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Abstract

This paper continues my work of [12], which showed there was a broad family of many valued
logics that have a strict/tolerant counterpart. Here we consider a generalization of weak Kleene
three valued logic, instead of the strong version that was background for that earlier work. We
explain the intuition behind that generalization, then determine a subclass of strict/tolerant
structures in which a generalization of weak Kleene logic produces the same results that the
strong Kleene generalization did. This paper provides much background, but is not fully self-
contained. In particular, some results from [12] are called on and are not reproved here.
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1 Introduction

There are two objectives in this paper. They are represented in the title via the phrases
“strict/tolerant” and “weak Kleene”. In this Introduction I discuss the background for these
objectives, beginning with weak Kleene logic.

A three valued logic taking meaninglessness or nonsensicalness into account was introduced
in [5]. It was independently reintroduced as a logic of gappiness in [16], where it was given
a computational interpretation. Today it is known as Bochvar’s logic, or more commonly as
Kleene’s weak three valued logic. Kleene also introduced a strong three valued logic. It too
can be interpreted computationally. Roughly speaking, the strong version allows parallel com-
putation while the weak version does not. With all respect to Bochvar, we will call the logic
“weak Kleene” here. There have been several generalizations of weak Kleene introduced. For
instance, see [21] and further references there. I introduced a naturally motivated family in [10],
and applied this in my bilattice based work on Kripke’s theory of truth, [8] and more recently
[13]. Here I find a new application for this family, investigating connections with strict/tolerant
logics, thus extending my earlier work from [15, 12].

Strict/Tolerant logic, commonly known as ST, has generated much interest of late, [6, 3,
25, 19, 2, 20]. It is a three-valued logic with an unusual consequence relation. The truth tables
are those of Kleene’s strong three valued logic, often called K3. These tables are the same as
those of Priest’s logic of paradox, LP, though the intuitions are different. For the moment we
use {0, 1

2 , 1} for these truth values. The special feature of ST is that it has two designated sets.
The so-called strict one is {1}, the designated set for K3, while the tolerant one is { 12 , 1}, the
designated set for LP. A valuation validates a sequent Γ⇒ ∆ in ST provided, if it maps every
formula in Γ to a strictly designated truth value, it maps some member of ∆ to a tolerantly

Australasian Journal of Logic (18:2) 2021, Article no. 3

melvin.fitting@gmail.com


74

designated truth value. It turns out that ST validates the same sequents as classical logic, so it
has been proposed as a replacement for classical logic in addressing the truth paradoxes, and in
dealing with vagueness because it lacks transitivity. It has also led to much discussion on just
what it means for logics to be different. If one identifies a logic with its consequence relation,
ST is classical logic. But unlike classical logic, cut is not an admissible rule of ST using a
local version of validity, so one really should not say they are the same. This is an important
discussion, but it is not what concerns us here.

My own previous work in [12] (with the main ideas already in [15] which was written first
but has not appeared yet) has to do with how general a phenomenon strict/tolerance is. It
turns out that every many valued logic based on what I called a logical Morgan algebra has a
strict/tolerant counterpart whose relationship with the many valued logic shares all the essential
features that make the connection between ST and classical logic interesting. A Morgan algebra
(my term) is like a De Morgan algebra except that distributivity is not required. A logical
Morgan algebra is one with a designated set of members that constitute a prime filter. Classical
propositional logic is determined by the simplest logical Morgan algebra. But also, both K3

and LP themselves are characterized by logical Morgan algebras, and so they too have their
strict/tolerant counterparts. The same is true of first degree entailment, FDE, and indeed of an
infinite family of many valued logics.

I subsequently realized that my conditions were stronger than needed, and the requirement
that the designated set of truth values should be a prime filter could be relaxed. This will be
discussed further in Section 2. No earlier results are invalidated by this, but rather the range of
applicability is actually broadened.

Although it is not a fundamental issue like the one about sameness and difference for logics,
the question does come up about what happens if, instead of using the strong Kleene truth
tables, one uses the weak ones in creating something like ST, thus working with what are
called paraconsistent weak Kleene and paracomplete weak Kleene. Both use Kleene’s weak
or Bochvar’s truth tables, but the first has { 12 , 1} as designated values. The second has {1}
designated, which was Kleene’s choice. It turns out that results much like the original ones
still connect this to classical logic, something that is a known result [18, 24]. The question I
investigate here is: to what extent does this generalize to the range of many valued logics that
my work in [12] considered? The answer is, it does generalize, but to a proper subset of the
original range. To be specific, things work well for a generalization of weak Kleene logic provided
we have a logical Morgan algebra where the involution operation is an orthocomplement, that
is, x ∨ x = 1 and x ∧ x = 0. Of course all this requires one to say what counts as a natural
generalization of weak Kleene logic. As mentioned above, I proposed such a thing in [10],
and that will be employed here, preceded by some discussion to motivate it. I note that this
generalization has been further considered in [7], with a dualized version explored in [22, 23].
We will actually make use of this dualized version, as well as of the original version. Bilattices
play a central role, and we provide a summary of their basic properties, for convenience.

2 Morgan Algebras

Our methods work with many valued logics whose truth value space has some algebraic structure.
Essentially we need De Morgan algebras, but we don’t need the usual distributivity condition.
The following terminology was introduced in [12], where dropping ‘De’ from ‘De Morgan’ is
meant to suggest dropping distributivity.

Definition 2.1 (Morgan Algebra) A Morgan algebra is a bounded lattice with an involution.
Thus it is a partial ordering with a least and a greatest member, with meets and joins for every
pair, and in which there is an order reversing mapping, called an involution. We will write ≤
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for the lattice ordering, 0 and 1 for the least and greatest members, u and t for meet and join,
and overbar for the involution.

It is easy to show that in a Morgan algebra, a = a, a u b = a t b, and a t b = a u b. Also
0 = 1 and 1 = 0.

Definition 2.2 (Logical Language) We assume we have a fixed logical language, built up
from propositional letters using the connectives ∧, ∨, and ¬. We commonly use X,Y, . . . for
formulas and P,Q, . . . for propositional letters. We also have sequents which we write as Γ⇒ ∆,
where Γ and ∆ are finite sets of formulas.

Sequents will be treated semantically, not proof theoretically. They involve sets, not multi-
sets, and structural rules are not considered. They are interpreted in various algebraic structures
here, using valuations, where valuations are defined arbitrarily at the atomic level, and are then
extended. In [12] the same notation was used for a valuation and for its extension to all for-
mulas. Here we need to be a bit more careful since a couple of ways of extending will be used.
One family of extensions makes use of the lattice structure of its truth value space—it will be
denoted vl, where the l is for lattice. This is the extension used in the earlier paper. Other ways
that do not use the lattice structure directly will have different notations.

