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Abstract: Restall presented in An Introduction to Substructural Logics a “con-
secution” calculus. This is a natural deduction type sequent calculus where the
structural rules play an important role. This paper looks at different ways of ex-
tending Restall’s calculus. It is shown that Restall’s weak soundness and complete-
ness result with regards to a Hilbert calculus can be extended to a strong one so as
to encompass what Restall calls proofs from assumptions. It is also shown how to
extend the calculus so as to validate the metainferential rule of reasoning by cases,
as well as certain theory-dependent rules.
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1. Introduction

Restall presented in his book An Introduction to Substructural Logics (Restall,
2000) a “consecution” calculus for logics in the vicinity of relevant logics. Restall’s
calculus is a type of natural deduction calculus but where the proof objects are not
formulas but rather consecutions, more commonly known as sequents.1 Restall
proved that a weak soundness and completeness result holds for all logics dealt
with by him to the effect that a consecution is provable in some logic if and only
if its translation into a formula is a logical theorem of the Hilbert calculus for the
logic in question. Soundness and completeness result are called weak if they only
apply to derivations from the logical axioms, but are called strong if they also apply
to derivations from non-logical premises. In this paper it is proven that Restall’s
result can be strengthened to a strong soundness and completeness result. This
is proven in some detail for the weak relevant logic B. The proof holds for many
logics, however, but to keep the paper from growing out of proportions it will only
be gestured at how the result in fact generalizes. Section 1–3 contains the result
for B and Section 4 the gesturing towards the plethora of other logics dealt with in
Restall’s book.

Relevant logics are often strengthened by certain metainferential rules, and in
the propositional case, specifically the meta-rule of reasoning by cases. Section 5
shows how to extend Restall’s consecution calculus so as to yield a strong sound-
ness and completeness result also with regards to Bd—B with reasoning by cases
added. It will be evident from the proof that the result generalizes to stronger logics
than Bd.

Non-classical logics are, when logical consequence is defined in the usual Hilber-
tian way, often fitted with what are in this paper called theory-dependent rules. For
instance, it is sometimes argued that the induction schema for Peano arithmetic is
too strong in the context of certain logics if stated as an axiom schema. To retain
“enough” induction, one then rather includes a primitive induction rule. Section 6
shows what the consecution-equivalent of adding such theory-dependent rules is.
From the previous result it will then follow that strong soundness and completeness
holds also for this kind of extension. Section 7 briefly summarises.

This is first and foremost but a technical paper on the relationship between two
different proof calculi. For a more general overview of both technical as well
as philosophical issues connected to relevant and substructural logics, see Bimbó
(2007), Dunn and Restall (2002), Mares and Meyer (2001), and Restall (2006).

2. Consecution and Hilbert proofs for B

I will refer to `hL as Hilbert consequence for the logic L. The consequence rela-
tion is defined as follows:

1Variants of this type of calculus can be found in Read (1988), Slaney (1990), and Restall (1994).
As pointed out by the referee, Restall’s consecution calculus actually comes in two different vari-

ants: the natural deduction one as well as a Gentzen variant (see Restall (2000, ch. 6)). Whether or
not similar results as those presented in this paper can also be given in the case of the Gentzen variant
will have to be tackled in a different paper, however.
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Definition 1. [The Hilbert consequence relation of a logic] A Hilbert proof of
a formula A from a set of formulas Γ in the logic L is defined to be a finite list
A1, . . . , An such that An = A and every Ai≤n is either a member of Γ, a logical
axiom of L, or there is a set ∆ ⊆ {A j | j < i} such that ∆  Ai is an instance of
a rule of L. The existential claim that there is such a proof is written Γ `hL A and
expressed as “there exists a Hilbert-derivation of A from Γ in the logic L.”

Definition 2 (Parenthesis conventions). The basic set of connectives considered
in this paper will be {⊥, t,∼,∨,∧, ◦,→}, where the first two are nullary (truth-
constants), the third unary, and the remaining binary connectives. The disjunction
∨, and the conjunctions ∧ and ◦ are to bind tighter than →, and so I’ll usually
drop parenthesis enclosing conjunctions and disjunctions.

Definition 3. The following list of axioms and rules defines the logic B:

(A1) A→ A
(A2) A→ A ∨ B and B→ A ∨ B
(A3) A ∧ B→ A and A ∧ B→ B
(A4) A ∧ (B ∨C)→ (A ∧ B) ∨ (A ∧C)
(A5) (A→ B) ∧ (A→ C)→ (A→ B ∧C)
(A6) (A→ C) ∧ (B→ C)→ (A ∨ B→ C)
(A7) ∼∼A→ A
(A⊥) ⊥ → A
(A◦) A→ (B→ A ◦ B)
(At) t
(R1) {A, A→ B}  B
(R2) {A, B}  A ∧ B
(R3) {A→ B}  (C → A)→ (C → B)
(R4) {A→ B}  (B→ C)→ (A→ C)
(R5) {A→ ∼B}  B→ ∼A
(R◦) {A→ (B→ C)}  A ◦ B→ C
(Rt) {A}  t→ A

The axiomatization of B is slightly different from the setup in Restall (2000,
ch. 4). First of all, the pre- and suffixing rules (R3) & (R4) are rather stated as
the affixing rule {A → B,C → D}  (B → C) → (A → D). Furthermore,
Restall’s rules for t—the truth-constant known as the Ackermann constant—is (Rt)
and instead of (At), the rule {t → A}  A. It is an easy task to verify that the
different choices are in fact equivalent—a task I leave with the reader. Restall’s
rules for ◦—the fusion connective—is the rule (R◦), and instead of (A◦), rather the
rule {A ◦ B → C}  A → (B → C). That (A◦) is derivable using Restall’s rule is
evident. That the rule is derivable using (A◦) is seen from the following which we
will refer back to later:
Australasian Journal of Logic (18:2) 2021, Article no. 2
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Lemma 1.

(1) A ◦ B→ C assumption
(2) (B→ A ◦ B)→ (B→ C) 1, R3
(3) (A→ (B→ A ◦ B))→ (A→ (B→ C)) 2, R3
(4) A→ (B→ A ◦ B) A◦
(5) A→ (B→ C) 3, 4 R1

I have chosen to take the Church constant ⊥ as primitive. It’s positive sibling >
is axiomatized by the single axiom A→ >, but in the presence of the contraposition
rule (R5), > can be regarded as defined with > =d f ∼⊥.2 The axiom (A⊥) is the
most common way of axiomatizing ⊥. Note that Restall (2000)’s consecution-rule
for ⊥, however, uses a stronger condition which in the case of B corresponds to
adding in addition the axiom C → (⊥ → ⊥). I’ll show in Section 4 that the added
axiom for ⊥ is precisely what is needed to translate Restall’s rule for ⊥.

