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Abstract

We present two-dimensional tableau systems for the actuality, fixedly,
and ↑ operators. All systems are proved sound and complete with re-
spect to a two-dimensional semantics. In addition, some issues regard-
ing decidability are discussed.

1 Introduction

This article presents prefixed tableau systems1 for some modal logics that
contain special operators meant to formalize the notions of “actually” and
“fixedly”. Specifically, we will consider propositional modal logics that are
enriched by way of the addition of the sentential operators @ and F, as well as
for the Vlach-operator ↑.2 Our tableau systems will be doubly-prefixed. This
corresponds to the use of double indexing in the two-dimensional semantics
we will give for these operators, and with respect to which our proof systems
will be proved sound and complete.

The actuality operator is a frequently employed device enabling some of
the expressive inadequacies of quantified modal logic to be shored-up.3 The
fixedly operator was originally introduced by Davies and Humberstone [10]
as a means of exploring different kinds of necessities. This idea has been
expanded upon in recent years, and the combination of the actuality and
fixedly operators has been employed in efforts to formally analyze notions
relating to a priority, specifically the contingent a priori as well as the

1Our notation is most similar to [18] and [15], which has its origins in [12].
2In [7], Ref is used as the symbol for ↑. In [26], it is ×. We choose to use the ↑

notation as we think it more closely coincides with the contemporary formal literature on
this subject. For details on Vlach-operators, one can consult [16] or [6]. They originate in
[30].

3See, for example, [22] and [4] for more on the expressive capabilities of first-order
modal logics extended with the actuality and other, similar, operators. As we discuss
below, in the propositional case the actuality operator is redundant.
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necessary a posteriori.4 To our knowledge, the formal aspects of the logic of
fixedly remains laregly unexplored. Davies provided a detailed examination
of the behaviour of fixedly within the context of S5, where it turns out to
be eliminable [8]. It is our hope that this paper begins to address some of
the remaining issues surrounding the fixedly operator. In fact, providing a
completeness proof for the logic of fixedly is a primary motivation of this
paper.

Lastly, we also include ↑ in some of the languages in this paper. As
pointed out in Cresswell [7], this operator increases the expressivity of our
modal language by allowing us to store a new reference index while analyzing
a formula. In addition, adding this operator is practically uncomplicated,
as it will turn out that once the formal apparatus for @ and F is in place, it
is straightforward to introduce ↑ as well.

The paper will begin by considering @ in isolation. In Section 2 we
introduce the language of actuality logic, and describe a two-dimensional
semantics appropriate for the study of actuality. Section 3 presents the
double-indexed prefixed tableau rules for @, as well as the pertinent notions
of proof. The tableau rules are proved to be sound and complete with
respect to the two-dimensional semantics of section 2. In Section 4 a decision
procedure for the actuality tableaux is discussed, and a decidability proof
provided. Section 5 then presents tableau rules for the fixedly operator.
Soundness and completeness proofs are provided while paying attention to
the added complications introduced by F. Lastly, in Section 6, rules for ↑
are provided, and soundness and completeness proofs are given for the logic
with just @ and ↑, as well as for the full logic, with all three operators.
Further issues concerning decidability are briefly discussed in the appendix.

1.1 Related Work

While the actuality operator has been studied for some time, in the case of
propositional modal logic, adding only the actuality operator does not in-
crease the expressive capabilities of the formal language, a result given in [21]
that mirrors the case for the “now” operator in temporal logics, originally
proved by Hans Kamp, in [23]. Thus, in a propositional setting, the primary
interest of the actuality operator lies in the way in which it combines with
other new operators, in this case other two-dimensional operators.

In addition, as mentioned above, an actuality operator is utilized in

4There is a large, and growing literature on these issues. For greater detail on the
philosophical underpinnings of these logics, one might consult, for example, [5], [11], [28],
and [27]. For an introduction to these issues, the last chapter of [26] is a good source.
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studies of epistemic two-dimensional semantics. There has been some recent
work aimed at formalizing these ideas. In particular, Restall [24] gives a cut-
free hypersequent calculus that captures the logics discussed by Davies and
Humberstone in [10]. An interesting, and more semantic approach to these
issues is described in [17]. The operators discussed in this paper, though
not motivated by the same philosophical concerns, are closely related.