Definition 2.3 (Valuation) A valuation in a Morgan algebra L is a mapping v from propo-
sitional letters to members of L. Every such valuation extends uniquely to a mapping vl on all
formulas as follows, where u and t are the meet and join of the algebra.

vl(P ) = v(P ) for P a propositional letter

vl(X ∧ Y ) = vl(X) u vl(Y )

vl(X ∨ Y ) = vl(X) t vl(Y )

vl(¬X) = vl(X)

To have a semantic characterization of a many valued logic we also need a set of designated
truth values. In [12] we required that designated sets should be prime filters. After the fact it
was realized that this was a much stronger condition than was needed and, in fact, the strength
was never employed in our proofs. For the record, here is a brief discussion of the range of
possible conditions, in order of increasing strength.

Definition 2.4 (Designated Set Conditions) Let L = 〈L,≤〉 be a lattice. A subset S of L
is:

1. upward closed, or just upclosed, if x ∈ S and x ≤ y implies y ∈ S;

2. a filter if it is upward closed and x, y ∈ S implies x u y ∈ S;

3. a prime filter if it is a filter and x t y ∈ S implies x ∈ S or y ∈ S.

If we think of the members of a lattice L as a space of truth values, with the ordering
relation having to do with the degree of truth, whatever that might mean, then the conditions
just given have natural roles. Suppose S is the set of designated truth values, those we accept as
established, valid, factual, . . . . And suppose we map formulas into the lattice with conjunction
corresponding to meet and disjunction corresponding to join. Then being upward closed says
that anything truer than an accepted formula is also accepted. Being a filter adds that the
accepted formulas are closed under conjunction. Being a prime filter adds that if a disjunctive
formula is accepted, one of its disjuncts also is. These are natural conditions of increasing
strength. In [15, 12] a condition was imposed of being a prime filter. In fact, just being upward
closed would have been quite enough, and that is what is used here.
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Definition 2.5 (Logical Morgan Algebra) Let L = 〈L,≤〉 be a Morgan algebra, and let D
be a non-empty, proper subset of L that is upward closed. We call the pair 〈L,D〉 an upclosed
logical Morgan algebra. Thinking of L as a space of truth values, D serves as the set of designated
truth values.

We will not need the following, but it would be natural to say that an upclosed logical
Morgan algebra 〈L,D〉 is filtered if D is a filter, and is prime filtered if D is a prime filter. In
[15, 12], the terminology Logical Morgan Algebra was used. It will not be used here, but it is
equivalent to being a prime filtered logical Morgan algebra

Definition 2.6 (Consequence) Let 〈L,D〉 be an upclosed logical Morgan algebra, and let v
be a valuation in L. v validates the sequent Γ ⇒ ∆ in 〈L,D〉 provided that, if vl(X) ∈ D for
every X ∈ Γ then vl(Y ) ∈ D for some Y ∈ ∆. A sequent Γ ⇒ ∆ is valid in 〈L,D〉 if every
valuation in 〈L,D〉 validates it.

3 Bilattices

Bilattices, like Morgan algebras, are algebraic structures whose members can be thought of as
truth values, but they carry two orderings. One is commonly thought of as being on degree of
truth, and the other on degree of information. They are the chief tool we use in what follows.
Quite a number of different conditions have been imposed on bilattices but rather than listing
the ones we need each time we talk about bilattices, we keep terminology at a minimum by
stipulating that here bilattice will be short for interlaced bilattice with negation and conflation
that commute. We say what all this means, and then we sketch what consequences will be
needed, omitting much of the motivation and proofs. See [14, 11] for a fuller treatment (though
it hardly exhausts the subject).

Definition 3.1 (Bilattice) A bilattice (in this paper) is a structure B = 〈B,≤t,≤k〉 with two
partial orderings, ≤t (the truth ordering) and ≤k (the information ordering). These meet the
following conditions.

1. Each partial ordering is that of a lattice. Meet and join with respect to ≤t are denoted ∧
and ∨. Meet and join with respect to ≤k are denoted ⊗ and ⊕.

2. Each partial ordering is bounded. The ordering ≤t has a least element, f , and a greatest,
t. The ordering ≤k has a least element, ⊥, and a greatest, >. All four are distinct.

3. The two orderings are interlaced :

(a) x ≤t y implies x⊗ z ≤t y ⊗ z,

(b) x ≤t y implies x⊕ z ≤t y ⊕ z,

(c) x ≤k y implies x ∧ z ≤k y ∧ z,

(d) x ≤k y implies x ∨ z ≤k y ∨ z.

4. There are two involutions. One is called negation and is written as ¬x; it reverses ≤t

but does not change ≤k. Thus x ≤t y implies ¬y ≤t ¬x, and x ≤k y implies ¬x ≤k ¬y.
Since it is an involution, ¬¬x = x. The other is called conflation and is written as −x.
It has similar properties, but with the roles of ≤t and ≤k exchanged. The two operations
commute, ¬ − x = −¬x.

It is easy to show that negation and conflation obey De Morgan laws.

¬(a ∧ b) = (¬a ∨ ¬b)
¬(a ∨ b) = (¬a ∧ ¬b)

−(a⊗ b) = (−a⊕−b)
−(a⊕ b) = (−a⊗−b)
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Likewise we have the following De Morgan-like laws.

−(a ∧ b) = (−a ∧ −b)
−(a ∨ b) = (−a ∨ −b)

¬(a⊗ b) = (¬a⊗ ¬b)
¬(a⊕ b) = (¬a⊕ ¬b)

One can show the following, though we omit the proof.

f ⊗ t = ⊥
f ⊕ t = >
⊥ ∧> = f

⊥ ∨> = t

Since bilattice members can be thought of as generalized truth values, one expects valuations
to appear. It is here that the truth ordering plays its role.

Definition 3.2 (Valuation) A valuation in a bilattice B = 〈B,≤t,≤k〉 is a mapping v from
propositional letters to members of B. Valuations are extended to all formulas using the lattice
operations of the truth ordering. This is really a special case of Definition 2.3.

vl(P ) = v(P ) for P a propositional letter

vl(X ∧ Y ) = vl(X) ∧ vl(Y )

vl(X ∨ Y ) = vl(X) ∨ vl(Y )

vl(¬X) = ¬vl(X)

Valuations are extended using the operations of the truth ordering, but the information
ordering also plays a significant role here, largely because of the following monotonicity result.

Proposition 3.3 Let v, w be valuations in bilattice B. If v(P ) ≤k w(P ) for every propositional
letter P , then vl(X) ≤k wl(X) for every formula X.

Proof This is an easy consequence of the last two of the interlacing conditions, and the condition
that the ordering ≤k is preserved by the bilattice ¬ operation.

There is a simple way of constructing bilattices, starting with Morgan algebras.

Definition 3.4 (Bilattice Product) Let L be a Morgan algebra with ≤ as the partial order-
ing and x as the involution of x. The bilattice product of L with itself is L�L = 〈L×L,≤t,≤k〉
where the structure is defined as follows.

