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Abstract
Justification stit logic is a logic for reasoning about proving as

a certain kind of activity, namely seeing to it that a proof is publicly
available. It merges the semantical analysis of deliberatively seeing-to-
it-that from stit theory (Belnap, Perloff, Xu 2001) and the semantics
of the epistemic logic with justification from (Artemov and Nogina
2005). In this paper, after recalling its language and basic semantical
definitions, various ramifications and refinements of justification stit
logic are presented and discussed: imposing natural restrictions upon
the class of models under consideration, making use of modalities that
assert the existence of a proof, introducing a variant of justification
stit logic based on a semantics introduced by M. Fitting, and adding
variable-binding operators and extending the set of proof polynomials.

Keywords: proofs as acts, doxastic agency, epistemic logic, justi-
fication logic, dstit logic
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1 Introduction
In [10], the first part of this paper, we introduced a relatively simple

modal propositional logic for reasoning about the activity of proving. Within
this logic, (which throughout this paper will be called basic justification stit
logic) one can systematically distinguish between dynamic and static aspects
of proving, that is to say, between proofs as acts and proofs as objects,
compare different sets of intuitions concerning the semantics of the verb ‘to
prove’, and answer some philosophically meaningful questions like whether
actions themselves (rather than static objects) can be a proper object of
proof theory.

The phenomena modelled in justification stit logic naturally call for a
relatively rich set of modalities connected by rather involved logical relations.
Indeed, one needs a separate set of action modalities (which we borrowed
from stit logic, see [2]), a separate set of proof modalities and epistemic
modalities (which we borrowed from the justification logic S4LP by Artemov
and Nogina, see [1]), and also a separate set of modalities for proving as an
activity, which, according to the detailed motivation given in [10], come at
least in four different kinds.

Therefore, in the first part of this paper we were mainly focusing on
exploring these relations under a most straightforward set of choices as to
the semantics and syntax of justification stit logic. Indeed, the Artemovian
semantics presented in [10] is rather uncritically built upon the semantics
given in [2] and [1], and the set of modalities for proving as an activity
was an obvious attempt to carry over some modes of speaking about acts
of proving in natural languages and implant them into the environment of
modal propositional logic. Both of these choices admit of at least prima facie
interesting alternatives which deserve some discussion and comparison, and
this is the main goal of this second part of the present paper. In this part,
therefore, our intention is to look at the logic defined in the first part as an
entry point into a rich landscape of related logical systems which naturally
arise from this basic system not unlike the way in which different modal logics
arise from the system K by either restricting its semantics, or tampering
with its set of expressive means (say by introducing binary modalities rather
than just unary ones), or else switching to a richer semantical setting (say,
neighborhood semantics). This landscape of further justification stit systems
will be mostly explored in this paper with a conceptual focus, although we
will cite some more technical results in one or two places when they seem to
be especially relevant.

The paper has the following layout. In Section 2 we recall the basic
justification stit logic with Artemovian semantics defined in [10]. Then, in
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Section 3, we consider some alternatives to this logic which can be obtained
by different natural restrictions placed upon the class of its models. In Section
4 we consider justification stit logic based on so-called E-notions (basically,
modalities asserting the existence of a proof) as an alternative to a logic based
on modalities for acts of proving. We are mainly dwelling on the properties
of the explicit fragment of the logic of E-notions which seems to constitute a
natural extension for the explicit fragment of the basic justification stit logic.
However, once one switches to the level of full basic justification stit logic, it
appears that one cannot re-define all of its modalities in terms of E-notions
unless one extends the language with quantifiers over proof polynomials. The
latter move, however, leads to quite a bit of inconvenience in the context of
Artemovian semantics. Therefore, the logic of E-notions cannot be seen as
a proper substitute of the basic justification stit logic. We conclude that at
least in the context of Artemovian semantics, E-notions serve better as an
addition to the set of modalities for acts of proving than as an alternative to
this set.

Section 5 is then devoted to an alternative semantics for basic justification
stit logic which is based on a semantics introduced by M. Fitting in [4]. This
semantics is only explored here on the propositional level, but it is clear
that it allows for a much more natural upgrade to quantification over proof
polynomials as compared to Artemovian semantics. We then briefly discuss
strengths and weaknesses of the two semantical settings for justification stit
logic. In Section 6, we consider a further natural extension of justification
stit logic obtained by admitting lambda-abstraction as a variable-binding,
additional operation on proof polynomials. We also briefly compare this
refinement of justification stit logic with Fitting’s introduction of quantifiers
into the logic of proofs.

Finally, in Section 7 we briefly sum up our conclusions and mention some
directions for future research.

2 Basic justification stit logic

2.1 Language
We start with a brief recapitulation of basic justification stit logic in-

troduced in [10]. Its language is built on top of three sets: the set Var of
propositional variables, the set Pol of proof polynomials and the set Ag of
agents, where the first two sets are countably infinite and Ag is finite. We
will denote propositional variables by p, q, r and agents by i, j, k, using sub-
scripts if necessary. The set of proof polynomials is obtained by taking a
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countably infinite set of proof variables PVar and a countably infinite set
of proof constants PConst and then closing it w.r.t. the binary operations
+, ·, and the unary operation !. We will denote proof variables by x, y, z,
proof constants by a, b, c and proof polynomials by s, t, u, sometimes using
subscripts. Informally, the meanings of operations on proof polynomials are
given below:

s + t the sum of proofs s and t
s · t the application of proof s to proof t
!s ‘proofchecker’, i.e. a proof deciding whether s is a correct proof

Members of the set Form of justification stit formulas will be denoted by
A, B,C,D, possibly with subscripts. The set Form is built upon Var using
Boolean connectives ∧ and ¬ and the following set of modalities:

Notation Informal interpretation
[c] jA Agent j sees to it that A
2A A is historically necessary
t:A t is a proof of A
KA A is provable/knowable

Prove( j, A) Agent j proves A
Prove( j, t, A) Agent j proves A by t

Proven(A) A has been proven
Proven(t, A) A has been proven by t

Let π = {Prove( , ), Prove( , , ), Proven( , ), Proven( , , )}. We will refer
to the elements of π as π-modalities. In the above language, the Boolean
connectives ∨, →, ↔, ⊥, > can be defined in a standard way. We also define
3 as the dual of 2. In the above notation for our action modality, [c] j, c
stands for cstit (Chellas stit), so that the criterion for j doing A is, roughly
speaking, that A is sure to obtain after j’s actions. This also applies to
situations when A is guaranteed to obtain irrespectively of any actions by j,
simply by itself. To rule out such situations, a dstit (deliberative stit) action
modality [d] j is normally introduced, with the following definition:

[d] jA =d f [c] jA ∧ ¬2A.

2.2 Artemovian semantics
For the language at hand, we introduced in [10] the following semantics.

An Artemovian model of basic justification stit logic is a tuple

M = 〈Tree,≤,Choice,R,Re,E, Act,V〉.
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In this structure, Tree is a non-empty set of moments which are con-
ceived, roughly, as momentary ‘snapshots’ of the universe. These moments
are causally connected by ≤, which is assumed to be a forward-branching par-
tial order. Moreover, it is assumed that ≤ weaves Tree into a single causally
connected structure so that all the moments are possible states of one and
the same World. More precisely, it is assumed that

(∀m,m1 ∈ Tree)(∃m2 ∈ Tree)(m2 ≤ m ∧ m2 ≤ m1).

The possible histories of this World are then defined as all ≤-maximal chains
in Tree. We denote the set of all histories by Hist. The set

Hm = {h ∈ Hist | m ∈ h}

is called the set of all histories passing through m. Justification stit logic
shares with stit logic the intuition that truth values of formulas at a given
moment may depend on which of the histories passing through a given mo-
ment is considered. This holds not so much for hard facts like ‘this table is
round’ but rather for events dependent on the future, like tomorrow’s sea-
battles and outcomes of unfinished actions. Thus the set of evaluation points
for the formulas of justification stit logic in a given model M, much like in
stit logic, is the following set of moment-history pairs:

MH(M) = {(m, h) | m ∈ Tree, h ∈ Hm}.

