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Abstract

The standard style of argument used to prove that a theory is unde-
cidable relies on certain consistency assumptions, usually that some
fragment or other is negation consistent. In a non-paraconsistent set-
ting, this amounts to an assumption that the theory is non-trivial,
but these diverge when theories are couched in paraconsistent logics.
Furthermore, there are general methods for constructing inconsistent
models of arithmetic from consistent models, and the theories of such
inconsistent models seem likely to differ in terms of complexity. In this
paper, I begin to explore this terrain, working, particularly, in incon-
sistent theories of arithmetic couched in three-valued paraconsistent
logics which have strong (i.e. detaching) conditionals.

1 Introduction

The tradition of relevant and paraconsistent arithmetic, following the pio-
neering work of Robert K. Meyer in [11, 12, 13], has produced many note-
worthy results. Among the most interesting of these have concerned inconsis-
tent models of arithmetic. The investigation into such structures, starting in
Meyer’s work and further driven by Dunn’s [6] remarkable result concerning
three-valued model theory has led to a variety of interesting developments
in inconsistent model theory; see [14, 15, 21, 22, 17, 18, 7]. Many of the
noteworthy results are consequences of the fact that Peano Arithmetic PA,
formulated in Priest’s three-valued paraconsistent logic LP, has finite, and
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hence decidable, inconsistent models.1 This remains true when LP is ex-
tended by a primitive conditional connective obeying the rule modus ponens
(I’ll call such a connective a detaching conditional), as in the logic A3, against
the background of which some arithmetic theories are studied in [28]. The
existence of decidable extensions of PA in paraconsistent logic raises interest-
ing questions concerning the relationship between decidability, consistency,
and related properties of theories.

In particular, a widely studied property of theories couched in classical
logic is essential undecidability – informally put, a theory is essentially unde-
cidable just when neither it nor any of its (consistent) extensions are decid-
able. The reason for the parenthetical word in the previous sentence is that a
trivial theory is decidable whenever it is formulated in a recursively defined
language, and triviality and inconsistency collapse in a non-paraconsistent
setting, such as that of classical logic. Among theories which are essentially
undecidable when formulated in classical logic, some of the most famous are
two weak arithmetics: Robinson’s arithmetic Q and Robinson’s other arith-
metic R. While Q is, almost certainly, more famous (e.g. it has come up for
relevant appraisal [5]), in some respects R is more interesting. In particu-
lar, it is perhaps the weakest essentially undecidable arithmetic which is still
natural, and, as shown in [3], it remains essentially undecidable in a large
class of logics including classical, intuitionist, fuzzy, and some substantially
weaker non-classical logics. In fact, what was shown in [3] is that R has the
separation property (according to the terminology used there, R, formulated
in a rather weak logic L0, is a Rosser theory) and this fact is used to prove
essential undecidability following an argument form due to Kleene.2 The
definition of essentially undecidable theory given in [3] is more general than
usual, since it requires that any extension of the theory formulated in any ex-
tension of the logic be undecidable. However, the generalisation only goes so
far, and the definition still only requires the undecidability of Σ1-consistent
extensions of R in L0. In a paraconsistent setting, where we can have in-
teresting, non-trivial, inconsistent (perhaps even Σ1-inconsistent) extensions

1Most of the models, logics, and theories of interest here have (more or less) standard
names consisting of alpha-numeric strings. To distinguish I’ll use a Calligraphic font for
names of theories, Bold-face for the names of logics, and Fraktur for the names of particular
models (I’ll use M as a metavariable over models when speaking generally).

2From this it is also shown that in a slightly smaller class of logics, those extending a
version of the non-distributive Lambek calculus with thinning and explosion, this result
also entails that Q is essentially undecidable.
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of a theory, it would seem that the decidability properties of these is worth
investigating.

In this paper, I’ll prove some results concerning Q and R in two para-
consistent logics with detaching conditionals, particularly as concerns their
(un)decidability, and that of their extensions. One such result applies the
argument form given in [3], while the others indicate how various kinds of
inconsistent models, and the theories of those models, complicate the usual
situation as concerns decidability. Many of these results are variations on re-
sults existing in the literature, but I will present some new proofs concerning
the relationship between Q and R, and furthermore aim here to catalogue
the old and new results in a way suggesting avenues for more systematic
investigations into this topic in the future. I start (§2) with preliminaries:
namely model-theoretic characterisations of, first, the key logics LP, RM3,
and A3, and then the most important kinds of inconsistent model, along-
side some standard results about these. The bulk of the paper (§3) proceeds
as follows: first I investigate the relationship between strong paraconsistent
versions of Q and R, showing that the latter is stronger than the former
in the sense that the finite collapse models of [21, 17] are not models of it;
then I show that a minor expansion of R, closed under A3, is essentially
undecidable in the sense of, and using the proof method of, [3]; finally, I’ll
discuss in more detail two models of interest for some open problems. The
first model, due to Sirokofskich and Paris [24, 18], has a decidable theory in
LP, and I’ll present some reason to think its theory in A3 is also decidable.
After this, I’ll discuss a class of infinite inconsistent models in which the true
contradictions all concern ‘non-standard numbers’, and give some reasons to
think that the A3 theory of such models will be inconsistent, infinite, non-
trivial, and undecidable. In the appendix I’ll give axiomatic formulations of
RM3 and A3.

2 Preliminaries

Definition 2.1 (Languages). A language signature is composed of a set
Con of name constants, a set Fun of functions (each with a fixed arity in
the natural numbers), and a set Pred of predicates (of fixed arities). The
language of arithmetic (with no subtraction or division) will be my focus,
referred to as L, and its signature consists in Con = {0}, Fun = {S1,+2, ·2},
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and Pred = {=2,≤2} where the superscripts denote arity.3 In this signature,
let the set of numerals contain 0 and n := S . . . S︸ ︷︷ ︸

n

(0) for each n ∈ Z+.

In addition to the signature, a language is composed of a denumerable
set of variables V ar, a set of terms Term defined out of V ar, Con, Fun as
usual, and formulas, defined from Term, Pred and connectives/quantifiers
as usual. All logics here will include the connectives ¬,∨ (with arities 1,2
respectively) and the quantifier ∀. Two defined connectives and a defined
quantifier are as below:

• A ∧B := ¬(¬A ∨ ¬B)

• A ⊃ B := ¬A ∨B

• ∃xA := ¬∀x¬A

All the systems other than LP will also include a binary connective →
(distinct from ⊃). Finally, to simplify some formulas, I’ll take → to be the
weakest-binding connective (so, for instance, (A ∨ B) → (C ∧ D) can be
re-written A ∨B → C ∧D).

2.1 LP and Two 3-Valued Extensions

The basic logic here is Priest’s LP, presented in [19].

