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Introduction

In 1978, the authors began a paper, “S (for Syllogism),” henceforth [S4S],
intended as a philosophical companion piece to the technical solution [SPW]
of the Anderson-Belnap P–W problem. [S4S] has gone through a number
of drafts, which have been circulated among close friends. Meanwhile other
authors have failed to see the point of the semantics which we introduced
in [SPW]. It will accordingly be our purpose here to revisit that semantics,
while giving our present views on syllogistic matters past, present and future,
especially as they relate to not begging the question via such dubious theses
as A → A. We shall investigate in particular a paraconsistent attitude
toward such theses.

Which arguments are valid? This has been the central question of logic.
“Reasoning is an argument in which, certain things being laid down, some-
thing other than these necessarily comes about through them,” said Aris-
totle.1 The emphasis is ours. “He who repeats himself does not reason,”
as Strawson [STR] correctly notes. The fallacy of concluding what one has
assumed is almost universally condemned. Some of the rubrics under which
it is condemned are the following: circular reasoning, begging the question,
petito principii.

What, we ask, is the formal counterpart of this well-known fallacy? Is it
not just A→ A itself?2 Why then is A→ A equally universally approved?
One reason is that the principle is (mis)identified as the Law of Identity.

1Topics 100a 25–27, as translated by W. A. Pickard-Cambridge in [RWA]. Essentially
the same remark may be found in the Prior Analytics at 24b 18–20.

2We use upper-case letters like ‘A’ as syntactical variables for formulas; and lower-case
ones like ‘p’ for atoms. Some of our readers, alas, will have been Quinized ; they may
think it important where the quotation marks go. We follow in principle the conventions
of Curry’s [FML]. Perhaps because he was once dogged by Quine on use-mention issues,
Curry is the most careful logician we’ve known on such matters.
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Laws are solemn things. This holds doubly for Laws of Logic. And it is not
for us, we mostly agree, to tinker with solemn things.

Wait a minute. Surely the law of identity is that A is A, whatever the
type or category of A. With this law, rightly so called, we have no quarrel.
Rather the point of the traditional complaint is that, just because A is A,
it cannot properly be said to follow from itself. It occurs to us to allow A
to follow improperly from itself, paraconsistently. Meanwhile, let us become
more Aristotelian.

1 Vindicating Aristotle

Logic was invented by Aristotle, noted Kant. He added that it had not af-
terwards been able to advance a single step. In the two centuries since Kant,
logic has been symbolized and made mathematical; by common consent, it
has advanced many steps. It will be our purpose here to undermine this
consent; and insofar as it lies within us, to restore what Kant perceived.

Aristotle was the father of many sciences. Again and again in the mod-
ern era further progress has been possible only when the dead hand of Aris-
totelian dogma has been lifted from the throat of, say, astronomy. (Who
any more would wish to hold immutable what is in and above the sphere of
the moon?) True, Logic came late to the arena in which Aristotle was (or
anyway was accused of being) a blithering idiot.

Accusation came nonetheless and (eventually) in force. We shall not
recall or add to it. Rather it will be for us to dwell on what Aristotle saw,
by way of founding logic. What he saw was that premisses combine to
produce a conclusion validly. The Granddaddy of these valid arguments is
the so-called syllogism in BARBARA. Since we agree with Anderson and
Belnap’s [ENT1] that implication is the Heart of Logic, we write down the
pure implicational basis of this syllogism. (We use mnemonics from Curry’s
Combinatory Logic, henceforth CL.)

Ax B. (C → D)→ ((A→ C)→ (A→ D))

B respects the convention that, in stating syllogisms, the major premiss
comes first. There is another implicational principle that looks very much
like it, namely

Ax B′. (A→ C)→ ((C → D)→ (A→ D))
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So easy is it to confuse these principles that they are known indifferently
in some texts as “syllogism”.3 This is a sound intuition. But except in the
presence of some further assumptions that will not be made here, B and B′

are different (and non-equivalent) principles.4

It is crashingly clear how the premisses of B combine to produce its
conclusion. The rubric is

(a) The 2nd implies the 3rd;

(b) The 1st implies the 2nd. So

(c) The 1st implies the 3rd.