1. 〈a, b〉 ≤t 〈c, d〉 iff a ≤ c and d ≤ b

2. 〈a, b〉 ≤k 〈c, d〉 iff a ≤ c and b ≤ d

3. ¬〈a, b〉 = 〈b, a〉
4. −〈a, b〉 = 〈b, a〉

It is always the case that a bilattice product is, in fact, a bilattice. The motivating intuition
behind the construction is rather simple. Think of a pair 〈a, b〉 as encoding that there is a
evidence for some proposition and b evidence against. Evidences for and against are allowed to
be incomplete or inconsistent, where just what this means depends on details of each particular
bilattice. Degree of truth goes up if evidence for goes up while evidence against goes down.
(Note the reversal of the ordering of b and d in the definition of ≤t.) Degree of information
goes up if both the degree of evidence for and the degree of evidence against goes up. Negation
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simply switches the roles of for and against. Conflation is more complicated. If a is evidence for
something, think of a as its complement—that which is not evidence for that thing. Similarly
for the evidence against case. Then in −〈a, b〉 evidence for is replaced by whatever was not
evidence against, and evidence against is replaced by whatever was not evidence for.

The extreme elements of a bilattice product are ⊥ = 〈0, 0〉, > = 〈1, 1〉, f = 〈0, 1〉, and
t = 〈1, 0〉, where 0 is the least member of L and 1 is the greatest. Then, for instance, f represents
no evidence for, but total evidence against. The bilattice operations are the following, where t
and u are the lattice joins and meets.

〈a, b〉 ∧ 〈c, d〉 = 〈a u c, b t d〉
〈a, b〉 ∨ 〈c, d〉 = 〈a t c, b u d〉
〈a, b〉 ⊗ 〈c, d〉 = 〈a u c, b u d〉
〈a, b〉 ⊕ 〈c, d〉 = 〈a t c, b t d〉

There are representation theorems concerning bilattice products—they provide a general
method of bilattice construction. If B is a bilattice, there is some Morgan algebra L so that
B is isomorphic to L � L. We are using a notion of bilattice with several conditions imposed.
Versions of the construction apply if we work with bilattices with fewer conditions, without
negation or conflation, say. What is appropriate then is a product of two different lattices,
which may or may not have De Morgen involutions. In all cases the construction method is
completely general. This is not simple to prove, and we do not actually need it. See [14, 11] for
details and further references.

If members of bilattices are to play the role of generalized truth values, some notion of
designated element is needed. In [1] prime bifilters and logical bilattices were introduced. We
only need weaker versions here.

Definition 3.5 (Upbiclosed Logical Bilattices) Let B = 〈B,≤t,≤k〉 be a bilattice, and let
D be a proper, non-empty subset of B. Recall the terminology from Definition 2.4.

1. D is upbiclosed if it is upwardly closed with respect to both orderings ≤t and ≤k.

2. 〈B, D〉 is an upbiclosed logical bilattice if D is an upbiclosed set.

The following is of considerable use in our main construction. The proof, which is trivial, is
omitted.

Proposition 3.6 Let L be a Morgan algebra with D ⊆ L. D is upwardly closed in L if and
only if D × L is upbiclosed in the bilattice L � L. Consequently, 〈L,D〉 is an upclosed logical
Morgan algebra if and only if 〈L� L,D × L〉 is an upbiclosed logical bilattice.

Example 3.7 Figure 1 shows the simplest example of the logical bilattice construction. In
Subfigure 1a is the lattice of classical logic, with ordering upward. The involution is the usual,
0 = 1 and 1 = 0. The only (proper) upwardly closed set is shown circled. (It is, in fact, a prime
filter.) Applying the bilattice product construction from Definition 3.4 we get the bilattice
in Subfigure 1b, where the two orderings are shown using a double Hasse diagram, which is
standard with bilattices. Also, applying the product construction from Proposition 3.6 we get
the two element subset shown in the oval. (It is actually what is called a prime bifilter.) This
upbiclosed logical bilattice is, in fact, a standard when working with first degree entailment,
FDE. In it the only members are the extreme ones, and f = 〈0, 1〉, t = 〈1, 0〉, ⊥ = 〈0, 0〉, and
> = 〈1, 1〉.
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(a) Classical Logic (b) The Simplest Bilattice

Figure 1: A Product Bilattice

4 Consistent, Anticonsistent, Exact

We return to the intuitive explanation of conflation, following Definition 3.4. In a Morgan
algebra we might think of a member a as representing evidence of some kind for a proposition,
in which case a is simply non-evidence. Also recall, we think of a member 〈a, b〉 of a product
bilattice as encoding evidence for a proposition as a and evidence against as b. Following up
on this, we might then think of a member 〈a, b〉 of a product bilattice as “consistent” if a and
b don’t conflict—the evidence for, a, can encode no evidence against, but non-evidence against
is allowed. That is, we should have a ≤ b. In fact, it is easy to see that a ≤ b and b ≤ a are
equivalent in a Morgan algebra, and both are equivalent to 〈a, b〉 ≤k −〈a, b〉 in the corresponding
product bilattice. This, and other similar considerations, lead us to the following.

Definition 4.1 (Consistent, Anticonsistent, Exact) In a bilattice B, a member x is:

1. consistent if x ≤k −x,

2. anticonsistent if −x ≤k x,

3. exact if x = −x.

The categories consistent and exact come from [8], while anticonsistent waited until [14, 11]
and [13] . It is not the case that every member of a bilattice must fall into one of these three
categories; the categories are, in a sense, the well-behaved parts. Here are some important
and useful properties of consistency, anticonsistency, and exactness. They are generally easy to
establish, and proofs can be found in [12]. The notion of sharpening originated in [20], specifically
for ST, but has been extended and moved to bilattices in our work. For two valuations u, v
mapping to the anticonsistent part of a bilattice, u sharpens v if, for every propositional letter
P , u(P ) is exact and u(P ) ≤k v(P ).

Proposition 4.2 In any bilattice B we have the following.

1. The sets of exact values, consistent values, and anticonsistent values in B are closed under
∧, ∨, and ¬.

2. The sets of exact values, consistent values, and anticonsistent values in B each contain f
and t.
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3. In B, ⊥ is consistent and > is anticonsistent.

4. Every consistent value in B is below some exact value, and every anticonsistent value is
above some exact value, in the ≤k ordering.

5. For exact a and b in B, if a ≤k b then a = b.

6. If valuation v maps every propositional letter to a consistent truth value in B, its extension
to all logical formulas, vl, maps every formula to a consistent truth value. Similarly for
the exact truth values, and for the anticonsistent truth values.

7. Every valuation v mapping propositional letters to the anticonsistent part of B has a sharp-
ening.

8. If u sharpens v in B then u and v agree on exact values. That is, if u sharpens v and u(P )
and v(P ) are both exact, then u(P ) = v(P ).