Now for Restall’s consecution calculus. I follow Restall in using ‘consecution’
instead of the more common ‘sequent.’ I use ‘�’ where Restall uses ‘`’ so as to
distinguish clearly between consecutions and a consequence relation: I will there-
fore use ‘�’ for consecutions and variants of ‘`’ for consequence relations. ‘’ and
‘⇐’ will be used for rules.

Definition 4. (Structure)

• 0 is a structure (but not a formula)
• If A is a formula, then A is a structure
• If X and Y are structures, then so is (X,Y)
• If X and Y are structures, then so is (X; Y)
• If X is a structure, and A is a formula, then X � A is a consecution.

Substructure is defined in the obvious way.

• X(Y) indicates that Y is a substructure of X.
• X(Y/Z) is the structure obtained by replacing every substructure Y in X with

Z.3

The system B consists of the following operational rules:

2Meyer (2004) added in addition the axiom > → (A → >) to the ◦-free axiomatization of the
positive fragment of B. The reason, presumably, being that the ◦-free fragment would otherwise be
non-conservatively extended by ◦.

3If the structure to be replaced is clear from context, then I will on occasion drop the slash-
notation to increase readability.
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(Id)
A � A

X; A � B
(→ I)

X � A→ B
X � A→ B Y � A

(→E)
X; Y � B

X � A Y � B
(◦I)

X; Y � A ◦ B
X � A ◦ B Y(A; B) � C

(◦E)
Y(A;B/X) � C

(tI)
0 � t

X � t Y(0) � A
(tE)

Y(0/X) � A

X � A X � B
(∧I)

X � A ∧ B
X � A1 ∧ A2 (∧Ei≤2)

X � Ai

X � Ai (∨Ii≤2)
X � A1 ∨ A2

Y(Z/A) � C Y(Z/B) � C X � A ∨ B
(∨E)

Y(Z/X) � C

X � ∼∼A
(∼∼E)

X � A
A � ∼B X � B

(∼I/∼E)
X � ∼A

X � ⊥
(⊥Em)

X � A
I follow Restall in writing structural rules other than the cut rule on the form

X ⇐ X′. Any such rule is to be interpreted as the rule
Y(X) � A
Y(X′) � A

.

The structural rules of B are the following:
X � A Y(A) � B

(cut)
Y(A/X) � B

(eB) X, (Y,Z) ⇐ (X,Y),Z
(eCI) X,Y ⇐ Y, X
(eWI) X, X ⇐ X

(eK) X ⇐ X,Y

(Left Push) X ⇐ 0; X
(Left Pop) 0; X ⇐ X

To distinguish Hilbert rules from consecution rules, I will on occasion call them,
respectively, H-rules and c-rules.

Definition 5. (Proof) A proof of a consecution X�A from a set of consecutions Γ in
the consecution system for B is defined to be a tree with X�A as its root. Any node
is a consecution which is either a member of Γ, and if so it is a leaf of the tree, or
Australasian Journal of Logic (18:2) 2021, Article no. 2
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is obtained from immediately preceding nodes using a c-rule. The existential claim
that there is such a proof will be written

Γ `rB X � A.

In the following we will need to combine proof-trees. Say, then, that Π1 is the
proof-tree below to the effect that {0 � A} `rB 0 � A ∨ C, and Π2 is the proof-tree
below to the effect that {0 � B} `rB 0 � (B ∨C) ∧ B :

0 � A
(∨I1)

0 � A ∨C

0 � B
(∨I1)

0 � B ∨C 0 � B
∧I.

0 � (B ∨C) ∧ B
If I then want to combine these two proof to obtain a proof that {0 � A, 0 � B} `rB
0 � (A ∨C) ∧ ((B ∨C) ∧ B), I will simply write

Π1 Π2
∧I.

0 � (A ∨C) ∧ ((B ∨C) ∧ B)
If I want to show the premises or the conclusions of Π1 and Π2, I’ll use a dotted

line as follows:
0 � A. . . . . . . .

Π1

Π2. . . . . . . . . . . . . . . . . . .
0 � (B ∨C) ∧ B

∧I.
0 � (A ∨C) ∧ ((B ∨C) ∧ B)

which, then, indicates that the premise-consecution 0 � A belongs to Π1 and that
0 � (B ∨C) ∧ B is the conclusion of Π2.

3. Translations between calculi

Restall proved in Restall (2000, ch. 4) what amounts to a weak soundness and
completeness result, that is, he showed that a consecution X � A is provable in
his consecution calculus, for some logic B, if and only if τ(X) → A is a logical
theorem in the Hilbert calculus for B. τ is here a translation from structures and
consecutions to formulas. Restall defines τ as follows:

Definition 6 (Translation of Consecution).
τ(A) =d f A where A is any formula
τ(0) =d f t

τ(X; Y) =d f τ(X) ◦ τ(Y)
τ(X,Y) =d f τ(X) ∧ τ(Y)

τ(X � A) =d f τ(X)→ A
τ(Γ) =d f {τ(z) | z ∈ Γ} where Γ is any set of structures or consecutions

Restall’s soundness and completeness theorem, Restall (2000, Thm. 4.3), reads
relative to B when translated into the jargon of this paper as follows:

∅ `rB (X � A) ⇐⇒ ∅ `hB τ(X � A)

Although Restall does consider what he calls proofs from assumptions (Restall,
2000, p. 21) a notion which corresponds to proofs from non-empty sets of con-
secutions Γ, Restall’s main focus, I think it is fair to say, is on proofs where the
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assumption set is empty. It is, then, the property {X � A | ∅ `rL X � A}, for cer-
tain logics L, which is Restall’s main object of study, not the more general relation
{〈Γ, X � A〉 | Γ `rL X � A}. The goal of this section is to show that Restall’s result
can be extended to a strong soundness and completeness result.

Lemma 2. For any structure X:

∅ `rB X � τ(X).

Proof. See Restall (2000, lem. 4.17). �

Lemma 3. For any consecution X � A:

{X � A} `rB 0 � τ(X � A).