B′ is just the same, save that premisses (a) and (b) are switched. And both
testify to the same root insight, which we identify as the traditional

Dictum de omni. Implication is transitive.5

Readers familiar with the P–W problem may at this point complain that
we have left out an axiom. You still need, they may insist

Ax I. A→ A

Maybe they are right, for reasons into which we shall delve below. For
now, we view Ax I as just too crude. It is not reasoning to argue in a circle,
concluding what one has assumed. It is not reasoning to beg the question.
It is not reasoning to commit petitio principii.

Petitio principii is represented, in every system of logic that it has been
the custom to take seriously, by the theorem scheme Ax I. [ENT] waxes
almost rhapsodic on the point (in which, it must be wryly confessed, we have
sometimes joined it; to oneself, however, all is forgiven). According to [ENT,
8], A → A is the “archetypal form of inference,” the “trivial foundation of
all reasoning”. More than that, [ENT] confers upon A the honorific status
of being (logically) necessary iff A follows from A → A; for the necessitive
�A is defined as (A→ A)→ A.

3We adopt the contemporary λ-CL (Lambda calculus-Combinatory Logic) convention
that →’s associate to the right. Thus we may henceforth write B′ as (A → C) → (C →
D) → A→ D, etc. This conflicts, alas, with the leftward style of our mentors.

4If there is a choice, an Aristotelian preference should go to B over B′. Alas, this
trivializes the [SPW] proof of Martin’s theorem. It cannot be right thus to make a hard
and suggestive problem trivial.
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[ENT] claimed to present the logic of relevance and necessity. In large
measure the claim is true. Yet for 2000 years logic has been only peripherally
involved with relevance or necessity as such. What the tradition that dates
from Aristotle has been concerned with centrally is syllogistic reasoning;
and, especially, the role of the middle term in separating the valid from
the invalid arguments. What assures relevance, traditionally, is that a good
argument goes through a middle term. So viewed, it is not so hard to find
where irrelevance attacks, producing the most common fallacies.

Fallacies of relevance creep in when one has got confused about the role
and function of the middle term. For example, there might be no way of
decently providing a middle term at all—fallacies ad hominem or ad baculum
have this character. Or, by being vague or ambiguous, one might convince
oneself that one has a middle term when one doesn’t. If one equivocates
about B, then a purported argument from A to C through B might not
really go through B at all. (In the traditional lingo, this is the fallacy of
four terms.) Finally one might have a middle term, and an unambiguous
one, while appealing nonetheless to an argument form that is simply invalid
(e.g., IAI in the first figure).6

The purported ubiquity of B → B, then, as the grounding principle of
logic, would seem to hark back to the shared content which alone undergirds
the validity of a good argument. Most conspicuously, taking our Ax B as
paradigmatic, the “middle term” B of B → C must be the same B as that
of A→ B. (This is the Law of Identity in its wholesome “B is B” form.) Of
course B → B also harks back, in these days of triumph for Gentzen-style
consecution calculi, to the ubiquity of B ` B as the axiom for such systems.
So far has (apparent) fallacy emerged victorious!

2 Implicational logics

We concentrate for the moment on pure implicational logics, built up freely
from a countable stock of atoms (for which we use ‘p’, etc.) under the single
binary connective →. The class of all formulas (for which we use ‘A’, etc.)
will be F [→], which when clear in context we abbreviate simply as ‘F ’.
As stated above, for ease in reading formulas we may omit parentheses by
associating →’s to the right.

In order to turn the Dictum de omni into a System, we take B and B′ as

6IAI Example: I: Some Mammals are Cats. A: All Dogs are Mammals. SO, I: Some
Dogs are Cats. Given that the premises are TRUE but the conclusion is FALSE, something
is WRONG here!
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Axiom Schemes for a pure → logic, which we call S (for syllogism).7 To get
some theorems we need a Rule. As we have said before (though from drafts
of [S4S] with increasing hesitation), these days the one rule you can trust is
the modus ponens principle →E. Using ⇒ metalogically, we write this as

Ru →E. A→ C ⇒ (A⇒ C)

to mean that if A → C is a theorem then if A is a theorem then C is a
theorem.

Ah, but maybe we should not be so trusting. →E as just stated looks
like an instance of the question-begging D → D. Thanks to a metavalua-
tions argument of Dwyer, we may replace →E with prefixing, suffixing and
transitivity rules directly derived from the S axioms, namely

Ru B. (C → D)⇒ (A→ C)→ (A→ D)

Ru B′. (A→ C)⇒ (C → D)→ (A→ D)

Ru BB. (C → D)⇒ ((A→ C)⇒ (A→ D))

When convenient, we shall think of BB′ as formulated with these Dwyer
rules. (See [SPW].)

