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Abstract

I discuss a collection of problems in relevance logic. The main prob-
lems discussed are: the decidability of the positive semilattice system,
decidability of the fragments of R in a restricted number of variables, and
the complexity of the decision problem for the implicational fragment of
R. Some related problems are discussed along the way.

1 Introduction

This paper is a lightly edited version of a talk presented at the Summer of
Logic in Vienna in July 2014. The aim of the talk was to present a handful
of unsolved problems in the area of relevance logic, as well as to report the
very recent solution of a long-standing open problem. The selection obviously
reflects my own interests; I encourage other researchers to present their own
favourite problems. If the health of an area of logic is to be judged by continued
activity surrounding open problems, then relevance logic must be accounted a
flourishing area!

The relevance logic tradition, starting with Ackermann and continuing with
the work of Alan Ross Anderson, Nuel D. Belnap and their students, has nur-
tured a fascinating collection of open problems that have stimulated research in
the area for decades. Anderson provided an early collection of open problems
in a paper [3] from 1963. The first in his list of problems is that of showing
that the rule γ (from A and ¬A ∨ B to infer B) is admissible in E. The sec-
ond problem is that of finding a decision procedure for E. The last problem is
that of finding appropriate semantics for the whole of E, with an appropriate
completeness theorem. All of these problems were subsequently solved.

In addition, the two volumes of Entailment [1, 2] contain a rich selection of
open problems. Many of these problems have been solved subsequently due to
the hard work of numerous researchers.

∗The author gratefully acknowledges the support of the Natural Sciences and Engineering
Research Council of Canada.
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2 Decision problem for the semilattice system

A semantics based on semilattice models [21] was published by the author in
1972. The language for this semantics is →,∧,∨, that is to say, the language of
the positive relevance logic R. Let 〈S,∪, 0〉 be a semilattice with zero. Assign
propositional variables P subsets of S as values, written V (P ). Then the truth
definition relative to a point x in S is defined inductively as follows:

1. x |= P ⇔ x ∈ V (P ), where P is a variable;

2. x |= A ∧B ⇔ x |= A and x |= B;

3. x |= A ∨B ⇔ x |= A or x |= B;

4. x |= A→ B ⇔ ∀y [ y |= A⇒ x ∪ y |= B];

A formula A of positive relevance logic is valid in this semantics if 0 |= A for
every assignment to its variables in a semilattice with zero.

This semantics validates all of the formulas of positive R. When I first dis-
covered the semantics in 1971, I thought that it was complete for this system.
However, Robert K. Meyer and J.Michael Dunn soon discovered a formula that
is valid for this semantics, but not provable in positive R. I presented a slightly
simplified version of their formula, namely

[(A→ (B ∨ C)) ∧ (B → D)]→ (A→ (D ∨ C))

in my paper of 1972.
Although the semilattice system S does not coincide with positive R, con-

trary to my initial hopes, it is a very natural logic that has a good claim to be
considered the most natural extension of implicational R to include conjunction
and disjunction.

The semilattice system S proved somewhat tricky to axiomatize. The prob-
lem of axiomatization was solved by Kit Fine, who published his solution as
an abstract [8]. Fine’s axiomatization includes a rather complicated rule; a de-
tailed version[5] of his completeness proof was published by Gerald Charlwood
in 1981.

The axiomatic version of the semilattice system appears rather complicated
and artificial. There are, however, two alternative ways to present the system
that make it appear much more natural. The first way is to use an extension of
the Fitch-style natural deduction system of Anderson and Belnap; this extension
uses a strengthened version of the disjunction rules presented in the first volume
of Entailment [1]. This new version of the natural deduction system is presented
in my paper of 1989 [24].

In the original natural deduction rules of Anderson and Belnap, the distri-
bution axiom does not follow from the introduction and elimination rules for
conjunction and disjunction but has to be “put in by hand.” The original rule
of ∨ elimination [1, p. 272] is as follows:
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1 (P ∨Q)x

2 P{k}
...

...

n-1 Ry∪{k}

n Q{l}
...