At any given moment m the agents perform their actions, and this affects
the determination of which histories in Hm are realized. The complete infor-
mation about such influences is encoded in Choice which is assumed to be
a function computing, for a given moment m and agent j, a set of choices
of j at m which is given as a partition of Hm. This partition is denoted by
Choicem

j and its elements are different choices of the agent. If h ∈ Hm then
Choicem

j (h) stands for the choice of j at m to which h belongs.
In the context of justification stit logic, unlike in the case of general stit

logic, it is assumed that agents living and acting in Tree are engaged in a
specific activity of proving things. At any given moment, a totality of proofs
is available, and this totality is represented by Pol. This totality does not
change from moment to moment, but the status of proofs themselves may
change: some proofs are not admissible, the others are, and non-admissible
proofs may become admissible as history evolves (but not vice versa — once
a proof has become admissible this cannot be undone). And in order to
be valid, a proof must not only be admissible but also correct in the sense
that the proved sentence is true in all the relevant moment-history pairs.
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This latter aspect of proofs is handled in a (by now) traditional Hintikkean
fashion by the binary relation Re in our models. Relation Re, called an
evidence accessibility relation, is assumed to be a pre-order on Tree, and
we further demand that ≤ is a subset of Re, so that the possible future of a
given moment is always relevant to weighing evidence in it. The admissibility
aspect of proofs is then encoded by a function E, called admissible evidence
function. For every moment m and proof polynomial t, this function yields
a set of justification stit formulas for which t is an admissible proof in m.
This function is assumed to satisfy the following closure properties w.r.t.
operations on proof polynomials:

• A→ B ∈ E(m, s) ∧ A ∈ E(m, t)⇒ B ∈ E(m, s · t);

• A ∈ E(m, t)⇒ t:A ∈ E(m, !t);

• E(m, s) ∪ E(m, t) ⊆ E(m, s + t).

It is easy to see how these closure properties correspond to the inter-
pretation of the respective operations; e.g., the last clause says that s + t
is an admissible proof for any sentence, for which either s or t is admissi-
ble. Further, since admissibility of evidence is assumed to be cumulative, the
following restriction is also imposed on E:

(∀t ∈ Pol)(∀m,m′ ∈ Tree)(Re(m,m′)⇒ E(m, t) ⊆ E(m′, t)).

Relation Re and function E are both necessary to interpret modalities
of the form t:A which explicitly mention the proof involved in showing A.
However, the modality KA could already by interpreted with the help of Re

only. Still, in justification logic, which (in addition to stit logic) is the second
source of justification stit logic, a separate pre-order R is assigned to that
task with the condition that R ⊆ Re.1 In the context of justification stit
logic, R, just like Re is defined on Tree.

These constructions embed the totality of proofs into our model as some
objective feature about the way theWorld is; but they do not yet say anything
about how agents can relate themselves to this totality. In basic justification
stit logic this relation is established by Act which is assumed to be a function
mapping MH(M) into 2Pol. The underlying intuition here is something like
this: agents are supposed to search Pol together and present to the commu-
nity different elements of Pol which they happen to find. One can think,
for instance, of a group of researchers summoned in a conference room and

1In pure justification logic this somewhat more general setting does not affect the set
of theorems and we expect the same for justification stit logic.
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putting proofs they come up with on a common whiteboard. These proofs,
once they are presented to the community in this way, are supposed to remain
on the whiteboard forever. Function Act encodes the state of this whiteboard
in that it assigns every moment-history pair a set of proofs presented (or be-
ing presented) to the community in it; and the fact that presented proofs
cannot vanish later is captured by the following restriction:

(∀m,m′ ∈ Tree)(m′ < m⇒ ∀h ∈ Hm(Act(m′, h) ⊆ Act(m, h))).

The only remaining element of the above model, V, is a standard evaluation
function for propositional variables mapping Var into 2MH(M).

In the above discussion, we omitted some of the less trivial and more
technical restrictions on our models; we now list all of them for the sake of
completeness:

1. No choice between undivided histories:

(∀m,m′∈Tree)(∀h, h′∈Hm)(∀ j ∈ Ag)(m < m′∧ m′∈h ∩ h′⇒
Choicem

j (h) = Choicem
j (h′)).

2. Independence of agents:

(∀m ∈ Tree)(∀ f : Ag→ 2Hm)((∀ j ∈ Ag)( f ( j) ∈ Choicem
j )⇒⋂

j∈Agent

f ( j) , ∅).

3. No new proofs guaranteed:

(∀m ∈ Tree)(
⋂

h∈Hm

(Act(m, h)) ⊆
⋃

m′<m,h∈Hm′

(Act(m′, h))).

4. Presenting a new proof makes histories to divide:

(∀m,m′ ∈ Tree)(∀h, h′ ∈ Hm)(m < m′ ∧ m′ ∈ h ∩ h′ ⇒
(Act(m, h) = Act(m, h′))).

5. Presented proofs are epistemically transparent:

(∀m,m′ ∈ Tree)(Re(m,m′)⇒ (
⋂

h∈Hm

(Act(m, h)) ⊆
⋂

h′∈Hm′

(Act(m′, h′)))).
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We now briefly comment on the conditions given in this latter list. The
first two restrictions are inherited by justification stit logic from stit logic; the
first one says that agents cannot by their actions distinguish between histories
which are, by the causal order of the world, bound to run together for some
more time. The second one says that the joint choice of any group of agents
cannot prevent any parallel choices by other agents. The remaining three
restrictions deal with specific phenomena studied in justification stit logic.
The third one says that a proof cannot occur as a hard fact out of nothing.
If a proof’s presence on the community’s ‘whiteboard’ is an accomplished
fact, then it must have been introduced there by some agent at an earlier
moment and at this moment its introduction to the community was not
an accomplished fact, but was dependent on the actions of the introducing
agent. The fourth restriction can be viewed as a corollary to the first one.
The difference between the sets of proofs presented to the community at
(m, h) and at (m, h′) may only obtain as a result of different choices of agents
made at m (or earlier), since the presentation of proofs can be effected by
agents only. But in this case (m, h) and (m, h′) should have been in different
choice cells for at least one agent, which contradicts the fact that h and h′

are undivided at m. The fifth restriction says that whenever the presence
of a given proof on the community whiteboard has become an accomplished
fact, the community knows it, so that this presence also obtains in all the
epistemic alternatives of a given state.

With all the restrictions in place, we can finally define the satisfaction re-
lation for basic justification stit logic. For every model M =

〈Tree,≤,Choice, Act,R,Re,E,V〉 of the above-described kind, and for every
(m, h) ∈ MH(M) we stipulate that:

M, (m, h) |= p⇔ (m, h) ∈ V(p);
M, (m, h) |= [c] jA⇔ (∀h′ ∈ Choicem

j (h))(M, (m, h′) |= A);

M, (m, h) |= 2A⇔ (∀h′ ∈ Hm)(M, (m, h′) |= A);
M, (m, h) |= t:A⇔ A ∈ E(m, t) ∧ ∀m′∀h′(Re(m,m′) ∧ h′ ∈ Hm′ ⇒M, (m′, h′) |= A);
M, (m, h) |= KA⇔ ∀m′∀h′(R(m,m′) ∧ h′ ∈ Hm′ ⇒M, (m′, h′) |= A);
M, (m, h) |= Prove( j, A)⇔ (∀h′ ∈ Choicem

j (h))(∃t ∈ Act(m, h′))(M, (m, h) |= t:A)∧

∧ (∀s ∈ Pol)(∃h′′ ∈ Hm)(M, (m, h) |= s:A⇒ s < Act(m, h′′));
M, (m, h) |= Proven(A)⇔ (∃t ∈ Pol)(∀h′ ∈ Hm)(t ∈ Act(m, h′) ∧M, (m, h) |= t:A);
M, (m, h) |= Prove( j, t, A)⇔ (∀h′ ∈ Choicem

j (h))(t ∈ Act(m, h′) ∧M, (m, h) |= t:A)∧

∧ (∃h′′ ∈ Hm)(t < Act(m, h′′));
M, (m, h) |= Proven(t, A)⇔ (∀h′ ∈ Hm)(t ∈ Act(m, h′) ∧M, (m, h) |= t:A).
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In the above clauses we assume that p ∈ Var and that j ∈ Ag; we also
assume standard clauses for Boolean connectives. We observe that the above
clauses for 2A and [c] jA are borrowed from stit logic and that the clauses for
t:A and KA are an obvious adaptation of the corresponding clauses for S4LP
given in [1]. As for the remaining parts of the definition of the satisfaction
relation, the ones for Proven(A) and Proven(t, A) are rather transparent. A
sentence has been proven (or has been proven by t) iff some proof of it (or
this specific proof t) is correct and exists independently of what agents may
do about switching from one history through a given moment to another one,
or, in other words, it exists at a given moment under all such histories. As
for Prove( j, t, A), j proves A by t iff t is a correct proof of A and j ensures by
her actions that this proof is presented to the community. With Prove( j, A)
it is more or less along the same lines only this time j must ensure by her
actions that some correct proof of A is presented, and every such proof is
novel in the sense that no proof of A was presented earlier.2

Admittedly, these are not the only plausible choices when it comes to
defining a semantics of ascriptions of proving; in [10] we offered some infor-
mal motivation as to why the choices presented above seem to be the most
adequate. We have also shown how some other appealing choices as to no-
tions of proving can be defined within basic justification stit logic in terms
of the above π-modalities. We list these definitions below:

Prove′( j, A) =d f Prove( j, A) ∧3¬Prove( j, A);

Prove′( j, t, A) =d f Prove( j, t, A) ∧ ¬Proven(A);

Prove′′( j, t, A) =d f Prove′( j, t, A) ∧3¬Prove( j, A).