3 Implicational antitheorems and Powers’ prob-
lem

S→ may be formulated with axiom schemes B and B′ just above, with → E
or the Dwyer rules.

We turn now to a problem posed by Larry Powers in [ALP]. Consider
again A → A. [PCM. Powers’ Conjecture, and Martin’s 1st theorem.] No
instances of Ax I are theorems of S. In [SPW], [JSL], [SENT] and else-
where.

Martin’s theorem is quite beyond the familiar sorts of independence re-
sults in propositional logic. To show an axiom scheme Y independent of the
remaining axioms X1, . . . , Xn for a system, it suffices in common parlance
to show that some instance of Y is not derivable from the X’s. A simple

7S here is not a CL mnemonic. When careful we call it S[→], adopting in principle
Restall’s [ISL] convention on primitive particles. We may also call S[→] simply BB′, for
its axioms.
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3-valued matrix will do this trick for S, validating BB′ and →E but reject-
ing the instance p → p of I, where p is a propositional atom. But there is
an elementary argument, due in principle to Tarski, that no finite matrix
similarly rejects all instances of I.

We are at the heart of the Heart of Logic, in the pure theory of →. We
are often told that valid argument is just a matter of form. Symbolized,
this means that the good guys are not only good themselves, but so also
are all their (substitution) instances. The bad guys differ. This has tricky
consequences for the translation exercises in elementary logic classes. The
job there is to separate the (logical) sheep from the (bad) goats. To identify
a (good) sheep, it suffices to find some theorem of which the candidate
argument can be construed as an instance. But this doesn’t work for goats.
If we wish to be recalcitrant, every argument with one premiss may be taken
to boil down to p → q , letting p stand in for the premiss and a distinct q
for the conclusion. And logic would be futile if we were allowed to take all
arguments as invalid (since p→ q is bad).

Are there not some arguments that are always bad, just as much to be
condemned for their form as the good arguments are to be commended?
Outside of pure → logic, even truth-functionalists will agree that this some-
times happens, for example in

SC. Snow is white, or it’s not. Therefore, coal is black, and it’s not.

When more fully formalized, 8 SC finds the counterpart

SC′. (p ∨ ∼p)→ (q ∧ ∼q).

SC′ is reprehensible even to classical logicians, as the negation of a truth-
functional tautology.

Some terminology is here in order. A formula A of logic L will be uni-
versally valid just in case A and all its substitution instances are theorems
of L. We will say that A is potentially valid iff some instance of A is a
theorem; and potentially invalid iff some instance of A is a non-theorem.
Finally, and most significantly for now, we’ll call A universally invalid iff
no instances of A are theorems. We moreover call the universally invalid
formulas antitheorems of L.

Since logics are in general closed under substitution, the universal valid-
ity of a formula A comes ordinarily to the same thing as the theoremhood

8For spotting the goats, full formalization is practiced in the texts!
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of A. For the same reason, A is potentially invalid (normally) iff A is a
non-theorem of L. But it is a different kettle of fish to call A potentially
valid. It is well-known that the intuitionist logic H of [HEY] rejects

XM. p ∨ ∼p

Similarly, relevant logics like R reject

DS. p ∧ (∼p ∨ q)→ q

These formulas, although non-theorems (and rightly so, say those philoso-
phers who despise them) are only potentially invalid in their respective sys-
tems. To see that XM is also potentially valid for H, just substitute q ∧ ∼q
for p. And in DS for R, put in p for q.

And now we will see that potential validity is the usual situation for all
formulas in the positive parts of many famous logics. Recall our discussion
above. Let a positive formula be one built up from atoms by → (and per-
haps other connectives from among ∧, ∨, ↔, etc.). Then [Anti-antitheorem
theorem for 2+] All positive classical formulas A are potentially valid.