Proof. Translating the second part of Restall (2000, lem. 4.17) into our jargon
yields the statement ∅ `rB X � A =⇒ ∅ `rB τ(X) � A. Restall’s proof, however
suffices for deriving τ(X)�A from X�A, and so is a proof that {X�A} `rB τ(X)�A.
By using the Left Push rule and (→ I) one then gets that {X�A} `rB 0�τ(X)→ A.
The proof now ends since τ(X � A) = τ(X)→ A. �

Lemma 4 (Soundness lemma). If ∆  A is a Hilbert-rule for B, then for any set Γ,
if Γ `rB 0 � Bi for every Bi ∈ ∆, then also Γ `rB 0 � A.

Proof. (R1): Assume that Π1 is a proof that Γ `rB 0 � A → B and Π2 a proof that
Γ `rB 0 � A.

Π1. . . . . . . . . . . . . .
0 � A→ B

Π2. . . . . . . .
0 � A

(→ E)
0; 0 � B

(L.Pop)
0 � B

(R2): Assume that Π1 is a proof that Γ `rB 0� A and Π2 a proof that Γ `rB 0� B.

Π1. . . . . . . .
0 � A

Π2. . . . . . . .
0 � B

(∧I)
0 � A ∧ B

(R3): Assume that Π1 is a proof that Γ `rB 0 � A→ B.

Π1. . . . . . . . . . . . . .
0 � A→ B

(Id)
C → A � C → A

(Id)
C � C

(→ E)
C → A; C � A

(→ E)
0; (C → A; C) � B

(L.Pop)
C → A; C � B

(→ I)
C → A � C → B

(L.Push)
0; C → A � C → B

(→ I)
0 � (C → A)→ (C → B)

(R4)–(Rt): Left for the reader. �

Theorem 1 (Strong soundness for B). For any set of consecutions Γ,

τ(Γ) `hB τ(X � A) =⇒ Γ `rB X � A
Australasian Journal of Logic (18:2) 2021, Article no. 2
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Proof. Assume that τ(Γ) `hB τ(X � A) and let α1, . . . , αn be a Hilbert proof of
τ(X � A) from τ(Γ). The first goal is to prove that Γ `rB 0 � αi for every i ≤ n. To
that end: αi is either a logical axiom of B, a member of τ(Γ), or is obtained from
prior α j’s using a rule of B. If αi is an axiom of B, then ∅ `hB αi. Using (Rt) we
then obtain that ∅ `hB t → αi. Since τ(0 � αi) = t → αi we can use Restall’s
soundness theorem (Restall, 2000, thm. 4.16) to infer that ∅ `rB 0 � αi. It then
follows by the definition of a consecution-proof that Γ `rB 0 � αi.

Assume that αi ∈ τ(Γ). Then αi is the τ-translation of some consecution Y �C ∈
Γ. From Lem. 3 we have that {Y � C} `rB 0 � τ(Y � C), and so it follows that
Γ `rB 0 � αi.

Assume that αi is obtained using a rule of B. We may then assume for induction
that if ∆ are the premises, then Γ `rB 0 � α j for every α j ∈ ∆. We can now use
Lem. 4 to infer that Γ `rB 0 � αi.

Since αn is τ(X�A), we can then infer that Γ `rB 0�τ(X�A). By the definition
of τ we can then infer that Γ `rB 0 � τ(X)→ A. Let Π1 be a proof of 0� τ(X)→ A
from Γ. From Lem. 2 we have that ∅ `rB X � τ(X). Let Π2 be a proof of this. We
then finally have that Γ `rB X � A since we can combine and expand Π1 and Π2 as
follows:

Π1. . . . . . . . . . . . . . . . .
0 � τ(X)→ A

Π2. . . . . . . . . . . .
X � τ(X)

(→ E)
0; X � A

(L.Pop)
X � A

�

Lemma 5. τ(X(τ(Y))) = τ(X(Y))

Proof. Left for the reader. �

Lemma 6.
{A→ B} `hB τ(X(A))→ τ(X(A/B))

Proof. See Restall (2000, lem. 4.19).4 �

Lemma 7 (Structural lemma). For every structural rule X ⇐ X′ of B,

∅ `hB τ(X′)→ τ(X).

Proof. Left for the reader. �

Lemma 8 (Distribution lemma).

∅ `hB τ(X(A ∨ B))→ τ(X(A)) ∨ τ(X(B)).

Proof. See Restall (2000, lem. 4.20) �

Lemma 9 (Completeness lemma). If

4Restall states his theorem as an admissible rule: “If there is a Hilbert proof of A→ B then there
is also a Hilbert proof of τ(X(A)) → τ(X(B)).” His proof, however, supports the stronger statement.
Note, furthermore, that this lemma holds for every extension of B considered in this paper.
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X1 � A1 . . . Xn � An
Z � B

is a consecution rule for B, then for any set of consecutions Γ, if for every i ≤ n,
τ(Γ) `hB τ(Xi � Ai), then also τ(Γ) `hB τ(Z � B).

Proof. In the easiest case the rule has no premises, and so the conclusion is either
A � A or 0 � t. Since τ(A � A) = A → A and τ(0 � t) = t → t, we do have that
τ(Γ) `hB τ(Z � B) for every set Γ.

Assume that Z�B is obtained using a 1-premise operational rule. If it is (⊥Em),
then we may assume for inductive hypothesis (IH) that τ(Γ) `hB τ(X � ⊥). Since
τ(X � ⊥) = τ(X) → ⊥, we may use the axiom ⊥ → A together with the fact that
→ is transitive to infer that τ(Γ) `hB τ(X) → A. Similar type of reasoning suffices
in cases of the 1-premise rules (∼∼E), (∨Ii≤2), and (∧Ei≤2). In the case of (→ I),
we can assume that τ(Γ) `hB τ(X; A� B). Since τ(X; A� B) = τ(X) ◦ A→ B, using
the fusion rule (R◦) yields τ(Γ) `hB τ(X) → (A → B), and since τ(X � A → B) =

τ(X)→ (A→ B), we’re done.
Now to consider the 2-premise rules. In the case of (→ E), the (IH) gives us

that τ(Γ) `hB τ(X � A → B) and τ(Γ) `hB τ(Y � A). Using τ, then, this translates to
τ(Γ) `hB τ(X) → (A → B) and τ(Γ) `hB τ(Y) → A. Using (R4) and the transitivity
of → we obtain that τ(Γ) `hB τ(X) → (τ(Y) → B), and so using the ◦-rule (R◦)
we finally obtain that τ(Γ) `hB τ(X) ◦ τ(Y) → B, and since τ(X; Y � B) = τ(X) ◦
τ(Y) → B, we’re done. (◦I), (∧I) and (∼I/∼E) are all left to the reader. The
last 2-premise operational rule is (◦E). (IH) gives us that τ(Γ) `hB τ(X � A ◦ B)
and τ(Γ) `hB τ(Y(A; B) � C). Using τ we then have that τ(Γ) `hB τ(X) → A ◦ B
and, using Lem. 5, τ(Γ) `hB τ(Y(A ◦ B)) → C. Using Lem. 6 we obtain that
τ(Γ) `hB τ(Y(τ(X)))→ τ(Y(A◦B)) and so using Lem. 5 also that τ(Γ) `hB τ(Y(X))→
τ(Y(A ◦ B)). The transitivity of→ they yields that τ(Γ) `hB τ(Y(X))→ C and since
τ(Y(A;B/X) � C) = τ(Y(X))→ C, we’re done.