Definition 2.2 (LP Model). An LP model is a tuple M = 〈D, I〉 where
D 6= ∅ and I is such that:

• If c ∈ Con then I(c) ∈ D

• If g ∈ Fun is n-ary then I(g) : Dn −→ D

• If R ∈ Pred is n-ary, I(R) = 〈I+(R), I−(R)〉 s.t. I+(R), I−(R) ⊆ Dn,
and furthermore I+(R) ∪ I−(R) = Dn.

3Note that identity does not have a fixed interpretation across all models, but will
have its interpretation fixed w.r.t. to particular models. In fact, the truth conditions for
identity statements will be common across the inconsistent models to be considered here,
and it will be the falsity conditions which fluctuate.
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Intuitively, I+(R) is the extension of R, comprising those (tuples of) objects
of which R is true, while I−(R) is the anti-extension, comprising those (tuples
of) objects of which R is false. The requirement that these exhaust the
domain guarantees, in light of the truth conditions given below for ¬, that
the law of excluded middle holds.4 For the next step, given M and a variable
assignment f : V ar −→ D, let If : Term −→ D be such that:

• if τ ∈ Con then If(τ) = I(τ)

• if τ ∈ V ar then If(τ) = f(τ)

• if g ∈ Fun of arity n and τ1, . . . , τn ∈ Term, then If(g(τ1, . . . , τn)) =
I(g)(If(τ1), . . . , If(τn))

An LP model M with valuation f is a function Mf : L −→ ℘({t, f})/{∅},
defined as follows (where f′(y) = f(y) for all y 6= x, call f′ an x-variant on f):

• t ∈Mf(R(τ1, . . . , τn)) ⇐⇒ 〈If(τ1), . . . , If(τn)〉 ∈ I+(R)

• f ∈Mf(R(τ1, . . . , τn)) ⇐⇒ 〈If(τ1), . . . , If(τn)〉 ∈ I−(R)

• t ∈Mf(¬A) ⇐⇒ f ∈Mf(A)

• f ∈Mf(¬A) ⇐⇒ t ∈Mf(A)

• t ∈Mf(A ∨B) ⇐⇒ t ∈Mf(A) ∪Mf(B)

• f ∈Mf(A ∨B) ⇐⇒ f ∈Mf(A) ∩Mf(B)

• t ∈Mf(∀xA) ⇐⇒ t ∈Mf′(A) for all x-variants f′ on f

• f ∈Mf(∀xA) ⇐⇒ f ∈Mf′(A) for some x-variant f′ on f

I’ll write M, f �LP A just in case t ∈ Mf(A), and M � A just in case
M, f �LP A holds for any f.5 Given a set of formulas T , M �LP T just in
case for every T ∈ T , M �LP T . Finally Γ �L A, for Γ ∪ {A} ⊆ L, holds iff
for every model M , if M �L G, for all G ∈ Γ, then M �L A.

4In [3], we needed to extend the arithmetic theories to handle logics without excluded
middle. Since LP, and the extensions given here, satisfy excluded middle, I’ll work with
the simpler versions of the theories here.

5Sometimes, when A is a closed formula (i.e. with no free variables), I’ll write the value
of A in M just as M(A).
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From this definition, one can define the sets of models of two (language) ex-
tensions of LP. The first, RM3, is the three-valued extension of the relevant
logic R plus the mingle axiom. It has been widely studied, and information
on it is available in [1, 23], among other places.

Definition 2.3 (RM3 Model). An RM3 model is like an LP model, but:

Mf(A→RM3 B) =


{t, f} if Mf(A) = Mf (B) = {t, f}
{t} if Mf(A) = {f} or Mf(B) = {t}
{f} else

Given an RM3 model M , the expressions “M �RM3 A” and “M �RM3 T ”
are defined analogously to that given for LP.

Less well known than RM3 is a strong paraconsistent logic A3, following
my naming convention from [28]. This logic was first presented, as far as I’m
aware, by D’Ottaviano and da Costa [4], and it was later studied by Avron
[2]. This logic extends LP by a conditional very like the material implication,
for which reason it is called “LP + cmi” in [9].

Definition 2.4 (A3 Model). An A3 model is like an LP model, but:

Mf(A→A3 B) =

{
{t} if Mf(A) = {f}
Mf(B) else

“M �A3 T ”, and similar expressions, are defined as before.

Where context clarifies which system is meant, I’ll just write → or �
without a subscript. In general, whenever a claim is made about the satis-
faction of a theory in a model of a logic L, the primitive implication should
be interpreted as that belonging to L.

Definition 2.5. Given a logic L, among those considered here, and a theory
T ⊆ L, let TL = {A | T �L A}. Note that ‘theory’ is being used here just to
refer to a set of sentences, with closure under a logic being applied ‘after the
fact’, as it were.6

6Of course, this definition does imply that TL is a ‘theory’ in the more common use of
the word (as given in [16, p. 21], for instance) since if A,B ∈ TL then A ∧ B ∈ TL (at
least for any L I’ll consider here), and furthermore if {A} �L B (or if L ∈ {RM3,A3}
and �L A→ B) and A ∈ TL then B ∈ TL.
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Definition 2.6. Let M be a model in logic L, among those considered here.
Let ML = {A | M �L A}, i.e. let it be the complete theory of the model,
relative to L.

Definition 2.7. Let L be a logic and T a theory in the language L, perhaps
the L-theory of some model of L.

• TL is inconsistent iff there is an A ∈ L such that A,¬A ∈ TL.

• TL is trivial iff TL = L.

• TL is decidable iff it is decidable whether A ∈ TL, for any formula A.

• TL is Rosser (or has the separation property) just in case for any disjoint
pair of recursively enumerable α, β ⊆ N, there is a formula A(x) such
that for any n ∈ N:

• n ∈ α⇒ A(n) ∈ TL
• n ∈ β ⇒ ¬A(n) ∈ TL

Finally, instead of A ∈ TL, I’ll usually write TL ` A.

Note that any trivial theory is inconsistent and decidable. In order to
decide inclusion in a trivial theory, apply the algorithm “when you see a
formula, say “yes”!”.

2.2 Two Robinson Arithmetics

The results here will concern two arithmetic theories, both studied exten-
sively by Raphael Robinson [26], which are axiomatised as follows (to obtain
versions of these theories in the language of LP replace each instance of →
with ⊃).

2.2.1 Basic Theory of Identity

Each theory I consider will be include the following axioms governing identity
(though this will be a non-logical predicate).

(=ref) x = x

Australasian Journal of Logic (18:5) 2021, Article no. 11



480

(=com) x = y → y = x

(=tran) x = y → (y = z → x = z)

(LLterm) x = y → t(x) = t(y) for any term t

(LLform) x = y → (A(x)→ A(y))

2.2.2 Robinson’s Arithmetic: Q

This axiomatisation is given by Dunn [5] in studying a version couched in
a relevant logic, for which the distinction between the two versions of (Q9)
is salient. I’ll call Q that theory axiomatised with (Q9) and Qa that with
(Q9a). Note, it is always assumed that S,+, · are functional.