Lastly, the operators we consider all have analogues in hybrid logic.
However, it is usually the case that migrating to a hybrid framework greatly
increases the strength of the logics being considered. For example, the cost
of adding binders (akin to the Vlach operator ↑ discussed here) to basic
hybrid languages is usually undecidability, even in basic cases where, for
instance, only one state variable is used. As is shown in [29], the real source
of the undecidability in hybrid logics with binders is the interaction between
the binder and the modal operators, not the @ operator. One can also show
how the question of the decidability of these logics is related to the number
of modal operators occurring between the binding of its variable and its use.
This was recently investigated in the framework of coalgebraic modal logics
as well as Kripke semantics in [19]. As is shown in the appendix, the logics
we consider do not suffer from these drawbacks. Thus, this paper can also
be seen as an effort to approach particular logics, which are quite expressive,
from below, without adopting the full power of hybrid logics, even relatively
weak ones.

2 Two-Dimensional Semantics and the Language
of Actuality

2.1 Language

Where Φ is a countable set of propositional variables, let L(Φ) + @ (often
just L+ @ when unambiguous) denote the language of propositional modal
actuality logic that will be employed throughout this paper. The language
has the standard connectives and modal operators, as well as the actuality
operator @.

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | �ϕ | @ϕ

In the second part of the paper, we consider logics containing a fixedly
operator F. For these new operators, one simply supplements the normal
formation rules with the following: if ϕ is a wff, then so is @ϕ; if ϕ is a wff,
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then so is Fϕ. Finally, when we add ↑, we have the condition that if ϕ is a
wff, then so is ↑ ϕ.

2.2 Semantics

We will make use of a two-dimensional semantics very similar to the one
described in [26]. While the notions of a frame and model are standard,
the definitions of truth and validity are modified slightly, and require that
formulas be evaluated with respect to pairs of worlds: a reference index and
an evaluation index. The reference index keeps track of the world currently
considered actual, while it is with respect to the evaluation index that all
“non-actual” elements in a formula are evaluated.

Definition 2.1 (Relational Frame). A relational frame, F , is an ordered
pair 〈W,R〉 where W is a (non-empty) set and R is a binary accessibility
relation on W , i.e. R ⊆W ×W .

Definition 2.2 (Relational Model). A relational model, M = 〈W,R, V 〉,
based on a frame F , is a triple where V : Φ→ ℘(W ) is a valuation function
assigning sets of possible worlds to propositional variables.

We start by considering the actuality operator in isolation. Truth is
defined recursively:

M, w0, w1 |= p iff w1 ∈ V (p)
M, w0, w1 |= ¬ϕ iff M, w0, w1 6|= ϕ
M, w0, w1 |= ϕ ∧ ψ iff M, w0, w1 |= ϕ and M, w0, w1 |= ψ
M, w0, w1 |= ϕ ∨ ψ iff M, w0, w1 |= ϕ or M, w0, w1 |= ψ
M, w0, w1 |= ϕ→ ψ iff M, w0, w1 6|= ϕ or M, w0, w1 |= ψ
M, w0, w1 |= �ϕ iff for every w ∈W , if w1Rw then M, w0, w |= ϕ
M, w0, w1 |= ♦ϕ iff there exists a w ∈W s.t. w1Rw and M, w0, w |= ϕ
M, w0, w1 |= @ϕ iff M, w0, w0 |= ϕ

Definition 2.3 (General Satisfaction and Validity). A formula ϕ is gener-
ally satisfied in a modelM just in case, for all w0, w1 ∈W , M, w0, w1 |= ϕ.
A formula is generally valid with respect to a class of frames iff it is gen-
erally satisfied in every model based on a frame in that class. A formula is
generally valid just in case it is generally satisfied in all models.

Definition 2.4 (Diagonal Satisfaction). A formula ϕ is diagonally satisfied
in a model M just in case, for all w ∈ W , M, w, w |= ϕ. A formula is
diagonally valid with respect to a class of frames iff it is diagonally satisfied
in every model based on a frame in that class. A formula is diagonally valid
just in case it is diagonally satisfied in all models.
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(It is worth explicitly pointing out that what we call “diagonal validity”
is referred to as “real-world” validity in other places in the literature.)