Positive sentential formulas are satisfied classically just by assigning T to
all their variables. Since a substitution instance is wanted, pick a theorem
(say p → p) to substitute uniformly for all the atoms of A. The result
will be a theorem, equivalent to p → p itself. So, classically, there are
no ineluctably bad positive arguments. There are only bad instances of
potentially good arguments. Nor is classical logic the only offender. The
real point of the little argument just concluded is that there is a theorem
t of 2 which is an idempotent under all positive operations. We took t, for
our little argument, as p→ p. And the idempotence of the t so chosen just
means that it is logically equivalent, in 2, to each of t→ t, t ∧ t, t ∨ t, t↔ t.
We can make the same choice, with the same result, in the positive part H`
of the intuitionist logic H of [HEY]; or of the relevant positive logics R+ and
E+ of [ENT].

4 The quest for a Minimal logic

We pause for another definition. A system L is lax iff every formula of L
is potentially valid. We have just observed (and bewailed) that laxity is
endemic among positive logics—even the best known relevant ones like R→
and E+ . But relevant logics are themselves the outcome of the search for a
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minimal logic—a search that perhaps reached its zenith in the 1950’s. It was
then that Moh Shaw-Kwei in [TNV] and Church in [WTI] published their
versions of what came to be known as R→. While in 1956 Ackermann intro-
duced in [BSI] what Anderson and Belnap reformulated (e. g., in [FOE]) as
E (of entailment).

Is there a minimal implicational logic? Curry may be taken to have sug-
gested that there is not. But Anderson and Belnap were (apparently) on
the other side of the question.9 They proposed the following criterion for
minimality.

(ABC). If A→ C and C → A are both theorems, then A and C are the
same formula.

The BB’IW system T→ of [ENT1] was an initial candidate to satisfy (ABC).
But, letting t again be p→ p as above, Belnap quickly dashed this hope by
proving in T→ both of

1. (t→ t)→ (t→ (t→ t)) and

2. (t→ (t→ t))→ (t→ t),

whence t→ t and t→ (t→ t) are a pair A, C that refute (ABC).10

Nothing daunted, Anderson and Belnap proposed the BB′I system of
pure → calculus as an (ABC) candidate.11 They were correct.

[ABCM. Anderson-Belnap Conjecture, and Martin’s 2nd theorem.] For
no two distinct formulas A and B of F[→] are both A → B and B → A
theorems of BB′I.

In [SPW], [JSL], [SENT] and elsewhere.

5 Implicational theories

Let L (officially, L[→]) be an implicational logic. We define

D <L. A <L C =df L ` A→ C

9For Curry, cf. his [CGT]. Anderson introduced T→in [ESM]. Cf. [ENT1], 94f.
10Could it be, the reader might hope, that the positive fragment T+ of the [ENT] system

of ticket entailment isn’t lax? Exercise: Although t above is not T+ idempotent, refute
that hope anyway!

11Following Belnap (though he long denied it), this system was called P–W in [SPW].
[ENT1] calls it T→-W, in introducing the (ABC) conjecture. We stick to P–W as the
name of the pure → fragment BB′I.
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That is, <L is the entailment relation according to L. Clearly <BB′ is
transitive, while <BB′I is moreover reflexive. Let x be any set of formulas.
We call x an (Implicational) L-Theory (ILT ) iff it is closed under <L. I. e.,

DILT. x ∈ ILT iff ∀A∀C(A <L C ⇒ A ∈ x⇒ C ∈ x)

Let x, y be sets of formulas. We define

D ◦. x ◦ y = {C : ∃A(A→ C ∈ x and A ∈ y)}

That is, as an operation on sets of formulas ◦ is what Powers in [ALP]
called modus ponens product (and which we sometimes call fusion), taking
major premises from its left argument and minor premises from its right
argument. More than that, Powers also saw that closing the axioms of BB′I
under ◦ both produces and exhausts the BB’I theorems! Put otherwise and
in general, any implicational logic L formulated with→E as sole rule has as
its set of theorems LT the smallest subset of F satisfying

(i) A is an axiom of L ⇒ A ∈ LT

(ii) x ⊆ LT & y ⊆ LT⇒ x ◦ y ⊆ LT

[PO. (Prefixing Observation).] Suppose L[→] is a logic closed under the
prefixing rule Ru B. Then if x ∈ ILT and y ⊆ F , we have x ◦ y ∈ ILT .
Let x be an implicational L-theory. We must show x ◦ y ∈ ILT , where y
is any set of formulas. Suppose C <L D and C ∈ x ◦ y. By D ◦ there is
an A ∈ y such that A → C ∈ x. Because C <L D, we have by Ru B that
A → C <L A → D. Accordingly A → D ∈ x, whence D ∈ x ◦ y. Done!
The prefixing observation PO is more than enough to show that very many
implicational logics L, certainly including S, are such that the class ILT of
their theories is closed under the fusion operation ◦.