(Q0) x ≤ y ↔ ∃z(x+ z = y)

(Q1) x+ 0 = x

(Q2) x+ S(y) = S(x+ y)

(Q3) x · 0 = 0

(Q4) x · S(y) = (x · y) + x

(Q5) x = y ↔ S(x) = S(y)

(Q6) S(x) 6= 0

(Q7) x 6= 0→ ∃y(x = S(y))

(Q7a) x 6= 0 ⊃ ∃y(x = S(y))

2.2.3 Robinson’s Other Arithmetic: R

(R0) x ≤ y ↔ ∃z(x+ z = y)

(R1) n+m = n+m

(R2) n ·m = n ·m
(R3) n 6= m for n 6= m

(R4) x ≤ n→ (x = 0 ∨ · · · ∨ x = n)

(R5) x ≤ n ∨ n ≤ x

Classically, and in any logic extending the stronger system of [3], R is strictly
weaker than Q, and so essential undecidability results concerning the former
can be used to obtain (essential) undecidability results concerning the latter.

Australasian Journal of Logic (18:5) 2021, Article no. 11



481

2.3 Some Models of Arithmetic

For my purposes, some information is needed concerning a handful of different
kinds of models of arithmetic. The first model is familiar.

Definition 2.8 (The Standard Model of Arithmetic). The standard model
of arithmetic N is that where formulas are assigned values in {{t}, {f}}, and
numerals and arithmetic operations are interpreted by the natural numbers
(N) and the usual operations thereon. Since N assigns binary values, it is the
classical standard model (as can be verified by checking the truth conditions
on connectives in any of the logics under consideration here, noting that they
assign the classical values when given classical inputs).

In addition to the standard model, I’ll need to appeal to one more kind
of classical model of arithmetic - for the purposes of discussing these models
let CL be classical logic and �CL be classical satisfaction, defined as usual.

Definition 2.9 (Countable Non-Standard Models of Arithmetic). A model
M is a non-standard model of arithmetic is a model the initial segment of
which is the natural numbers N (or any structure of that order type), followed
by countably many copies of Z (or structures of that order type). For a more
formal definition, and results concerning these, consult Kaye’s classic book
on models of Peano Arithmetic [10], or most textbooks on classical model
theory. I’ll only discuss them at an informal level, so will leave it here.

With these classical models out of the way, the more interesting mod-
els, for my purposes, are collapse models, which can be obtained from the
standard models in a more or less fixed way:

Definition 2.10 (Collapse Models of Arithmetic). A collapse model of arith-
metic is given by closing the structure of N under a congruence relation ∼
on N (or an extension thereof by some non-standard numbers). The natu-
ral numbers (perhaps along with some non-standard numbers) are collected
into equivalence classes according to ∼, and these are the elements of the
collapsed model. That is, given ∼, set the equivalence class on a ∈ N to
[a] = {b ∈ N | a ∼ b} and ‘type-lift’ the arithmetic operations as follows:
S([x]) = [S(x)], [x] + [y] = [x+ y], and [x] · [y] = [x · y].

A collapse model of arithmetic, in a logic extending LP, consists in taking
the quotient over D, either the natural numbers or an extension thereof by
some non-standard numbers, D∼ = {[a] | a ∈ D}, and I such that, first,
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I(0) = [0], second, S,+, · satisfy the above listed constraints (i.e. so that ∼
is really a congruence w.r.t. these), and finally = is as follows:

• I+(=) = {〈[a], [b]〉 | a ∼ b}

• I−(=) ⊇ {〈[a], [b]〉 | a 6= b}

These equality conditions are where the action is, because while the exten-
sion of identity is fixed by the equivalence classes, the anti-extension, while
required to include all pairs of unequal numbers, can be expanded beyond
this. In fact, in all but one of the models I’ll discuss, the Sirokofskich model,
the ⊇ will actually just be =. The general point here is that these conditions
can generate inconsistent equality statements even between numerals, since
two numbers may inhabit the same equivalence class, while being unequal
to each other in the original model. In the Sirokofskich model one goes even
farther by expanding the anti-extension of = to include as many pairs as
possible, making it so that almost all true equalities give rise to true contra-
dictions, but I’ll set aside further discussion of this model for later. As a final
note, in these, and every other kind of model, I’ll fix that, for any variable
assignment f, Mf(x ≤ y) = Mf(∃z(x+ z = y)), so this will be left tacit from
here on out.7

I’ll be interested in two kinds of finite collapse model here – on the left is
a cyclic model with n elements (i.e. a cycle with period n), Cn, and on the
right is a heap model Hm,n with a ‘tail’ of m− 1 initial elements, followed by
a cycle of period n:

[0] . . .

[n− 1]

[0] [1] . . . [m] . . .

[m + n− 1]

The following definitions rigorously characterise these kinds of models:

7Note that this is condition is sufficient to settle the truth of (Q0) and (R0) in the
logics under consideration here.
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• A cyclic model of arithmetic is induced by, fixing an n ∈ N, setting
[x] = {y | ∃k ∈ Z(x + kn = y)}, and setting the anti-extension of =
to be {〈[m], [n]〉 | m 6= n}. Call Cn that structure where [n] = [0], i.e.
that structure where ∼ is equivalence mod n.

• A heap model Hm,n is induced by:

[i] =

{
{i} if i < m

{j | ∃k ∈ Z(i+ kn = j)} else

(with the anti-extension of = as in the cyclic models).

Also of interest here is one special case not covered explicitly by the definition
of H – namely, where m is allowed to be an infinite number. These are
obtained by taking a countable, non-standard model and collapsing the non-
standard elements to form a cycle of period m. Call such a model Hω,m.

Let me record some immediate consequences of the definitions.

Proposition 2.11. Suppose L ∈ {LP,RM3,A3} - then the following facts
obtain:

(i) Cn
L and Hm,n

L are decidable for any m,n ∈ N.

(ii) For m1,m2 < n and m1 6= m2, Cn 2L m1 = m2.

(iii) For m1,m2 < m and m1 6= m2, H
m,n 2L m1 = m2.

(iv) Cn �L n+ n = n ∧ n+ n 6= n.

(v) For n > 0, Hm,n �L m+ n = m ∧m+ n 6= m.

These facts indicate that the finite models, in addition to being decidable,
are also non-trivial and not only inconsistent but ∆0-inconsistent, as the
inconsistency already features in (in)equalities between numerals. Lastly, I’ll
record the single most important fact about inconsistent models of arithmetic
in LP.
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Lemma 2.12 (Collapse). Fix an LP model M = 〈D, I〉 in L. Let ∼ be
an equivalence relation on D and a congruence on the interpretations of the
function symbols, and let I∼ be defined from I as indicated above, and set
M∼ = 〈D∼, I∼〉. Call the resulting model M∼. Then for any formula A ∈ L,
M(A) ⊆ M∼(A) (i.e. if t, f is in the value of A in the original model, it is
also in the value of A in the collapsed model).