3 Two-Dimensional Tableaux for @

We will describe two different basic actuality logics, corresponding to the
two notions of validity introduced above. However, the two logics will not be
obtained by stipulating two different systems of tableau rules. Instead, the
difference between the two logics will lie in what we consider to be a proof
within our tableau system. One notion of proof will end up corresponding to
general validity, while the other will be the appropriate notion for diagonal
validity.

Definition 3.1 (Index, Prefix, Prefixed Formula). An index is a finite se-
quence of natural numbers. For readability, numbers will be separated with
a period. A prefix is a pair of indices separated by a comma. A prefixed
formula is a wff of L + @ preceded by a prefix. The two are separated by
means of a double colon.

Intuitively, indices represent worlds, and the periods in the indices allow
us to keep track of the intended accessibility between worlds. For example,
ν.n represents a world accessible from ν (i.e. we should have νRν.n in any
corresponding frame), and so if ϕ is not true at ν.n, it should not be the
case that �ϕ is true at ν.

The doubly-indexed rules for the basic system, what we will call K + A,
are:
(Non-Branching Propositional Rules) For any prefixes µ, ν:

µ, ν :: ϕ ∧ ψ
µ, ν :: ϕ
µ, ν :: ψ

µ, ν :: ¬(ϕ ∨ ψ)

µ, ν :: ¬ϕ
µ, ν :: ¬ψ

µ, ν :: ¬(ϕ→ ψ)

µ, ν :: ϕ
µ, ν :: ¬ψ

(Branching Propositional Rules) For any µ, ν:

µ, ν :: ϕ ∨ ψ
µ, ν :: ϕ µ, ν :: ψ

µ, ν :: ¬(ϕ ∧ ψ)

µ, ν :: ¬ϕ µ, ν :: ¬ψ
µ, ν :: ϕ→ ψ

µ, ν :: ¬ϕ µ, ν :: ψ

(Double Negation) For any µ, ν:

µ, ν :: ¬¬ϕ
µ, ν :: ϕ
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(Introductory Modal Rules) Where ν.n is new to the branch:

µ, ν :: ♦ϕ
µ, ν.n :: ϕ

µ, ν :: ¬�ϕ
µ, ν.n :: ¬ϕ

(Non-Introductory Modal Rules) Where ν.n already occurs in the branch:

µ, ν :: �ϕ
µ, ν.n :: ϕ

µ, ν :: ¬♦ϕ
µ, ν.n :: ¬ϕ

And, to govern @, for any µ, ν:

µ, ν :: @ϕ

µ, µ :: ϕ

µ, ν :: ¬@ϕ

µ, µ :: ¬ϕ

Again, we will call this basic system K + A. This will be the basis of all
the systems we consider.

If one were interested in extending the modal basis of this system (for
example to obtain T,D,B,S4,S5, etc.), additional rules would have to be
added. The obvious starting points would incorporate various of the follow-
ing (here, we follow the presentation of [14, Section 6.2] and [15, Chapter
2.3]):

Where ν.n already occurs in the branch:

T
µ, ν :: �ϕ
µ, ν :: ϕ

µ, ν :: ¬♦ϕ
µ, ν :: ¬ϕ

D
µ, ν :: �ϕ
µ, ν :: ♦ϕ

µ, ν :: ¬♦ϕ
µ, ν :: ¬�ϕ

B
µ, ν.n :: �ϕ
µ, ν :: ϕ

µ, ν.n :: ¬♦ϕ
µ, ν :: ¬ϕ

4
µ, ν :: �ϕ
µ, ν.n :: �ϕ

µ, ν :: ¬♦ϕ
µ, ν.n :: ¬♦ϕ

4r
µ, ν.n :: �ϕ
µ, ν :: �ϕ

µ, ν.n :: ¬♦ϕ
µ, ν :: ¬♦ϕ

Again, for simplicity’s sake, we will restrict our attention here to logics
having K as the modal basis. As is usual when working with modal tableaux,
when one migrates to logics above K additional care needs to be taken at
various stages of the standard proofs. This is especially true when the
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accessibility relation becomes transitive. For details on these difficulties,
one can consult [12].