6 Combinators and formula sets

We continue to develop Powers’ observations, building on his [ALP]. Let us
simply identify the “combinator” B with the set of all instances of Ax B.
Similarly identify B′ with the instances of Ax B′ and I with all A → A.
Show as in [IFM] that the 1-step reduction rules of Combinatory Logic then
hold, as full set-theoretic equalities, for all sets x, y, and z of formulas from
F[→]. That is, dropping ‘◦’ for simple juxtaposition and associating to the
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left, we quickly verify the following facts:

Fact B. Bxyz = x(yz)

Fact B′. B′xyz = y(xz)

Fact I. Ix = x

Monotonicity. x ⊇ y ⇒ xz ⊇ yz, and y ⊇ z ⇒ xy ⊇ xz12

In a nutshell, on the BB′ and BB′I fragments of CL, the [IFM] Fools
Model is perfect. 13

7 Are S and P–W the SAME system?

We became interested in S on account of Powers’ Conjecture. Yet this
conjecture arose out of his desire to solve the P–W problem. Powers saw
that there was minimal interaction between the I axioms and the syllogistic
B and B′ in actually deriving theorems in BB′I. (It may be that Belnap
already grasped this lack of interaction in formulating and working on (ABC)
for the system.) It accordingly occurs to us to ask whether, at root, the
systems are conceptually distinct.

We shall see that, conceptually, provable S implications express a kind
of proper < relation, which is perhaps sensibly mated with a 6 from P–W.
It perhaps behooves us to take a thorough-going relational view of both
systems, distinguishing them not by their →’s but by their `’s. If we say
P–W ` A → C, we mean A 6 C; if S ` A → C, then A < C. And we now
reserve < for the balance of this paper for <S ; and 6 for <P−−W .14.

12It is even more obvious that x = y ⇒ xz = yz, and y = z ⇒ xy = xz.
13This extends to all of BCI, which is the fragment LL[→] of the Linear Logic of Girard

[GLL].
14There is a bonus in removing further parentheses, on the convention that → binds

more strongly than < or 6. Note that we only use the relational symbols to indicate that
some → statement is a theorem
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8 Semantical ingredients for Martin’s theorems

We saw above that S-theories are closed under ◦. We view them henceforth
as a structure

IST = 〈IST ,⊇, ◦〉

where IST is the set of implicational S-theories, ⊇ is superset, and ◦ is
defined by D ◦.

All this sets up an operational semantics for BB′I. The intuition is that
the points of this semantics are just BB′I theories. A BB′I model structure
(henceforth, Sms) will be a triple K = 〈K,⊇, ◦〉, where K is a non-empty
set; ⊇ is a binary relation on K, and ◦ is a binary operation on K (which
we indicate by simple juxtaposition, associating to the left). We impose the
following postulates, for all x, y, z ∈ K:

p B. xyz ⊇ x(yz)

p B′. xyz ⊇ y(xz)

p I. x ⊇ x

p ⊇. y ⊇ z ⇒ x ⊇ y ⇒ x ⊇ z

p ◦. y ⊇ z ⇒ xy ⊇ xz, and x ⊇ y ⇒ xz ⊇ yz

The B, B′ and I postulates reflect the (Curry-style) reduction rules for
the combinators that have the corresponding axioms as their types (in the
vocabulary of [CL1]). Intuitively, ⊇ is the superset relation on theories,
whence p ⊇ records that superset is transitive. A final intuitive hook is that
◦ is the modus ponens product operation on theories defined by D ◦.

We seem to have taken a giant step back from the smooth facts of section
6. And why have we called our frames Sms, when we have set them up for
the supersystem BB′I of S[→]? Patience, gentle reader, patience! We have
already suggested in section 7 that, deep down, S and P–W are the same
system. For Powers first noted and Dwyer more smoothly proved,15 [PDF.
Powers-Dwyer Fact.] Let A and C be distinct formulas of F . Then A < C
iff A 6 C. Left to right is obvious. For the converse, define with Dwyer

15A referee finds Dwyer’s smooth argument the nicest thing in the paper. We like it too.
It was communicated by Dwyer to Meyer back in 1974, when we were both at Pittsburgh.
Thanks, Robin! And, if ANYONE knows where you are, PLEASE GET IN TOUCH!
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a metavaluation v : F → 2 by

v(p) = 0 if p is an atom

v(D → E) = 1 iff (i) D < E or D = E, and (ii) v(D) 6 v(E).

