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Abstract

Ken Pledger devised a one-sorted approach to the incidence relation of
plane geometries, using structures that also support models of propositional
modal logic. He introduced a modal system 12g that is valid in one-sorted
projective planes, proved that it has finitely many non-equivalent modalities,
and identified all possible modality patterns of its extensions. One of these
extensions 8f is valid in elliptic planes. These results were presented in
his 1980 doctoral dissertation [14], which is reprinted in this issue of the
Australasian Journal of Logic.

Here we show that 12g and 8f are strongly complete for validity in their
intended one-sorted geometrical interpretations, and have the finite model
property. The proofs apply standard technology of modal logic (canonical
models, filtrations) together with a step-by-step procedure introduced by Yde
Venema for constructing two-sorted projective planes.
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1 Pledger’s dissertation

Kenneth Ernest Pledger (1938–2016) was a mathematician who taught at the Victo-
ria University of Wellington for 52 years. He was primarily interested in geometry
and the history of mathematics, but participated regularly in logic seminars con-
ducted jointly by mathematicians and philosophers at VUW. This led him to make
some contributions to modal logic, including the articles [11, 12, 13]. In the mid-
1970’s he independently discovered the fact, of significance to provability logic,
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that any normal modal logic containing the Löb axiom�(� i→ i) → � i must
extend the logic K4, i.e. must contain the transitivity axiom� i→ �� i (see [4,
p. 11]). He also showed that any normal modal logic containing the Grzegorczyk
axiom�(�(i→ � i) → i) → i is an extension of S4 [4, pp. 157, 259].

In 1981 Pledger was awarded the PhD degree by the University of Warsaw for
a dissertation [14] entitled Some interrelations between geometry and modal logic,
with Lesław Szczerba (1938–2010) as promoter. Their relationship had developed
from a sabbatical visit made by Szczerba in 1977 to Wellington, followed by one
made by Pledger in 1979 toWarsaw, where the University’s regulations for doctoral
study did not include a residence requirement. Szczerba was a former student of
Wanda Szmielew. He worked mainly on the foundations of geometry, including in
collaboration with Tarski [16].

Pledger’s dissertation set out a one-sorted approach to plane geometry. The
traditional approach to this subject is based on two-sorted structures whose sorts
are a set % of points and a set ! of lines, with a binary incidence relation � from %

to !. When 0�ℓ the point 0 is incident with the line ℓ. If we allow this to also be
written ℓ�0, then � is extended to a symmetric relation on %∪ !. Then as 0�ℓ�0 we
get that 0�20, where �2 is the relational composition of � with itself. In a projective
plane, any two points 0, 1 have a line ℓ passing through both, so 0�ℓ�1 and 0�21.
Each point is �2-related to all points and not to any lines, and dually each line is
�2-related to all lines and not to any points.

The central idea of [14] was that the two-sorted theory “can be made one-
sorted by keeping careful account of whether the incidence relation is iterated an
even or odd number of times” [14, p.1]. This was implemented by imposing first-
order conditions on an abstract structure (-, �) with � ⊆ - × - that ensure that
the composition �2 is an equivalence relation on the set - that has at most two
equivalence classes. When it has exactly two, one of them can be chosen as % and
the other as ! to obtain the structure of a two-sorted projective plane. When there
is only one �2-equivalence class, it exhibits the structure of an elliptic plane, a type
of geometry that was classically modelled by the surface of a Euclidean sphere with
antipodal points identified.

Wewill refer to the structures (-, �) defined in [14] for which this analysis holds
as one-sorted planes. Those with two �2-equivalence classes are called projective
in [14]. They include the structures (% ∪ !, �) where � is the symmetric incidence
relation of a traditional two-sorted projective plane based on % and !. The ones
with a single �2-equivalance class are called elliptic.

Now a structure of the form ℱ = (-, �) is known in modal logic as a Kripke
frame, although Kripke called it a model structure [9]. A model on ℱ for the
language of modal logic is given by a truth relation specifying which formulas are
true at which points of - , with� i being true at point 0 when i is true at all points
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of {1 ∈ - : 0�1}. A formula is valid in the frame ℱ if it is true at every point in
every model onℱ.

Some of the first-order conditions defining a plane ℱ are equivalent to the
validity in ℱ of certain modal formulas. This led Pledger to study a logic, which
he called 12g, which can be described as the extension of the modal logic KDB by
the axiom

�� i→ ���� i,

whose validity is equivalent to �2 being transitive. Here KDB is the smallest normal
modal logic to contain the deontic axiom

D : � i→ ^ i,

which corresponds to � being serial (each element is �-related to something), and
the Brouwerian axiom

B : ^� i→ i,

which corresponds to symmetry of �. 12g is sound for validity in all one-sorted
planes, including those derived from two-sorted projective planes as well as the
elliptic ones.

The name ‘12g’ relates to the fact that this logic has 12 non-equivalent proper
affirmative modalities [14, (37)], these being the finite sequences of the symbols�
and ^.1 Any such sequence is reducible to one of 12 cases. It is shown in [14,
pp.12–15] that there are nine different logics that arise by adding to 12g an axiom
of the form �i → �i, where � and � are affirmative modalities. One of these
logics, called 8f, can be obtained by adding to 12g the axiom

T3 : ��� i→ i

(the reason for the name T3 will be given in Section 6).
8f is sound for validity in one-sorted elliptic planes. This can be illustrated in

the classical model of the real elliptic plane, whose lines correspond to the great
circles on a Euclidean sphere (with antipodal points identified). Each point has an
associated line called its polar : if the point is taken as the north pole then its polar
is the equator. Each line is the polar of a unique point, called the pole of the line.
The correspondence between poles and polars gives a bĳection between the set of
points and the set of lines. Representing each line by its pole allows the geometry
to be determined by one sort of object (points), using the binary relation 0�1 that

1The naming system used in [14] labels each logic by the number of its proper affirmative
modalities and a distinguishing letter.
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holds between points 0 and 1 when 1 lies on the polar of 0, which implies that 0
lies on the polar of 1. In this situation 0 and 1 are said to be conjugate. If 2 is the
pole of the line joining two points 0 and 1, then 0�2�1, showing that 0�21. Hence
there is one �2-equivalence class. Raphael Robinson[15] showed that the conjugacy
relation can serve as the sole primitive from which to construct the geometry of
the real elliptic plane. The line corresponding to a point 0 is recoverable as the set
{1 : 0�1} of points conjugate to 0. Marek Kordos [8] has given an axiomatisation
of plane elliptic geometry over formally real Pythagorean fields as a theory of a
single binary relation.

Now a feature of the real elliptic plane is the notion of a self-polar triangle, a
triple 0, 1, 2 of points such that each is the pole of the line joining the other two,
implying that 0�1�2�0. Hence 0�30 where �3 is the 3-fold composition of � with
itself. Each point 0 is a vertex of a self-polar triangle so �3 is reflexive, a property
that is equivalent to the validity of T3. In Pledger’s theory, reflexivity of �3 ensures
that a one-sorted plane (-, �) has only one �2-equivalence class and so is elliptic in
that sense.

Some of the first-order conditions defining a plane are not equivalent to the
validity of any modal formula. This was shown in Chapter VII of [14] by exhibiting
counter-examples in which the condition in question fails to be preserved by a
surjective bounded morphism, a type of map between frames that preserves validity
of modal formulas. Most notably this failure applies to the property of uniqueness
of the line joining two given points, and of the point at which two lines meet.

At the end of [14] the problem is raised of axiomatising the logic comprising all
the modal formulas that are valid in all one-sorted projective and elliptic planes. As
mentioned above this logic includes the system 12g, since 12g is sound for validity
in this class of planes. We will prove here that 12g is also complete for validity in
this class: any formula valid in these planes is a theorem of 12g, so the sought for
logic is just 12g itself. The proof makes use of a construction developed by Yde
Venema [17] a couple of decades after Pledger’s work.