3 Refinements by restriction
Perhaps the simplest way to refine the basic justification stit logic ex-

plained above, would be to restrict its class of models. We briefly survey
some strategies and ideas for such restrictions which seem to be prima facie
promising from a conceptual viewpoint.

First, one could impose new restrictions immediately on the level of Arte-
movian justification stit models. One interesting direction of search for new
principles is about different intuitively appealing patterns of non-trivial con-
nection between the structure of Act and operations on proof polynomials.

2The semantics of justification stit logic merges the semantics of the dstit-operator from
stit theory [2, 7, 8] and the semantics of the epistemic logic with justification presented
in [1]. A logic of imagination the semantics of which merges the dstit-modality and a
neigbourhood modality can be found in [9, 11].
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Consider +, for instance. If s+ t, i.e. the sum of proofs s and t is presented to
the community, it is hard to imagine how this could be done without some-
how presenting both s and t. But if we assume this connection in general,
this assumption already amounts to the following non-trivial restriction on
Act:

(∀s, t ∈ Pol)(s + t ∈ Act(m, h)⇒ s, t ∈ Act(m, h)) (1)

for every (m, h) ∈ MH(M). Imposing (1) on Artemovian models affects the
set of valid formulas of justification stit logic. For example, the following
formula is not valid over the class of all Artemovian models but becomes a
validity over the subclass satisfying (1):

(Prove( j, s + t, A) ∧ s:B)→ (Prove( j, s, B) ∨ Proven(s, B)).

One may also come up with similar restrictions on Act with respect to other
operations on proofs, but these tend to be less appealing intuitively. For
example, what exactly is entailed by a presence of s · t in Act(m, h)? To
assume that s will be also presented to the community would seem to be a
little bit too strong a claim. Indeed, it often happens that a certain proof
method is only known by its application in one or two particular results and
it may take decades to extract this proof method from this very particular
environment and find an appropriate generalized formulation for it. With
respect to the proof t to which s is applied in s · t our intuitions seem to be
more favorable. Indeed, even if t was not known earlier, one would have to
at least create a copy of t for this particular application of s to it. If we agree
with this, this would amount to the following non-trivial restriction on Act:

(∀s, t ∈ Pol)(s · t ∈ Act(m, h)⇒ t ∈ Act(m, h)) (2)

for every (m, h) ∈ MH(M). And this new restriction, again, would yield even
more new validities like the following one:

(Prove( j, s · t, A) ∧ t:B)→ (Prove( j, t, B) ∨ Proven(t, B)).

Another strategy to look for promising restrictions on the class of Arte-
movian justification stit models would be to restrict admissible models rather
than admissible frames. In this case one could attempt to start with some
new validities and then impose them as new principles of justification stit
logic and see which restrictions on models correspond to these new princi-
ples. This alone can constitute a substantial line of research. For now we
only mention some of the new validities which would capture some natural
properties of proofs. First, one could try to capture proof-theoretic properties
of connectives and modal operators occurring in justification stit formulas.
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With respect to conjunction, for example, one would expect that in order to
prove A ∧ B it is necessary to prove both A and B. This principle could be
expressed as follows:

Prove( j, A ∧ B)→ (Prove( j, A) ∨ Proven(A)),

and similarly for B. If, in addition, one has intuitionistic leanings towards
the disjunction property, then a similar principle for disjunction would be of
interest, that is to say, that a proof for A∨ B always means that there was a
proof for A or a proof for B somewhere along the way. This will be expressed
in basic justification stit logic as follows:

Prove( j, A ∨ B)→ (Prove( j, A) ∨ Proven(A) ∨ Prove( j, B) ∨ Proven(B)).

Secondly, one could look for principles capturing a ‘dynamic meaning’
of operations on proofs themselves. Indeed, it is often assumed that these
operations are nothing but generic actions performed by agents with respect
to their argument proofs considered as objects. If so, then once any given
proofs s and t are in place, any agent can perform the next step and choose
to construct and present to the community s · t, or s+ t, or !s. This, of course,
is a further idealization since in the real world agents can be distracted or
otherwise put in some unfavorable conditions preventing them from con-
structing a further proof. But, again, if we picture the community of agents
as assembled in a conference room and specifically engaged in finding and
writing down new proofs, this additional no-distractions idealization seems
to be a very natural and realistic thing to suppose. Once we agree to this
further idealization, the agentive meaning of the three operations on proof
polynomials assumed in justification logic can be represented as follows. For
the sum operation we have:

(Proven(s, A) ∧ Proven(t, B))→ (Proven(s + t, A) ∨3Prove( j, s + t, A)). (3)

For the application operation we have the following principle:

(Proven(s, A→ B)∧ Proven(t, A))→ (Proven(s · t, B)∨3Prove( j, s · t, B)). (4)

And finally, the agentive meaning of the proofchecker can be formalized as
follows:

Proven(s, A)→ (Proven(!s, s:A) ∨3Prove( j, !s, s:A)). (5)

Note, incidentally, that these principles provide sort of an inversion for the
validities resulting from restrictions (1) and (2).
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Yet another family of possible restrictions would concern the interaction
of the admissible evidence function E with stit modalities and π-modalities.
Consider, for example the interaction of 2 with justification modalities.
Some of the natural validities associated with this type of interaction are
t:A → 2t:A and t:A → 2A. These validities say, roughly speaking, that if t
proves A, then it is necessarily so, and also that whatever, which is proved,
obtains necessarily. Now, the natural question is, when A is proved, does it
mean that eo ipso the fact that A obtains necessarily is proved, or this would
require a separate proof? This is basically a question of how explicit one
wants to be about the apodeictic nature of proof. Classical mathematics, for
example, has often been construed along the lines that whatever is proven, is
proven to hold necessarily, so that the proof that A and the proof that, nec-
essarily, A would be one and the same proof. If this idea is to be introduced
in jstit logic, it will amount to the following additional restriction on E:

A ∈ E(m, t)⇒ 2A ∈ E(m, t),

for every formula A and proof polynomial t. Such a modification of clo-
sure conditions for E would yield some additional validities, for example
t:A → 2t2A. Note that in this case we get more uniformity in the inter-
actions of justification modalities with 2, since the implicit version of the
above validity, namely, KA → 2K2A, holds already within the basic jstit
logic. The other option, however, would be to say that a proof of 2A not
only can, but even must be different from the proof of A, since the former
proof can only be obtained after applying something like the Gödel rule to
the last line of the latter proof. This approach would be, perhaps, more in
line with the tendency of justification logic to mirror the functions of all the
logical means available within the language at the level of proof polynomials.
When pursued further, this approach would lead to the extension of the set
of operations on proof polynomials with an operation � together with the
following additional constraint on E:

A ∈ E(m, t)⇒ 2A ∈ E(m,�(t)).

Of course, the choice between these two strategies of accomodating the inter-
actions between justifications and historical necessity would depend on one’s
modelling aims and philosophical inclinations.

