical superstructure; then there is the formalization thereof. But the
formalization may serve two different purposes. One is descriptive, a matter
of recording which canons of reasoning people actually seem to use, even
implicitly. Another is normative, offering adjustment and correction to show
which cannons of reasoning people ought to be using. The question of plural-
ism v monism about Meyer’s Big Claim can be sharpened, if not answered,
by filtering it through this distinction.

For a relevant logician, a monism centered on description of mathemat-
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ical practice does not look very promising; cf. [32, p. 221]. If Meyer’s Big
Claim is that actual ordinary arithmetic as it is taught and used by Ev-
eryday Working Families is better formulated using a relevant logic, then
he is probably wrong. If the project is to describe (roughly) what we find
schoolteachers, or Terry Tao et al, working with to actually prove things, I
doubt it is paraconsistent, let alone R or a nearby logic. (Arguably, I would
even say R is too stringent to fully describe the norms people actually (would
like to) believe in.) Now, a pluralist could try to slow things down here and
say that there is no ‘one’ thing people are doing called mathematics, that
if there are (is?) paraconsistent set theorists then paraconsistent logic does
correctly describe that behaviour; and if Meyer was a relevant arithmeti-
cian then relevant arithmetic describes him. But Meyer was not discussing
mathematics as practiced by a small cadre of logicians in Australia33; Meyer
meant ‘ordinary’ mathematics. And while I don’t concede that classical logic
is the right description of ordinary mathematical practice, I would concede
that, as a description, relevant logic is not either.

So maybe a free-to-be-you-and-me pluralism is the better way forward,
for relevant mathematics. In one of his late publications, Meyer states that
there is no One True Logic, not even One True Relevant Logic. There are
too many coherent variations on the Routley-Meyer semantics that dial the
strength of the logic up or down so finely that there is little hope of discerning
the exact right setting.34 If there is no one true logic, the pluralist approach
is looking better after all.

But there is still a straw to grasp at for the monist. It is the normative
straw. Meyer’s critical argument against classical arithmetic is about nega-
tion, and while he appeals to how ‘not’ actually works in our actual language,
I submit that he is more convincingly appealing to how negation ought to
work (or how it does work, in the Mind of God). An adequate and reliable
theory of arithmetic will have a negation that commutes transparently with
its provability (and truth) predicates, not because that’s actually how things
are, but because that’s how things ought to be. Meyer’s claim looks revi-

33See [39], which puts things more or less just this way.
34“The present overview ... makes clear (despite some of our hopes and utterances) that

the One True Logic does not exist [emphasis original]. ...[S]ubtle and not so subtle varia-
tions on semantical postulates produce different logics in the same family. The question
of which semantical postulates are correct makes no sense without further context” [16,
p. 280]. Note the first author on this article is Mares, who I gather took main responsibility
for the parts of the article that aren’t jokes.
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sionary because it is revisionary: on this reading, anyone not formalizing
mathematics with a paraconsistent negation (and for now, that might be ev-
eryone) is doing something wrong. Gödel’s theorems may be based on dirty
tricks, but they are tricks we’ve all been falling for. To improve, we all need
to start walking together out, toward the light.

On this normative approach, if True Arithmetic’s negation must respect
the behavior of negation—not necessarily in our language, but in Plato’s
ideal sky—then such negation may yet be paraconsistent, and then so would
be True Arithmetic. If relevant or paraconsistent logic is a corrective to our
practices, then the fact that our practices have not yet been so corrected is
irrelevant; it means there is more to do. And then, maybe, Meyer was right,
and Gödel’s theorem isn’t the end of the story. But for now, this is: Whither
relevant arithmetic? Thither relevant arithmetic.

Appendix: Is gamma even admissible in R]]?

With the (apparent) demise of R] as a replacement for classical PA, some got
to wondering whether a slightly stronger system could fit the bill—something
in which gamma is admissibile, but still escapes Gödel. The system R]] is
obtained by adding an ω-rule:

omega rule If ` A(n) for every numeral n then ` ∀xA(x).