In the 1990’s a number of modal logicians became interested in the use of
incidence geometries as models of various modal languages (see the references of
[17] and the review article [2] for information about this). Venema’s contribution
was to axiomatise the logic of two-sorted projective planes in a two-sorted modal
language. In so doing he gave a step-by-step procedure for constructing a two-sorted
projective plane as a bounded morphic preimage of a quasi-plane, a structure
satisfying the existence properties of projective planes, but not their uniqueness
properties.

Now the completeness of 12g can also be expressed by saying that every 12g-
consistent formula is satisfiable, i.e. true at some point, in a model on a projective
or elliptic plane. We will prove the stronger property that every 12g-consistent set
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of formulas is satisfiable in a model on the one-sorted plane (%∪ !, �) derived from
some two-sorted projective plane. We define a one-sorted notion of quasi-plane,
and show that if ℱ is one of these and is connected, then it is a bounded morphic
image of a two-sorted quasi-plane (Theorem 5). Combined with the construction
from [17], we then infer thatℱ is a bounded morphic image of the one-sorted plane
derived from a two-sorted projective plane (Corollary 6).

We then go on to show that 8f axiomatises the modal logic of elliptic one-sorted
planes. The construction from [17] does not seem applicable for this, since it leads
to projective planes. Instead we apply the step by step method of [17] to directly
construct a one-sorted elliptic plane as a bounded morphic preimage of a one-sorted
quasi-plane (Theorem 8).

In the final section, the filtration method is used to show that 12f and 8g have
the finite model property, i.e. are characterised by validity in finite structures, which
implies that they are decidable.

2 2-planes

A two-sorted frame, or 2-frame, is a structure ℱ = (%, !, �) with % ∩ ! = ∅ and
� ⊆ % × !. Elements of % and ! are called points and lines, respectively, and � is
the incidence relation. When 0�1 we may say that 0 and 1 are incident, that 0 lies
on 1, that 1 passes through 0, etc. Given points are said to be collinear if there
exists a line passing through all of them. A quadrangle is a sequence of four points,
no three of which are collinear. ℱ is a projective plane if it satisfies the following
axioms:

P1: any two distinct points have exactly one line passing through them both.

P2: any two distinct lines have exactly one point lying on them both.

P3: there exists a quadrangle.

Here (P3) is a non-degeneracy condition. It is equivalent to requiring that the plane
contains a triangle (three non-collinear points) and every line has at least three
points. We sometimes call a projective plane a projective 2-plane to emphasise the
number of sorts involved.

A quasi-plane [17, Def. 3.1] is a 2-frame satisfying:

Q1: any two points have at least one line passing through them both.

Q2: any two lines have at least one point lying on them both.

Australasian Journal of Logic (18:4) 2021, Article no. 1



111

The two points and two lines hypothesized in these statements are not required to
be distinct. Thus in a quasi-plane, any point is incident with at least one line, and
any line with at least one point.

If ℱ = (%, !, �) and ℱ
′ = (%′, ! ′, � ′) are 2-frames, then a homomorphism

from ℱ to ℱ
′ is given by a function \ : % ∪ ! → %′ ∪ ! ′ with \ (%) ⊆ %′ and

\ (!) ⊆ ! ′ that satisfies the ‘Forth’ condition

F: 0�1 implies \ (0)� ′\ (1).

A homomorphism 5 is a bounded morphism if the following ‘Back’ conditions hold
for any 0 ∈ % and 1′ ∈ ! ′ in B1, and any 0′ ∈ %′ and 1 ∈ ! in B2.

B1: If \ (0)� ′1′, then there exists 1 such that 0�1 and \ (1) = 1′.

B2: If 0′� ′\ (1), then there exists 0 such that 0�1 and \ (0) = 0′.

If there exists a bounded morphism from ℱ to ℱ
′ that is surjective, then we say

that ℱ′ is a bounded morphic image of ℱ′.

Theorem 1. [17, Theorem 3.2] Every quasi-plane is a bounded morphic image of
a projective plane. �

Venema’s technique for proving this result starts with a quasi-plane ℱ′ and a
diagram consisting of a point 0 and a line 1 of ℱ′ that are incident and, in a step
by step manner, adds points and lines to the diagram in order to fulfil the existential
assertions made by P3, Q1, Q2, B1 and B2. This is done in such a way that at each
step the diagram constructed so far has a homomorphism to ℱ

′ and preserves the
uniqueness requirements of P1 and P2. At the end of the construction, the diagram
has become a projective plane with a bounded morphism ontoℱ′.

The technique was applied to affine planes by Hodkinson and Hussain in [7].
In Section 4 we will apply it to one-sorted structures.

3 1-planes

A one-sorted frame, or 1-frame is a structure ℱ = (-, �) with � ⊆ - × - . We
continue to refer to � as an incidence relation. � is serial if its domain is - , i.e. every
element 0 of - is incident (0�1) with some element 1. We sometimes attribute a
property of � to ℱ, saying thatℱ is serial when � is etc.

Viewingℱ as a graph, we say that a sequence inℱ of the form 00�01� · · · �0=
is an �-path from 00 to 0= of length = ≥ 1 (the 08’s need not be distinct). Let �=
be the =-fold relational composition of � with itself. Then 0�=1 iff there exists an
�-path of length = inℱ from 0 to 1. We also let �0 be the identity relation on - .
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A 4-cycle is a path 0�1�2�3�0 of length 4 from an element to itself. It is proper
if 0 ≠ 2 and 1 ≠ 3.

A one-sorted plane, or 1-plane, is a 1-frame that satisfies the three conditions

O1: For all 0 and 1, 0�41 implies 0�21.

O2: For all 0 and 1, 0�21 or 0�31.

O3: There are no proper 4-cycles, i.e. 0�1�2�3�0 implies 0 = 2 or 1 = 3.

It is called non-degenerate if it also satisfies

O4: There exist 0, 1, 2, 3, 4, 5 with 0�1�2�3 and 4� 5 , but 0 is not incident with 3,
and none of 0, 1, 2, 3 is incident with 4 or 5 .

Let �+ = � ∪ {(1, 0) : 0�1}, the smallest symmetric relation including �. �
itself is symmetric iff �+ = �. If ℱ = (%, !, �) is a 2-frame, let ℱ+ be the 1-frame
(% ∪ !, �+).

Theorem2. [14, Chapter I] Ifℱ is a projective 2-plane, thenℱ+ is a non-degenerate
1-plane in which % and ! are distinct equivalence classes under �2+, and the only
such classes.

Proof. Conditions O1–O4 are axioms (1)–(4) of [14]. We reprise the arguments
given there for the validity inℱ+ of these conditions. For O1, if 0�+=1 with = even,
then 0 and 1 are both points or both lines inℱ, hence 0�+21 as noted in Section 1.

For O2, if 0 and 1 are of the same sort in ℱ, then 0�+21 as just observed. If
0 is a point and 1 is a line, take any line 2 through 0 and let point 3 lie on 1 and
2: then 0�+2�+3�+1, hence 0�+31. If 1 is a point and 0 is a line, then 1�+30 by the
previous sentence, hence 0�+31.

O3 captures the uniqueness expressed in P1 and P2. Let 0�+1�+2�+3�+0. If 0
is a point, then so is 2 while 1 and 3 are lines passing through both points, hence if
0 ≠ 2 then 1 = 3 by P1. If 0 is a line, then so is 2 while 1 and 3 are points on both
lines, so again if 0 ≠ 2 then 1 = 3 by P2.

O4 captures the non-degeneracy expressed by P3, which ensures that ℱ has
some quadrangle 1, 3, 4, 6. Figure 1 shows how to then obtain lines 0, 2, 5 so that
0, 1, 2, 3, 4, 5 fulfils O4 in ℱ+ [14, Figure 6].