One thing to note about the language of basic justification stit logic
and its Artemovian semantics is that this whole system is rather conser-
vative w.r.t. its sources of inspiration. It is clear, for instance that if
M = 〈Tree,≤,Choice,R,Re,E, Act,V〉 is an Artemovian model for basic jus-
tification stit logic, then 〈Tree,≤,Choice〉 is just a BT + AC structure in the
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sense of [2] and 〈Tree,R,Re,E,V〉 is just a model of S4LP as defined in [1].
Further, all the stit and justification modalities definable on these respective
substructures are inherited by basic justification stit logic in their original
form. The choice of the new modalities is also rather straightforward and
conservative: the four new modalities are just different modes of the English
verb ‘to prove’ defined so as to accomodate for the two crucial dichotomies
introduced in stit logic and justification logic respectively, namely the di-
chotomy of agentive vs. non-agentive w.r.t. sentences and the dichotomy of
explicit vs. implicit w.r.t. knowledge.

This conservative character of basic justification stit logic with Artemo-
vian semantics makes it relatively accessible and easy to introduce and ex-
plain for readers already familiar with stit logic and justification logic, which
is one of the reasons why we have chosen it to be the main subject of the
first part of this paper. However, this neither means that this choice is the
only possible one nor that legitimate arguments in favor of other choices
cannot be adduced. These alternatives may depart from the one described
above either in their choice of the language for basic justification stit logic
or in their semantical definitions. In the following sections, we consider and
discuss some of these alternatives to basic justification stit logic with Arte-
movian semantics and consider the tradeoffs involved in switching to these
alternatives.

4 E-notions as an alternative to π-modalities
We start by considering possible criticism of the choice of π-modalities

for basic justification stit logic. One possible argument against this choice
might be that it takes as its basic elements the concepts which are defined by
an interplay of several essentially different elements of our semantics. While
the modalities inherited by justification stit logic from stit or justification
logic are normally connected with just one element in the model tuple and
are defined very much along the lines of the classical Kripkean definition of
necessity-type modalities,3 with π-modalities the situation is very different.
Their definitions invoke Act, the only element of justification stit models
which is not inherited from either stit logic or justification logic, but they
only invoke it in a non-trivial connection with all the other elements in the
model, like Choice and Re. And the definitions of the π-modalities at least in
some cases look much more involved than those typically used in modal logic.

3In this respect t :A is somewhat different, being based on two elements (E and Re) and
having a slightly more involved definition. But this case is also well-known in existing
literature under the name of modalities with an awareness condition (see, e.g. [3]).
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For example, in the semantic definition for Prove( j, A) an ∀∃-prefix is used
which is not very common in modal propositional logic. If one could clear
this logical mess up by introducing one or two relatively simple modalities
based solely on Act but not invoking the other elements of the model and
then retrieve the whole variety of the π-modalities in the resulting language
by using expressive powers of modal propositional logic, this would make the
basic justification stit logic much easier to handle and comprehend.

Unfortunately, it is not quite clear at the moment whether it is possible
to substitute proving modalities with the simpler ones based on Act only
without losing any expressive power. We illustrate the problems involved
here by considering a typical and natural alternative to π-modalities which
we will call E-notions.

Indeed, a modality directly representing the contents of Act at a given
moment-history pair can be defined at least in the following two versions,
corresponding to the distinction between explicit modalities (displaying a
proof polynomial) and implicit modalities (not displaying a proof polyno-
mial):

M, (m, h) |= Et ⇔ t ∈ Act(m, h);

M, (m, h) |= EA⇔ (∃t ∈ Pol)(t ∈ Act(m, h) ∧M, (m, h) |= t:A).

Thus Et says, in effect, that the proof t exists in the sense that t is presented to
the community. On the other hand EA says that some proof of A is presented
to the community (or exists). Since these modalities are connected with a
certain kind of existence claims we have chosen for them the above notation
and will hereafter refer to them as E-notions.

Is it possible to analyze the four π-modalities away as logical combinations
of E-notions with stit and justification modalities already borrowed from
justification stit logic? The following theorem shows that at least in some
cases the answer is in the affirmative:

Theorem 1. Assume justification stit logic with Et and EA added as the new
modalities. In this logic, the following formulas will be universally valid for
arbitrary justification stit formula A, j ∈ Ag, t ∈ Pol:

Prove( j, t, A)↔ [d] jEt ∧ t:A

Proven(t, A)↔ 2Et ∧ t:A

Prove′( j, A)↔ [d] j(EA)

Proven(A)→ 2EA,

where the last implication is irreversible.

Australasian Journal of Logic (14:4) 2017, Article no. 2



422

It is evident from the above theorem that even though E-notions are
sufficient to retrieve some of the π-modalities, they do not seem to be able
to define all of them — we basically get three modalities out of seven in
this way. It is not clear, for example, how one would get a definition of
Prove( j, A) in the propositional setting, even though the stronger Prove′( j, A)
is definable. Also, the definition of Proven(A) seems to be impossible. One
would think of 2EA as perhaps the most natural defining construction, but
the difference between the two formulas is in the position of the existential
quantifier w.r.t. the universal one, which results in Proven(A) being a strictly
stronger proposition than 2EA.

However, the introduction of quantifiers over proof polynomials would
seem to set the potential of E-notions in a much more favourable light. In-
deed, the following theorem holds:

Theorem 2. Consider justification stit logic augmented with E-notions. The
following conditionals hold for arbitrary justification stit model M,
(m, h) ∈ MH(M), for arbitrary justification stit formula A and j ∈ Ag:

M, (m, h) |= Prove( j, A)⇔

(M, (m, h) |= [c] j(EA) ∧ (∀t ∈ Pol)(M, (m, h) |= t:A→ 3¬Et)));

M, (m, h) |= Proven(A)⇔ (∃t ∈ Pol)(M, (m, h) |= 2Et ∧ t:A);

M, (m, h) |= EA⇔ (∃t ∈ Pol)(M, (m, h) |= Et ∧ t:A).

Theorems 1 and 2 combined show that in a first-order setting Et alone
would be sufficient to get both EA and all of the proving modalities. We
could use, for instance, the following definitions:

EA =d f ∃t(Et ∧ t:A);

Prove( j, A) =d f [c] j(EA) ∧ ∀t(t:A→ 3¬Et);

Proven(A) =d f ∃t(2Et ∧ t:A).

Then we could define the remaining π-modalities as shown above. However,
switching to a first-order setting within modal logic typically comes with a
price — both computationally and philosophically. In case of justification
logic this holds even more so, since, as the next section shows, Artemovian
semantics is not likely to allow for a nice upgrade to a first-order setting.
Therefore, at least in the context of propositional modal logic, the tradeoff
in replacing the π-modalities of basic justification stit logic with E-notions
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seems to be along the lines of exchanging more simplicity for less expressive
power rather than exchanging a less involved set of basic modalities for the
same logic for a more involved one.

On the other hand, the reverse definability also seems to fail, that is to
say, one cannot define E-notions in terms of the π-modalities. Therefore, a
simple addition of E-notions to the full language of basic justification logic
appears to yield a strictly more expressive formalism. Note, further, that if
one is only interested in the explicit fragment of basic justification stit logic,
given by the pair of π-modalities {Prove( j, t, A), Proven(t, A)}, then it follows
from Theorem 1, that the explicit fragment of the logic of E-notions (i.e., the
one which includes Et but not EA) both provides a nice reduction of explicit
π-modalities to a much simpler set of modalities and a natural extension of
its expressive means.