...

m Ry∪{l}

m+1 Rx∪y ∨E 1, 2− (n− 1), n−m

The new rule of ∨ elimination is as follows:

1 (P ∨Q)x

2 Px

...
...

n-1 Rx∪y

n Qx

...
...

m Rx∪y

m+1 Rx∪y ∨E 1, 2− (n− 1), n−m

With this new natural deduction rule for disjunction, the distribution axiom
follows unproblematically from the introduction and elimination rules.

Distribution is missing from the system [9] of linear logic, for much the
same reasons that it is absent from the natural deduction system for relevance
logic based only on the original introduction and elimination rules. Given the
motivation of Anderson and Belnap, the distribution axiom should hold for ∧
and ∨ – whether it should hold for the additive connectives of linear logic is
much more doubtful, given the radically different motivation.

The fact that this system is a very natural extension of the pure theory of
relevant implication appears also from the fact that it coincides with the system
of positive relevant implication defined by a set of rules given by Dag Prawitz in
Chapter VII of his well known monograph [16]. The equivalence of this system
with the positive semilattice system is proved in detail by Charlwood in his
thesis [4] of 1978.

Although one can make a good case that the positive semilattice system
is the most natural extension of pure relevant implication (Church’s theory of
weak implication [6]), it has not been thoroughly investigated, in contrast to
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the better known logics of Ackermann, Anderson and Belnap. In particular, the
decision problem seems to be wide open.

Problem 2.1 Is the positive semilattice system S decidable?

Although this problem appears to be open, one can make various remarks
about it. First, the undecidability proofs for R, E and other classical systems of
relevance logics do not seem to adapt to the positive semilattice system. This is
because the Meyer-Dunn formula above is not valid in the models constructed
from projective spaces that are used in the undecidability proof. Second, if it
is indeed decidable (and I venture the conjecture that it is), then the decision
procedure cannot be primitive recursive. This follows from the fact that the
implication-conjunction fragment of the system is the same as that of R. In
a paper of 1999 [26], I showed that there is no primitive recursive decision
procedure for this fragment.

The decision problem for R→ was solved by Saul Kripke [11] in 1959. It was
extended to all of LR (R without the distribution axiom) by Robert K. Meyer
in his doctoral thesis [14]; an exposition of his decidability proof can be found
in the monograph [19] by Thistlewaite, McRobbie and Meyer. Kripke’s decision
procedure is based on a cutfree sequent system for R→, together with a lemma
that is equivalent to Dickson’s Lemma in the theory of polynomial ideals [1,
pp. 138-139]. If we could extend the cutfree sequent system to S, then we
might be able to extend the decision procedure as well. Unfortunately, at the
moment, the only cutfree system known for S uses subscripted formulas and a
decision procedure based on this subscripted system is not known. A purely
implicational version of the subscripted sequent system can be found in my
paper [20]; a version for all of S is in my doctoral thesis [22].

The basic objects are sequents Γ ` ∆, where Γ and ∆ are finite sets of sub-
scripted formulas Ax, where x is a finite set of positive integers. The subscripted
sequent system for S has as axioms all sequents of the form

Γ, Ax ` Ax,∆.

The rules of inference are as follows:

Γ ` Ay,∆ Bx∪y,Θ ` Λ
(→`)

Γ,Θ, A→ Bx ` ∆,Λ

Γ, A{k} ` Bx∪{k},∆
(`→)

Γ,` A→ Bx,∆

Γ ` ∆, Ax Θ ` Bx,Λ
(∧ `)

Γ,Θ ` A ∧Bx,∆,Λ

Γ, Ax, Bx ` ∆
(` ∧)

Γ, A ∧Bx ` ∆

Γ, Ax ` ∆, Θ, Bx ` Λ
(∨ `)

Γ,Θ, A ∨Bx ` ∆,Λ

Γ ` Ax, Bx,∆
(` ∨)

Γ,` A ∨Bx,∆
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In the rule (`→), the numeral k must not appear in the conclusion of the
inference.

It is not too hard to show that the theorems of this subscripted sequent
system coincide with those of S, in the sense that the sequent ` A∅ is provable
in the sequent system if and only if A is provable in S.

Problem 2.2 Can we base decision procedures on the subscripted sequent sys-
tems?