Throughout this paper we will assume at least some prior familiarity
with the method of semantic tableaux. As such, we will not give a fully
formal definition for tableaux, and will allow ourselves the luxury of relying
on common intuitions. However, by way of trying to slightly more precise,
we can say that for our purposes a (prefixed) tableau for a finite set of
prefixed formulas S = {α1, . . . , αn} is an upside-down tree (where the root
of the tree consists of the formulas in S) that can be defined recursively:

• The root of the tree, i.e. the prefixed formulas in S, written vertically
with one formula per line, is a tableau;

• if B is a branch of a tableau T (i.e. a path downwards, originating in
the root), then the tableau T ′ that is obtained by extending B by way
of appropriately applying a tableau rule to one of the formulas on B,
is also a tableau.

More casually stated, a tableau is the result of the repeated application
of any of the tableau rules to the original formulas in S.

Definition 3.2 (Closed Tableau). A tableau branch is closed just in case it
contains both µ, ν :: ϕ and µ, ν :: ¬ϕ for some formula ϕ and prefix µ, ν. A
tableau is closed if every branch of the tableau is closed.

Definition 3.3 (K + A1 Tableau Proof). A closed K + A tableau for 0, 1 ::
¬ϕ (i.e. where 0, 1 :: ¬ϕ is the root node), is a K + A1 tableau proof for ϕ.
Any formula that has a K + A1 tableau proof is a K + A1 tableau theorem.
The set of all such theorems will also be referred to by K + A1.

Definition 3.4 (K + A2 Tableau Proof). A closed tableau for 0, 0 :: ¬ϕ
(i.e. where 0, 0 :: ¬ϕ is the root node), is a K+A2 tableau proof for ϕ. Any
formula that has a K + A2 tableau proof is a K + A2 tableau theorem. The
set of all such theorems will also be referred to by K + A1.

To illustrate how a typical tableau proof might proceed, we can consider
the following example.

Example 3.5. @ϕ→ (♦(@ϕ→ ψ)→ ♦ψ) is a K + A1 theorem.
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0,1 :: ¬(@ϕ→ (♦(@ϕ→ ψ)→ ♦ψ))
0,1 :: @ϕ

0,1 :: ¬(♦(@ϕ→ ψ)→ ♦ψ)
0,1 :: ♦(@ϕ→ ψ)

0,1 :: ¬♦ψ
0,1.2 :: @ϕ→ ψ

0,1.2 :: ¬ψ
0,0 :: ϕ

0,1.2 :: ¬@ϕ
0,0 :: ¬ϕ

0,1.2 :: ψ

×
×

Unlike in the standard, single-indexed, modal case where µ :: ϕ and
µ :: ¬ϕ would suffice for closure of a branch, both indices in the prefix are
now relevant. For example, we would not want to close a branch on which
µ, ν :: @p and σ, ν :: ¬@p both occur, because the reference index is relevant.

Our definitions, in light of the tableau rules above, do allow for a partic-
ular oddity about which we have to take some care. Specifically, given our
definitions and rules thus far, we will not be able to close certain tableaux
that, in general, represent contradictory states of affairs. For example, the
occurrence of 0, 1 :: p and 2, 1 :: ¬p on a branch will not suffice to close that
branch, even though it represents a contradictory state of affairs.

There are two possible solutions to this issue, and we will adopt each of
them in different parts of the paper.

The first option is to just ignore the problem, and to notice that when
one is actually trying to construct a proof of a formula, the above situation
cannot arise.

Observation 3.6. Let i be 1 or 2. Then, all prefixed formulas of any K+Ai

tableau starting from 0, ν :: α have a prefix of the form 0, µ.

This is because, while our definition of tableaux allows for multiple for-
mulas to occupy the root, our notion of proof does not, and we always root
a tableau proof with a single formula, rather than a set. In particular, we
always start with something of the form 0, 1 :: α (or 0, 0 :: α in the case of
K + A2), and, when our operators are restricted to just @ and the modal-
ities, there is no way of introducing, via our rules, a new index in the first
prefix position. Thus, as a practical matter, the problematic cases will not
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arise; our notion of provability is unaffected by the lack of closure in these
circumstances.