(Individual variables may not appear free in theorems at all.) Meyer argued
that R]] is PA complete after all. Then, since most people think the omega
rule is a rule the way ‘Do it correctly’ is helpful advice, there has been some
hope of an R-sharp-and-a-half, that somehow (again) hits the sweet spot:
R]1/2 is weaker than R]], in that it has a less magical rule than the omega-
rule, but it is stronger than R] in that it can prove things like the quadratic
residue formula.35 To my knowledge, this unicorn remains undiscovered.
But, Meyer consoled us, at least we know that there is a system, R]], that is
true arithmetic [22].

In the spirit of the above exercises in substructural mathematics and
metatheory, I’d like to gently challenge even the result that gamma is admis-

35A referee points out that the precise form of induction of any kind is a very sensitive
issue in virtually every formalisation of arithmetic, including type-theoretic and category-
theoretic formulations.
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sible in R]].36 I will again mark paraconsistently dubious steps with ‘!’.
In [22, p. 7] Meyer proves what he calls the truth theorem:

If A is true in the standard model of arithmetic, then ` A in R]].

I’ll take this as proved, though the argument involves steps like adding as
an axiom that t = u whenever t = u is a correct numerical equation. (A
numerical equation is correct when “it is so according to the algorithms for
addition and multiplication that we all learned in school” [22, p. 6].) Assum-
ing the truth theorem, how is the admissibility of gamma proved? The proof
is a reductio: suppose that A ⊃ B and A are theorems, but B is not. Show
(via an argument due to Belnap) that there is an extension T of R]] where B
is still not a theorem, and there is a ‘really rotten countertheory F ’ of sen-
tences that are not in T . This needs to be further refined, though, since T
may be negation-inconsistent (it may include theorems and their negations)
in which case there is no hope of gamma. So further refine T to a consistent
subtheory (!) TR containing R]], where ¬A ∈ TR iff A 6∈ TR. Then gamma
is admissible. For suppose A ∈ TR and ¬A ∨ B ∈ TR but B 6∈ TR. By
construction, ¬B ∈ TR. Then A&¬B ∈ TR. Then by de Morgan rules,
¬(¬A ∨ B) ∈ TR, so TR is negation inconsistent, which is a contradiction.
Thus B ∈ TR, and gamma is admissible (!!!).

So, this is a classical proof by contradiction, with almost all of its working
parts turning on the consistency of the underlying metatheory. It proves
gamma is admissible, by using disjunctive syllogism in the argument, and so
a tacit assumption of consistency. For TR is only consistent if the condition
defining it is: if it is possible that some C ∈ TR and C 6∈ TR then there
proof stops. This point is not lost on Meyer. In a footnote following the
‘truth theorem’, (where he suggests that Gödel’s first incompleteness theorem
actually proves a contradiction (cf. [32, 17§5]),) he says (boldface original):

There is, in all of this, a generous helping of the Standard Mythol-
ogy. It may be that we are confused about truth in the standard
model N of the natural numbers. One could demonstrate this sim-
ply by improving Gödel to the point where an actual proof of
A&¬A for some A is classically forthcoming (in, say, first-order

36I’d not be the first to cast some doubt, if not on the details then on the importance
of the result. According to [25, p. 1], Restall disputes that even arr-sharp-sharp is true
relevant arithmetic. “ ‘How can that be,’ he wanted to know, ‘when there are sentences A
of R]] such that neither A nor ∼ A is a theorem?’ An example is 0 = 2→ 0 = 1.”
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Peano arithmetic). But, for present purposes, we are content to
suppose not; whence exactly one of A, ¬A is true in N, for each
arithmetical sentence A [22, p. 349].

Supposing consistency may be good enough for “present purposes”. The
future awaits.
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