The explicit fragment of the logic of E-notions has a number of other
merits, which we briefly mention here without proof. First, this fragment is
simple enough to admit of a strongly complete finitary axiomatization which
is given by the Hilbert-type system with the following set of axiom schemata:4

A full set of axioms for classical propositional logic (A0)
S 5 axioms for 2 and [ j] for every j ∈ Agent (A1)
2A→ [ j]A for every j ∈ Agent (A2)
(3[ j1]A1 ∧ . . . ∧3[ jn]An)→ 3([ j1]A1 ∧ . . . ∧ [ jn]An) (A3)
(s:(A→ B)→ (t:A→ (s × t):B) (A4)
t:A→ (!t:(t:A) ∧ KA) (A5)
(s:A ∨ t:A)→ (s + t):A (A6)
S 4 axioms for K (A7)
KA→ 2K2A (A8)
2Et → K2Et (A9)

The assumption is that in (A3) j1, . . . , jn are pairwise different.
4We present here the axiomatization for a particular format of proof constant specifica-

tion given by rule (R3), but this system accommodates to the other constant specifications
in a straightforward way. Another thing to note here is that this axiomatization was proved
to be complete over a somewhat simplified class of models with the additional constraint
R = Re. We have mentioned above that this particular constraint does not change anything
in the context of pure justification logic. However, it is an open question, whether this is
still the case within the richer environment of the logic at hand.
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To this set of axiom schemes we add the following rules of inference:

From A, A→ B infer B; (R1)
From A infer KA; (R2)
If A is an instance of (A0)–(A9) and c ∈ PConst, then infer c:A; (R3)
From KA→ (¬2Et1 ∨ . . . ∨ ¬2Etn) infer KA→ (¬Et1 ∨ . . . ∨ ¬Etn). (R4)

Secondly, the explicit fragment of the logic of E-notions is expressive
enough to distinguish between different time structures in the underlying
model. For example the logic of the explicit E-notion over justification stit
models with discrete time5 is already different from the same logic over arbi-
trary justification stit models, and it is an open question, whether the explicit
fragment of basic justification stit logic can distinguish between discrete and
non-discrete times in the underlying justification stit models in the same way.
One example of a formula which is valid over models with discrete times but
not over arbitrary justification stit models is

K(¬2Ex ∨2Ey)→ (¬Ex ∨ Ey);

in order to get a system which would be strongly complete w.r.t. the class of
justification stit models based on discrete time, one has to replace rule (R4)
in the above axiomatic system with the following stronger rule of inference:

From KA→ (¬2Et1 ∨ . . . ∨ ¬2Etn ∨2Es1 ∨ . . . ∨2Esk) infer
KA→ (¬Et1 ∨ . . . ∨ ¬Etn ∨ Es1 ∨ . . . ∨ Esk). (R4’)

We end this section with some positive illustrations of the expressive
power which the explicit E-notion Et seems to add to justification stit logic.
For example, we saw that restrictions (1) and (2) affect the set of validities
of basic justification stit logic. However, it is not immediately clear how to
axiomatize these restrictions over the basic justification stit logic, or, in other
words, it is not quite clear what formulas one needs to add to the set of basic
justification stit validities in order to ensure satisfaction of (1), or (2), or
both. With E-notions the situation is much clearer: the two restrictions are
axiomatized by the schemes

E(s + t)→ (Es ∧ Et) and E(s · t)→ Et,
5Discreteness may be defined in different ways. One way of making the above statement

fully precise is to say that a justification stit model is based on discrete time iff every history
in it is embeddable into the set of natural numbers with its intended order. There exist,
however, a number of less restrictive alternative readings of ‘discrete time’ which still verify
the above statements.
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respectively.
The situation is very much the same with formalizing the agentive mean-

ing of the proof operations — again, E-notions offer us a much more elegant
and concise way to capture this meaning and they even allow for a more
nuanced picture of this type of meaning. For example, if we are only looking
for the counterparts of (3), (4), and (5), these can be expressed in terms of
E-notions as follows:

(2Es ∧2Et)→ 3[c] jE(s ◦ t) for ◦ ∈ {+, ·};
2Es→ 3[c] jE(!s).

These principles, just like (3), (4), and (5) above, tell us that if the constituent
terms of a proof polynomial are presented to the community, then any agent
may take the next step and present the proof polynomial as well. Note that
this implies a rather strong presence of the proof polynomials in question
within the fan of histories passing through a given moment: for every agent
in the community, these histories must make up at least one entire choice at
a given moment in its entirety. However, with E-notions a weaker version
of the agentive meaning for the proof operations is also available, namely,
E-notions allow us to say that if the constituent terms of a proof polynomial
are presented to the community, then the proof polynomial itself may end up
being presented to the community, even though, perhaps, no agent can ensure
this. In order to express this one only needs to omit the cstit modalities in
the consequents of the above formulas.

On the other hand, we might prefer to restrict presented proofs in the
opposite direction. We might want to say that presenting proof polynomials
is always something brought about by an agent. Even though one may fail to
recognize that a given proof t is a proof of a given sentence A, and thus may
not intend to present t as a proof of A, yet it is hardly possible to present t
without someone seeing to it that t is present. It is not clear how to express
this sort of agentiveness w.r.t. presented proofs in basic justification stit
logic, i.e., in terms of π-modalities alone, but with E-notions it is sufficient
to assume the following schema

Et → [c] j1 Et ∨ . . . ∨ [c] jn Et,

where { j1, . . . , jn} = Ag, for every t ∈ Pol.
All these examples show, in our opinion, that justification stit logic aug-

mented with E-notions becomes a more flexible and expressive formalism
while staying within the confines of both the propositional modal setting
and Artemovian semantics.
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Another obvious extension, incidentally, would be to add temporal oper-
ators, but we do not explore this option in any detail here, since the method
of extending a stit formalism with temporal operators is well-know from ex-
isting literature. We only mention here that in the case of E-notions already
the past-tense half of Priorean temporal logic would be enough to retrieve
the full set of π-modalities. Indeed, let P be the standard weak past tense
operator which in the context of stit formalisms is normally defined by the
following clause:

M, (m, h) |= PA⇔ (∃m′ ∈ Tree)(m′ < m ∧M, (m′, h) |= A).

Then one can define Proven(A) as PEA and Prove( j, A) as [c] jEA ∧ ¬PEA,
which, together with the definitions given in Theorem 1, allows to express
in terms of E-notions, P, stit, and justification modalities all the four π-
modalities of the basic jstit logic.

5 Fitting’s semantics as an alternative to Artemovian
semantics

We now turn to a possible criticism of Artemovian semantics. In the above
sections, we have already mentioned a possibility of upgrading the underlying
system of justification stit logic from classical propositional logic to a first-
order one with quantifiers over proofs. However, one has to admit that
Artemovian semantics is not particularly well-suited for such a transition.
Note that in the above setting the realm of objectively existing proofs is
embodied by Pol once and for all, and never changes however one may switch
moments and histories through a given model. In particular, proof variables
under this reading are just another type of members in this realm of objective
proofs rather than genuine variables actually running over some domain.
Therefore, were we to switch to a first-order setting, we would be compelled
to introduce a further set of variables running over Pol to be bound by
quantifiers. For this further sort of variables, proof variables would be just
as legitimate a substitution value as proof constants! On the other hand the
realm of proofs presented to the community at any given moment-history pair
(m, h) is realised by the domain Act(m, h) which may change if one changes
the value of m or h. This is more in line with standard ways of setting up
possible world semantics for modal quantified logic, and one would expect
a more smooth transition to a first-order setting if the realm of objectively
existing proofs were not fixed for every model once and for all, but would
rather be allowed to vary from one moment-history pair to another. In the
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existing literature, this type of approach to the semantics of justification
statements was implemented by M. Fitting in his paper [4]. Not surprisingly,
the main objective of the paper was a first-order generalisation of justification
logic.

Therefore, one might expect that justification stit logic would be better
suited to an upgrade to a first-order version if the justificational part of our
semantics were given along the lines of [4] rather than in accordance with
the standard semantics of S4LP. However, a simple-minded substitution of
Fitting-style justificational semantics for the Artemovian one runs into cer-
tain difficulties. First, an upgrade to first-order justificational logic from a
propositional one entails also an enrichment of the algebra of proof polyno-
mials. Fitting himself had to introduce one new operator on proofs in order
to handle the properties of uniform proofs. It is not clear how many further
proof operations one would have to introduce into justification stit logic in
order to do justice to its new first-order basis. In any case, this question
is outside our present scope. Therefore, we would like to give here not so
much a Fitting-style semantics for a first-order version of justification stit
logic, but rather re-style the semantics of propositional justification stit logic
according to the ideas of [4]. In our opinion, such a propositional system
would allow for a much easier upgrade to a first-order version than the one
described in Section 4. A second limitation is imposed by the very character
of results presented and explained in [4]: Fitting explicitly mentions that the
propositional version of his semantics leads to just LP, that is to say, to S4LP
without K, but it is not known whether retaining K in this semantics will
give us back exactly S4LP. Therefore, in our re-definition of the justification
stit semantics according to Fitting, we will omit the modality K from our
language and its semantic counterpart R from the structure of justification
stit model so that now justification stit models will extend the models of LP
rather than S4LP.