The 3-premise operational rule (∨E) is proven in the same manner as (◦E) (using
in addition Lem. 8) and is left for the reader.

For the cut-rule we get from (IH) that τ(Γ) `hB τ(X�A) and τ(Γ) `hB τ(Y(A)�B).
Using τ this yields that τ(Γ) `hB τ(X)→ A and τ(Γ) `hB τ(Y(A))→ B. Using Lem. 5
and Lem. 6 we can then infer that τ(Γ) `hB τ(Y(X)) → τ(Y(A)) and so transitivity
of→ yields that τ(Γ) `hB τ(Y(X)) → B. Since τ(Y(X) � B) = τ(Y(X)) → B we’re
done.

Last but not least we have the structural rules on the form

Y(X) � A
Y(X′) � A

.

From (IH) we may assume that τ(Γ) `hB τ(Y(X) � A). For any structural rule
X ⇐ X′, Lem. 7 yields that ∅ `hB τ(X′) → τ(X), and so using Lem. 5 and Lem. 6
we get that ∅ `hB τ(Y(X′))→ τ(Y(X)). Using τ and the transitivity of→ then yields
that τ(Γ) `hB τ(Y(X′) � A) which ends the proof �
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Theorem 2 (Strong Completeness for B).

Γ `rB X � A =⇒ τ(Γ) `hB τ(X � A)

Proof. As in the soundness case, the proof is a simple induction, this time to the
effect that the τ-translation of every consecution Y � B occurring in the proof-tree
for Γ `rB (X � A) is Hilbert-derivable from τ(Γ). Every such consecution is either
a member of Γ or obtained from 0 or more consecutions using a rule. In the first
case we have that τ(Γ) `hB τ(X � A) since in this case τ(X � A) ∈ τ(Γ). In the other
case, Lem. 9 ensures that every consecution obtained using a rule is also Hilbert
derivable from τ(Γ).5 �

The soundness and completeness results show that every consecution derivation
has a matching Hilbert derivation. However, they do not in themselves show the
converse that every Hilbert derivation has a corresponding consecution derivation.
This, however, is an easy corollary using the following translation from formulas
to consecutions:

Definition 7.
ι(A) =d f 0 � A where A is any formula
ι(Γ) =d f {ι(A) | A ∈ Γ} where Γ is any set of formulas

Corollary 1. For any set of formulas Γ:

Γ `hB A⇐⇒ ι(Γ) `rB ι(A).

Proof. From the strong soundness and completeness theorems we have that

ι(Γ) `rB ι(A)⇐⇒ τ(ι(Γ)) `hB τ(ι(A)).

Now note that for any formula A we have that τ(ι(A)) = t → A and similarly for
sets of formulas. Using the t-rule (Rt), the fact that t is an axiom of B and modus
ponens, it is then easy to see that

τ(ι(Γ)) `hB τ(ι(A))⇐⇒ τ(ι(Γ)) `hB A.

Lastly, since Γ `hB B for every B ∈ τ(ι(Γ)) and τ(ι(Γ)) `hB B for every B ∈ Γ, we
have that

τ(ι(Γ)) `hB A⇐⇒ Γ `hB A.

�

This last corollary shows that what is sometimes called the external consequence
relation (cf. Avron, 1988) of a sequent calculus—ι(Γ) `rB ι(A) in this case—is in
the case of B extensionally identical to the defined Hilbertian consequence relation
`hB. The next section looks briefly at common ways of extending B to yield stronger
logics, as well as on ways of expanding the set of connectives.

5To make this rigorous one could assign a depth-measure such that the conclusion of every rule
is assign a depth one more than the maximum of its premises and then reformulated the proof as an
induction on the depth of consecutions. I hope the reader will find the current proof satisfactory.
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4. Generalizing to other logics

We saw in the previous section that Restall’s weak soundness and completeness
result can be strengthened to a strong one in the case of B. It is not only B which is
strongly sound and complete, however; the result generalizes to all the systems of
consecution logics that Restall considers. This section will give a glimpse at how.

4.1. A stronger falsum. Let’s first look at the already mentioned stronger rule for
⊥. Restall adds not (⊥Em), but rather: X � ⊥

(⊥E).
Y(X) � A

Starting from ⊥ � ⊥ one

can then use the rule to obtain X;⊥� ⊥, and therefore also 0 � C → (⊥ → ⊥):
(Id)

⊥� ⊥
(⊥E)

C;⊥� ⊥
(→ I)

C � ⊥ → ⊥
(L.Push)

0; C � ⊥ → ⊥
(→ I)

0 � C → (⊥ → ⊥)

Let’s define B]⊥ to be B with (⊥Em) replaced by (⊥E), and in the Hilbert case B
with C → (⊥ → ⊥) added as an extra axiom. What, then, about strong soundness
and completeness for B]⊥?

The soundness proof for B]⊥ needs in addition to the one given for B only that
∅ `r

B]⊥
0 � C → (⊥ → ⊥), and this we have already seen to be the case.

Corollary 2 (Strong soundness for B]⊥). For any set of consecutions Γ,

τ(Γ) `hB]⊥ τ(X � A) =⇒ Γ `rB]⊥ X � A

The completeness proof is a bit more involved. We first need a lemma:

Lemma 10. ∅ `h
B]⊥

τ(Y(⊥))→ ⊥

Proof. This is an inductive proof on the complexity of τ(Y(⊥)). First note that
‘Y(⊥)’ indicates that Y is a structure in which ⊥ is a substructure, and so in the
base case Y(⊥) is simply ⊥.