While in practice these cases do not occur, that does not mean they
will not arise during our completeness construction. And, in fact, they do.
However, we can overcome these difficulties by restricting our truth lemma
slightly, and focusing on particular prefixes. This solution, however, has
both a payoff and a cost: the resulting truth lemma is less general than
might be hoped, but we need not amend our tableau rules.

However, this approach is not available once we enrich our languages with
other operators allowing for greater flexibility with respect to the reference
index. This is the case with both of the other operators we will consider
in this paper: the fixedly operator F and the Vlach-operator ↑. In those
cases, we need to alter the proof system slightly to ensure the completeness
construction works as desired. Details of this are below.

Finally, it is worth explicitly pointing out that one could add to the sys-
tem K + A a rule governing this problematic scenario (as we will with the
other operators) without encountering any problems (all that is required is
an extra case in a couple of proofs). Indeed, in some way this alternative
system is more general. We will not adopt this method immediately, how-
ever, as we find it interesting, if only by way of comparison, to consider both
approaches.

3.1 Soundness

Definition 3.7 (Tableau Satisfiability). Let Gamma be a set of prefixed
formulas, and let I be the set of all indices occurring in Γ. We say that
Γ is satisfiable in a model M = 〈W,R, V 〉 just in case there is a function,
θ : I →W , s.t.

1. If µ and µ.n both occur as indices in Γ, then θ(µ)Rθ(µ.n).

2. If µ, ν :: ϕ ∈ Γ, then M, θ(µ), θ(ν) |= ϕ.

When such a model and function exist, we can just say that Γ is sat-
isfiable. A branch of a tableau is satisfiable when the set of formulas on
the branch are satisfiable. A tableau is satisfiable if one of its branches is
satisfiable.

Full proofs for the following results, for the standard modal cases, can
be found in [15, Section 2.5].

Observation 3.8. A closed tableau is not satisfiable.
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Proof. Straightforward. For detail, see [15]. �

Observation 3.9. Given a satisfiable tableau, the tableau remains satisfiable
after the application of one of the above tableau rules.

Proof. We only consider the cases for @ rules here.
Letting T be a tableau, and B a branch of T , assume that µ, ν :: @ϕ ∈ B

and that B is satisfiable, i.e., M, θ(µ), θ(ν) |= @ϕ. Then M, θ(µ), θ(µ) |= ϕ
and so B ∪ {µ, µ :: ϕ} is satisfiable using θ.

Lastly, assume µ, ν :: ¬@ϕ ∈ B and that B is satisfiable. SoM, θ(µ), θ(ν) |=
¬@ϕ, which just meansM, θ(µ), θ(ν) 6|= @ϕ. This holds iffM, θ(µ), θ(µ) 6|=
ϕ which is equivalent to M, θ(µ), θ(µ) |= ¬ϕ. Thus B ∪ {µ, µ :: ¬ϕ} is
satisfiable.

Note that this theorem is general in the sense that it applies in case
µ = ν or µ 6= ν. �

Theorem 3.10. If ϕ has an K + A1 tableau proof, it is generally valid.

Proof. Suppose, for contradiction, that ϕ has a tableau proof, but is not
generally valid. Then there exists a closed tableau, T , beginning with 0, 1 ::
¬ϕ. Let T0 = {0, 1 :: ¬ϕ}. Furthermore, there must be some model M,
containing worlds w0 and w1 s.t. M, w0, w1 6|= ϕ. Letting θ(0) = w0 and
θ(1) = w1, we see that T0 is satisfiable. Therefore, from Observation 3.9, T
must be satisfiable. But we know that closed tableau cannot be satisfied, so
there is a contradiction. �

Theorem 3.11. If ϕ has an K + A2 tableau proof, it is diagonally valid.

Proof. Suppose, for contradiction, that ϕ has a tableau proof, but is not
valid. Then there exists a closed tableau, T , beginning with 0, 0 :: ¬ϕ. Let
T0 = {0, 0 :: ¬ϕ}. Furthermore, there must be some model M, containing
a world w0 s.t. M, w0, w0 6|= ϕ. Letting θ(0) = w0, we see that T0 is
satisfiable. Therefore, from Observation 3.9, T must be satisfiable. Again,
this is a contradiction �

The above results establish tableau general soundness for K + A1 and
diagonal soundness for K + A2.