With these provisions, the alternative justification stit semantics will look
as follows. A Fitting justification stit model is a tuple

M = 〈Tree,≤, Ag,Choice,Re,E,D, Act,I,V〉

such that:
• Tree, ≤, Ag, Choice, Re, V are of the same type and are subject to the

same limitations as in Artemovian models;

• D maps Tree into a family of non-empty sets disjoint from the other
elements of the model. It is assumed to be monotonic w.r.t. Re, that
is to say, the conditional

mRem′ ⇒ D(m) ⊆ D(m′)
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must be satisfied for all m,m′ ∈ Tree.

We will denote the union of these sets as follows:

D =
⋃

m∈Tree

(D(m)).

• Act is a function mapping MH(M) into D such that for every
(m, h) ∈ MH(M) it is true that Act(m, h) ⊆ D(m).

• I is a function interpreting proof polynomials. It assigns an element of
D to every proof constant and assigns to +, · and ! operations on D of
respective arity. This function is connected with D so that in order for
M to qualify as a Fitting justification stit model, D(m) has to contain
{cI | c ∈ Const} and be closed under the three operations +I, ·I and !I

for every m ∈ Tree.

In the above description we omitted restrictions placed on the function
E. The reason is that explaining these restrictions requires developing some
further auxiliary notions related to evaluation functions. Since proof polyno-
mials are now assumed to be evaluated by elements of D, these evaluations
begin to play an important role in assigning truth-values to justification stit
formulas. So one can define the set of evaluations in M (write Eval(M)) to
be the set of all functions mapping PVar intoD. Elements of Eval(M) will be
denoted by u, v,w, possibly with natural indices. As usual, for a v ∈ Eval(M),
x ∈ PVar, and r ∈ D, we will denote by v x

r the evaluation of proof variables
inM such that v x

r always coincides with v except possibly on x, for which we
have v x

r (x) = r. We can now proceed to define, for arbitrary t ∈ Pol, the value
of t under evaluation function v denoted by tv. The definition is by induction
on the construction of t and proceeds as follows:

1. xv = v(x), if x ∈ PVar;

2. cv = cI, if c ∈ Const;

3. (t ◦ s)v = ◦I(tv, sv), if ◦ ∈ {+, ·};

4. (!t)v =!I(tv).

This new dependence of formulas on the evaluation of proof terms, how-
ever, affects not only the definition of the satisfaction relation for this type
of semantics but also the definition of the models itself, since the function E
also has to take such evaluations into an account. Therefore, the domain of
E in Fitting semantics is re-defined as Tree×D×Eval(M) with the following
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restrictions assumed for all Fitting justification stit models for all r, r′ ∈ D,
v, v′ ∈ Eval(M), m,m′ ∈ Tree, t ∈ Pol, and for all justification stit formulas
A, B:

• r < D(m)⇒ E(m, r, v) = ∅;

• mRem′ ⇒ E(m, r, v) ⊆ E(m′, r, v);

• (A→ B ∈ E(m, r, v) ∧ A ∈ E(m, r′, v))⇒ B ∈ E(m, (r ·I r′), v);

• (A ∈ E(m, r, v) ∧ tv = r)⇒ t : A ∈ E(m, !I(r), v);

• E(m, r, v) ∪ E(m, r′, v) ⊆ E(m, (r +I r′), v);

• If v and v′ agree on all proof variables occurring in A, then
A ∈ E(m, r, v)⇔ A ∈ E(m, r, v′).

In this list the first condition says that proofs outside D(m) cannot be admit-
ted (let alone presented to the community) at m, whereas the last condition
requires that evaluations can affect the sets of admissible proofs for a formula
only by affecting the values of proof variables occurring in the formula. The
rest are just reformulations of monotonicity, application, sum and inspection
conditions imposed onto E in LP.

Having thus completed the definition of Fitting justification stit mod-
els, we now turn to the inductive definition of the satisfaction relation. We
assume a propositional language which extends both the language of justifi-
cation logic (without K) and of stit logic with the following set of modalities:

Proven(A), Proven(t, A), Prove( j, A), Prove( j, t, A), Et, EA.

We will say that a formula A in this language is true inM at (m, h) ∈ MH(M)
under the evaluation v ∈ Eval(M) and will write this fact down asM, (m, h) |=v A.
The inductive definition ofM, (m, h) |=v A contains then the standard clauses
for the atomic and Boolean cases plus the following clauses for modalities:

M, (m, h) |=v t:A⇔ A ∈ E(m, tv, v)∧(∀m′ ∈ Tree)(mRem′∧h′ ∈ Hm′ ⇒M, (m′, h′) |=v A)

M, (m, h) |=v Proven(A)⇔ (∃r ∈ D(m))(∀h′ ∈ Hm)(r ∈ Act(m, h′) ∧M, (m, h′) |=v x
r

x:A)

M, (m, h) |=v Proven(t, A)⇔ (∀h′ ∈ Hm)(tv ∈ Act(m, h′) ∧M, (m, h′) |=v t:A).

M, (m, h) |=v Prove( j, A)⇔ (∀h′ ∈ Choicem
j (h))(∃r ∈ Act(m, h′))(M, (m, h′) |=v x

r
x:A)∧

∧ (∀r′ ∈ D(m))(∃h′′ ∈ Hm)(M, (m, h′′) |=v x
r′

x:A⇒ r′ < Act(m, h′′)).
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M, (m, h) |=v Prove( j, t, A)⇔ (∀h′ ∈ Choicem
j (h))(tv ∈ Act(m, h′) ∧M, (m, h′) |=v t:A)∧

∧ (∃h′′ ∈ Hm)(tv < Act(m, h′′)).

M, (m, h) |=v Et ⇔ tv ∈ Act(m, h);

M, (m, h) |=v EA⇔ (∃r ∈ Act(m, h))(M, (m, h) |=v x
r

x:A).

In the above clauses, x is assumed to be the first (in some alphabetical order)
proof variable not occurring in either t or A. These semantical definitions are
mostly faithful versions of the respective clauses given in the previous sec-
tions; however, note the complications arising for implicit modalities. These
complications are due to the fact that not all of the admissible or even pre-
sented proofs are covered by arbitrary evaluation of proof terms.

With this, the difficulties are still not quite over. A further complication
is necessitated by the fact that with Fitting models one cannot simply define
a valid formula as a formula valid in all models w.r.t. all moment-history
pairs under all possible evaluations, for such a definition would make some
intuitively appealing validities of justification logic (and also of justification
stit logic with Artemovian semantics) to fail. Consider, e.g., the following
formula:

x: p→ (x + y): p.

Assume that an evaluation v assigns to x a proof of p which is both valid
and admissible at a given moment m, whereas to y it assigns a proof outside
D(m) in such a way that the proof denoted by x+y also ends up being outside
D(m). By the first condition imposed on function E in Fitting models, this
means that x + y is not an admissible proof for anything, including p, of
course. Therefore, the above formula fails, even though it is actually an
instance of an axiom of justification logic as given in [1]. In order to avoid
such counter-examples one would have to take a little detour and first define
an evaluation v to be meaningful for A in m ∈ Tree iff v assigns to every proof
variable occurring in A an element from D(m). After that, one can define a
valid formula of Fitting justification stit logic as a formula which is true in
every model at every moment-history pair (m, h) for every evaluation of proof
variables which is meaningful for A in m.

It was shown in [4] that the justificational fragment of Fitting’s justifica-
tion logic is simply justification logic without K. Moreover, all of the claims
about validities and invalidities given in the first part of this paper for basic
justification stit logic, and also Theorem 1 given above, can be shown to hold
for Fitting justification stit logic as well. On the basis of this coincidence,
our hypothesis would be that the class of justification stit formulas valid
over Fitting models is the same as the class of formulas valid over Artemo-
vian models, provided that these formulas do not contain K. However, if one
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adds valid inferences to the picture, then this coincidence looks much more
problematic. It is easy to see that under Artemovian semantics justification
stit logic lacks compactness, since the set

{Proven(p)} ∪ {¬t: p | t ∈ Pol}

is unsatisfiable, even though every finite subset of it can be satisfied. There-
fore, if Artemovian semantics is assumed, we cannot have a finitary axiomatic
system for basic justification logic with the property of strong completeness.
However, no such simple proof of compactness failure is available for Fitting
semantics, since one can easily define v ∈ Eval(M) in such a way that all the
terms in Pol at a given moment such that the set {tv | t ∈ Pol} is a proper
subset of D(m), and so some valid and admissible proof of p may end up
being outside {tv | t ∈ Pol}. Therefore, justification stit logic with Fitting
semantics may actually turn out to be compact and to admit of a finitary
axiomatic system with the property of strong completeness in the end.