That provesℱ+ is a non-degenerate 1-plane. Now given distinct points 0, 1 ∈ %,
there is a line 2 ∈ ! passing through both, hence 0�+2�+1 so 0�2+1. Also any point
0 is incident with some line 2, so that 0�+2�+0 and hence 0�2+0. Thus any point is
�2-related to all points, but not to any lines because � only connects elements of
different type, so �2 only connects elements of the same type. Dually, any line is
�2-related to all lines, but not to any points. Since % and ! are disjoint they form a
partition of % ∪ ! with each being an �2-equivalence class. �
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Figure 1: non-degeneracy

A 1-frame ℱ = (-, �) is connected if any two of its elements have an �+-path
from one to the other. If � is symmetric, this is an �-path. It follows from O2 that a
1-plane is connected.

It was shown in [14, Chapter 1] that in any 1-plane, � is serial and symmetric,
�2 is an equivalence relation with at most two equivalence classes, and when there
are two such classes then by taking one as % and the other as ! and restricting � to
% × ! we obtain a 2-frame satisfying P1and P2. If the 1-plane is non-degenerate,
then P3 holds as well, so it is a projective plane. When there is one �2-equivalence
class, by regarding each element as both a point and a line we can reach the same
conclusion.

It was then observed on [14, p.7] that parts of this analysis depend only on
weaker assumptions. To explain this we define a quasi-1-plane to be any 1-frame
that is serial and symmetric and satisfies O1. Thus any 1-plane is a quasi-1-plane.
The quasi-planes of the previous sectionmay be called quasi-2-planes to distinguish
them from the one-sorted notion just defined.

Theorem 3. Letℱ = (-, �) be a quasi-1-plane. Then:

(1) �2 is an equivalence relation.

(2) 0�1 implies 0�31.

(3) ℱ is connected iff it satisfies O2.

(4) If ℱ is connected, then for any element 0, the subsets �2(0) = {G : 0�2G} and
�3(0) = {G : 0�3G} are the only �2-equivalence classes.

(5) Ifℱ is connected, then for any element 0, if G�H then one of G and H is in �2(0)
and the other is in �3(0).

Proof. (1) Reflexivity of �2: for any 0 there a 1 with 0�1 by seriality of �, so then
0�1�0 by symmetry of �, hence 0�20. Symmetry of �2 follows from symmetry
of �. Transitivity of �2 is just what O1 asserts.
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(2) If 0�1, then 0�1�21 by (1), giving 0�31.

(3) O2 implies that any two points have an �-path between them of length 2 or 3,
soℱ is connected. For the converse, take 0, 1 ∈ - . If 0 = 1, then 0�21 by (1).
If 0 ≠ 1, then assumingℱ is connected, since � is symmetric we have 0�=1 for
some = ≥ 1. If = = 1 then 0�31 by (2). If = ≥ 4, then since O1 ensures that any
path of length 4 between two points can be replaced by one of length 2, we get
that 0�=−21, then 0�=−41 etc., leading to either 0�21 or 0�31. Hence O2 holds.

(4) (See [14, proof of (13)].) Assume ℱ is connected, and hence satisfies O2 by
(3). Fix any 0 ∈ - . As in (1), there is some 1 with 0�1�0. If 0�3G, then
1�0�3G, so 1�4G and hence 1�2G by O1. Conversely, if 1�2G then 0�1�2G and
so 0�3G. This shows that �3(0) is the �2-equivalence class �2(1) of 1. But by
O2, for any G, either 0�2G or 0�3G, so the �2-equivalence classes of 0 and 1 are
all that there are.

(5) Let G�H. If G ∈ �2(0), then 0�2G�H, so H ∈ �3(0). But if G ∉ �2(0), then
G ∈ �3(0) by part (4), so 0�3G�H, hence 0�4H, then H ∈ �2(0) by O1. �

By part (4) of this result, all connected quasi-1-planes, which includes all the 1-
planes, have at most two �2-equivalence classes. Those with two classes will called
projective quasi-1-planes, while those with one class are elliptic. So Theorem 2
states that if ℱ is a projective 2-plane, then ℱ+ is a non-degenerate projective
1-plane.

Now a symmetric 1-frame can be viewed as an undirected graph with an edge
joining vertices 0 and 1 just when 0�1 (hence 1�0). Figure 2 shows two such
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Figure 2: two quasi-1-planes, not 1-planes

graphs, which are Figures 105 and 107 from [14]. The left one is a projective
quasi-1-plane with the black and white circles displaying the two �2-equivalence
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classes. This graph also satisfies the non-degeneracy condition O4. The right
graph is an elliptic quasi-1-plane, with the two looped edges displaying �-reflexive
vertices. Both graphs contain proper 4-cycles violating O3, so neither is a 1-plane.

We now extend the notion of bounded morphism to variously-sorted structures.
First, a bounded morphism from a 1-frame ℱ = (-, �) to a 1-frame ℱ′ = (- ′, � ′)
is given by a function \ : - → - ′ that is a homomorphism, i.e. satisfies the forth
condition F for all 0, 1 ∈ - , and satisfies the back condition B1 for all 0 ∈ - and
1 ∈ - ′. This is the standard notion of bounded morphism for 1-frames in modal
logic. It is a routine fact that the functional composition of two bounded morphisms
of this type is also a bounded morphism.

Next we define a bounded morphism from a 2-frameℱ = (%, !, �) to a 1-frame
ℱ
′ = (- ′, � ′) as being given by a function \ : % ∪ ! → - ′ that satisfies the

homomorphism condition F for all 0 ∈ % and 1 ∈ !, the condition B1 for all 0 ∈ %
and 1 ∈ - ′; and the condition B2 for all 0′ ∈ - ′ and 1 ∈ !.

Lemma 4. (1) If \ is a bounded morphism from a 2-frame ℱ = (%, !, �) to a
2-frame ℱ

′ = (%′, ! ′, � ′), and g a bounded morphism from ℱ
′ to a 1-frame

ℱ
′′ = (- ′′, � ′′), then the composition g ◦ \ is a bounded morphism fromℱ to

ℱ
′′.

(2) If \ is a bounded morphism from a 2-frame ℱ = (%, !, �) to a 1-frame ℱ′ =
(- ′, � ′), and � ′ is symmetric, then \ is also a bounded morphism from the
1-frameℱ+ = (% ∪ !, �+) to ℱ

′.

Proof. (1) g ◦ \ is a homomorphism because \ and g are: if 0�1 then \ (0)� ′\ (1)
by F for \ and so by F for g, g(\ (0))� ′′g(\ (1)) , i.e. (g ◦ \) (0)� ′′(g ◦ \) (1).
For B1, if g(\ (0))� ′′1′′, then by B1 for g there exists 1′ ∈ ! ′ with \ (0)� ′1′
and g(1′) = 1′′. Hence by B1 for \, there exists 1 ∈ ! with 0�1 and \ (1) = 1′,
hence (g ◦ \) (1) = 1′′. The proof of B2 for g ◦ \ is similar,

(2) F: let 0�+1 in ℱ+. If 0�1, then \ (0)� ′\ (1) by F for \ : ℱ → ℱ
′. Otherwise

we have 1�0, hence \ (1)� ′\ (0) likewise, and so again \ (0)� ′\ (1) as � ′ is
symmetric. This shows that F holds for \ : ℱ+ → ℱ

′.
B1: let \ (0)� ′1′ in ℱ

′. If 0 ∈ %, then by B1 for \ : ℱ → ℱ
′ there exists

1 ∈ ! with 0�1, hence 0�+1, and \ (1) = 1′. Otherwise we have 0 ∈ !. But
1′� ′\ (0) by symmetry, so by B2 for \ : ℱ → ℱ