3.2 Completeness

Our approach to completeness is that of [14, Section 6]. We will omit many
details in our proofs that can be found there.
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Definition 3.12 (K + A-consistent). A set Γ of prefixed formulas is said
to be K + A-consistent if no K + A tableau for a finite subset of Γ is closed
(where the finite subset is the “root” of the tree).

We will call Γ maximally consistent when it is consistent, and the addi-
tion of any further prefixed formula would result in an inconsistency.

However, as mentioned before, we must be careful. Specifically, this
definition results in {0, 1 :: p, 2, 1 :: ¬p} being considered K + A-consistent.
Thus, when we actually make use of this definition, we will have to ensure
that our K + A-consistent sets obey additional constraints as well.

Definition 3.13 (π-complete). A formula is a π-formula if it is of the form
♦ϕ or ¬�ϕ. If π is ♦ϕ, let π0 be ϕ. If π is ¬�ϕ, let π0 be ¬ϕ. A set Γ of
prefixed formulas is said to be π-complete when:

if µ, ν :: π ∈ Γ, then µ, ν.k :: π0 ∈ Γ for some k ∈ N.

Definition 3.14 (Omits Infinitely Many Integers). A set of prefixed formu-
las Γ omits infinitely many integers just in case the size of the set of positive
integers not appearing in prefixes of Γ is infinite.

Lemma 3.15 (Lindenbaum-Henkin Construction). If Γ is an K+A-consistent
set of prefixed sentences that omits infinitely many integers, then there is a
maximally K + A-consistent set of prefixed formulas, K, such that Γ ⊆ K.
Furthermore, K is π-complete.

Proof. Suppose Γ is an K+A-consistent set of prefixed sentences that omits
infinitely many integers. Enumerate all prefixed formulas in the language5:
µ1, ν1 :: α1, µ2, ν2 :: α2, . . . Define the following sequence of sets:

Γ1 = Γ
If αn is not a π-formula, and if Γn ∪ {µn, νn :: αn} is K + A-consistent,

then let Γn+1 = Γn ∪ {µn, νn :: αn}.
If αn is a π-formula, and if Γn ∪ {µn, νn :: αn} is K + A-consistent, then

let Γn+1 = Γn ∪ {µn, νn :: π, µn, νn.k :: π0} where ν.k does not occur in Γn.
(Note that such k will always be available since Γn will always omit infinitely
many integers. Also, if Γn∪{µn, νn :: π} is consistent, then Γn∪{µn, νn :: π,
µn, νn.k :: π0} will be as well, so long as k is new.)

Finally, if neither of these situations obtain, take Γn+1 = Γn.

5Note that the set of all double-indexed formulas is countable: the set of all indices
is N<∞—the set of all finite sequences of natural numbers—and so the set of all possible
double-indexed formulas has size |N<∞| × |N<∞| × |Form|, which is countable since N<∞

and Form both are (where Form is the set of wff).
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Let K =
⋃
n∈ω

Γn.

That K is π-complete is obvious from the construction. If µn, νn :: π
was added at the nth stage, then so was µn, νn.k :: π0. Furthermore, since
the k is new (the availability of which is guaranteed since Γn omits infinitely
many integers), if Γn ∪ {µ, ν :: π} is consistent, then Γn ∪ {µ, ν.k :: π0} will
also be.

It is equally straightforward that K is K+A-consistent, since it remains
so at each stage of the construction by definition. If it were not consistent,
there would be a finite subset Γ′, which has a closed tableau. But all the
elements of Γ′ must have appeared in the enumeration by some point, n.
Thus, we would have that Γn is inconsistent, which is impossible.

Thus, it remains only to be shown that K is maximal in the sense that
we cannot add any new prefixed formula without creating an inconsistency.
Assume this to be false. That is, assume there is some prefixed formula
µ, ν :: α that can be added without creating an inconsistency. But this
formula must have appeared in our enumeration at some stage. As such, if
adding it would not have resulted in an inconsistency, it would have been
added at that stage.