Assume, then, that Y(⊥) is obtained from the structures Z and W. In this case it
follows that ⊥ is a substructure of at least one of them, let’s say Z. Thus we may
for inductive hypothesis assume that ∅ `h

B]⊥
τ(Z(⊥)) → ⊥, where ‘Z(⊥)’ simply

indicates that ⊥ is a substructure of Z. Now Y(⊥) can be either of the following
structures (the outermost parentheses are removed):

(1) Z(⊥),W (2) W,Z(⊥)
(3) Z(⊥); W (4) W; Z(⊥)

The τ-translation of these structures are
(1) τ(Z(⊥)) ∧ τ(W) (2) τ(W) ∧ τ(Z(⊥))
(3) τ(Z(⊥)) ◦ τ(W) (4) τ(W) ◦ τ(Z(⊥))

Since both τ(Z(⊥)) ∧ τ(W) → τ(Z(⊥)) and τ(W) ∧ τ(Z(⊥)) → τ(Z(⊥)) are logical
theorems of B]⊥, and we have assumed that so is τ(Z(⊥)) → ⊥, we have that
∅ `h

B]⊥
τ(Z(⊥))→ ⊥ in both the first and the second case.
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For (3) note that {A→ B} `h
B]⊥

A ◦C → B ◦C is a derivable rule of B]⊥ (left for
the reader). Thus from the assumption that ∅ `h

B]⊥
τ(Z(⊥)) → ⊥, we obtain that

∅ `h
B]⊥

τ(Z(⊥))◦τ(W)→ ⊥◦τ(W). Using (A⊥) and (R◦) we get that⊥◦τ(W)→ ⊥
is a logical theorem, and so we can infer that ∅ `h

B]⊥
τ(Z(⊥))◦ τ(W)→ ⊥ using the

transitivity of→.
In the case of (4), note that {A→ B} `h

B]⊥
C◦A→ C◦B is also a derivable rule of

B]⊥. Thus from the assumption that∅ `h
B]⊥

τ(Z(⊥))→ ⊥,∅ `h
B]⊥

τ(W)◦τ(Z(⊥))→
τ(W) ◦ ⊥. Since τ(W)→ (⊥ → ⊥) is an axiom of B]⊥, using (R◦) once yields that
∅ `h

B]⊥
τ(W) ◦ τ(Z(⊥))→ ⊥, which, then, completes the proof. �

Corollary 3 (Strong completeness for B]⊥). For any set of consecutions Γ,

Γ `rB]⊥ (X � A) =⇒ τ(Γ) `hB]⊥ τ(X � A)

Proof. The proof of Thm. 2 carries over to B]⊥ if we can show that Completeness
lemma—Lem. 9—can be extended so as to also cover (⊥E). To that end we may
assume for inductive hypothesis that τ(Γ) `h

B]⊥
τ(X � ⊥). The goal is to show that

τ(Γ) `h
B]⊥

τ(Y(X)�⊥). First of all we have that τ(X�⊥) = τ(X)→ ⊥. Using Lem. 5
and Lem. 6 we have that τ(Γ) `h

B]⊥
τ(Y(X))→ τ(Y(⊥)). From Lem. 10 we have that

∅ `h
B]⊥

τ(Y(⊥)) → ⊥. Using this together with (A⊥) and the transitivity of→, we
then obtain that τ(Γ) `h

B]⊥
τ(Y(X))→ A, and therefore τ(Γ) `h

B]⊥
τ(Y(X) � A). �

4.2. A stronger negation. The logic DW is in the Hilbertian case obtained by
replacing the contraposition rule (R5) by its axiomatic version (A→ ∼B)→ (B→
∼A). DW is not only stronger than B, but also stronger than B]⊥ as the following
derivation shows:

Lemma 11. ∅ `hDW C → (⊥ → ⊥).

(1) ⊥ → ∼(C ◦ ∼⊥) A⊥
(2) C ◦ ∼⊥ → ∼⊥ 1, R5
(3) C → (∼⊥ → ∼⊥) 2, Lem. 1
(4) (∼⊥ → ∼⊥)→ (⊥ → ∼∼⊥) A8
(5) C → (⊥ → ∼∼⊥) 3, 4, transitivity
(6) (C ◦ ⊥)→ ∼∼⊥ 5, R◦
(7) ∼∼⊥ → ⊥ A7
(8) (C ◦ ⊥)→ ⊥ 6, 7, transitivity
(9) C → (⊥ → ⊥) 8, Lem. 1

The negation rules of B—(∼∼E) and (∼I/∼E)—yield what Restall calls a de
Morgan negation. The consecution calculus for DW is obtained by replacing such
a negation with its strict variant; by replacing (∼I/∼E) with its semicolon variant:

X; A � ∼B Y � B
(∼I;∼E)

X; Y � ∼A
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Hilbert axiom label structural rule
(A→ B)→ ((C → A)→ (C → B)) B X; (Y; Z)⇐ (X; Y); Z
(A→ B)→ ((B→ C)→ (A→ C)) B′ X; (Y; Z)⇐ (Y; X); Z
A→ ((A→ B)→ B) CI X; Y ⇐ Y; X
A ∧ (A→ B)→ B WI X; X ⇐ X
A→ (B→ A) K X ⇐ X; Y

Table 1. Some structural rules and their corresponding axioms

Strong soundness and completeness carries easily over to DW; details are left for
the reader.

4.3. Adding structural rules. Well-known relevant logics such as TW, RW and
R, as well as the non-relevant logic RWK, are obtained by adding axioms in the
case of the Hilbert calculus, and more structural rules in the case of the consecution
calculus. These four logics are obtained using the axioms and rules on display in
Table. 1 as follows:

• TW: obtained from DW by adding B and B′ from Table. 1. (R3) and (R4)
can be deleted from the Hilbert calculus.
• RW: obtained from TW adding CI from Table. 1. ◦ can be defined using

A ◦ B =d f ∼(A → ∼B), and so (A◦) and (R◦) can be deleted from the
Hilbert calculus. (Rt) can be replaced by the axiom A→ (t→ A).
• R: obtained from RW by adding WI.
• RWK: obtained from RW by adding K. Axioms for t and ⊥ can be deleted

as t can be defined as p→ p some some p, and ⊥ as ∼t.
In all these cases it is fairly easy to modify the strong soundness and complete-

ness proof seeing as for every structural rule X ⇐ X′ of L ∈ {TW,RW,R,RWK},
it is the case that

∅ `hL τ(X′)→ τ(X).

Details are left for the reader.