The ‘=’ in (i) applies iff D and E are exactly the same formula. Show then
by deductive induction, for all D and E in F [→], that if BB′I ` D → E
then v(D → E) = 1.16. Since the fact assumes A 6 C for distinct A and C,
(i) then enforces A < C. Done! We have the immediate

[PDF Corollary.] A set x of → formulas is a BB′-theory iff x is a BB′I-
theory. So IST is indifferently the set of all BB′-theories and of all BB′I-
theories. Note too

[STM Theorem.] IST is an Sms. All the postulates but p B and
p B′ are clearly OK by D ◦ and properties of ⊇. As for p B′, recall that our
postulates are being asserted of S-theories x. So x ⊇B’◦x in this case, since
closure under 6 is imposed on theories.17. Two applications of Monotonicity
then produce xyz ⊇B’xyz, while B′xyz = y(xz) by Fact B′ for any formula
sets. This shows that xyz ⊇ y(xz) for S-theories x, y, z. Note that the
inclusion can not in general be reversed. A similar argument verifies p B
as well, ending the proof. We now complete our operational semantical
story for BB′I by adding some interpretative machinery. Let K be an Sms.
Any function I : F × K → 2 is a possible interpretation in K, assigning
either 1 (true) or 0 (false) to each formula A at each point x in K. Where
I is a possible interpretation fixed in context, let us write simply ‘Aa’ for
I(A, a) = 1, and ‘∼A a’ for I(A, a) = 0. Then a possible interpretation I is
moreover an interpretation if it satisfies two further conditions, a hereditary
condition H and a truth condition T→, for all a, b ∈ K and B,C ∈ F :

H. a ⊇ b⇒ Cb⇒ Ca

T→. [B → C]a = ∀b ∈ K(Bb⇒ C(a ◦ b))

The heredity condition H may be restricted to propositional variables p,
since an easy induction using T→ and Monotonicity then establishes it for
all the B → C as well. Check out the intuition behind H. If theory a is a

16PDF is independent of Martin’s theorems. But the ‘=’ clause under (i) takes up the
slack in verifying AxI. Check the cases, involving delicate interplay between syntactic (i)
and semantic (ii) in verifying B and B′

17B′ here is simply the set of all suffixing axioms, which is not itself an S-theory
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supertheory of theory b, then any C in b is most certainly in a also.
T→ is the nub of the matter. Suppose B → C ∈ a and B ∈ b. Then,

by D ◦, we expect C ∈ a ◦ b. This is the idea from left to right. From right
to left suppose that whenever B ∈ b then C ∈ a ◦ b. Surely B ∈ [B,∞),
the principal theory containing B and all that B entails. So, the thought
goes, C ∈ a ◦ [B,∞), which if luck is with us is the set of all D such that
B → D ∈ a. Luck is with us; so in particular B → C ∈ a, as desired.

We are merely sketching ideas here, to make them plausible. (Again as
Belnap once noted, in Philosophy that counts as a proof. ) But we are doing
Logic, which is less forgiving. We complete the interpretative story thus, on
interpretation I in K:

Ent I. B I-entails C = ∀a ∈ K(Ba⇒ Ca)

Ent K. B K-entails C = B I-entails C on every interpretation I in K

Ent S. B S-entails C = B K-entails C in every Sms K

[Soundness theorem for BB′I.] A 6 C ⇒ A S-entails C. Formulate
BB′I with Ax B, Ax B′, Ax I and the Dwyer rules Ru B, Ru B′, Ru BB.
Pick an arbitrary interpretation I in any Sms K. Check that each antecedent
of an axiom I-entails its consequent. Show that this property is preserved
under the Dwyer rules. Since I and K are arbitrary, the axioms yield S-
entailments and the rules preserve this property. Done! For completeness
we appeal to the STM theorem, recalling that IST is an Sms. We define a
canonical interpretation CI by setting, for each S-theory x and formula A,