One of the conceptually interesting aspects of Fitting justification stit
models is, in our opinion, the interplay between the bigger domain of proofs
D(m) associated with a given moment m and the ‘fan’ of its subsets Act(m, h)
associated with moment-history pairs connected with m. How should one
interpret this new type of moment-localized domains? Apparently, different
interpretations are possible here. Our favored answer is that D(m) is a do-
main of all proofs, which are objectively possible at m in the sense that, were
any of these proofs presented to the community at any (m, h) for h ∈ Hm,
it would be successfully recognized as some proof. The community’s abil-
ities to recognize proofs vary from situation to situation depending on the
actual conventions as to what counts as a proof. These conventions may be
affected when the community revises its definition of what a proof is, or —
indirectly — when it introduces new derived forms of inference, or defines new
notions which may thereafter occur in proofs and thus create new particular
instances of old proof forms. Within the class of Artemovian justification stit
models, the set Pol of proof polynomials constituted a sort of Platonic uni-
verse of ideas for the community, where all the possible proofs were written
in advance, once and for all. The role of agents in these conditions was re-
duced to bringing to light one or another corner of this universe thus drawing
the community’s attention to this or that item in this universe. In Fitting
models, the community is rather presented as forging its own system of no-
tions while proving new facts about these notions. Doxastic actions of the
agents in Fitting semantic may be necessary or sufficient for acquiring some
new members in the domain of objectively admissible proofs, and vice versa.
This captures — even though, admittedly, very roughly — real phenomena
arising in development of mathematical sciences, which one tends to describe
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as ‘this or that defined notion played a crucial role in the proof of this or
that theorem’, or ‘this group of results led to the emergence of that theory’.

6 Refinement by extending the set of proof polynomi-
als

6.1 λ-abstraction and proofs from assumptions
Another way of refining justification stit logic consists of modifying or

extending the set of proof polynomials and, as a result, modifying or extend-
ing the underlying logic of proofs. Although in Artemov’s logic of proofs a
distinction is drawn between proof constants and proof variables, perhaps
surprisingly the language of proof polynomials does not comprise any vari-
able binding operators. Once proof variables are indeed treated as variables
proper, as in Fitting’s semantics that uses assignments of proofs to proof
variables, introducing variable binders into the language of proof polynomi-
als seems to be even more natural. An obvious variable-binding operator to
be introduced is the λ-abstractor. In Backus-Naur form, the syntax of proof
polynomials is then defined as follows:

t := x | c | (t + t) | (t · t) | !t | λx.t

where x ∈ PVar and c ∈ PConst.
The set f v(t) of free variables of a proof polynomial t can be defined induc-

tively in the following way: f v(x) = {x}, f v(!t) = ∅, f v((t]s)) = f v(t) ∪ f v(s)
for ] ∈ {+, ·}, and f v((λx.t)) = f v(t) \ {x}. If x ∈ PVar and t ∈ Pol, then we
denote by s [x := t] the result of substituting t for the free occurrences of x
in s.

The use of proof variables allows one to encode proofs from assumptions,
as is well-known from the Curry-Howard encoding of proofs in intuitionistic
logic by means of typed λ-terms, see, for instance, [6]. The idea is to read
x : A not as “x is a proof of A” but as “x is a proof of A from the assumption A”.
If f v(t) = {x1, . . . , xn}, then for all A1, . . . , An for which x1 :A1, . . . , xn :An hold,
t:A can be understood as saying that t is a proof of A from the assumptions
A1, . . . , An, and the polynomial (or proof term) λx1. . . . λxn.t emerges as a proof
of A1 → (A2 → (. . . (An → A) . . .)) from ∅. In general, a formula t:A may
be read as “t is a proof of A depending on the assumptions of which t’s free
variables are proofs”.6 It is well-known that typed λ-terms can be interpreted

6Note that whilst in Artemovian semantics it is not assumed that each proof polynomial
is a proof of exactly one formula, in simply typed λ-calculus with explicit types, every term
has a unique type of which it is a proof.
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as functionals of finite type in so-called type structures over infinite sets, see
[5]. Semantically, if λx.t is a proof of A → B it may be seen as denoting
the set of all functions from a domain DA of proofs of A to a domain DB of
proofs of B. The above reinterpretation, of course, suggests a justification
logic very different from justification logic LP initially proposed by Artemov
(see [1, Section 3] for a Hilbert-style axiomatization). In fact, it is not even
an extension of the Artemovian justification logic. Most importantly, the
factivity of justification is now lost, since x:A → A is no longer valid: the
availability of a proof of A from premise A does not, by any means, show that
A must be true. Other axioms of LP are still valid under this interpretation,
although sometimes their meaning becomes more nuanced. For example,
summing proofs under this reading not only involves accumulation of their
conclusions but also accumulation of their premises. As a result, s + t not
only proves everything that is proved by either s or t but, in general, depends
on more premises than either s or t. Therefore, even though the following
axiom scheme of LP is still valid, under the proposed reading it starts to
look, among other things, like a form of monotonicity principle:

s:A→ (s + t):A.

The satisfaction clause for formulas t:A in Artemovian semantics can be
adjusted to the new reading as follows:

M, (m, h) |= t:A⇔ A ∈ E(m, t) ∧ ∀m′∀h′(((Re(m,m′) ∧ h′ ∈ Hm′)∧
∧ (∀x ∈ f v(t))(∀B ∈ E(m′, x))(M, (m′, h′) |= B)⇒M, (m′, h′) |= A).

Note that in the special case where t = x ∈ PVar this clause boils down
to:

M, (m, h) |= x:A⇔ A ∈ E(m, x),

since the proof of A from A represented by x is bound to be valid in all states.
Also, note that it follows that the general clause for t:A given above, can be
equivalently re-written as follows:

M, (m, h) |= t:A⇔ A ∈ E(m, t) ∧ ∀m′∀h′(((Re(m,m′) ∧ h′ ∈ Hm′)∧
∧ (∀x ∈ f v(t))∀B(M, (m′, h′) |= B ∧ x:B)⇒M, (m′, h′) |= A).

Note, however, that if one only allows closed proof polynomials, then all
the axioms of Artemovian justification logic are still preserved, including
factivity.

The above satisfaction clause for t:A also shows why we need f v(!t) to be
empty. Indeed, were we to set f v(!t) = f v(t), this would mean that the result
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of checking the correctness of t would depend on the truth of all the premises
represented by the free variables from t. For instance, suppose x is a proof
of A from the premise A. We have then x:A, from which we get that !x:x:A
by the reflection axiom. Under our current reading, !x must be then a proof
of x:A from zero assumptions, since we have f v(!x) = ∅. However, were we
to have f v(!x) = {x}, this would mean that !x shows that x correctly infers A
from A only when we assume A, which does not seem natural.

It is clear that in view of adding the λ-abstractor, the underlying logic of
proofs calls for axiomatic extension. In addition to the functional application
axiom that captures implication elimination, we need an axiom scheme that
takes care of implication introduction and the cancellation of assumptions:

x:A→ (t:B→ λx.t :(A→ B)).

The concept of proof normalization invites adding an axiom scheme that
captures β-reduction:

s :A→ (x :A→ ((λx.t · s):B→ t[x := s] :B)).

and another one that takes care of η-reduction for terms t with x < f v(t):

x :A→ (λx.(t · x):(A→ B)→ t:(A→ B)).

Moreover, α-reduction can be taken into account by considering all impli-
cations t : A → s : A as axiomatic if t and s are obtainable from each other
by the clash-free renaming of bound variables. In order to integrate the
expanded underlying logic of proofs into justification stit logic with Artemo-
vian semantics, we also need to consider an interaction of λ-abstracted proof
polynomials with the E-function in justification stit models and postulate:

(A ∈ E(m, x) ∧ B ∈ E(m, t))⇒ (A→ B) ∈ E(m, λx.t),

(A ∈ E(m, s) ∧ (A ∈ E(m, x) ∧ B ∈ E(m, λx.t · s))⇒ B ∈ E(m, t[x := s]),

(A ∈ E(m, x) ∧ (A→ B) ∈ E(m, λx.(t · x))⇒ (A→ B) ∈ E(m, t), for x < f v(t).