4.4. More connectives. Negation is in Restall (2000) considered as belonging to
the class of modalities, and more precisely to the class of negative modalities.
The consecution rules for ‘∼’ presented here are only but a few of the negation
principles considered by Restall. Restall also considers positive modalities of the
more familiar sort, as well as non-normal modalities—both the so-called Kleene
star operator ‘∗,’ as well as Girard’s exponential operator ‘!.’ It will not be possible
to consider them all in this paper, although it should be noted that each of them can
easily be shown to survive a strong soundness and completeness proof using the
same basic technique as presented in this paper.

The left-to-right conditional ,‘→,’ left-residuates the fusion connective in that
sense that the left residuation rules

{A ◦ B→ C}  A→ (B→ C) {A→ (B→ C)}  A ◦ B→ C
Australasian Journal of Logic (18:2) 2021, Article no. 2



64

hold. For logics in which permutation holds—logics like RW—there is only one
way to define a residual of ◦. In logics without full permutation there is yet another
way, however, namely as the converse right-to-left conditional ‘←’ which right-
residuates the fusion connective in that the Hilbert rules

{A ◦ B→ C}  B→ (C ← A) {B→ (C ← A)}  A ◦ B→ C

hold. Relevant logics are usually defined without such a converse conditional, but
related logics sometimes are.6 Restall’s stated consecutions rules for ‘←’ are as
follows:

A; X � B
(← I)

X � B← A
X � B← A Y � A

(←E)
Y; X � B

The strong soundness and completeness results easily extend to logics outfitted
with the right-to-left conditional with (← I) and (← E) added to the consecution
calculus and the two mentioned Hilbert rules to the corresponding Hilbert calcu-
lus. I leave it to the reader to verify the details. It should be noted, however, that
one can derive Restall’s stronger ⊥-rule, (⊥E), using the weaker (⊥Em)-rule to-
gether with the converse conditional. This conditional, therefore, cannot be added
conservatively to weak logics such as B as it yields C → (⊥ → ⊥) as a logical
theorem.78

5. Generalizing further: Adding meta-inferences - the case of reasoning by
cases in substructural proof theory

Reasoning by cases is the metainferential rule that allows one to infer that a
proposition follows from a disjunction provided it follows from both disjuncts.
The sense in which it is metainferential is that it relates claims of following from
to other such claims. As such it is usually thought of as a statement about a conse-
quence relation, and not as a proper rule.

In the Hilbertian case, reasoning by cases holds for a logic L just in case `hL is
closed under the rule9

{A} `hL C {B} `hL C
(H-RbC)

{A ∨ B} `hL C

Restall—see Restall (1994, thm. 5.2)—gave a nifty proof in that any logic L
extending DW and which has only (R1) and (R2) as primitive rules is closed under
the meta-rule of reasoning by cases. For other logics—logics like B, DW and

6The most prominent example being Labek-type logics (cf. Lambek, 1958).
7A simple Hilbert proof goes as follows: ⊥ → (⊥ ← C) is an instance of (A⊥), and so the

rightmost version of the right residuation rules yields C ◦ ⊥ → ⊥ from which the leftmost version
of the left residuation rules yields the sought-after conclusion. A similar proof using the consecution
calculus can easily be found; I leave it for the reader. John Slaney’s computer program MaGIC
(Slaney, 1995) can easily be used to find a counter-model to C → (⊥ → ⊥) for the logic B.

8I would like to thank one of the referees for pressing the issue of the converse conditional, as
well as pointing out its connection to Restall’s stronger ⊥-rule.

9An equivalent way to state (RbC) is that `h
L be closed under the meta-rule that {A∨C} `h

L B∨C
if {A} `h

L B.
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TW—it can be shown that (H-RbC) does not hold. For instance in all these logics
it is the case that {A ∧ (A → B)} `hL B ∨ C and {C} `hL B ∨ C, but not that
{(A ∧ (A → B)) ∨ C} `hL B ∨ C.10 Note, furthermore, that even though (H-RbC)
holds for logics like RW, RWK and R, the result does not necessarily hold if
the logic in question is extended by more primitive rules. For this reason it is
worth considering how to ensure that (H-RbC) holds. One way to do so is to add
disjunctive rules: for every primitive rule {A1, . . . , An}  B, to add in addition the
rule {A1 ∨ C, . . . , An ∨ C}  B ∨ C. For a proof that this suffices for (H-RbC), see
Priest and Sylvan (1992, p. 219). Another way is to add meta-rules as primitive
rules. This was, to my knowledge, first done in Brady (1984). Another way is
to revise the definition of a Hilbert proof. This is the approach of Øgaard (2017)
where a Hilbert proof is defined to be a nested list so as to allow for subproofs.
These approaches can be proven to be equivalent, but since the disjunctive-rules-
approach requires the least modification to the current set-up, I’ll stick to it.

Definition 8. The relation `hLd is obtained from `hL by adding every disjunctive
version of every primitive rule of L.

The consecution version of the external version of reasoning by cases is readily
seen to be the following rule:

[0 � A]
...

0 � C

[0 � B]
...

0 � C 0 � A ∨ B
(C-RbC)

0 � C

The bracketed consecutions are intended as “temporary” assumptions which are
then discharged by the (C-RbC)-rule. To allow for this we must update the def-
inition of a proof-tree to allow in addition any temporary assumption [X � A],
but requiring that the tree does not contain any such assumptions which are not
discharged.

Definition 9. The relation `rLd is obtained from `rL by adding (C-RbC) to the stock
of rules of L.

There are two complicating factors that need to be accounted for: the number of
times a temporary assumption can be stated, and that sub-proofs from temporary
assumptions may occur within other such sub-proofs. I’ll comment one these in
turn.

One of the main motivating reasons for using trees as proof structures is that
they allow rules to only apply to premises immediately preceding the conclusion.
Thus a premise can only be used once. Say, then, that one wants to prove the
consecution A∧ (B∧C) � (A∧ B)∧C. One proof-tree showing that this is indeed

10Slaney’s MaGIC can also in this case be used to find a counter-model.
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a provable consecution is the following:

(Id)
A ∧ (B ∧C) � A ∧ (B ∧C)

∧E1A ∧ (B ∧C) � A

(Id)
A ∧ (B ∧C) � A ∧ (B ∧C)

∧E2A ∧ (B ∧C) � B ∧C
∧E1A ∧ (B ∧C) � B
∧I

A ∧ (B ∧C) � A ∧ B

(Id)
A ∧ (B ∧C) � A ∧ (B ∧C)

∧E2A ∧ (B ∧C) � B ∧C
∧E2A ∧ (B ∧C) � C
∧I

A ∧ (B ∧C) � (A ∧ B) ∧C

All the three branch in this tree has an identical initial segment. Since we can
freely start a new branch with an instance of the (Id)-rule, or by any consecution
occurring in the premise set, this kind of multiplying is innocuous. However, tem-
porary assumptions need to be treated in the same kind of manner, and so a more
representative presentation of the reasoning by cases rule is rather as follows:

[0 � A] . . . [0 � A]
. . .