CI(A, x) = 1 iff A ∈ x

Evidently the canonical interpretation respects the heredity condition H
(since in IST the ⊇ relation really is superset). It also respects T→, since
the intuitions we were courting just above may now be established as formal
facts. We conclude [Completeness theorem for BB’I. ] A S-entails C ⇒ A 6
C. Assume that A S-entails C. In particular A CI-entails C on the
canonical interpretation in IST. I. e., ∀x ∈ IST (A ∈ x ⇒ C ∈ x). Let
[A,∞) = {D : A 6 D}. Instantiating, A ∈ [A,∞) ⇒ C ∈ [A,∞). But
A ∈ the S-theory [A,∞) by Ax I. So C ∈ [A,∞). I. e., A 6 C, ending the
proof.
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9 The Semantics turns Paraconsistent

Readers who skimmed through the proofs just offered did not miss much.
While perhaps caviar to the general, they are direct and straightforward,
and entirely in the spirit of similar developments in [RLR]. We may assume
moreover that we have been working in a wholly classical metalogic, with
‘⇒’ in definitions and proofs simply taken as classical material ⊃.

In this section, which we beg you not to skim, we set out the semantical
thinking that was a direct ingredient into Martin’s theorems. We appealed
in the last section to a theory

[A,∞) = {C : A 6 C}.

[A,∞) is the principal BB′I-theory determined by A. It contains A, by
Ax I. But there is another principal theory not far off. (A,∞). We define

(A,∞) = {C : A < C}.

Where A is any formula, (A,∞) is the principal BB′-theory determined by
A. Question: Is A in its own principal BB′-theory (A,∞)? Answer: Never!
(Apply Martin’s 1st theorem.)

Our notation takes off from that for intervals on the real line. We dis-
tinguish the open interval (m,∞), which does not contain m, from the half-
closed [m,∞), of which m is the initial member.) While Powers’ conjecture
was open, it was possible that, for some A,

3. (A,∞) = [A,∞).

The input of the semantics into Martin’s [SPW] proof lies in showing that
3 never happens. Equivalent to Section 3’s PCM is the generalized negated
equality

PCM’. For all A we have (A,∞) 6= [A,∞).

It is PCM’ that may be most conveniently viewed as the lemma for the
semantic proof of PCM.18 Our purpose here is to lay bare some of the philo-
sophical background for that lemma. The idea is to separate the formulas
properly entailed by a formula A from those that are entailed by or identical

18Since the essence of the [SPW] proof lies in adroit symbol-pushing, Martin was long
aware that a more directly syntactical treatment also delivers PCM. See his [FM] with
Fine, which extended the PCM result to S[→∧] a decade ago. But bringing ∨ also under
the tent has proved recalcitrant.
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with A. Since this distinction can always be made, the key conjectures were
true.

The first thought was to turn T→ above into two truth-conditions, one
for weak truth (of the 6 variety) and the other for strong truth (the same
for <). It turned out that these conditions can be combined if we switch the
metalogic from 2 to the semi-relevant logic RM3, which has a 3-valued char-
acteristic matrix.19 Add 1/2 to 0 and 1 above, and make 1/2 its own negation.
A nice thing about RM3 is that it has a characteristic 3 point matrix, whose
∧ and ∨ tables may be read off the following Hasse diagram.20

The characteristic matrix TNF for RM3:

1
|

1/2
|
0

The → and ∼ tables for RM3 are just the following:

→ 1 1/2 0

∗1 1 0 0
∗1/2 1 1/2 0

0 1 1 1

∼
∗1 0
∗1/2 1/2

0 1

Both T and N count as designated elements in TNF (originally due to
Sobociński in [Sob52]). Note also that the value of ∼p is just that of p→ 1/2
.

An interpretation I in an Sms K = 〈K,⊇, ◦〉 now assigns one of these 3
values to every formula A at every point x in K. A formula B is strongly true
at x on I just in case I(B, x) = 1; weakly true, if I(B, x) 6= 0. Particularly
delicate is the case where I(B, x) = 1/2, a sort of crossover point from falsity
to truth. For the hereditary condition H, when reinterpreted in this RM3
way, refuses to linger at 1/2. Suppose x 6= y, where I(B, x) = 1/2. Then if
y ⊇ x, then I(B, y) = 1; while if x ⊇ y, then I(B, y) = 0.

19RM3 is a wonderful logic, good for everything from showing relevant arithmetic non-
trivial (take that, Gödel!) to solving the P–W problem (for years the Fermat’s Last
Theorem of relevant logics).