Returning to the simplest bilattice example in Figure 1b, it is actually a remarkable structure.
Using the ≤t order, it provides the semantics for first degree entailment. The consistent part is
{f ,⊥, t} which is closed under the truth based operations. Together with the displayed prime
bifilter restricted to this subset, we have the structure for Kleene’s strong three valued logic,
K3. The anticonsistent part is {f ,>, t}, also closed under the truth operations. Using the prime
bifilter restricted to this subset, we have the structure for Priest’s logic of paradox, LP. Finally,
the exact part is {f , t}, also closed under the truth operations. Using the prime bifilter, restricted
to the exact subset, as providing the designated set, the exact part gives us an isomorphic copy
of the classical structure from Figure 1a.

All this suggests that consistent parts of bilattices make up a natural family of generalizations
for Kleene’s strong three valued logic. ([9] should also be consulted on this point.) Similarly
for anticonsistent parts of bilattices as generalizations of the logic of paradox. For bilattices
that are complete, in the sense that they are closed under infinite meets and joins, Kripke style
bilattice generalizations of fixpoint theories of truth work out quite nicely, see [8, 13].

5 How Weak Kleene Logic Generalizes

Generalizations of strong Kleene logic arise naturally from bilattices, as the subsets of consistent
values in them. In [10] I proposed a plausible way of also using bilattices to create generalizations
of weak Kleene logic, and I will repeat it here, beginning with some background intuition. See
[7] for further work on this.

Suppose we have a set of agents A, each of whom can vote for the truth of some proposition,
and quite independently vote against its truth. They are allowed to vote both ways, that is, to
be contradictory. They are also allowed to abstain from voting at all. The acceptance status of
a proposition can be represented as a pair, 〈F,A〉, where F is the set of agents voting for the
proposition, and A is the set voting against. That is, it is a member of the product bilattice
P(A)�P(A), where P is the powerset operation, and we think of P(A) as a Morgan (actually,
De Morgan) algebra partially ordered by subset, with relative complement as involution. But
now suppose we are only interested in those agents who are willing to express their opinions
fully. So, for instance, if an agent does not vote at all on proposition X, we discount the agent’s
opinion on X ∨ Y . In more detail, let us say the acceptance status assigned to X is 〈A,B〉.
Then if an agent does not turn up in A ∪ B, we do not record anything for that agent on
X ∨ Y , even if the agent expressed an opinion on Y . A simple way to represent this is to apply
standard bilattice machinery to compute a value for X ∨ Y , and then ‘cut it down’ by applying
the consensus operator, ⊗, to restrict this value to 〈A∪B,A∪B〉. But, 〈A∪B,A∪B〉 is easily
expressed using bilattice machinery, as 〈A,B〉 ⊕ ¬〈A,B〉. All this leads us to Definition 5.1,
where ∧c and ∨c can be thought of as the usual bilattice operations cut down to those agents
who actually appear either for or against in both inputs to the operation.
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Kleene’s original motivation was in terms of computational processes that might or might
not terminate. The motivation above could be rephrased in these terms too, but probably the
idea is sufficiently clear given what has been said, and we avoid the additional complexities.

Definition 5.1 (Cut Down Operations) Let B be a bilattice. For x, y ∈ B:

‖x‖ = x⊕ ¬x
x ∧c y = (x ∧ y)⊗ ‖x‖ ⊗ ‖y‖
x ∨c y = (x ∨ y)⊗ ‖x‖ ⊗ ‖y‖.

Dualized versions of cut down operations were studied in [22, 23], under the name track down
operations. These will play a role here as well. (Notation here is not what was used in the cited
papers.)

Definition 5.2 (Track Down Operations) Let B be a bilattice. For x, y ∈ B:

|x| = x⊗ ¬x
x ∧t y = (x ∧ y)⊕ |x| ⊕ |y|
x ∨t y = (x ∨ y)⊕ |x| ⊕ |y|.

For both the cut down and the track down cases a negation operation could be defined:
¬cx = ¬x ⊗ ‖x‖ and ¬tx = ¬x ⊕ |x|, but it is easy to show that both just evaluate to ¬x, so
this is what we will use. The following gives us appropriate closure properties.

Proposition 5.3 In any bilattice, the consistent members are closed under the cut down oper-
ations and the anticonsistent members are closed under the track down operations.

Proof Suppose both x and y are consistent. Then x ≤k −x and y ≤k −y, so x∧y ≤k −x∧−y =
−(x ∧ y), so x ∧ y is consistent. And then

x ∧c y = (x ∧ y)⊗ ‖x‖ ⊗ ‖y‖
≤k (x ∧ y)

≤k −(x ∧ y)

≤k −(x ∧ y)⊕−‖x‖ ⊕ −‖y‖
= −[(x ∧ y)⊗ ‖x‖ ⊗ ‖y‖]
= −(x ∧c y)

so x ∧c y is consistent. All the other cases are similar.

Proposition 5.4 In any bilattice:

‖x‖ = ‖¬x‖ = ¬‖x‖
|x| = |¬x| = ¬|x|

‖ − x‖ = −|x|
| − x| = −‖x‖

‖t‖ = ‖f‖ = ‖>‖ = >
‖⊥‖ = ⊥

|t| = |f | = |⊥| = ⊥
|>| = >.
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Proof We show three items; the rest are similar.

‖¬x‖ = ¬x⊕ ¬¬x = ¬(x⊕ ¬x) = ¬‖x‖
= ¬x⊕ ¬¬x = ¬x⊕ x = ‖x‖

−‖x‖ = −(x⊕ ¬x) = −x⊗−¬x = −x⊗ ¬− x = | − x|
‖t‖ = t⊕ ¬t = t⊕ f = >

Proposition 5.5 In any bilattice the cut down and the track down operations obey the De
Morgan laws:

¬(x ∧c y) = ¬x ∨c ¬y
¬(x ∨c y) = ¬x ∧c ¬y
¬(x ∧t y) = ¬x ∨t ¬y
¬(x ∨t y) = ¬x ∧t ¬y

Proof We show one case.

¬x ∧c ¬y = (¬x ∧ ¬y)⊗ ‖¬x‖ ⊗ ‖¬y‖
= ¬(x ∨ y)⊗ ¬‖x‖ ⊗ ¬‖y‖
= ¬[(x ∨ y)⊗ ‖x‖ ⊗ ‖y‖]
= ¬(x ∨c y)

In Definition 3.2 a valuation into a bilattice B was defined to be a mapping from propositional
letters to members of the bilattice. Valuations were extended to all formulas using the lattice
operations associated with ≤t. Now we add two more ways of extending.