...
...

0 � C

[0 � B] . . . [0 � B]
. . .

...
...

0 � C 0 � A ∨ B
(C-RbC)

0 � C
An application of the (C-RbC)-rule is then understood to discharge every occur-
rence of the temporary assumptions.

The other complicating factor is that we need to allow for nested uses of reason-
ing by cases. As an easy example using a Fitch-style proof system, consider the
following proof of (A1 ∧ A2) ∨C from (A1 ∨C) ∧ (A2 ∨C):

1 (A1 ∨C) ∧ (A2 ∨C) assumption

2 A1 ∨C ∧ Elim: 1

3 A1

4 A2 ∨C ∧ Elim: 1

5 A2

6 A1 ∧ A2 ∧ Intro: 3, 5

7 (A1 ∧ A2) ∨C ∨ Intro: 6

8 C

9 (A1 ∧ A2) ∨C ∨ Intro: 8

10 (A1 ∧ A2) ∨C ∨ Elim: 4, 5–7, 8–9

11 C

12 (A1 ∧ A2) ∨C ∨ Intro: 11

13 (A1 ∧ A2) ∨C ∨ Elim: 2, 3–10, 11–12

Regrettably, the proof to the same effect in the consecution calculus extended
with (C-RbC) is not nearly as neat as the Fitch-style proof as the proof of the
following lemma shows:

Lemma 12. {0 � (A1 ∨C) ∧ (A2 ∨C)} `rBd 0 � (A1 ∧ A2) ∨C

Proof. Let in the following α =d f (A1 ∨ C) ∧ (A2 ∨ C) and β =d f (A1 ∧ A2) ∨ C.
I have decorated the proof with indices to show which temporary assumptions are
discharged by which instance of (C-RbC).11

11Note that we do not need (C-RbC) to prove this seeing as the fact that ∅ `h
B (A1 ∨ C) ∧ (A2 ∨

C) � (A1 ∧ A2) ∨C. However, if we use this, then we need to apply the cut-rule.
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[0 � A1]1 [0 � A2]2 (∧I)
0 � A1 ∧ A2 (∨I1)

0 � β

[0 � C]3 (∨I2)
0 � β

0 � α
(∧E1)

0 � A1 ∨C
(C-RbC)2,3

0 � β

[0 � C]4 (∨I2)
0 � β

(C-RbC)1,4
0 � β

�

The proof of the above lemma shows that even though an application of (C-RbC)
cancels temporary assumptions, that cannot be understood as cancelling the whole
sub-branch which makes up the sub-proof as it might be entangled in yet another
sub-proof—this happens in the above proof where [0 � A1]1 must be available for
use in the last application of (C-RbC) and so cannot be cancelled by the above
application of the rule. The final update, then, is that (C-RbC) is to be taken as
cancelling at least one instance of each of the temporary assumptions, and to clas-
sify as a proper proof, the tree as a whole cannot have undischarged temporary
assumptions.

Lemma 13 (Soundness lemma for Bd). If ∆  A is a Hilbert-rule for Bd, then for
any set Γ, if Γ `rBd 0 � Bi for every Bi ∈ ∆, then also Γ `rBd 0 � A.

Proof. We simply update the soundness lemma for B—Lem. 4—so as also to cover
the disjunctive rules of Bd. B only has Hilbert rules with at most two premises, so
any disjunctive rule of Bd is either on the form {A1 ∨ C}  B ∨ C or on the form
{A1 ∨C, A2 ∨C}  B ∨C. Lem. 4 shows that for every primitive rule {A1, A2}  B
of B, that for any set of consecutions Θ, if Πi is a proof of 0 � Ai from Θ, then the
Πi’s can be combined and expanded into a proof Π of 0 � B. We now reuse this to
also cover the disjunctive rules.

If the rule in question is {A1∨C}  B∨C, we can use Π and (C-RbC) to show that
any proof Σ1 that Γ `rBd 0�A1∨C can be expanded to a proof that Γ `rBd 0�B∨C:

[0 � A1]1. . . . . . . . .
Π. . . . . .

0 � B
(∨I1)

0 � B ∨C
[0 � C]2 (∨I2)

0 � B ∨C
Σ1. . . . . . . . . . .

0 � A1 ∨C
(C-RbC)1,2

0 � B ∨C

The case where the rule has two premises is handled in the same way, where
now Σi is a proof that Γ `rBd 0 � Ai ∨ C, Ψ is the proof from Lem. 12, and Π is
the proof of 0 � B obtained from proofs with conclusions 0 � A1 and 0 � A2 (with
premises from some possibly Γ-distinct set Θ). The resultant tree looks as follows:

[0 � A1 ∧ A2]1 (∧E1)
0 � A1

[0 � A1 ∧ A2]1 (∧E2)
0 � A2. . . . . . . . . . . . . . . . . . . . . . . . .

Π. . . . . .
0 � B

(∨I1)
0 � B ∨C

[0 � C]2 (∨I2)
0 � B ∨C

Σ1. . . . . . . . . .
0 � A1 ∨C

Σ2. . . . . . . . . .
0 � A2 ∨C

(∧I)
0 � (A1 ∨C) ∧ (A2 ∨C). . . . . . . . . . . . . . . . . . .

Ψ. . . . . . . . . . . . . . .
0 � (A1 ∧ A2) ∨C

(C-RbC)1,2
0 � B ∨C

�
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Theorem 3 (Strong soundness for Bd). For any set of consecutions Γ,

τ(Γ) `hBd τ(X � A) =⇒ Γ `rBd X � A

Proof. The proof is the same as that of Thm. 1 �

Lemma 14 (Completeness lemma for Bd).
• If X1 � A1 . . . Xn � An

Z � B
is a consecution rule for B other than

(C-RbC), then for any set of consecutions Γ, if for every i ≤ n, τ(Γ) `hB
τ(Xi � Ai), then also τ(Γ) `hB τ(Z � B).
• If 0 � C is the conclusion of (C-RbC) with major premise 0 � A ∨ B, then

if all of

τ(Γ) `hB τ(0 � A ∨ B)

τ(Γ) ∪ τ(∆1) ∪ {τ(0 � A)} `hB τ(0 � C)

τ(Γ) ∪ τ(∆2) ∪ {τ(0 � B)} `hB τ(0 � C)

hold, where ∆1 (∆2) is the set of temporary assumptions in the sub-proof
starting with [0 � A] ([0 � B]) that remains undischarged after the appli-
cation of (C-RbC), then also

τ(Γ) ∪ τ(∆1) ∪ τ(∆2) `hB τ(0 � C).