The proof of this result, and related results, are available in [21, 22],
or pretty much anywhere fine inconsistent mathematics are sold. By way of
explanation, in the language of arithmetic, in LP (i.e. with connectives ∨,¬),
the result of ‘collapsing’ a model under ∼ can only be to expand the truth
values of the formulas. In particular, it cannot take a sentence from being
satisfied to being not satisfied. The collapse lemma does not hold for A3
or RM3 since these contain detaching conditionals (this follows by a result
of Ferguson [7, §13.3]) but nonetheless some three-valued models obtained
by collapsing classical models are models of arithmetic theories closed under
these logics. As we’ll see, this fact has some interesting consequences for the
question of decidable extensions in those paraconsistent arithmetics.

3 Paraconsistent Q and R
First, I’ll record some facts concerning versions of R and Q in A3 and RM3,
indicating why Robinson’s other arithmetic R is more interesting, in a para-
consistent setting with a detaching conditional. In particular, R, in either
logic, is more demanding than Q in the sense that it rules out a wider range
of inconsistent models. The former rules out more inconsistent models than
the latter. First, note that all cyclic models are models of QA3:

Theorem 3.1. For each n ∈ N, QA3 ⊆ Cn
A3.

Proof. I’ll leave the interested reader to verify that all arrow-free axioms
of QA3 hold in any cyclic model, so I’ll only consider the arrow-including
axioms. It is easy to see that Cn

A3 ` x = y → S(x) = S(y), just given the
definition of the type-lifted S. For the converse, note that if Cn

A3 ` S(x) =
S(y) then 〈[S(x)], [S(y)]〉 ∈ I+Cn(=) and thus ∃k ∈ N(x + kn + 1 = y + 1)
from which it follows that ∃k ∈ N(x + kn = y) and so Cn

A3 ` x = y. Thus
Cn
A3 ` S(x) = S(y) → x = y. Similarly reasoning to the above guarantees

that Cn
A3 ` x = y → x+z = y+z∧z+x = z+y. The argument for (Q9) just
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holds due to the fact that Cn
A3 ` ∃y(x = S(y)) holds for all x and the fact that

the A3 arrow satisfies thinning. As for (Q0), this holds due to the assumption
that, for any variable assignment f, Cn

f (x ≤ y) = Cn
f (∃z(x + z = y)) (from

now on, steps like this one will be left tacit).
This leaves the identity axioms, of which I’ll just consider (LLform), as

the others are more or less immediate from the interpretation of =. Given
the fact that every element of Cn is named by a numeral, let us just consider
the instance m1 = m2 → (A(m1) → A(m2). Note that, in any model M
of A3, t ∈ M(B → C) iff either t /∈ M(B) or t ∈ M(C). So, in order to
prove the desired result, it suffices to show that if t ∈ Cn(m1 = m2) and
t ∈ Cn

A3(A(m1)) then t ∈ Cn
A3(A(m2)). This can be shown by induction on

the complexity of A. The salient facts here are that, if A is atomic, then
we have the desired result simply because of the fact that ∼ is congruent
over the arithmetic operations. Suppose that A is a negated atomic formula
– say, A(x) := x = y. If t ∈ Cn

f (m1 6= y), and thus f ∈ Cn
f (m1 = y). Let

us fix f(y) = [m3], and note that this entails that 〈[m1], [m3]〉 ∈ I−Cn(=), i.e.
m1 6= m3. But by the assumption that t ∈ Cn(m1 = m2), it follows that
[m1] = [m2], and thus 〈[m2], [m3]〉 ∈ I−Cn(=). Thus t ∈ Cn

f (m2 6= y), as
desired. The other cases where A(x) is a negated atomic are similar, so I’ll
leave them to the reader. This result amounts to showing that for any atomic
formula, A, if t ∈ Cn

f (x = y), then if t ∈ Cn
f (A(x)) then t ∈ Cn

f (A(y)) and if
f ∈ Cn

f (A(x)) then f ∈ Cn
f (A(y)). The rest of the result follows by fixing this

as the induction hypothesis: if t ∈ Cn
f (x = y), then for any subformula B of

A, if t/f ∈ Cn
f (B(x)) then t/f ∈ Cn

f (B(y)).8

This has an immediate consequence related to decidability:

Corollary 3.2. QA3 has countably many extensions which are decidable,
inconsistent, and non-trivial.

Proof. Immediately from Thm. 3.1 and Prop. 2.11, and the fact that each
Cn is finite, while all those with n > 1 are non-trivial.

A related result is available for RM3, but only for Qa therein:

8The reasoning to show that (LLform) is valid in the various other kinds of models I
consider is similar to that here, so I’ll leave it tacit in future arguments.
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Proposition 3.3. While C2 2RM3 1 6= 0 → ∃y(1 = S(y)), nonetheless all
the Qa axioms are satisfied in each Cn

RM3.

Proof. Note that C2(1 6= 0) = {t} and yet C2(1 = S(2)) = {t, f}, from which
it follows that C2

RM3(1 6= 0 → ∃y(1 = S(x))) = {f}. The second part is
verifiable by cases, with most of the cases the same as in Thm. 3.1.

This means we can obtain the following version of Cor 3.2 for RM3:

Corollary 3.4. Qa
RM3 has countably many decidable, inconsistent, and non-

trivial extensions.

These propositions are interesting in light of the fact that, in general,
(R4) is not satisfied by cyclic models when interpreted using either of the
detaching conditionals considered so far:

Lemma 3.5. For each n ∈ N, Cn+2 2L x ≤ n→ (x = 0 ∨ · · · ∨ x = n) when
L ∈ {RM3,A3}.

Proof. Note that Cn+2(n+ 1 ≤ n) = {t, f} since t ∈ Cn+2(n+ 1+n+ 1 = n)
because 2n+2 ∼ n, and f ∈ Cn+2(n+ 1+n+ 1 = n) because 2n+2 6= n (sim-
ilar reasoning provides that f ∈ Cn+2(n+ 1+m = n) for any m ∈ N). Hence
Cn+2(∃y(n+ 1 + y = n)) = {t, f}. On the other hand, Cn+2(n+ 1 = 0) =
· · · = Cn+2(n+ 1 = n) = {f} because we have both n+ 1 � 0, . . . , n+ 1 � n
and n+ 1 6= 0, . . . , n+ 1 6= n. Thus by the definitions of → in either RM3
or A3, we have Cn+2(n+ 1 ≤ n→ (n+ 1 = 0 ∨ · · · ∨ n+ 1 = n)) = {f}.

This means that neither QA3 nor Qa
RM3 satisfy (R4), and thus:

Theorem 3.6. RA3 * QA3.