Definition 5.6 (Valuations) Let v be a valuation in bilattice B. A cut down valuation ex-
tension vc and a track down extension vt are defined as follows.

vc(P ) = v(P ) atomic case

vc(X ∧ Y ) = vc(X) ∧c vc(Y )

vc(X ∨ Y ) = vc(X) ∨c vc(Y )

vc(¬X) = ¬vc(X)

vt(P ) = v(P ) atomic case

vt(X ∧ Y ) = vt(X) ∧t vt(Y )

vt(X ∨ Y ) = vt(X) ∨t vt(Y )

vt(¬X) = ¬vt(X)

Proposition 5.7 If v, u are valuations in a bilattice and v(P ) = −u(P ) for all propositional
letters P , then vc(X) = −ut(X) for all formulas X.

Proof The proof is by induction on formula complexity; we give one case as representative.
Proposition 5.4 is used here.

Suppose vc(X) = −ut(X) and vc(Y ) = −ut(Y ). We show vc(X ∧ Y ) = −ut(X ∧ Y ).

vc(X ∧ Y ) = vc(X) ∧c vc(Y )

= (vc(X) ∧ vc(Y ))⊗ ‖vc(X)‖ ⊗ ‖vc(Y )‖
= (−ut(X) ∧ −ut(Y ))⊗ ‖ − ut(X)‖ ⊗ ‖ − ut(Y )‖
= −(ut(X) ∧ ut(Y ))⊗−|ut(X)| ⊗ −|ut(Y )|
= −[(ut(X) ∧ ut(Y ))⊕ |ut(X)| ⊕ |ut(Y )|]
= −ut(X ∧ Y )
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We have proposed that the cut down operations, on the consistent parts of bilattices, be
seen as natural generalizations of Kleene’s weak three valued logic. The Proposition above says
that the track down operations on the anticonsistent parts could also serve, since cut down and
track down have isomorphic behavior by the Proposition above.

Proposition 5.8 In any bilattice, vc(X) ≤k vl(X) ≤k vt(X).

Proof Similar to those above.

6 Ways Weak Kleene Logic Generalizes

At the beginning of Section 5 we discussed motivation for the cut down operations, in terms of
agents. As a specific example along the lines of that motivation, suppose we have just a single
agent. Then the powerset space has two members, the corresponding product bilattice has four
members, and the consistent part three. On the consistent part the bilattice operations ∧, ∨,
and ¬ are those of Kleene’s strong three valued logic, and the cut down versions are those of
Kleene’s weak three valued logic. The point is, a wide range of examples are easy to come by,
and so we have an infinite family of generalizations of the strong and weak Kleene logics. This
is already enough for important applications. For instance, Kripke’s fixpoint theory of truth,
[17] was originally presented using both strong and weak Kleene logics, and all that fixpoint
theory extends directly to our generalizations, provided we add an assumption of completeness,
that is, existence of infinite meets and joins, [8, 13].

Nonetheless, for connections with strict/tolerant logics something more is needed. Proposi-
tion 5.3 gives us closure of the consistent members of a bilattice under the cut down operations—
our proposed weak Kleene generalization. But weak Kleene itself, the three valued logic, has
an additional property. The subset of classical truth values, t and f , behaves classically under
the weak Kleene operations. Our generalization of the classical values is what we called exact
in Definition 4.1, but Example 6.1 shows we can run into problems. The exact values can fail
to be closed under our generalized weak Kleene connectives.

0 = 1

1 = 0

m = m

Figure 2: A Three Element Morgan Algebra

Example 6.1 In Figure 2 a Morgan algebra is shown—it is the structure underlying both K3

and LP. Just for this example, we refer to it as M . The bilattice M �M contains 9 members.
It is easy to check that 〈0, 0〉, 〈0,m〉, 〈m, 0〉 are consistent but not exact, 〈1, 1〉, 〈m, 1〉, 〈1,m〉
are anticonsistent but not exact, and 〈0, 1〉, 〈1, 0〉, 〈m,m〉 are exact.

Two exact members are 〈0, 1〉 and 〈m,m〉. A simple calculation shows that 〈0, 1〉∧c 〈m,m〉 =
〈0,m〉, which is consistent but not exact.
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Cut down operations are naturally thought of as operations on the consistent part of a
bilattice. Their behavior on the anticonsistent part can be ignored. Dually for the track down
operations, which really live on the anticonsistent part. But, behavior on the exact part is
important. Weak and paraconsistent weak operations should agree with the underlying lattice
operations on exact values. As Example 6.1 shows, this does not always happen, and what
follows provides an important criterion for when it does.

Definition 6.2 A Morgan algebra L is orthocomplemented if, for all x ∈ L, x ∧ x = 0 and
x ∨ x = 1.

Note: an orthocomplemented Morgan algebra that is distributive (that is, an orthocomple-
mented De Morgan algebra) is a Boolean algebra. Also, it is easy to show that either of the two
conditions implies the other in a Morgan algebra.

Proposition 6.3 Let L be a Morgan algebra, and let B = L�L be the product bilattice. If the
exact members of B are closed under the cut down operations, then L is orthocomplemented.
Similarly for the track down operations.

Proof Suppose the exact members of B are closed under ∨c. Let a ∈ L be arbitrary. Then
A = 〈a, a〉 is exact. Also t = 〈1, 0〉 is exact, where 0, 1 are the extreme members of L. By our
assumption, A ∨c t is exact. Now we have the following computation.

A ∨c t = (A ∨ t)⊗ ‖A‖ ⊗ ‖t‖
= t⊗ ‖A‖ ⊗ > (Proposition 5.4)

= t⊗ ‖A‖
= t⊗ (A⊕ ¬A)

= t⊗ (〈a, a〉 ⊕ ¬〈a, a〉)
= t⊗ (〈a, a〉 ⊕ 〈a, a〉)
= 〈1, 0〉 ⊗ 〈a ∨ a, a ∨ a〉
= 〈a ∨ a, 0〉.

Then by exactness A ∨c t = −〈A ∨c t〉, so also

A ∨c t = −〈a ∨ a, 0〉
= 〈0, a ∨ a〉
= 〈1, a ∧ a〉.

It follows that a ∨ a = 1, and a ∧ a = 0. A similar argument can be given for the track down
operations.

And in the converse direction.

Proposition 6.4 Let L be a Morgan algebra that is orthocomplemented, and let B = L � L.
In B the exact values are closed under the cut down operations and the track down operations.
Further, the cut down and the track down operations both agree with the bilattice ∧ and ∨
operations on the exact values.

Proof Assume L is orthocomplemented. Suppose A is exact in L � L. Then A = 〈a, a〉 for
some a ∈ L. Hence ‖A‖ = A ⊕ ¬A = 〈a, a〉 ⊕ 〈a, a〉 = 〈a ∨ a, a ∨ a〉 = 〈1, 1〉 = >. Likewise
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|A| = 〈a, a〉⊗〈a, a〉 = 〈a∧a, a∧a〉 = 〈0, 0〉 = ⊥, Then we have the following, for A and B exact.