3 Number of variables for undecidability

I proved in the early 1980s [23] that R, E and a large family of related relevance
logics are undecidable. In my 1984 paper, I sketched a proof that the five
variable fragment of R is undecidable. Unfortunately, there is a mistake in the
proof given there, as I report in a paper [27] published in 2007. The claim,
however, is correct (though the proof is in error) and I was able to show in the
later paper that the four variable fragment of R is undecidable. This brings me
to my third problem.

Problem 3.1 What is the smallest number of variables for which the corre-
sponding fragment of R is undecidable?

To set the problem in its proper context, let us recall an outline of the
undecidability proof for R. The construction works by adapting a geometrical
definition of multiplication given by von Staudt and employed by von Neumann
in his work on continuous geometries [15].

Figure 1 illustrates the multiplication of two points on a line in projective
space. The fixed coordinate frame is shown in black, while the red points can be
considered as varying over the points in the frame. The points a1, a2, a3 are the
three points of the frame, while the auxiliary points c12, c23, c13 serve as centres
of perspectivity. Given points x and y on the line L12 joining a1 and a2, we
draw the line joining x and c23, and then find its point of intersection with the
line joining a1 and a3. Similarly, we draw the line joining y and c13 and then
find its point of intersection with the line joining a2 and a3. Then draw the line
joining these two points of intersection; the point where this line intersects the
base line joining a1 and a2 is the point x ·y. If we assume Desargues’s law, then
the geometrical multiplication defined in this way is associative.

In a two-dimensional projective space, however, we cannot assume the De-
sargues law in general, because of the existence of non-Arguesian projective
planes. If we add a third dimension to our coordinate frame, however, then
we can prove enough of Desargues’s law to prove associativity of x · y with ap-
propriate assumptions. This is the construction that proves undecidability for
a wide family of relevance logics. Figure 2 shows a three-dimensional coordi-
nate frame (a 4-frame). It consists of a tetrahedron, together with the auxiliary
points forming the points of intersection with a skew plane cutting through the
tetrahedron.
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Figure 1: Multiplication on a line in real projective space
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Figure 2: A 4-frame in real projective space
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How do we reduce the number of variables required for undecidability? The
trick is to express the elements in a coordinate frame in terms of subsets of
the frame. For example, to prove undecidability for the four-variable fragment,
we have to find a way to express the elements of a four-frame, together with
semigroup elements x, y in terms of four elements definable from the frame. The
details can be found in my 2007 paper [27].

We can add the propositional constants t, f, T, F to R, and so it makes
sense to talk of the 0-variable fragment of R. This fragment is in fact decidable.
This follows from the proof by John Slaney [18] that there are exactly 3088
non-equivalent formulas generated from the constants in R. This result forms
a contrast with linear logic, where the fragment generated by the constants is
undecidable, a remarkable result of Max Kanovich [10].

So, is the answer to problem 3.1 one, two, three or four? It is possible that the
geometrical technique sketched above can be improved to prove undecidability
for three variables. It seems implausible that it could be extended to two. As
for the one-variable fragment, it remains deeply mysterious.

Thistlewaite, McRobbie and Meyer in their 1988 monograph [19, p. 16] sug-
gested a way of proving undecidability for the two-variable fragment of R. Let
x � y be a formula of R containing only the two variables x and y. If σ is a
term in the language of semigroups, let σt be the translation of σ into R, using
the translation x · y 7→ x � y; the translation of a semigroup equality σ = τ is
σt ↔ τ t. Let us say that the formula � is a free associative connective in R
if the following holds. If Σ ∪ {τ} is a finite set of semigroup equalities, then τ
is deducible from Σ in the equational theory of semigroups if and only if τ t is
deducible from Σt in R.

Let us suppose that there is in fact a free associative connective in R. Since
there is a finitely presented semigroup in two generators with undecidable word
problem, undecidability for formulas with two variables in R would follow im-
mediately.

Problem 3.2 Is there a free associative connective in R?

Somehow, I am inclined to guess that there is no such connective. The en-
coding of semigroup equations in the undecidability proofs is rather indirect,
since the associativity is proved only with respect to a coordinate frame, em-
ploying variables additional to those used in encoding the semigroup equations.
However if the preceding problem had a positive solution, associativity would
have to hold unconditionally.