So in either logic, R is the ‘stronger’ theory in the sense that it can
rule out finite cyclic models, while Q cannot. A further upshot of this for
questions of decidability is that even if we can show that R is undecidable
in A3, this fact doesn’t automatically transfer over to Q (or Qa), as it does
in many other logics, as in [3]. In fact, similar results can be given for finite
heap models, which are also not models of R in A3 or RM3:

Lemma 3.7. Hm,n 2L m+ 1 ≤ m → (m+ 1 = 0 ∨ · · · ∨m+ 1 = m) when
L ∈ {A3, RM3} and n > 0.
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Of course, it can quickly be shown that finite heap models are not even
models of Q or Qa in A3 or RM3, because:

Lemma 3.8. Hm,n 2L S(m− 1) = S(m+ n− 1) → m− 1 = m+ n− 1
when L ∈ {A3, RM3}.

and thus:

Theorem 3.9. RL,Qa
RM3,QA3 * Hm,n

L for L ∈ {A3, RM3}.

So of the finite models I’ve considered here, only the cyclic models tell the
difference between paraconsistent R and Q, when a detaching conditional is
present, but nonetheless there is a substantial difference.

In fact, R is interesting in addition because the methods of [3] can be
applied to show that a relatively minor extension of this theory in A3 (and
a more major extension in RM3) is essentially undecidable.

3.1 A Variation on Paraconsistent R
The aim in this section will be to prove that a certain extension of RA3 is
Σ1-complete, Σ1-sound, and Rosser. This suffices to prove essentially unde-
cidability. In order to adapt the proof of [3], I’ll need the following ‘classical’
definition of the set of Σ1-formulas:

Definition 3.10. A formula A is a ∆0-formula (A ∈ ∆0) iff A is built up
from atomic propositions by the use of ∧,∨,¬ and bounded quantifiers of
the following form, where x � y is shorthand for ¬(x ≤ y):

∀x ≤ yA := ∀x(x � y ∨ A)
∃x ≤ yA := ∃x(x ≤ y ∧ A)

A is a Σ1-formula (A ∈ Σ1) iff A has the form ∃xB for some B ∈ ∆0.
TL is Σ1-complete just in case for every A ∈ Σ1, N � A⇒ TL ` A.
TL is Σ1-sound just in case for every A ∈ Σ1, TL ` A⇒ N � A.

First let me explain the need for an extension of R in these cases –
starting with RA3. While the implication logic of A3 is that of material
implication, the full system does not admit the rule form of modus tollens:
A→ B,¬B V ¬A, (where V should be understood as a separator in a rule
of proof in Smiley’s [25] sense). To see this, note that if A3 did admit this
rule, one could quickly derive (A ∧ ¬A) → B, which is not an A3 validity,
from the following pair of A3 validities:
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• ¬((A ∧ ¬A)→ B)→ ((A ∧ ¬A) ∧ ¬B)

• ¬((A ∧ ¬A) ∧ ¬B)

In order to obtain a strong paraconsistent logic (i.e. one with a detaching
conditional), the choice comes down to a few logical principles one can eject,
and in the context of extensions of LP the salient choice is between thinning
(K), written axiomatically as A → (B → A) and contraposition (the axiom
form of which is (A → B) → (¬B → ¬A)). A3 opts for (K) and the above
result indicates, in light of this fact, that even the rule form of modus tollens,
(rMT), a very weak form of contraposition, is inadmissible in A3.9

The reason this fact is important is that one step of one of the lemmata
needed for the proof of essential undecidability given in [3] requires its use
(and I don’t know of another way to do it).10 Besides (rMT), however, A3
has all the other properties needed for the argument structure followed in
[3]. So the only necessary addition in order to obtain a theory for which that
argument goes through would be to extend R to make up for the lack of
(rMT). As a matter of fact, the argument of [3] only needs this rule in one
place, so we can get away with adding one additional axiom scheme:

( ′) ¬(x = 0 ∨ · · · ∨ x = n)→ x � n

Let R′ be the result of adding ( ′) to R. Note that this is not an additional
logical axiom, but merely an arithmetic axiom, and one which seems innocu-
ous (indeed, as we’ll see, R′A3 does still have models, and indeed inconsistent,
non-trivial models, showing that the result is still paraconsistent). Also, since
R′A3 extends RA3, the non-inclusion results proved before also extend to the
former. With this addition, we can make the argument form of [3] go through
as follows – first proving a Σ1-soundness and -completeness result, and then
proving that R′A3 is Rosser.

Lemma 3.11. N �CL A(t1, . . . , tn) ⇐⇒ R′A3 ` A(t1, . . . , tn), for A ∈ Σ1.

9This fact also indicates that A3 is not congruent w.r.t. to valid biconditionals, since
A↔ B can be valid while ¬A↔ ¬B is not; e.g. note that (A ∨ ¬A)↔ (B ∨ ¬B) is valid
but (A ∧ ¬A) ↔ (B ∧ ¬B) is generally not, despite the validity, in A3, of all DeMorgan
equivalences.

10The fact that this rule is needed in [3] is somewhat hidden by the fact that they use
a defined negation, from which the rule follows as a special case of the weak transitivity
rule A→ B,B → C V A→ C.
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Proof. The right-to-left direction follows given that R′A3 is a sub-theory of
RCL. For the converse, I’ll adapt the proof of [3, Thm. 4.8]. The cases in
which no negations occur go through just the same way in A3 as they do
there, as the positive fragment of A3 properly extends that of the basic logic
employed there (see the axiomatisation of A3 in the Appendix). So I’ll just
concern myself with those cases where ¬ occurs.

Suppose A = ∀x ≤ yB(x), and so N �CL B(m) for each m ≤ k (for fixed
k). So by IH, it follows that R′A3 ` B(m), and thus R′A3 ` y = m→ B(y).
Since this holds for each such m, it follows that R′A3 ` (y = 0 ∨ · · · ∨ y =
k)→ B(y), so R′A3 ` y ≤ k → B(y), and thus R′A3 ` y ≤ k → y � k∨B(y),
and since R′A3 ` y ≤ k ∨ y � k, it follows that R′A3 ` y � k ∨ B(k), and
thus R′A3 ` ∀x(y � x ∨B(x)), as desired.

The case where A is n 6= m is immediate. Next, if N �CL n+ k 6= m
then n+ k 6= m and so R′A3 ` n+ k 6= m and thus R′A3 ` n+ k 6= m by the
instance n+ k = n + k → (n+ k 6= m → n + k 6= m) of (=prin). The case
for multiplication is similar.

The case which requires ( ′) is that where A is n ≤ m. If n � m then
for each k ≤ n, k 6= m, and thus for each such k, R′A3 ` k 6= m, and so
R′A3 ` 0 6= m ∧ · · · ∧ n 6= m, so by (DeM), R′A3 ` ¬(0 = m ∨ · · · ∨ n = m),
and thus R′A3 ` n � m.

The cases where A is the negation of a conjunction or disjunction formula
follow from (DeM) in its various guises, and (DNE) takes care of the case
where A is a negation formula. The quantifier cases are similarly straight-
forward to adapt, given that ∀x¬A → ¬∃xA and ∃x¬A → ¬∀xA are valid
in A3, and are left to the skeptical reader.

Lemma 3.12. R′A3 is Rosser.