′ there exists 1 ∈ % with 1�0,
hence 0�+1, and \ (1) = 1′. This shows B1 holds for \ : ℱ+ → ℱ

′. �

Theorem 5. Every connected quasi-1-plane is a bounded morphic image of a
quasi-2-plane.
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Proof. Let ℱ = (-, �) be a connected quasi-1-plane. By Theorem 3(4), ℱ has at
most two �2-equivalence classes. Take first the case that it has exactly two. Take
an element 0 and let % = {G : 0�2G} and ! = {G : 0�3G}. Theorem 3(4) says these
are the two �2-equivalence classes, so they are disjoint and partition - . Form the
2-frameℱ′ = (%, !, � ′), where � ′ is the restriction of � to %×!. Let \ : %∪! → -

be the identity function.
Since � ′ ⊆ �, \ is a homomorphism fromℱ

′ ontoℱ. To see it satisfies B1, let
1 ∈ % and \ (1)�2. Then 0�21�2, so 0�32 and hence 2 ∈ ! with 1� ′2. As \ (2) = 2,
this proves B1. For B2, let 2 ∈ ! and 1�\ (2). Then 0�32 and 1�2, hence 2�1 by
symmetry, so 0�41. But then 0�21 by O1, so 1 ∈ %, with 1� ′2 and \ (1) = 1.

We have now shown that \ is a surjective bounded morphism fromℱ
′ ontoℱ.

It remains to show that ℱ′ is a a quasi-2-plane. For Q1, take two points 1, 3 ∈ %.
Then 1�23 as they are in the same equivalence class, so 1�2�3 for some 3. As
1 ∈ % and 1�2 we get 2 ∈ ! as above, so 2 is a line. As 1�2 and 3�2, this line
passes through 1 and 3. The proof of Q2 is similar: any two lines 1, 3 ∈ ! have
1�2�3, for some 2 ∈ % with 2 lying on 1 and 3.

That concludes the first case. The alternative is that ℱ has only one �2-
equivalence class. Then 0�21 for all 0, 1 ∈ - . Take two disjoint copies %0 = {00 :
0 ∈ -} and !1 = {01 : 0 ∈ -} of - and let ℱ′ = (%0, !1, �

′), where 00�
′11 iff

0�1. Let \ : %0 ∪ !1 → - be the projection: \ (00) = \ (01) = 0.
The definition of � ′ ensures that \ is a homomorphism from ℱ

′ onto ℱ. For
B1, if 00 ∈ %0 and \ (00)�1, then 0�1 and so 00�

′11 with \ (11) = 1. The proof of
B2 is similar. Thus \ is a bounded morphism.

It remains to show that ℱ′ is a a quasi-2-plane in this case. But given points
00, 10 ∈ %0 in ℱ

′ we have 0�21 in ℱ, so there exists 2 with 0�2�1, hence 1�2, so
that 00�

′21 and 10�
′21, making 21 a line inℱ′ that passes through 00 and 10. That

proves Q1. The proof of Q2 is similar: any two lines 01, 11 of ℱ′ have 0�2�1 for
some 2, and 20 is a point in ℱ

′ lying on both lines. �

Corollary 6. Every connected quasi-1-plane is a bounded morphic image of a
non-degenerate projective 1-plane of the form�+ where� is a projective 2-plane.

Proof. Let ℱ = (-, �) be a connected quasi-1-plane. By the Theorem there is a
quasi-2-planeℱ′ and a surjective bounded morphism fromℱ

′ toℱ. By Theorem
1 there is a projective 2-plane� and a surjective bounded morphism from� toℱ′.
By Lemma 4(1) these compose to give a surjective bounded morphism � → ℱ,
which by Lemma 4(2) also acts as a surjective bounded morphism �+ → ℱ of
1-frames. By Theorem 2,�+ is a non-degenerate projective 1-plane. �
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4 The elliptic case

A quasi-1-plane is elliptic when it has only one �2-equivalence class, a property
expressed simply by

O5: For all 0 and 1, 0�21.

This condition implies O1 and O2 (equivalently connectedness) as well as seriality
of �, so we can characterise an elliptic quasi-1-plane as a 1-frame satisfying O5 and
symmetry, and an elliptic 1-plane as a 1-frame satisfying O5 and O3.

Lemma 7. Any 1-frame satisfying O5 and O3 is symmetric.

Proof. Let 0�1. By seriality there exists G with 1�G. By O5 G�20, so there is a H
with G�H�0. Now we have a 4-cycle 0�1�G�H�0. By O4 either 0 = G or 1 = H. In
either case 1�0. �

Pledger suggested that the theory based on O5 and O3 “can be regarded as
elliptic plane geometry in a general sense which permits degenerate planes” [14,
p.18]. He gave an analysis of degenerate elliptic planes, showing that they can be
excluded by the following shorter substitute for O4 (see [14, (79)]):

O4′: There exist 0, 1, 2, 3 such that 0�1�2 and 0 ≠ 2 and 1 ≠ 3, and neither 0�2
nor 1�3.

The elliptic quasi-1-plane depicted on the right of Figure 2 satisfies O4′.
The projective 1-plane ℱ0 depicted in Figure 3 has four vertices, with an edge

u e u eE0 E1 E2 E3

Figure 3: ℱ0

joining E8 to E8+1 for each 8 < 3, and no other edges. It satisfies O4′. Any given
symmetric frame will satisfy O4′ if it contains (a copy of)ℱ0 as a full subgraph, i.e.
the frame has no edges between vertices of ℱ0 other than the three edges already
belonging toℱ0.

Wewant to extend Corollary 6 to the elliptic case, to show that any elliptic quasi-
1-plane is a bounded morphic image of an elliptic 1-plane that is non-degenerate
in the sense of O4′. But the first step in the proof of that corollary destroys the
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elliptic property O5. So instead we will directly build a 1-plane out of an elliptic
quasi-1-plane by adapting the step by step method of [17].

The uniqueness property O3 can be given a more evocative formulation when
� is symmetric. If 0�1 we may say that 0 and 1 are neighbours. If 0�1�2 then
1 is a common neighbour of 0 and 2. If also 3 is a common neighbour of 0 and
2, then (using symmetry) we have the 4-cycle 0�1�2�3�0, so if 0 ≠ 2, then O3
enforces 1 = 3. We see that in the presence of symmetry, O3 is equivalent to the
requirement that any two distinct elements have at most one common neighbour.
Combining that with O5 we get that in an elliptic 1-plane any two distinct elements
have exactly one common neighbour.

Theorem 8. Every elliptic quasi-1-plane is a bounded morphic image of a non-
degenerate elliptic 1-plane.

Proof. This will occupy the rest of the current section. Fix an elliptic quasi-1-plane
ℱ
′ = (- ′, � ′). Define a network to be a structure  = (-, �, \) comprising a

symmetric 1-frame (-, �), which we may denote ℱ, and a function \ : - → - ′,
which we may denote \. We say that another network+ = (-+, �+, \+) extends
 if - ⊆ -+, � is the restriction of �+ to - × - , and \ is the restriction of \+ to - .

A network is called coherent if it satisfies the following conditions

C1: \ : ℱ → ℱ
′ is a homomorphism, i.e. satisfies the forth condition F.

C2: distinct elements of - have at most one common neighbour.

C3: ℱ0 is a full subgraph ofℱ.

For instance, we obtain a coherent network 0 = (ℱ0, \0) by noting that since ℱ′
is serial it contains a 3-path 00�01�02�03, and putting \0(E8) = 08 for all 8 ≤ 3.
We want to build0 up to a coherent network that satisfies O5 and has \ as a
bounded morphism. A given network may fail one or both of these requirements,
and instances of such failure are called defects. These will require repair. There
are two types of possible defect for a network = (-, �, \):

B1-defect: this is a pair (0, 1′) ∈ - × - ′ such that \ (0)� ′1′ but there is no 1 ∈ -
with 0�1 and \ (1) = 1′.