20“Make the RM3 matrix explicit,” said the referee, “to keep things self-contained.”
Recall that adding A→ (A→ A) and A∨ (A→ B) as new axiom schemes produces RM3
from the relevant logic R of [ENT]. Some readers may be more familiar with the RM3
truth values 1, 1/2 and 0 as ‘T’ ‘N’ and ‘F’ respectively.
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Similarly, the truth-conditions T→ and the S-entailment were reinter-
preted in the 3-valued way. It sufficed to create a new canonical inter-
pretation, and to show that every formula A was assigned the boundary
value 1/2 on this interpretation, at its own principal theory (A,∞). Since
1/2→ 1/2 = 1/2 in the characteristic matrix for RM3, the result is that all the
A→ A turn out weakly but not strongly true. And PCM’ was proved.

10 Adding Inferential Negation

We now extend F [→] to a language F [→, f], by adding the constant f to the
formation apparatus. This enables an inferential definition of negation (as
Bull once suggested that an idea going back to C. S. Peirce be applied here).

D ∼. ∼A =df A→ f

We are not certain that the minimal syllogistic negation defined by D ∼ is
the one that we shall eventually want for S. But we expect that we shall
at least wish the transposition and related properties that this definition
engenders. We get immediately from Ax B and Ax B′

Th B∼. ∼C → (A→ C)→ ∼A

Th B′∼. (A→ C)→ ∼C → ∼A
In view of Martin’s 1st theorem, it makes sense to extend S with the follow-
ing new axioms

Ax ∼I. ∼(A→ A)

We call the resulting system BB′ ∼ I, and note the following pleasant result.
[Conservative extension theorem for BB’∼I. ] Let A be a formula in our

original vocabulary F [→]. Then A is theorem of BB′∼I iff A is already
a theorem of BB′. Right to left is trivial. For the converse, suppose
for reductio that A is not a theorem of BB′, but that it has nonetheless a
proof A1, . . ., An in BB′ ∼ I. Some of the Ai in this proof must be of the
form (in primitive notation) (C → C)→ f, since otherwise A would already
be provable in BB′. Since A is a non-theorem of BB′, there is a strong
logical matrix M = 〈M,→, D〉 and an interpretation I in M that refutes
A—i.e., I(A) /∈ the designated set D of matrix elements. Enlarge M to a
new matrix M’ = 〈M ′,→′, D′〉. M ′ is M with additional elements T and F.
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For all a, b ∈M , we require a→′ b = a→ b. Moreover →′ is subject to the
rigorous compactness condition that, for all a in M ′, F→′ a = a→′ T = T;
while otherwise a→′ F = T→′ a = F. (The effect is to make T a matrix Top
element and F a Bottom element, isolated from the original matrix elements
in M .) It is readily observed as in [CPL] that, since M is a strong matrix for
BB′, so also is M’ , setting D′ = D ∪{T}. Extending I to an interpretation
I ′ with I ′(f) = T, all of A1, . . ., An are designated on I ′, by straightforward
deductive induction. Since An = A, this is a contradiction. Even our
minimal negation produces some welcome metatheorems. The antitheorem
A→ A of S[→] has been transmuted into the axiom ∼(A→ A) of BB′ ∼ I.
Other antitheorems are quick to follow. For example, by substitution in the
theorem scheme B’B’(B’B’), we have

(1) (A→ (A→ B)→ B)→ (A→ (A→ B))→ A→ A→ B

As an instance of Ax∼I, we get

(2) ∼((A→ (A→ B))→ A→ A→ B).

Applying modus tollens to (1) and (2), justified by your choice of Th B∼ or
Th B′∼,

(3) ∼(A→ (A→ B)→ B),

signalling the antitheoremhood of the CI principle in S.
Life gets interesting when we throw in Ax I as another primitive prin-

ciple. Now we become explicitly contradictory, since Ax ∼I remains. Can
we live with this? We believe that we can. For we have seen the I axiom
as on the border between valid inference and fallacy. A → A, in a certain
sense, is both. It is what happens when one takes the directed < of an honest
entailment as an equality.

Save for A→ A, the antitheorems of BB′ remain antitheorems in BB′I.
So in what we call BB′I ∼I, the ∼CI theorem (3) continues to signal that
no instances of A→ (A→ B)→ B are syllogistically OK. That is, explicit
inconsistency is restricted to the troublesome A→ A. As it should be!
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