Proof. Consult the proof of [3, Thm. 4.9]. Altering notation a bit, the
argument proceeds by starting with the assumption that α, β ⊆ N are disjoint
and r.e., and so that there are ∆0 formulas A,B s.t.:

• n ∈ A ⇐⇒ N �CL ∃vA(n, v)

• n ∈ B ⇐⇒ N �CL ∃vB(n, v)

Given the definitions of C(x, v) := ¬(¬A(x, v)∨∃u ≤ vB(x, u)) and D(x) :=
∃vC(x, v), the argument of [3] can be easily adapted to show n ∈ A only if
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R′A3 ` D(n) and n ∈ B only if R′A3 ` ¬D(n). The reason is that, since
the (rMT) is not needed in that proof, every inference needed is available in
RA3.

From these lemmata, the following shortly follows:

Theorem 3.13. Let L be an extension of A3, and let theory T , in a language
which extends the language of arithmetic, be such that TL is Σ1-consistent and
R′L ⊆ TL. Then TL is undecidable.

A similar extension of RM3 can be used to prove an essential unde-
cidability for an extension of R in RM3 – namely, one extended by certain
instances of thinning. Actually, one can more or less immediately prove that:

Lemma 3.14. RRM3 is Σ1-sound and Σ1-complete.

So the only place where the argument breaks down concerns the proof of
Rosser-ness and the only inference needed in that argument which isn’t avail-
able in RM3 is closure under an instance of the rule form of thinning, namely
that if RL ` B(m) holds, where B ∈ ∆0, then RL ` m ≤ v → B(m). So it’s
adequate to add to R axioms of the form (where B may be any ∆0-formula
containing some numeral m, perhaps in addition to other terms):

(∗) B(m)→ (m ≤ v → B(m))

obtaining R∗RM3. Then the arguments of [3] can be adapted to prove:

Lemma 3.15. R∗RM3 is Rosser.

and thus,

Theorem 3.16. Let L be an extension of RM3, and let theory T , in a
language which extends the language of arithmetic, be such that TL is Σ1-
consistent and R∗L ⊆ TL. Then TL is undecidable.

However this addition to RRM3 strikes me as much less innocuous than
the addition needed for RA3. Perhaps most noteworthy here is that the
schematicity required concerns not just terms but also formulas - it seems
that we need to add very many instances of thinning. These provide some
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reasons to be skeptical of how minor an addition to RRM3 is needed in order
to obtain this result.

In any case, for the rest of the paper I’ll consider some further extensions
of R′A3, and pose some open problems concerning particular models. The
overarching question here is, given that R′A3 is essentially undecidable, what
is the status of its inconsistent extensions? We’ve already seen that the finite
collapse models do not satisfy even the RA3 axioms, since they fail to satisfy
(R4), which raises the question whether R′A3 has any non-trivial decidable
extensions – since the theorem indicates that none of its consistent extensions
are decidable, these will have to be inconsistent extensions. Furthermore,
does it have any undecidable, non-trivial, inconsistent extensions? While I
won’t answer these questions, I will point at likely candidate extensions (one
which I suspect to be decidable, and one I suspect to be undecidable) and
gesture at some facts which may provide some grist for the salient proofs.

3.2 The Sirokofskich Model

Sirokofskich and Paris [24, 18] produce an especially interesting (or perhaps
especially uninteresting) inconsistent LP model of arithmetic – one which
is both infinite and decidable. The trick is to make the model satisfy as
many contradictions as possible, while still being non-trivial. Their model is
defined as follows: fix T , a complete, consistent extension of PACL, and let
M be a countable non-standard model of T . Define a sequence {0} = C0 ⊆
C1 ⊆ · · · ⊆ Cj ⊆ . . . of initial segments of M , closed under S and ·, where
M =

⋃
Cj. These initial cuts of the original model will form the elements

of the collapsed model, for which purposes fix a0 = 0 and aj ∈ Cj/Cj−1
as representatives of their cuts (so, for example, the interpretation of 0 in
S, S(0) is [a0]), and we’ll fix the interpretation of successor so that [a1] is
a successor of [a0], but otherwise every other element is its own successor,
depicted as follows (where the arrows depict S, not ≤):

[a0] [a1] [a2] . . . [an] . . .

In order to get the desired behavour, one forms S by closing M under the
congruence defined as follows:
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a ∼ b ⇐⇒

{
a = b = 0 or

a, b ∈ Cj/Cj−1 for some j

So the domain of S is {[aj] | j ∈ N}, and the type-lifted operations are
defined as follows: [aj] + [ak] = [amax{j,k}],

S([aj]) =

{
[a1] j=0

[aj] else
[aj] · [ak] =

{
[a0] if min{j, k} = 0

[aj] + [ak] else

Finally, I−S (=) = M∼ ×M∼/〈[a0], [a0]〉.
So successor is as described by the picture, addition just takes you to the

larger of its addends, and multiplication behaves just like addition except in
having zero as a multiplicative identity. As mentioned earlier, the trick here
is to dramatically increase the number of true contradictions, by satisfying
every negated identity except 0 6= 0, so that almost every true identity is a
true contradiction.

Paris and Sirokofskich argue that SLP is interpretable in classical Pres-
burger arithmetic, and hence is decidable. They claim that for each formula
A, one can recursively specify an A∗ s.t.:

S �LP A ⇐⇒ 〈N, S,+, <,=〉 �CL A
∗

Since classical Presburger arithmetic is known to be decidable, this means
that SLP is also decidable. This has the remarkable result that SLP is an
inconsistent, non-trivial, and decidable theory of a model with an infinite
domain. This suggests that the Sirokofskich model may also provide the
means for finding a decidable extension of R′A3. Indeed, it’s A3-theory is an
extension thereof:

Lemma 3.17. R′A3 ⊆ SA3.

Proof. (R1) and (R2) are trivial, for if n,m 6= 0, n + m = n ·m = n = m
are all true in SA3 – indeed, the interpretation of every numeral beside 0 is
[a1] – the rest is obvious. Furthermore, the only negated equation which is
not true in S is 0 6= 0. This fact makes it clear that S satisfies (R3).

Let’s move on to (R4). Suppose that t ∈ S(x ≤ n). By the above,
S(n) = [a1], so then for x ≤ n to be true, fixing S(x) = [ai], it must be that
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there is an aj s.t. [ai + aj] = S(n), i.e. [ai + aj] = [a1]. Thus max{i, j} = 1,
in which case either ai = a1 or ai = a0, and so t ∈ S(x = 0 ∨ x = 1)
immediately.

The case for (R5) is equally simple: note that if S(x) = [a0], then S(x)+
[a1] = [a1] = S(n), and so t ∈ S(∃y(x+y = n)). Furthermore, if S(x) 6= [a0],
then [a1] + S(x) = S(x), and so t ∈ S(∃y(n+ y = x)).

This leaves just the verification of (′), which is also immediate.