Proof. This follows from the completeness lemma for B (Lem. 9) by noting that
not only does (H-RbC) hold for `hBd , but also the generalized version of it that for
any set of formulas Ξ1, Ξ2 and Π,

Π ∪ Ξ1 ∪ {A} `hL C Π ∪ Ξ2 ∪ {B} `hL C
(gH-RbC).

Π ∪ Ξ1 ∪ Ξ2 ∪ {A ∨ B} `hL C

I leave it to the reader to verify this. �

Theorem 4 (Strong Completeness for Bd).

Γ `rBd X � A =⇒ τ(Γ) `hBd τ(X � A)

Proof. The proof is similar to that of Lem. 9, but instead of proving τ(Γ) `hB
τ(Y � B) for every consecution Y � B occurring in the proof-tree, we prove rather
τ(Γ) ∪ τ(∆Y�B) `hBd τ(Y � B), where ∆Y�B is the set of undischarged consecutions
occurring on some branch above Y � B. Then since every temporary assumption
is eventually discharged, τ(Γ) `hBd τ(X � A). I leave it to the reader to complete the
proof. �

Corollary 4. For any set of formulas Γ:

Γ `hBd A⇐⇒ ι(Γ) `rBd ι(A).

Proof. The proof is identical to that of Cor. 1. �
Australasian Journal of Logic (18:2) 2021, Article no. 2



69

5.1. Other meta-rules. It would be possible to consider adding other meta-rules.
When extending the logic to include quantifiers, for instance, the quantified version
of reasoning by cases, namely

(M2)
Γ, A(x/y) `hL B

Γ,∃xA `hL B
y < FV(Γ ∪ {∃xA, B})

would be a prime candidate. Another possible meta-rule extension is possible in
the context of the ω rule

(Rω) A(0), . . . , A(n̄), . . .  ∀xA(x)

It seems that if one for every natural number n can infer B from A(n̄) together with
premises Γ, then B ought to follow also from Γ together with the assumption that
there is some number which is A. This is codified in the following meta-rule:

(M2ω)
Γ, A(0) `hωL B . . . Γ, A(n̄) `hωL B . . .

Γ,∃xA `hωL B
Consecution meta-rules for these could be found. However, going further in depth
into these matters is beyond the scope of this paper.

6. Generalizing further still: adding theory-dependent rules

For logics in the vicinity of relevant logics it is generally the case that adding
an axiom A → B is stronger than adding the Hilbert-rule {A}  B. But seeing
as axioms can be viewed as 0-premise rules, it is only natural to consider theories
made up from not only axioms, but from rules as well. I propose to call such rules
theory-dependent rules.12

One such theory-dependent rule is the ω-rule encountered in the previous sec-
tion. This rule is sometimes added to replace the induction axiom of Peano arith-
metic in both classical as well as non-classical logics. Meyer pioneered the study
of relevant arithmetic. Meyer used the usual Hilbert-type consequence relation—
PA `hL A where PA is the set of Peano axioms—when investigating relevant
arithmetic. In some writings, however, Meyer used the induction axiom A(0) ∧
∀x(A(x) → A(x′)) → ∀xA(x), whereas he in other preferred a rule version of in-
duction.13

A natural way to generalize the consequence relation `hL to also cover theory-
dependent rules is simply to allow premise-sets to be set of pairs 〈∆, A〉, where

12The notion of a theory-dependent rule is but one of many ways the general notion of a rule can
be precisified. See Brady (1993, 1994) for other interesting notions of rules in the context of relevant
logics.

13For an example of the first approach, see Friedman and Meyer (1992). For the second, see
Meyer (1976) where he even writes that “[n]ot all forms of the mathematical induction principle
are relevantly valid. A sufficient form of this principle, however, is the rule RMI: ‘From A0 and
Ax → Ax′, infer Ax.’ ” (Meyer, 1976, p. 133). For arithmetics over other logics where induction
is stated as a rule instead of as an axiom, see Meyer and Mortensen (1984), Meyer and Restall
(1996), Meyer and Restall (1999), Restall (1992, 2010). I should also note that Dunn has investigated
Robinson’s arithmetic using R (Dunn, 1979).
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∆  A is the theory-dependent rule added, and if A is to be an axiom, then ∆ = ∅.
Just as we have seen that for any set of formulas Θ, Θ `hB A ⇐⇒ ι(Θ) `rB ι(A), it
should be clear by now that for any set of pair-premises Λ, Λ `hB A if and only if
the consecution 0 � A is derivable from the set {0 � B | 〈∅, B〉 ∈ Λ} and where for
every 〈∆, B〉 ∈ Λ, where ∆ = {A1, . . . , An}, the consecution rule

0 � A1 . . . 0 � An
0 � B

is added to B’s set of consecution rules.
Sometimes theory-dependent type rules are also added to a consecution calculus.

As an example, consider Priest (2015) where in the context of naïve truth theory
formulated over the consecution calculus as here presented for B, Priest suggested
that a “naïve” validity predicate should be governed by the consecution rules

(V1) V(〈A〉, 〈B〉) � A→ B (V2) A � B
0 � V(〈A〉, 〈B〉)

Priest’s naïve validity theory, then, can be represented in Hilbert-style as the pair-
theory

Ψ =d f {〈∅,V(〈A〉, 〈B〉)→ (A→ B)〉, 〈{A→ B},V(〈A〉, 〈B〉)〉},

that is as the axiom V(〈A〉, 〈B〉) → (A → B) together with the theory-dependent
rule {A→ B}  V(〈A〉, 〈B〉).

7. Summary

This paper has dug into Restall’s consecution calculus. It was shown that his
weak soundness and completeness result extends to a strong one, and that this
even holds in the presence of the meta-rule of reasoning by cases, as well as when
axiomatic theories come equipped with so-called theory-dependent rules.
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