O5-defect: a pair (0, 1) ∈ - × - with no common neighbour, i.e. 0�21 fails.

We show that any defect in a coherent network can be repaired by constructing a
coherent extension that contains the element described as lacking by the defect.
Once a defect is repaired, it remains so in all further coherent extensions.
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To repair a B1-defect (0, 1′) in a coherent network , take a new object 1 not
in - or - ′ and extend to 

+ by putting

-+ = - ∪ {1},
�+ = � ∪ {(0, 1), (1, 0)}
\+ = \ ∪ {(1, 1′)}.

The definition of �+ ensures that it is symmetric because � is. Thus 
+ is a

network having 0�+1 and \+(1) = 1′, so (0, 1′) is no longer a B1-defect in 
+.

It remains to check that + is coherent. For C1, since  satisfies C1 we only
have to check that \+(0)� ′\+(1) and \+(1)� ′\+(0). But this follows because
\+(0) = \ (0)� ′1′ = \+(1) and � ′ is symmetric. For C2, take two distinct elements
of -+. If one of them is 1, then they have at most one common 

+-neighbour
because 1 has only the one 

+-neighbour 0. If neither of them is 1 then they
have at most one common neighbour in  by C2 for , and they do not have 1
as a common neighbour as 1 has only one neighbour, so they have at most one
neighbour in 

+. For C3, ℱ0 has no extra edges in  by C3 for , and 
+ has

only one more edge, with a vertex 1 not in , hence not in ℱ0, so ℱ0 has no extra
edges in+. Thus + is coherent.

To repair an O5-defect (0, 1) in a coherent network , observe that as ℱ′ is
elliptic we have \ (0) (� ′)2\ (1), so there exists a 3 ∈ - ′ with \ (0)� ′3� ′\ (1). Take
a new object 2 ∉ - ∪ - ′ and extend to+ by putting

-+ = - ∪ {2},
�+ = � ∪ {(0, 2), (2, 0), (2, 1), (1, 2)}
\+ = \ ∪ {(2, 3)}.

Again the definition of �+ ensures that it is symmetric because � is. Thus + is
a network having 0�+2�+1, hence 0(�+)21, so (0, 1) is no longer an O5-defect in

+. We check that + is coherent. For C1, it suffices since  satisfies C1 to

show that \+(0)� ′\+(2), \+(2)� ′\+(1) and their inverses. But this follows because
\+(0) = \ (0)� ′3 = \+(2) and similarly \+(2) = 3� ′\+(1), and � ′ is symmetric. For
C2, let G and H be distinct members of -+. If one of them, say H, is equal to 2, then
G ∈ - . If G and H = 2 have more than one common neighbour in 

+, then their
common neighbours must be 0 and 1, as those are all the neighbours 2 has. Hence
0 and 1 are neighbours of G. But then 0�G�1, contradicting the fact that (0, 1) is
an O5-defect. So in this case G and H have at most one common neighbour in 

+.
The alternative case is that G and H both belong to - . Now if G and H both belong
to {0, 1}, then they have no common neighbour in , as (0, 1) is an O5-defect,
so by construction they have 2 as their only common neighbour in 

+. But if one
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of them, say G, does not belong to {0, 1}, then it does not have 2 as a neighbour,
so does not have 2 as a common neighbour with H. Since G and H have at most
one common neighbour in , as  satisfies C2, it follows in this case that they
continue to have at most one common neighbour in 

+. That completes the proof
that C2 holds in 

+. Finally, for C3 we have that ℱ0 has no extra edges in  by
C3 for, and+ has only two additional edges both with a vertex 2 not inℱ0, so
ℱ0 has no extra edges in+.

We have now shown that any defect in a coherent network is repaired in some
coherent extension. By iterating this construction sufficiently we will eventually
eliminate all defects. The first step is

Lemma 9. Every coherent network has a coherent extension+ such that every
defect of  is repaired in 

+.

Proof. Let ^ be the cardinal of the set of all defects of  (which is a subset of
(- × - ′) ∪ (- × -)), and let 〈X` : ` < ^〉 be an indexing of these defects by the
ordinals less than ^. We inductively construct a sequence 〈∗` : ` < ^〉 of coherent
extensions of such that for all b < `, ∗` extends∗

b
.

Put ∗0 = . For ` < ^, assuming inductively that a coherent ∗` has been
defined, let ∗

`+1 be a coherent network extending 
∗
` in which X` is no longer

a defect, as exists by the above constructions. If ` is a limit ordinal, assuming
inductively that the sequence 〈∗

b
: b < `〉 of coherent networks has been defined

and forms a chain under the extension relation, let


∗
` =

⋃
b<` 

∗
b
= (⋃b<` -

∗
b
,
⋃

b<` �
∗
b
,
⋃

b<` \
∗
b
)

be the union of the∗
b
’s. It is readily checked that the union of an extension-chain

of coherent networks is a coherent network extending each member of the chain.
That completes the definition of the ∗` ’s.

Now put + =
⋃

`<^ 
∗
` , a coherent network extending 

∗
0 = . For each

` < ^, the defect X` is repaired in∗
`+1, and hence is repaired in

+. �

Next we use this result to construct a countably infinite chain 〈= : = < l〉 that
repairs all defects. 0 is the coherent network based on the frame ℱ0, as defined
earlier. Assuming inductively that = has been defined as a coherent network, let
=+1 be the coherent extension+= of= given by Lemma 9.

Now put l =
⋃

=<l =. l is coherent, and has no defects, since any
purported defect of l would be a defect of = for some = < l, and hence be
repaired in=+1, therefore not a defect inl after all.

Letl = (ℱl , \l). Sincel has no O5-defects,ℱl satisfies O5. Sincel

is coherent it satisfies C2 (distinct elements have at most one common neighbour)
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and hence ℱl satsifes O3. Thus ℱl is an elliptic 1-plane. By C3 for l , ℱ0
is a full subgraph of ℱl , so ℱl is non-degenerate. The map \l : ℱl → ℱ

′

is a homomorphism by C1 for l . Since there are no B1-defects it is a bounded
morphism.

To complete the proof of Theorem 8, that ℱ′ is a bounded morphic image of
a non-degenerate elliptic 1-plane, it remains only to show that \l is surjective.
Let 2′ be any element of - ′. Take any element 0 of ℱl . Then as ℱ′ is elliptic,
\l (0) (� ′)22′, so there exists 1′ ∈ - ′ with \l (0)� ′1′� ′2′. Then by B1 for \l there
exists 1 with 0�l1 and \l (1) = 1′, so \l (1)� ′2′. By B1 again there then exists 2
with 1�l2 and \l (2) = 2′, which establishes that \l maps ontoℱ′. �

5 Some modal metatheory

We review the background from propositional modal logic that will be needed. This
can be found in a number of texts, such as [3, 5, 6].

Modal formulas i, k, . . . are constructed from a countably infinite set +0A of
propositional variables by the standard Boolean connectives ¬, ∧ and the unary
modality �. The other Boolean connectives ∨, →, ↔ are introduced as the
usual abbreviations, and the dual modality ^ is defined to be ¬�¬. Formulas
�=

i are defined by induction on the natural number = by putting �0
i = i and

�=+1
i = �(�=

i). Formulas^=
i are defined likewise by iterating^.

A model ℳ = (ℱ, +) for this language is given by a 1-frame ℱ = (-, �) and
a valuation function + that assigns to each variable ? ∈ +0A a subset + (?) of -
which may be thought of as the set of points at which ? is true. For each 0 ∈ - ,
let � (0) = {1 ∈ - : 0�1} be the set of �-neighbours of 0. The relation ℳ, 0 |= i
of a formula i being true (or satisfied) at 0 in ℳ is defined by induction on the
formation of i as follows:

• ℳ, 0 |= ? iff G ∈ + (?), for ? ∈ +0A.