4 Complexity of the decision problem for R→

As mentioned above in §2, the decision problem for R→ was solved by Saul
Kripke in 1959. Kripke’s decision procedure appears of high complexity – in fact,
the algorithm does not appear to provide an upper bound on the space or time
required. The key combinatorial lemma in the proof of correctness is dubbed
“Kripke’s Lemma” by Anderson and Belnap [1, pp. 138-139]; it is essentially
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the same as Dickson’s Lemma in number theory and the theory of polynomial
ideals. By adapting known bounds for Dickson’s Lemma and related problems,
it is possible to show [26] Kripke’s decision method is primitive recursive in the
Ackermann function.

Can we improve on this Ackermann upper bound by getting a tighter esti-
mate of the complexity? I made a small step in this direction by proving that
any decision procedure for R→ requires exponential space. This was published
in a 1990 paper [25] as part of a festschrift in honour of my Doktorvater, Nuel
Belnap. The basic idea is to adapt the exponential space lower bound for the
reachability problem for Petri nets proved by R.J. Lipton [13].

The lower bound in both cases is proved by encoding bounded counter ma-
chines in the system, and depends on the fact that we can define small (linear-
size) vector addition systems that generate a doubly exponential number of
tokens. This allows the definition of a zero-test for counter machines in which
the numbers in the counters are exponentially bounded. Some added compli-
cations in the logical case arise from the fact that the unrestricted contraction
rule is present.

This still leaves a huge gap between the upper and the lower bounds. I was
able to close the gap a few years later, in the case where we include conjunction
as well as implication. The same upper bound holds as in the case of pure
relevant implication. But in addition, in a paper of 1999 [26] I was able to
prove that the lower and upper bounds for the system R→∧ essentially coincide,
showing that there is no primitive recursive decision procedure for this logic.
Thus R→∧ is one of the most complex naturally defined propositional logics.

The lower bound for R→∧ is an adaptation of the proof by Lincoln, Mitchell,
Scedrov and Shankar [12] that linear logic is undecidable. Unfortunately, the
proof does not adapt to the pure implicational case, since it depends on the
inclusion of additive as well as multiplicative rules. I made several efforts in the
following decades to narrow the gap, but did not succeed. I was planning to
present this as an open problem as part of my talk, but shortly before the July
2014 Summer of Logic in Vienna, I was delighted to hear that the problem has
been definitely solved by Sylvain Schmitz.

Sylvain Schmitz proves that in fact the pure implicational fragment R→ is
complete for doubly exponential time, thus solving a problem that has been
open for a quarter century. His proof [17] employs branching vector addition
systems and builds on earlier results of Demri, Jurdziński, Lachish and Lazić
[7]. This brilliant breakthrough result of Schmitz seems an appropriate point to
bring my survey to a close.1

References

[1] A. R. Anderson and N. D. Belnap. Entailment, volume 1. Princeton Uni-
versity Press, Princeton, NJ, 1975.

1I thank the referee for useful comments that improved the exposition.

Australasian Journal of Logic (13:1) 2016, Article no. 2



19

[2] A. R. Anderson, N. D. Belnap Jr., and J. M. Dunn. Entailment, volume 2.
Princeton University Press, Princeton, NJ, 1992.

[3] Alan Ross Anderson. Some open problems concerning the system E of
entailment. In Proceedings of a Colloquium on Modal and Many-Valued
Logics, Helsinki, 23-26 August, 1962, 1963. Acta Philosophica Fennica,
Fasc. 16.

[4] G. Charlwood. Representations of semilattice relevance logic. PhD thesis,
University of Toronto, 1978.

[5] G. Charlwood. An axiomatic version of positive semilattice relevance logic.
Journal of Symbolic Logic, 46:233–239, 1981.

[6] Alonzo Church. The weak theory of implication. In Angsil Menne, Wil-
helmy, editor, Kontrolliertes Denken, Untersuchungen zum Logikkalkül und
der Logik der Einzelwissenschaften, pages 22–37. Kommissions-Verlag Karl
Alber, 1951.
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