In order to obtain a proof that SA3 is decidable, what remains is to
extend this translation to→A3. It seems likely that we can use (A→ B)∗ :=
A∗ ⊃ B∗, for the reason that for any A3 model, we have that for all f,
Mf �A3 A → B ⇐⇒ M f 2A3 A or Mf �A3 B. While this fact does not
make A → B equivalent to A ⊃ B in A3, we do have that the following
are equivalent, when A,B do not contain further conditionals (and no free
variables, so we can avoid dealing with variable assignments):

• S �A3 A→ B

• S 2A3 A or S �A3 B

• 〈N, S,+, <,=〉 2CL A
∗ or 〈N, S,+, <,=〉 �CL B

∗

• 〈N, S,+, <,=〉 �CL A
∗ ⊃ B∗

Having noted this, I don’t know whether this fact can be used to prove that
SA3 is also interpretable in classical Presburger arithmetic, for the reason
that difficulties seem to arise in the case of universally quantified conditional
formulas, but nonetheless it seems likely to me that:

Conjecture 3.18. SA3 is interpretable in classical Presburger arithmetic.

If this were the case, it would, as with SLP, prove that SA3 is decidable.
SA3 is, in a sense, a rather simple model of arithmetic, in that the arith-

metic functions usually behave either as an identity function or as a max
function. To underline the way in which the model is simple, I’ll set out some
plausible axioms for the theory indicating its distinctive features. First, let’s
enrich the language L with a denumerable set {â0, â1, . . . , ân, . . . } of (hat-
ted) constants, fixing S(âj) = [aj]. In giving some putative axioms below, I’ll
complicate matters by dealing both with numerals n and hatted constants,
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but this isn’t a serious problem as all the non-zero numerals just cluster at
[a1], so all could be rewritten to 1, if so desired.

Note that since S(a0 6= a0) = {f}, we can define a strong negation
connective A⊥ := A → â0 6= â0. With strong negation, we can characterise
the distinctive features of SA3 in a term-schematic way (take any variables
below as implicitly universally quantified):

Identity Principles

(A1) â0 6= â0 → A

(A2) (âj = âk)⊥ when j 6= k

(A3) (x = â0)
⊥ → x 6= y

(A4) â0 = 0

Successor Principles

(A5) S(â0) = â1

(A6) (x = â0)
⊥ → S(x) = x

(A7) x = y → S(x) = S(y)

Addition/Multiplication Principles

(A8) â0 + x = x

(A9) â0 · x = â0

(A10) âj + âk = âj when j ≥ k

(A11) x = x+ x = x · x

(A12) x = y → x+ z = y + z ∧ z + x = z + y

(A13) x = y → x · z = y · z ∧ z · x = z · y
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(A14) (x = â0)
⊥ ∧ (y = â0)

⊥ → x+ y = x · y

(A15) x+ y = y + x, x · y = y · x

First note that strong negation really is strong, i.e. A⊥ → ¬A, given (A1),
(K), (W), and (B). Among the arithmetic consequences of these axioms is
n = â1 for all n ∈ Z+ and thus n = m ∧ n 6= m for all n,m ∈ Z+. So among
the consequences are formulas (or schemata) capturing the salient parts of
the definition of the model, which suggests the following:

Conjecture 3.19. The above set of formulas axiomatises SA3.

Given a proof of this, there may be another avenue to show that SA3 is
decidable, but I leave the question for future work.

3.3 Infinite Heap Models of R′A3

There remains another interesting question in the area: are there any incon-
sistent, undecidable extensions of R′A3? As before it seems that studying
inconsistent models is of help here, and there are some reasonably natural
candidates whose theories seem likely to be undecidable – the infinite heap
models. While no finite heap model is a model of R′A3, this is not the case
for infinite ones. Indeed, unlike their finite neighbours, infinite heap models
are even models of Q(a) in A3 (RM3):

Theorem 3.20. For any n ∈ N, Qa
A3 ⊆ Hω,n

A3 and Qa
RM3 ⊆ Hω,n

RM3.

Proof. Note that the only counterexample to injectivity in the finite heap
models occurs between the two immediate predecessors of the start of the
cycle. However ω has no immediate predecessor and furthermore the cycle
beginning with ω of period n can produce no counterexamples either.

The argument concerning Qa is similar to that before.

I’ll go into more detail in the following proof, which is of more interest here:

Theorem 3.21. For each m ∈ N, R′A3 ⊆ Hω,m
A3 .
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Proof. By the definition of ∼ for any inconsistent model, [n1]+[n2] = [n1+n2]
and [n1] · [n2] = [n1 · n2], so the first two R′ axioms are trivially satisfied.
For the third, it’s immediate that if n1 6= n2 then f ∈ Hω,m(n1 = n2), hence
t ∈ Hω,m(n1 6= n2). For dealing with variables, we’ll suppose we’ve fixed a
variable assignment f. (R5) is trivial, given that heap models are linearly
ordered.

For (R4), suppose that t ∈ Hω,m(x ≤ n) = Hω,m(∃y(x + y = n)). Thus
there is an i in the domain of Hω,m s.t. 〈[x+ y], [n]〉 ∈ I+Hω,m [i/y](=), and so
Hω,m(x) + i ∼ n. It is clear that if either Hω,m(x), i ≥ ω then this is false.
Hence Hω,m(x), i < ω, in which case Hω,m(x) + i = n. Since the finite part
of Hω,m is just the structure of N, thus Hω,m(x) must be one of the natural
numbers less than n, hence t ∈ Hω,m(x = 0) ∪ · · · ∪ Hω,m(x = n) ⇐⇒ t ∈
Hω,m(x = 0 ∨ · · · ∨ x = n) as desired.

For ( ′), suppose that t ∈ Hω,m(¬(x = 0 ∨ · · · ∨ x = n)), and so f ∈
Hω,m(x = 0) ∩ · · · ∩Hω,m(x = n). Since n < ω, IHω,m(x) 6= 0, . . . , n, and thus
for any i in the domain of Hω,m, Hω,m(x)+i 6= n and thus t ∈ Hω,m[i/y](x+y 6=
n), hence t ∈ Hω,m(∀y(x+ y 6= n)) = Hω,m(x � n), as desired.

From this and Lem. 3.11, it follows that:

Corollary 3.22 (Σ1-Completeness). If A ∈ Σ1 and N �CL A(t1, . . . , tn) then
Hω,m

A3 ` A(t1, . . . , tn).

Which in turn entails that each Hω,m is Rosser, in the sense defined above.
Unfortunately, the argument format above can’t be used here for the reason
that no Hω,m is Σ1-consistent:

Proposition 3.23. For any m ∈ N, there is an A ∈ Σ1 s.t. Hω,m
LP ` ¬A∧A.

Proof. For m > 0, note that Hω,m
A3 ` ¬∃x(x + m < x) ∧ ∃x(x + m < x). For

m = 0, note that Hω,0
A3 ` ¬∃x(x < x) ∧ ∃x(x < x).