• ℳ, 0 |= ¬i iffℳ, 0 6 |= i (i.e. not ℳ, 0 |= i).

• ℳ, 0 |= i ∧ k iffℳ, 0 |= i andℳ, 0 |= k.

• ℳ, 0 |= � i iff for every 1 ∈ � (0),ℳ, 1 |= i .

Consequently

• ℳ, 0 |= ^ i iff for some 1 ∈ � (0), ℳ, 1 |= i.

• ℳ, 0 |= �=
i iff for all 1 such that 0�=1,ℳ, 1 |= i.
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• ℳ, 0 |= ^=
i iff for some 1 such that 0�=1, ℳ, 1 |= i.

A formula i is true in modelℳ when it is true at all elements ofℳ, and satisfiable
in ℳ when it is true at some element of ℳ, i.e. ¬i is not true in ℳ. A set Σ of
formulas is satisfiable inℳ when there is some element ofℳ at which all members
of Σ are simultaneously true. Σ is satisfiable in a 1-frame if it is satisfiable in some
model on that frame.

A formula i is valid in 1-frameℱ if it is true in all models onℱ, or equivalently
if ¬i is not satisfiable in ℱ. i is valid in a class � of 1-frames if it is valid in all
members of �.

Given a bounded morphism \ : ℱ′→ ℱ of 1-frames and a modelℳ = (ℱ, +)
on ℱ we obtain a model ℳ′ = (ℱ′, + ′) on ℱ

′ by putting + ′(?) = \−1+ (?) =
{0 ∈ - ′ : \ (0) ∈ + (?)} for all ? ∈ +0A. Then for any 0 ∈ - ′, if i is a variable,

ℳ
′, 0 |= i iff ℳ, \ (0) |= i. (5.1)

An induction on formation of formulas then shows that (5.1) holds for every 0 and
every formula i [3, Proposition 2.14].

Theorem 10. If ℱ is a bounded morphic image of ℱ′, and Σ is a set of formulas
that is satisfiable inℱ, then Σ is satisfiable inℱ′.

Proof. Let \ : ℱ′ → ℱ be a surjective bounded morphism and ℳ a model on
ℱ such that Σ is a satisfiable at some element 1 in ℳ. Take an element 0 in ℱ

′

such that 1 = \ (0). Then from (5.1) we get that every member of Σ is true at 0 in
ℳ
′. �

Note that this result implies that ifℱ is a bounded morphic image ofℱ′, then any
formula i that is valid in ℱ

′ must be valid in ℱ, for if ¬i were satisfiable in ℱ it
would be satisfiable in ℱ

′.
An inner subframe of a frameℱ = (-, �) is any frameℱ′ = (- ′, � ′) for which

- ′ ⊆ - , � ′ is the restriction of � to - ′, and - ′ is closed under � in the sense that
� (0) ⊆ - ′ for all 0 ∈ - ′. This means that ℱ′ is a substructure of ℱ in which
all the �-neighbours of an element of ℱ′ belong to ℱ

′ as well. It is equivalent to
requiring that the inclusion function - ′ ↩→ - is a bounded morphism from ℱ

′ to
ℱ. Thus from any model ℳ on ℱ we get a model ℳ′ on the inner subframe ℱ′
with + ′(?) = + (?) ∩ - ′ such that by (5.1) with \ as the inclusion,

ℳ
′, 0 |= i iffℳ, 0 |= i for every 0 ∈ - ′ and every formula i. (5.2)

An important case of inner subframe is the notion of the subframe ℱ0 = (-0, �0)
of ℱ generated by an element 0. This has

-0 = {1 ∈ - : 0�=1 for some = ≥ 0},
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with �0 being the restriction of � to to -0. ℱ0 is often called point-generated. It is
the smallest inner subframe ofℱ that contains 0 (when = = 0). Note when 1 ∈ -0

and 1�=2, then every member of the associated �-path of length = from 1 to 2 is
in -0, hence 1(�0)=2. For any 1, 2 ∈ -0 we have 0�=1 and 0�<2 for some =, <,
hence 1�=+0�<+ 2, showing that there is an �0+ -path from 1 to 2 inℱ0. Thus

any point-generated frame is connected, (5.3)

a fact we will make use of in the next section.
We turn now to matters of proof theory. A normal logic is any setΛ of formulas

that includes all instances of truth-functional tautologies and of the scheme

K: �(i→ k) → (� i→ �k),

and is closed under the following rules:

modus ponens: if i, i→ k ∈ Λ, then k ∈ Λ;

�-generalisation: if i ∈ Λ, then� i ∈ Λ.

The members of a logic Λ are called its theorems, or more specifically Λ-theorems.
A formula i is Λ-consistent when ¬i is not an Λ-theorem. A set Σ of formulas
is called Λ-consistent if any finite conjunction i0 ∧ · · · ∧ i=−1 of members of Σ is
Λ-consistent. Λ is sound for (validity in) a class � if every Λ-theorem is valid in
�. Λ is complete for (validity in) � if, conversely, every formula that is valid in �
is a Λ-theorem. This is equivalent to requiring that every Λ-consistent formula is
satisfiable in somemember of�. Λ is strongly complete for� if everyΛ-consistent
set of formulas is satisfiable in some member of �.

Any instance of the formula scheme K is valid in any 1-frame, and this validity
is preserved by the modus ponens and �-generalisation rules. Thus for any ℱ,
the set of all formulas valid in ℱ is a normal logic. The smallest (intersection)
of all normal logics, also known as K, is sound and strongly complete for validity
in the class of all 1-frames. One way to prove that is to use the canonical frame
ℱΛ = (-Λ, �Λ), which can be defined for any Λ by taking -Λ to be the set of all
maximally Λ-consistent sets of formulas, with 0�Λ1 when {i : � i ∈ 0} ⊆ 1. The
canonical model ℳΛ = (ℱΛ, +Λ) has +Λ(?) = {0 ∈ -Λ : ? ∈ 0} for each variable
?. It has the property that any formula i is true at an element 0 ∈ -Λ iff i belongs
to the maximally Λ-consistent set 0, i.e.

ℳΛ, 0 |= i iff i ∈ 0.

This is sometimes called the Truth Lemma for Λ: for details see [3, Chapter 4] or
[6, Chapter 3]. Since a formula i is a Λ-theorem iff it belongs to every member
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of -Λ, the Truth Lemma implies that the formulas that are true in the model ℳΛ

are precisely the Λ-theorems. Consequently, any formula that is valid in the frame
ℱΛ must be a Λ-theorem. Equivalently, every Λ-consistent formula is satisfiable
in ℳΛ, hence satisfiable in ℱΛ. More strongly, any Λ-consistent set Σ of formulas
can be extended to a maximally Λ-consistent set 0Σ, and so by the Truth Lemma Σ
is satisfied at 0Σ in ℳΛ, so is satisfiable inℱΛ.

Now letting Λ=K, we get the strong completeness of the logic K: every K-
consistent set of formulas is satisfiable in some 1-frame, namely in the model ℳK
on the frame ℱK.

6 Strong completeness of 12g and 8f

The canonical frame construction provides a method for showing that a logic Λ
is strongly complete for a class �. Since every Λ-consistent set of formulas is
satisfiable in ℱΛ, it is enough to show that ℱΛ belongs to �. If � is defined by
specified properties, then the strong completeness proof is reduced to showing that
ℱΛ has those properties. There are numerous logics for which the axioms defining
Λ can be directly applied to show thatℱΛ has the properties in question.