A ∨c B = (A ∨B)⊗ ‖A‖ ⊗ ‖B‖
= (A ∨B)⊗>⊗>
= A ∨B.

Thus ∨c and ∨ agree on exact values. Closure under these operations follows by Proposition 4.2
part 1. Similarly for the other cases.

The consequence we draw from the work above is simple. For some purposes, including in
what follows, Morgan algebras may be too broad a class of many valued logics, and orthocom-
plementation is a natural additional requirement. Here is a summary of the basics so far.

Proposition 6.5 Let v be a valuation in bilattice B.

1. If v maps every propositional letter to a consistent truth value, then vc maps every logical
formula to a consistent truth value.

2. if v maps every propositional letter to an anticonsistent truth value, then vt maps every
logical formula to an anticonsistent truth value.

3. Assume B = L�L, where L is orthocomplemented. If v maps every propositional letter to
an exact truth value then both vc and vt map every formula to an exact truth value, and
agree with each other and with vl.

Proof Parts 1 and 2 are by induction on formula degree, using Proposition 5.3. Part 3 is by
Proposition 6.4.

7 Central Results

In [12] it was shown how one could construct a strict/tolerant structure, starting with what was
there called a logical Morgan algebra, so that the two would determine the same consequence
relation but differ at the metaconsequence level. The same construction is used here, but with
the acknowledgment that the earlier assumptions were stronger than what was actually used. We
repeat the steps from the earlier paper, somewhat informally, for reference. Then we show that
we still have the same results even if the strict/tolerant model uses a generalized weak Kleene
logic, provided we start with a Morgan algebra that is orthocomplemented. Some examples will
be found in Section 8.

There is one technical point that needs to be discussed before presenting the details. The
cut down operations are natural on the consistent part of a bilattice, and this is where we
might expect weak Kleene generalizations to live. But the construction in [12] takes place
in the anticonsistent part. There are reasons for this, but they are essentially technical. The
difference is not fundamental, since the consistent and anticonsistent parts are isomorphic under
the mapping x 7→ −x, a mapping that preserves conjunctions, disjunctions, and negations (in
particular, note Proposition 5.7). We continue to work with the anticonsistent part of a bilattice
here, but we use track down operations instead of cut down ones as our generalization of the
weak Kleene logic.

The construction goes as follows. Start with an upclosed logical Morgan algebra, 〈L,D〉.
Using it, create the bilattice product, L � L. Then D × L will be an upbiclosed set on L � L,
so we have a upbiclosed logical bilattice 〈L� L,D × L〉, Definition 3.5.

Extract a strict/tolerant logic from the upbiclosed logical bilattice as follows. The domain
of truth values, call it A(L), is the anticonsistent part of L� L. Unlike in [12], the ≤t bilattice
ordering is not used directly to supply meanings for conjunction and disjunction. Instead the
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track down operations ∧t and ∨t of L � L, restricted to the anticonsistent values A(L), are
used. Negation is interpreted by the negation operation ¬ of L � L restricted to A(L). The
tolerantly designated members, call this set T , are the members of A(L) that are in D × L,
that is, they are the anticonsistent members of the upbiclosed D × L. The strictly designated
members, denoted S, are the exact members of D×L. Thus we have a strict/tolerant structure
〈A(L), S, T 〉 in which the connectives are interpreted using valuations vt from Definition 5.6,
restricted to anticonsistent members. Note that A(L) is closed under the track down operations,
by Proposition 5.3.

Also extract a many valued structure from the bilattice. The domain, call it E(L), is the
exact part of L�L. By Proposition 6.4, a lattice based interpretation for the logical connectives
and a generalized weak Kleene interpretation agree on E(L). The designated set of values is
the set D × L restricted to E(L). Thus the designated set here is just S, which is the strictly
designated set for the strict/tolerant structure as well. We now have a many valued logic
〈E(L), S〉. It is important to recall that, by Proposition 3 of [12], this structure is isomorphic to
the upbiclosed logical Morgan algebra 〈L,D〉 that we began with. In the earlier paper I simply
replaced 〈E(L), S〉 with 〈L,D〉, which simplified descriptions somewhat. Here I keep both, but
rely on the isomorphism.

Lemma 7.1 Every sequent not valid in the many valued structure 〈E(L), S〉 is not valid in the
weak Kleene strict/tolerant structure 〈A(L), S, T 〉.

Proof Assume the sequent Γ ⇒ ∆ is not valid in the many valued structure 〈E(L), S〉. We
show it is not valid in 〈A(L), S, T 〉 in the strict/tolerant sense, using the track down operations.

Let v be a valuation in 〈E(L), S〉 that invalidates Γ⇒ ∆. That is, vl(X) ∈ S for all X ∈ Γ
but vl(Y ) 6∈ S for every Y ∈ ∆. Since v is a mapping to E(L), it maps propositional letters to
exact values. Then by Proposition 6.5 part 3, vl and vt agree, and map all formulas to exact
values. Then vt maps all members of Γ to S, and no member of ∆ to S. Since values of vt are
exact, and S is the exact subset of T , vt can map no member of ∆ to T either. This shows that
v invalidates Γ⇒ ∆ in 〈A(L), S, T 〉 as well.

Lemma 7.2 Every sequent not valid in the weak Kleene strict/tolerant structure 〈A(L), S, T 〉
is also not valid in the many valued structure 〈E(L), S〉, and hence not valid in 〈L,D〉.

Proof Assume the sequent Γ⇒ ∆ is not valid in 〈A(L), S, T 〉 in the strict/tolerant sense. Then
there is a valuation v in A(L) that does not validate the sequent. That is, vt(X) ∈ S for every
X ∈ Γ, but for every Y ∈ ∆, vt(Y ) 6∈ T , and so for every Y ∈ ∆, vt(Y ) is anticonsistent but
not in the upbiclosed D×L. By Proposition 4.2 part 7, v has a sharpening; choose one and call
it u. Then u is a valuation in 〈E(L), S〉. We show that u does not validate Γ⇒ ∆ in 〈E(L), S〉,
and so the sequent is not valid in 〈L,D〉.

Since the sharpening u maps every propositional letter to an exact value, ut maps every
every logical formula to an exact value, by Proposition 6.5 part 3. Also vt maps members of
Γ to S and hence to exact values. Then by Proposition 4.2 part 8, ut and vt must agree on
members of Γ, and so ut maps every member of Γ to S.

For each formula Y ∈ ∆ we have that vt(Y ) is anticonsistent but not in D × L. If we had
that ut(Y ) ∈ S then ut(Y ) would be in the upbiclosed D × L. Being in this upbiclosed set we
would also have vt(Y ) in the upbiclosed because ut(Y ) ≤k vt(Y ) and upbiclosed sets are upward
closed in both bilattice orderings. But vt(Y ) is not in D×L. Hence ut(Y ) 6∈ S for every Y ∈ ∆.
It follows that u does not validate Γ⇒ ∆ in 〈E(L), S〉.