We now may introduce generalized π-modalities for making statements
about proving a sentence A from a set of assumptions Γ:

Notation Informal interpretation
Prove( j, A,Γ) Agent j proves A from Γ

Prove( j, t, A,Γ) Agent j proves A by t from Γ

Proven(A,Γ) A has been proven from Γ

Proven(t, A,Γ) A has been proven by t from Γ
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Such statements about proving from assumptions can be interpreted by
adding a suitable condition to the above satisfaction clauses for π-modalities
in Artemovian semantics:

M, (m, h) |= Prove( j, A,Γ)⇔ (∀h′ ∈ Choicem
j (h))(∃t ∈ Act(m, h′))(M, (m, h) |= t:A)∧

∧ (∀s ∈ Pol)(∃h′′ ∈ Hm)(M, (m, h) |= s:A⇒ s < Act(m, h′′))∧
∧ (∀x ∈ f v(t))(∃B ∈ Γ)M, (m, h) |= x:B);

M, (m, h) |= Prove( j, t, A,Γ)⇔M, (m, h) |= Prove( j, t, A)∧
∧ (∀x ∈ f v(t))(∃B ∈ Γ)M, (m, h) |= x:B;

M, (m, h) |= Proven(A,Γ)⇔ (∃t ∈ Pol)(∀h′ ∈ Hm)(t ∈ Act(m, h′) ∧M, (m, h) |= t:A)∧
∧ (∀x ∈ f v(t))(∃B ∈ Γ)M, (m, h) |= x:B);

M, (m, h) |= Proven(t, A,Γ)⇔M, (m, h) |= Proven(t, A)∧
∧ (∀x ∈ f v(t))(∃B ∈ Γ)M, (m, h) |= x:B.

The additional clause requires that for some proof t of A from Γ, respectively
the proof t of A from Γ under consideration, every free variable in t proves
a premise from Γ. For finite Γ one could require that, conversely, for any
A in Γ, there exists an x ∈ f v(t) such that x is a proof of A. Note hat
the extended set of proof polynomials does not come with a commitment
to intuitionistically acceptable proofs only. One could, for instance, assume
proof constants cA∨¬A, for any formula A.

Clearly, in light of the typed λ-calculus, the set of Artemovian proof
polynomials can also be modified and extended in other respects. The sum
operator + can be replaced by operators denoting pairing and projection
functions. Moreover, the term-forming operations corresponding to disjunc-
tion introduction and elimination in natural deduction can be added. In this
way, justification stit logic would allow one to talk about acts of proving in a
way that more specifically records certain natural deduction inferential steps
taken by the agents in order to present proofs.

6.2 Another modification of Pol

Another extension of the set of proof polynomials is implemented in Fit-
ting’s [4] quantified logic of evidence, QLP. First of all, Fitting adds universal
quantification over proof variables to Artemov’s logic of proofs. Syntactically,
the quantifier ∀ is thus not a term-forming device but combines a proof vari-
able x and a formula A into a more complex formula ∀xA. The existential
quantifier is defined as usual. Moreover, the set PConst of proof constants
is replaced by a denumerably infinite set of primitive function symbols of
finite arity. Proof constants are still present as function symbols of arity 0.
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If f is an n-place primitive function symbol and x1, . . . , xn are proof variables,
then f (x1, . . . , xn) is said to be a primitive proof term. Then a new variable-
binding operation on proof terms is introduced: if t is a proof term and x
is a proof variable, then (t ∀ x) is a proof term as well. As Fitting [4, p. 69]
explains (notation adjusted), the “intention is that (t ∀ x) should serve as a
justification of ∀xA if t serves as a uniform justification of each instance of
A”, i.e., each instance of substituting all free occurrences of x in A with some
constant. The extension of Pol by terms (t ∀ x) thus goes hand in hand with
the addition of the universal quantifier ∀ and is not an extension motivated
independently of adding ∀.7

If we want tor reason about proving as an activity that may result in
7Proof-theoretically, the meaning of ∀ and terms (t ∀ x) is given by two standard axiom

schemes for universal quantification, one axiom scheme involving both quantifiers and
(t ∀ x), and the so-called “Justified Universal Quantification Rule”, in Fitting’s numbering:

(6) ∀x A(x)→ A(t), for any proof term t that is free for x in A(x),

(7) ∀x(A→ B(x))→ (A→ ∀xB(x)), where x does not occur free in A,

(8) ∃y y:∀x t :A→ (t ∀ x):∀xA if y does not occur free in A or t,

t :A(x)
(t ∀ x):∀xA(x) .

Axiom (8) says that t is a uniform justification of ∀xA if there is a proof y showing that t
is such a uniform recipe. (Fitting shows that the usual universal generalization rule and
a quantifier version of the necessitation rule, which are both (t ∀ x)-free, can replace the
justified universal generalization rule.)
λ-abstraction is then used in the meta-language in order to evaluate terms (t ∀ x). The

term-forming ∀ is interpreted as a mapping from the function space of D to D, i.e., ∀ I:

D
D
−→ D. For every variable x, a function 〈λx.t〉v onD is defined as follows: 〈λx.t〉v(r) = tw,

where w = v
x
r . The value (t ∀ x)v of (t ∀ x) under evaluation function v is then defined using

〈λx.t〉v:
(t ∀ x)v = ∀

I(〈λx.t〉v).

In the presence of primitive function symbols, the sets D(m) must now be closed under f I

for every primitive function symbol f . Moreover, if t is a proof term, v an evaluation and
v(y) ∈ D(m) for every variable y occurring in t with x , y, then (t ∀ x)v is required to be in
D(m) as well.
As to an interplay between the evidence function E and the value of terms (t ∀ x), Fitting

stipulates:

(mRem′ ∧ r ∈ D(m′) ∧ A ∈ E(m′, 〈λx.t〉v, v
x
r ))⇒ ∀xA ∈ E(m, (t ∀ x)v, v).

The evaluation clause for formulas ∀xA in Fitting justification stit models would then be
as one may expect:

M, (m, h) |=v ∀xA ⇔ M, (m, h) |=w A for all r ∈ D(m) and w = v
x
r .
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uniform proofs of each instance of a formula A from possibly non-empty sets
of assumptions, we may think of combining λ-abstraction over proof variables
with universal quantification over such variables.

7 Conclusion
We considered various ways of refining the justification stit logic from

[10]. In summary, the tradeoff involved in switching from the Artemovian
semantics to Fitting’s semantics can be described as follows. On the pos-
itive side, we get a more nuanced picture of the activity of proving within
the community of agents; we also end up in a better position for a possible
introduction of quantifiers over proofs and thus for a better employment of
the full potential of E-notions. Moreover, there is a reasonable hope that
in this way we will get a compact logic with strongly complete axiomatiza-
tion. On the negative side we probably lose some expressive power by giving
up the K modality, and our basic semantic definitions begin to look rather
formidable and less transparent. Also, Fitting-style semantics is much less
visible in the existing literature on justification logic, which might well be a
sign that with it the balance of complexity versus expressivity is already more
on the complexity side. Fitting’s semantics is a framework in which the use
of proof variables is taken seriously insofar as assignments to proof variables
are introduced and, moreover, variable binding quantifiers are introduced in
QLP. It seems that up to now introducing λ-abstraction into the language
of proof polynomials has not been considered in the literature on the logic
of proofs. This extension is one way of representing reasoning about proving
from assumptions.

We hope that this second part of the paper succeeds in putting the basic
justification logic described in its first part, [10], into a suitable context as to
exploring the manifold and rich variety of its related systems, and plausibly
conveys the point that it is much more to the combinations of justification
modalities and stit modalities than just one isolated logical system. Thus far
we were mainly focusing on elementary observations concerning interdefin-
ability between π-modalities and the validity and non-validity of particularly
interesting formulas of justification stit logic. But this is just a beginning,
and formal properties of justification stit logic and its possible refinements
remain to be investigated. The most obvious task is finding axiomatizations,
both for the basic logic and for the related systems, most notably the variants
of the logic of E-notions. A natural first step in this direction will be publish-
ing the completeness proof for the axiomatization of the explicit fragment of
the logic of E-notions presented in Section 4. Another task is working out a
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combination of λ-abstraction and quantification over proof polynomials.
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