The first very general result of this kind appeared in [10, Section 4], which
defined the axiom scheme

G′: ^<�=
i→ �?^@

i.

The parameters <, =, ?, @ are a fixed but arbitrary quadruple of natural numbers.
Corresponding to G′ is the frame condition

(g′): for all 0, 1, 2 such that 0�<1 and 0� ?2, there exists 3 with 1�=3 and 2�@3.

It is proved in Theorems 4.1 and 4.2 of [10] that

• G′ is valid in any 1-frame satisfying (g′).

• If a normal logic Λ includes G′, thenℱΛ satisfies (g′).

The converse of the first item is also true, so in fact a 1-frame validates G′ if, and
only if, it satisfies (g′).

Many interesting cases can be read off from this analysis. Table 1 gives the four
that we use. The left column gives particular values of the parameters of G′, the
middle column gives the resulting instance of G′ with a name, and the third column
gives the corresponding condition on � expressed by (g′).

The names D and B are standard. The name 42 is by analogy with the standard
name 4 for the axiom � i → �2

i which corresponds to � being transitive.
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<, =, ?, @ G′ g′

0,1,0,1 D: � i→ ^ i � is serial
1,1,0,0 B: ^� i→ i � is symmetric
0,2,4,0 42: �2

i→ �4
i 0�41 implies 0�21, i.e. O1

0,3,0,0 T3: �3
i→ i 0�30, i.e. �3 is reflexive

Table 1: Cases of G′

42 corresponds to �2 being transitive. T3 is by analogy with the name T which
corresponds to � being reflexive.

12g can now be defined as the smallest normal logic that includes the axiom
schemes D, B and 42. By the quoted results from [10], a 1-frame validates these
three axioms iff it is serial, symmetric and satisfies O1, i.e. iff it is a quasi-1-plane.
The set of all formulas valid in a given quasi-1-plane is a normal logic including
D, B and 42, so it includes 12g as the smallest such logic. Thus 12g is sound for
validity in the class of all quasi-1-planes. Moreover the canonical frame ℱ12g for
12g is a quasi-1-plane, so 12g is strongly complete for quasi-1-planes. This can be
combined with our Corollary 6 to yield the stronger

Theorem 11. 12g is strongly complete for the class of all non-degenerate projective
1-planes.

Proof. LetΣ be a 12g-consistent set of formulas. ThenΣ is satisfied in the canonical
modelℳ12g at some element 0. Letℱ be the inner subframe ofℱ12g generated by
0. The properties of being serial, symmetric and satisfying O1 are all preserved in
passing fromℱ12g toℱ, soℱ is a quasi-1-plane. Moreover, being point-generated
it is connected by (5.3). Therefore by Corollary 6 there exists a non-degenerate
projective 1-planeℱ∗ with a surjective bounded morphism \ : ℱ∗ → ℱ.

Now the model ℳ12g on ℱ12g restricts to a model ℳ on ℱ in which Σ is
satisfied at 0 (see (5.2)). So Σ is satisfiable in ℱ. Hence by Theorem 10, Σ is
satisfiable inℱ∗ (at some point 0′ with \ (0′) = 0).

This shows that every 12g-consistent set of formulas is satisfiable in some
non-degenerate projective 1-plane, as required. �

This result is a manifestation of the fact that the modal language does not have
the expressive power to differentiate the non-degenerate projective 1-planes from
other 1-planes, including the elliptic ones, or even from the other quasi-planes:

Theorem 12. For any formula i, the following are equivalent.
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(1) i is a theorem of 12g.

(2) i is valid in all quasi-1-planes.

(3) i is valid in all connected quasi-1-planes.

(4) i is valid in all 1-planes.

(5) i is valid in all projective-1-planes.

(6) i is valid in all non-degenerate projective-1-planes.

Proof. That 1 implies 2 is the soundness of 12g shown above. That 2 implies 3, 3
implies 4, 4 implies 5 and 5 implies 6 are all immediate, since the antecedent class
includes the consequent one. That 6 implies 1 follows from the completeness of
12g for non-degenerate projective-1-planes given by Theorem 11. �

This result tell us that if a formula is valid in all projective 1-planes (5), then
it is valid in all 1-planes (4), and in particular is valid in all the elliptic ones. On
the other hand there are formulas that are valid in all elliptic 1-planes but not in
all projective ones. Note first that the elliptic condition O5 is not itself equivalent
to the validity of any modal formula. This is readily seen from the fact that the
class of 1-frames validating a modal formula is closed under disjoint unions [3,
Theorem 3.14], but the disjoint union of two frames satisfying O5 will not satisfy
O5. Nonetheless the modal language can differentiate elliptic structures. For 1-
planes a suitable condition is that 0�31 implies 0�21, which is equivalent to the
validity of the scheme�2

i → �3
i. In the presence of O2 this yields O5, hence

ensures there is one �2-equivalence class [14, p.17]. But there is a slightly simpler
condition that does not depend on O2:

Lemma 13. A connected quasi-1-plane ℱ = (-, �) is elliptic iff �3 is reflexive iff
there exists an element 0 with 0�30.

Proof. By Theorem 3(4), for any 0 ∈ - the subsets �2(0) and �3(0) are the only �2-
equivalence classes. Ifℱ is elliptic then for any 0, �2(0) = �3(0), so 0�30 because
0�20. But for the converse it only takes one 0 to have 0�30 to get 0 ∈ �2(0) ∩ �3(0)
and hence the equivalence classes are equal. �

The logic 8f can be defined as the smallest extension of 12g that includes the
axiom scheme T3. That scheme corresponds to reflexivity of �3 (Table 1). Thus 8f
is sound for validity in the class of all elliptic quasi-1-planes [14, pp.33, 40].

Theorem 14. 8f is strongly complete for the class of all non-degenerate elliptic
1-planes.

Australasian Journal of Logic (18:4) 2021, Article no. 1



127

Proof. Let Σ be an 8f-consistent set of formulas. Then by the argument of the
proof of Theorem 11, Σ is satisfied at some element 0 in the inner subframe ℱ of
the canonical frame ℱ8f generated by 0, and ℱ is a connected quasi-1-plane. But
now by [10, 4.2], since T3 is included in 8f, ℱ8f has �3 reflexive. That property
is preserved in passing to ℱ, since if 1�8f2�8f3�8f1 and 1 is in ℱ, then 2 and 3
are in ℱ with 1�2�3�1. Thus ℱ is an elliptic quasi-1-plane by Lemma 13. Hence
by Theorem 8, there exists a non-degenerate elliptic 1-plane ℱ∗ with a surjective
bounded morphism \ : ℱ∗ → ℱ. So by Theorem 10, Σ is satisfiable in ℱ

∗. �

Another property of a relation � that it is natural to consider is irreflexiveness,
which is well known not to be equivalent to the validity of any modal formula
(e.g. it is not preserved by surjective bounded morphisms). For a 2-frame ℱ,
irreflexiveness is built in since � ⊆ % × ! and % ∩ ! = ∅, so 0�0 never occurs.
Hence the associated symmetric 1-frame ℱ+ is irreflexive, and indeed never has
0(�+)=0 if = is odd. Thus in applying Corollary 6 to the proof of Theorem 11,
what is produced is an irreflexive 1-plane satisfying a 12g-consistent set. So 12g is
strongly complete for the class of irreflexive non-degenerate elliptic 1-planes.

In the real elliptic plane, the conjugacy relation is irreflexive, since no point
lies on its polar line, so 0�0 cannot hold. Irreflexivity of � is one of the axioms
for elliptic plane geometry of Kordos [8]. Now in the proof of Theorem 8, the
graphℱ0 is irreflexive and the operations for repairing defects do not introduce any
reflexive points, so the non-degenerate elliptic 1-plane constructed in that theorem
is irreflexive. It follows by the proof of Theorem 14, that 8f is strongly complete
for the class of all irreflexive non-degenerate elliptic 1-planes.