These Lemmas establish the following.
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Proposition 7.3 The strict/tolerant structure 〈A(L), S, T 〉, using the track down operations
as our weak Kleene generalization, and the many valued structure 〈E(L), S〉 validate the same
sequents.

Now the other half of the picture. The proof is actually identical to the corresponding one
in [12].

Proposition 7.4 The metaconsequence scheme

Γ, A⇒ ∆ Γ⇒ ∆, A
Γ⇒ ∆

is locally valid in 〈E(L), S〉, but an instance is not locally valid in 〈A(L), S, T 〉.

Proof First we show local validity in 〈E(L), S〉, by showing the contrapositive. Suppose v is a
valuation in 〈E(L), S〉 that does not validate the sequent Γ⇒ ∆ there. Then for every X ∈ Γ,
vl(X) ∈ S, and for every Y ∈ ∆, vl(Y ) 6∈ S. Either vl(A) ∈ S or vl(A) 6∈ S. If the first, then
vl(X) ∈ S for every X in Γ, A, so v does not validate Γ, A ⇒ ∆ in 〈E(L), S〉. If the second,
then vl(Y ) 6∈ S for every Y in ∆, A, so v does not validate Γ⇒ ∆, A in 〈E(L), S〉. Either way,
v does not validate one of the premises of the metaconsequence.

Second we show local non-validity in 〈A(L), S, T 〉. Pick any sequent Γ ⇒ ∆ that is not
valid in the strict/tolerant structure 〈A(L), S, T 〉 using the track down operations. (∅ ⇒ ∅, for
instance) and let v be a valuation that does not validate it. That is, vt maps to anticonsistent
members of L� L, vt(X) ∈ S for every X ∈ Γ, and vt(Y ) 6∈ T for every Y ∈ Γ.

Let P be a propositional letter that does not occur in Γ or in ∆ and redefine v so that
v(P ) = >, where > is the largest member of L � L in the ≤k ordering. This can be done
without changing the behavior of v on Γ or ∆. We have that > is in the upbiclosed D × L
because we have upward closure in both orderings. Also > is anticonsistent, but not exact.
Then v validates Γ, P ⇒ ∆ in 〈A(L), S, T 〉 because vt(P ) 6∈ S, since vt(P ) is not exact. Also
v validates Γ ⇒ ∆, P in 〈A(L), S, T 〉 because vt(P ) = > ∈ T , since > is anticonsistent. So v
is a counterexample to the local validity of the metaconsequence scheme, taking A to be the
propositional letter P .

8 Examples

It may help grasp the basics of what we have been discussing if we look at some examples.

(a) Classical Logic (b) Weak Kleene Logic

Figure 3: The Original Example
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Example 8.1 (Classical Logic) It is well known that weak Kleene logic has no validities, but
this is when it is considered as a many valued logic with truth as the only designated value.
Paraconsistent weak Kleene logic uses the same truth tables, but allows two designated truth
values, and it does have validities. The strict/tolerant construction given here produces, when
applied to the classical structure, a structure using precisely these two designated sets. Here is
a quick sketch.

Figure 1, from earlier in this paper, shows the classical logic structure and the bilattice it
generates, the usual setting for first degree entailment. The standard designated set is shown as
a circled value in Subfigure 1a, and it generates the upbiclosed set shown in Subfigure 1b. The
anticonsistent subset for the bilattice is {〈0, 1〉, 〈1, 1〉, 〈1, 0〉}, and this is the domain we use for
weak Kleene based on the track down operations. {〈1, 1〉, 〈1, 0〉} is the tolerantly designated set,
and {〈1, 0〉} is the strict truth value set, since 〈1, 0〉 is the only exact member of the upbiclosed
set. We thus get the structure shown in Figure 3, where we repeat the Classical Logic structure
from before, for convenience.

Both A∧¬A⇒ B and A⇒ B ∨¬B are validated in the classical structure in Subfigure 3a,
so they must also be validated in the strict/tolerant structure of Subfigure 3b using the weak
Kleene truth tables. A ∧ ¬A ⇒ B is validated because for every valuation v, vt(A ∧ ¬A) can
never be 〈1, 0〉, the only strict truth value. A ⇒ B ∨ ¬B is validated because vt(B ∨ ¬B) can
never be 〈0, 1〉, and so must be tolerantly designated.

Example 8.2 (Four Valued Morgan Lattice, Version One) Figure 4 shows a four valued
lattice in Subfigure 4a. Also shown is an up set (in fact, it is a prime filter), which will play a
role later. In the Hasse diagram the ordering is upwards. The lattice structure is bounded, and
distributive. Subfigure 4b specifies an operation, Involution One. Thus we are given a Morgan
algebra which, for convenience, we will call Four1

The Four1 structure is not orthocomplemented. For instance, a t a = a t a = a 6= 1. It
follows that in the corresponding bilattice product, Four1�Four1, the exact values are not closed
under the generalized weak Kleene operations. Working through the details, the exact values of
the product bilattice are 〈0, 1〉, 〈1, 0〉, 〈a, a〉, and 〈b, b〉. Now, ‖〈a, a〉‖ = 〈a, a〉⊕¬〈a, a〉 = 〈a, a〉,
and similarly ‖〈b, b〉‖ = 〈b, b〉. Also 〈a, a〉 ∧ 〈b, b〉 = 〈au b, at b〉 = 〈0, 1〉. Then, 〈a, a〉 ∧c 〈b, b〉 =
(〈a, a〉 ∧ 〈b, b〉) ⊗ ‖〈a, a〉‖ ⊗ ‖〈b, b〉‖ = 〈0, 1〉 ⊗ 〈a, a〉 ⊗ 〈b, b〉 = 〈0, 0〉. Since −〈0, 0〉 = 〈1, 1〉, we
have that 〈0, 0〉 is consistent, but not exact. We thus have a concrete example showing the exact
values arising from Four1 are not closed under our weak Kleene generalization.

(a) A Four Valued Lattice

x x

0 1
1 0
a a
b b

(b) Involution One

x x

0 1
1 0
a b
b a

(c) Involution Two

Figure 4: Four Valued Morgan Lattices
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Figure 5: A Nine Element Strict/Tolerant Structure

Example 8.3 (Four Valued Morgan Lattice, Version Two) We continue drawing on Fig-
ure 4, using the lattice from Subfigure 4a, but with Subfigure 4c specifying an alternative op-
eration, Involution Two. This gives us a second Morgan algebra which we will call Four2. This
time the Morgan algebra is easily seen to be orthocomplemented and so the construction from
Section 7 applies.