This means that we can’t simply use the [3] method, as it stands, to
obtain undecidability; Σ1-consistency is an essential ingredient, as displayed,
for instance, in the proof that R′A3 is undecidable. Having said that, there
are reasons to think that such a method could be used. For while we may
not have Σ1-consistency, we may be able to find other consistent fragments
of the theory which are appropriate to an undecidability proof along the lines
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given for R′A3. In the rest of this section, I’ll say a bit about how that might
be done, before explicitly stating the salient open problems.

First off, we can more or less immediately pick out a consistent fragment
as follows:

Definition 3.24. Call A ∈ L essentially numerical iff it is either is an
identity obtaining between numerals or functions thereon, has the form x ≤ n
or x < n, or is composed out of these by the connectives.

Note that essentially numerical formulas do not coincide with ∆0-formulas
defined above for the reason that the latter were defined ‘classically’, however
the point is basically that essentially numerical formulas are the ‘∆0-formulas
according to A3.’

Lemma 3.25. If A is essentially numerical then Hω,m
A3 (A) 6= {t, f}.

Proof. First suppose that Hω,m(n1 = n2) = {t, f}, so then we have n1 ∼ n2

and n1 6= n2, which is impossible since n1, n2 < ω. Since ∼ is a congruence
w.r.t. S,+, · the result holds if we also consider formulas in which these
symbols are applied to numerals. Next, suppose that Hω,m(∃y(x+ y = n)) =
{t, f}, so there are i, j such that Hω,m[i/x, j/y](x+ y = n) = {t, f} and thus
[i+ j] = [n] and i+ j 6= n. [n] = {n} since n < ω, and therefore [i+ j] = [n]
holds iff i + j = n, so this is also impossible. Once again, congruentiality of
∼ means that this also holds for complex n. It is immediate that if B,C only
take values in {{t}, {f}}, then so do ¬B,¬C and B ∗ C for ∗ ∈ {∧,∨,→}.

This lemma expresses the fact that the standard number line, which forms
an initial segment of Hω,m, behaves classically. There may be some trickery
available to marshal this fact in order to get around the fact that Hω,m

A3 is
Σ1-inconsistent. For instance, we know, from Σ1-completeness, that there
is a Σ1-formula A(x) such that n ∈ α ⇒ Hω,m

A3 ` A(n) and also n ∈ β ⇒
Hω,m

A3 ` ¬A(n). The difficulty is that we have no guarantee that, in the first
case, we may not also have Hω,m

A3 ` ¬A(n), and in the second Hω,m
A3 ` A(n).

So one possible trick would involve showing that there is a recursive way of
constructing, from A(n) a formula An which witnesses the separation, but
where Hω,m

A3 0 An ∧ ¬An. I’ll leave the question of finding such a trick here,
and instead just pose the salient problem.

Open Problem 3.26. Is Hω,m
A3 undecidable?
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I suspect the answer is yes. The reason, not even remotely decisive,
can be illustrated by a mental picture. As we proceed from H1,m to heap
models with longer and longer tails, we seem to be pushing back the point
at which we first meet an inconsistent number, and hence including a larger
and larger finite initial segment of the natural number line.11 So when we
reach Hω,m, we’ve got the whole, consistent, standard number line, and the
only inconsistencies come in after the point of infinity - so long as we can
find the information of classical arithmetic in some consistent fragment of
the resulting theory, then it seems likely that we can exploit it to provide an
undecidability argument, as gestured at above.

Of course this is just a concrete instance of a further open problem, which
is to show that there are undecidable, inconsistent extensions of R′A3. It
seems likely that there are ways of building such a theory by adding some
formulas contradicting theorems of R′A3, but the more interesting question is
whether there are reasonably natural inconsistent, undecidable extensions –
and I would take Σ1-inconsistency and having a detaching conditional to be
desiderata of reasonable naturalness. In light of this, I’ll pose the following
more general problem, to which, to my knowledge, there is no answer as
yet.12

Open Problem 3.27. Are there any Σ1-inconsistent, undecidable arithmetic
theories in A3, RM3, R, or any other strong paraconsistent logic?

Appendix: Hilbert Systems for A3 and RM3

The logics of interest here share in common the following basic axioms:

(Id) A→ A

(B) (A→ B)→ ((C → A)→ (C → B))

(CI) A→ ((A→ B)→ B)

(WI) (A→ B) ∧ A→ B

(∧E) A ∧B → A, A ∧B → B

11For some related philosophical discussion, see [20].
12The problem concerning the decidability of RMω, posed by Mortensen [16, p.31],

while not an instance of this question, is closely related and is, to my knowledge, as of
yet unsolved. RMω is the intersection of various cyclic models, interpreted in various
oddly-many valued extensions of RM – where RM3 is the three-valued among these.
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(∧I) (A→ B) ∧ (A→ C)→ (A→ B ∧ C)

(∨E) A→ A ∨B,B → A ∨B
(∨I) (A→ C) ∧ (B → C)→ (A ∨B → C)

(Dist) A ∧ (B ∨ C)→ (A ∨B) ∧ (A ∨ C)

(DNE) A↔ ¬¬A
(DeM1) ¬(A ∧B)↔ ¬A ∨ ¬B
(DeM2) ¬(A ∨B)↔ ¬A ∧ ¬B
(LEM) A ∨ ¬A

and the following rules (where V is a separator indicating a rule of proof, in
Smiley’s sense [25]):

(rMP) A→ B,AV B

(rADJ) A,B V A ∧B

To obtain A3 we add to this set of basic axioms the following three:

(K) A→ (B → A)

(Peirce) ((A→ B)→ A)→ A

(Cntr) ¬(A→ B)↔ (A ∧ ¬B)

To obtain RM3 we add to the basic axioms the following three (for R just
add the first of these):

(Cont) (A→ B)→ (¬B → ¬A)

(Mingle) A→ (A→ A)

(3) A ∨ (A→ B)

The following axioms (and rule) are adequate for the first-order extensions
of these propositional logics (some are redundant in one or the other system):

(∀E) ∀xA(x)→ A(y) where y free for x in A.

(∀I) ∀x(A→ B(x))→ (A→ ∀xB(x)) where x not free in A.

(∀∨) ∀x(A ∨B(x))→ (A ∨ ∀xB(x)) where x not free in A.
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(∀∧) ∀xA(x) ∧ ∀xB(x)→ ∀x(A(x) ∧B(x))

(∃∧) A ∧ ∃xB(x)→ ∃x(A ∧B(x)) where x not free in A.

(∃I) A(y)→ ∃xA(x)

(∃E) ∀x(B(x)→ A)→ (∃xB(x)→ A) x not free in A.

(QD1) ∀x¬A(x)↔ ¬∃xA(x)

(QD2) ∃x¬A(x)↔ ¬∀xA(x)

(rGen) Ay V ∀xA(x)

Soundness and completeness theorems are standard, but that for A3 may be
found in [27].
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