7 Finite model property

A modal logic Λ has the finite model property when every Λ-consistent formula
is satisfiable in some model on a finite frame that validates Λ. Equivalently this
means that Λ is complete for validity in the class of all finite frames that validate Λ
(hence sound and complete for this class).

We will show that the logics 12g and 8f have the finite model property. Since
they have finitely many axioms, it follows by standard theory that the property of
being a theorem of the logic is algorithmically decidable for each of them. For an
explanation of this theory see [3, §6.2] or [5, §16.2].

We use the well known filtrationmethod of reducing a model to a finite one. Let
Λ be a normal logic extending 12g. Fix a formula i that isΛ-consistent. Then by the
construction in the first part of the proof of Theorem 11, i is true at some element
of a modelℳ on a connected quasi-1-planeℱ = (-, �) which is a point-generated
subframe of the canonical frame ℱΛ. Let Φ be the finite set of all subformulas of
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i. For each 0 ∈ - , let Φ0 = {k ∈ Φ : ℳ, 0 |= k}. Define an equivalence relation
∼ on - by putting 0 ∼ 1 iff Φ0 = Φ1. Then with |0 | = {1 ∈ - : 0 ∼ 1} being the
∼-equivalence class of 0, we put -Φ = {|0 | : 0 ∈ -}. The set -Φ is finite, because
the map |0 | ↦→ Φ0 is a well-defined injection of -Φ into the powerset of Φ. Thus
-Φ has size at most 2=, where = is the size of Φ.

A filtration of ℳ through Φ is any model ℳ′ = (ℱ′, + ′) with ℱ
′ of the form

(-Φ, � ′) such that

(i) 0�1 implies |0 |� ′ |1 |, i.e. 0 ↦→ |0 | is a homomorphismℱ → ℱ
′.

(ii) if |0 |� ′ |1 |, then for all�k ∈ Φ,ℳ, 0 |= �k impliesℳ, 1 |= k.

(iii) + ′(?) = {|0 | ∈ -Φ : 0 ∈ + (?)} for all variables ? ∈ Φ.

For such anℳ′, we have the Filtration Theorem: for any k ∈ Φ and 0 inℱ,

ℳ, 0 |= k iff ℳ
′, |0 | |= k.

This is shown by induction on the formation of the formula k ∈ Φ: see [3,
Theorem. 2.39] or [5, Theorem. 5.23].

Filtrations of ℳ through Φ do exist. The least filtration has + ′(?) defined
by (iii) if ? ∈ Φ and + ′(?) = ∅ (or anything) otherwise; while � ′ is defined for
U, V ∈ -Φ by putting

U� ′V iff there exist 0 ∈ U and 1 ∈ V such that 0�1. (7.1)

This definition makes � ′ symmetric whenever � is, and serial whenever � is.
We are now in a position to demonstrate that 8f has the finite model property.

Put Λ=8g in the above and let ℳ′ be the least filtration of ℳ through Φ. Now the
underlying frame ℱ of ℳ is a subframe of ℱ8f that is an elliptic quasi-1-plane by
the argument in the proof of Theorem 14, so � is symmetric and satisfies O5. Hence
� ′ is symmetric, as just noted. It also satisfies O5, for if |0 |, |1 | ∈ -Φ, then 0�2�1
for some 2 as ℱ satisfies O5, hence |0 |� ′ |2 |� ′ |1 | by the filtration homomorphism
property (i). Thus ℱ′ is an elliptic quasi-1-plane and therefore validates 8f. But i
is true at some point 0 of ℳ, and i ∈ Φ, so i is true at |0 | in ℳ

′ by the Filtration
Theorem. This proves that any 8f-consistent formula is satisfiable in a model on a
finite frame validating 8f, as required.

In the case that Λ=12g, we only know so far that the subframe ℱ of ℱ12g is a
connected quasi-1-plane that may be projective or elliptic. If it is elliptic, we can
proceed exactly as in the preceding paragraph to obtain a satisfying model for i on
a finite elliptic quasi-1-plane. If however ℱ is projective, we proceed to construct
a suitable ℳ′ in a different way, with new definitions of -Φ and � ′ as follows. ℱ
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has two �2-equivalence classes, which we will label % and !. We filtrate % and
! separately through Φ. For each 0 ∈ %, let |0 | = {1 ∈ % : 0 ∼ 1}, while if
0 ∈ ! let |0 | = {1 ∈ ! : 0 ∼ 1}. Put %′ = {|0 | : 0 ∈ %}, ! ′ = {|0 | : 0 ∈ !},
and -Φ = %′ ∪ ! ′. Since % and ! are disjoint, so too are %′ and ! ′, which each
have at most 2= elements. Hence -Φ is of size at most 2=+1. Then � ′ is defined
for U, V ∈ -Φ by the condition (7.1). To complete the definition of ℳ′ we define
+ ′(?) by (iii) if ? ∈ Φ, and put + ′(?) = ∅ otherwise, as before.

ℳ
′ is a filtration of ℳ through Φ: (iii) holds by definition of + ′, and reading

(7.1) from right to left shows that 0�1 implies |0 |� ′ |1 |, i.e. (i) holds. For (ii),
suppose |0 |� ′ |1 |. Then 0′� ′1′ for some 0′ ∈ |0 | and 1′ ∈ |1 |, so if �k ∈ Φ
and ℳ, 0 |= �k, then ℳ, 0′ |= �k as 0 ∼ 0′, hence ℳ, 1′ |= k as 0′�1′, and
ℳ, 1 |= k as 1 ∼ 1′, which proves (ii). It follows that the Filtration Theorem holds
for ℳ′, leading us to conclude that the 12g-consistent formula i is satisfiable in
the finite model ℳ′.

It remains to show that ℱ′ = (-Φ, � ′) validates 12g. As noted above, (7.1)
ensures that the properties of being serial and symmetric are preserved in passing
from � to � ′. We show that � ′ satisfies O1. First, by parts (4) and (5) of Theorem 3,
whenever 0�1 then one of 0 and 1 belongs to % and the other belongs to !. Hence
by (7.1), whenever U� ′V then one of U and V belongs to %′ and the other belongs
to ! ′. Iterated application of this gives that if U(� ′)=V and = is even, then U and V
both belong to %′, or both belong to ! ′. We can now prove O1: suppose U(� ′)4V.
If U ∈ %′, then V ∈ %′, so choosing 0 ∈ U and 1 ∈ V we have 0, 1 ∈ %, hence 0�21
as % is an �2-equivalence class. But then |0 | (� ′)2 |1 | as in the 8f case, i.e. U(� ′)2V.
But if U ∈ ! ′, then V ∈ ! ′ and similarly we infer that U(� ′)2V.

This proves thatℱ satisfies O1 and is a quasi-1-frame, hence validates 12g. (In
fact it is projective, with %′ and ! ′ being its only two (� ′)2-equivalence classes.)
That completes the proof of the finite model property for 12g.

We end with a comment on irreflexiveness and the logic 8f. It was shown at the
end of Section 6 that 8f is (strongly) complete for the class of all irreflexive non-
degenerate elliptic 1-planes. However it does not have the finite model property
for this class. Pledger noted in [14, p.24] that the class has no finite members at
all, by the Friendship Theorem of graph theory. That theorem, due to Erdős, Rényi
and Sós, can be formulated as saying that a finite irreflexive symmetric 1-frame in
which any two distinct elements have exactly one common neighbour must be a
windmill graph, a set of triangles that all have one common vertex, while no two
triangles share any other vertex (see [1, Chapter 44] for an exposition). Thus any
finite irreflexive elliptic 1-plane is a windmill. But no windmill can satisfy the
non-degeneracy condition O4′, as the reader may like to confirm.
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