The bilattice Four2 � Four2 contains 16 members: 〈0, b〉, 〈0, a〉, 〈0, 0〉, 〈a, 0〉, 〈b, 0〉 are con-
sistent but not exact; 〈a, 1〉, 〈b, 1〉, 〈1, 1〉, 〈1, b〉, 〈1, a〉 are anticonsistent but not exact; and
〈a, b〉, 〈b, a〉, 〈0, 1〉, 〈1, 0〉 are exact; 〈a, a〉 and 〈b, b〉 do not fall into any of these categories.
Figure 5 shows the nine anticonsistent members, ordered upwards using the truth ordering from
Four2 � Four2. The large circle contains the tolerantly designated values, those members that
are also in the upbiclosed {1, b} × {1, b, 0, a}. The two members in squares, together, make up
the strictly designated set, those members of the tolerantly designated set that are exact in
Four2� Four2.

The many valued structure from Figure 4, using Involution Two as shown in Subfigure 4c,
validates the same formulas as the strict/tolerant structure in Figure 5 using the track down
operations. The track down operations, generalizing weak Kleene, are not much known. I point
out that their behavior, and that of the cut down operations, is generally more complex than for
the lattice based operations. Here is one example. In the structure of Figure 5 the lattice version
of conjunction with 〈0, 1〉 has a simple behavior. For every x in the structure, x∧〈0, 1〉 = 〈0, 1〉.
But using the track down operation ∧t we have the following.

〈0, 1〉 ∧t 〈0, 1〉 = 〈a, b〉 ∧t 〈0, 1〉 = 〈b, a〉 ∧t 〈0, 1〉 = 〈1, 0〉 ∧t 〈0, 1〉 = 〈0, 1〉
〈a, 1〉 ∧t 〈0, 1〉 = 〈1, a〉 ∧t 〈0, 1〉 = 〈a, 1〉
〈b, 1〉 ∧t 〈0, 1〉 = 〈1, b〉 ∧t 〈0, 1〉 = 〈b, 1〉

〈1, 1〉 ∧t 〈0, 1〉 = 〈1, 1〉

Example 8.4 (Non-Distributivity) All the examples so far have involved distributive lat-
tices. We conclude with an example that does not, shown in Figure 6. The lattice is non-
distributive because, for instance, a u (b t c) = a u 1 = a but (a u b) t (a u c) = 0 t 0 = 0.

We form a strict/tolerant version for this, so that we may consider the behavior of our
weak Kleene generalization. First we construct the bilattice product of the lattice with itself.
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This contains 36 members, and we do not provide a Hasse diagram for it. For the record, the
anticonsistent part contains 15 members, namely 〈a, b〉, 〈b, a〉, 〈c, d〉, 〈d, c〉, 〈1, 0〉, 〈0, 1〉, 〈a, 1〉,
〈1, a〉, 〈b, 1〉, 〈1, b〉, 〈c, 1〉, 〈1, c〉, 〈d, 1〉 〈1, d〉, 〈1, 1〉 and this is our domain of strict/tolerant truth
values, with the first 6 being exact.

As an upwardly closed subset of the lattice from Subfigure 6a we use {d, 1}, though different
choices are certainly possible. This does happen to be a filter, but it is not prime. In fact, the
lattice shown has no prime filters. The verification is simple. Any filter must contain 1, and so
it must contains at b and ct d. If the filter were prime, it would have to contain one of a, b and
one of c, d. But then it would have to contain their meet, which is 0, and so the filter would not
be proper.

The up set {d, 1} on the lattice induces an upbiclosed set on the product bilattice we con-
structed, the 12 element set {〈1, 1〉, 〈1, a〉, 〈1, b〉, 〈1, c〉, 〈1, d〉, 〈1, 0〉, 〈d, 1〉, 〈d, a〉, 〈d, b〉, 〈d, c〉, 〈d, d〉,
〈d, 0〉}. The restriction of this to our anticonsistent domain gives us our tolerantly designated
set, {〈d, c〉, 〈1, 0〉, 〈0, 1〉, 〈1, a〉, 〈1, b〉, 〈1, c〉, 〈d, 1〉 〈1, d〉, 〈1, 1〉}. The further restriction of this
to the exact part provides our strict set of truth values, {〈d, c〉, 〈1, 0〉, 〈0, 1〉}.

Since distributivity fails in the many valued structure of Figure 6, it must fail in some way in
the strict/tolerant structure just constructed. In fact, the sequent X∧(Y ∨Z)⇒ (X∧Y )∨(X∧Z)
is validated, using the generalized weak Kleene operators. But the sequent (X ∧Y )∨ (X ∧Z)⇒
X ∧ (Y ∨ Z) is not. There are several counterexamples; here is one. The valuation given by
v(X) = 〈b, a〉, v(Y ) = 〈d, c〉, v(Z) = 〈c, d〉 extends so that vt((X ∧ Y ) ∨ (X ∧ Z)) = 〈0, 1〉 and
vt(X ∧ (Y ∨Z)) = 〈b, a〉, and 〈0, 1〉 is strictly designated but 〈b, a〉 is not tolerantly designated.

(a) A Non-Distributive Lattice

x x

a b
b a
c d
d c
0 1
1 0

(b) Its Involution

Figure 6: A Non-Distributive Morgan Algebra

9 Conclusion

After establishing the existence of a family of strict/tolerant logics based on weak Kleene gener-
alizations, the next natural step should probably be to see if it can be made the basis of a version
of the strict/tolerant heirarchy, as was the case with the generalizations examined in [12]. I have
stopped short of that step. For one thing, almost certainly the work would proceed by exactly
the same steps as before, and thus there would be nothing substantially new to be learned. The
significant new thing here is really the determination of what additional structure needs to be
added to the generalized weak Kleene family that was already proposed some years ago. Once
that has been worked through, unless I’m missing something fundamental, the significant work
is over.

An anonymous referee for this paper proposed an interesting direction for further research.
The methods discussed here begin with logics characterized directly by lattices, and wind up
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with generalized versions of weak Kleene logic. Would it be possible to begin with a logic that
was characterized by applying cut down or track down operations in a bilattice? To quote
a specific case posed by the referee, “can the techniques implemented by the author be used
to arrive at a strict-tolerant non-transitive counterpart to the paracomplete three-valued weak
Kleene logic? A similar answer can be posed regarding the paraconsistent weak Kleene logic.
And, of course, analogous questions can be raised regarding subsystems of these logics which
also have ties to bilattices and cut or track down operations—like Deutsch’s logic Sfde and its
dual, among others.” This is a very good question, to which I have no answer. Perhaps others
will have insights that can address it.

There still remain the philosophical and conceptual issues. The logic ST has generated much
discussion on a range of foundational questions: what is a logic, what does it mean for logics to
be the same or different, can ST substitute for classical logic in dealing with various paradoxes,
and so on. The work in this paper does not attempt to address any of these important issues. It
simply aims to show (again) that the ideas behind strict/tolerant logic are much more general
than the original setting would suggest. The machinery of all this is interesting. Its significance
is not yet so clear.
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