Note, also, that K is saturated. That is, for a given prefixed formula
µ, ν :: ϕ ∈ K , the prefixed formulas (or one of them, in the case of the
disjunctive rules) arising from the application of the relevant tableau rule
must also be elements of K.

�

We are now in a position to demonstrate that a suitable model satisfying
any non-theorem of K+A1 can be found. If ϕ is not K+A1-provable using
the tableau rules, then, by definition, {0, 1 :: ¬ϕ} is K + A consistent.
Obviously this satisfies the criteria of the above construction, so we can
extend to a maximally consistent and π-complete set S. Let W be the set
of indices occurring in S. Define R over the set W s.t. for µ, ν ∈ W ,
µRν iff ν = µ.n for some n ∈ N. Finally, define the valuation V by letting
ν ∈ V (p) iff 0, ν :: p ∈ S. (This restricted definition of V , and a more specific
statement of the following truth lemma, is what allows us to circumvent
the problem presented by the potential appearance of both µ, ν :: p and
σ, ν :: ¬p.)

Finally, let M = 〈W,R, V 〉.

Lemma 3.16. For every formula α, and every index ν,

if 0, ν :: α ∈ S, then M, 0, ν |= α.
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if 0, ν :: ¬α ∈ S, then M, 0, ν 6|= α.

Proof. Given Lemma 3.15, this result proceeds by (a very long, but straight-
forward) induction on the complexity of formulas. We will omit everything
except the base cases and the cases concerning @.

We have two base cases: α is a propositional variable, and α is the
negation of a propositional variable.

If 0, ν :: p ∈ S, then, by definition of M, ν ∈ V (p). So M, 0, ν |= p.
If 0, ν :: ¬p ∈ S, then, since S is consistent, we know that 0, ν :: p /∈ S.

This means that ν /∈ V (p), and so M, 0, ν 6|= p.
We now consider the two @ cases.
Let α be of the form @ϕ and take 0, ν :: @ϕ ∈ S. Thus, 0, 0 :: ϕ ∈ S.

Then, by the induction hypothesis,M, 0, 0 |= ϕ, which meansM, 0, ν |= @ϕ.
Assume α is of the form ¬@ϕ. If 0, ν :: ¬@ϕ ∈ S then 0, 0 :: ¬ϕ ∈ S.

Then, by the induction hypothesis,M, 0, 0 6|= ϕ, which meansM, 0, ν 6|= @ϕ.
�

Corollary 3.17 (Tableau Completeness for K+A1). If α is generally valid,
it has a K + A1 tableau proof.

Corollary 3.18 (Tableau Completeness for K + A2). If α is diagonally
valid, it has a K + A2 tableau proof.

Proof. We prove the contrapositive. That is, assume ϕ does not have a
K + A2 tableau proof. By definition, this means that the tableau rooted
with 0, 0 :: ¬ϕ does not close, and is therefore K + A-consistent. Thus, as
before, we can extend {0, 0 :: ¬ϕ} to a maximally consistent, π-complete set
S. Defining M = 〈W,R, V 〉 as before, we can utilize the same truth lemma
as for K + A1 to show that there must be a model s.t. M, 0, 0 6|= ϕ. Thus,
ϕ must not be diagonally valid. �

4 Decidability

In this section we present a systematic tableau proof procedure for our
actuality logics. Though one could also prove completeness via this method,
we will refrain from doing so, and refer interested readers to [13] or [18]. Our
approach is that of [13], Chapter 8, and [18], and their proofs go through
largely unaltered, as the presence of a second index in the prefix turns out
to require only minor alterations. Because @ is eliminable in the basic
propositional modal language with actuality, the primary advantage of @
in these settings is one of transparency: some things are just easier (at
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least in the sense of being more intuitive) to formalize, or express, with @
than without it. However, were a decidability result not straightforwardly
forthcoming for the tableaux, the price of such expressive convenience, given
its lack of necessity, would not likely be worth the cost. Thus, the results
in this section are intended to be understood not so much as some great
feature of the logic, but rather as demonstrating that the systems adhere to
a kind of minimal requirement.6 In addition, decidability proofs for logics
with @ have been offered before, for example in [20].

We deal with modal formulas in the manner described in [18]. In par-
ticular, we employ the following terminology: in the course of constructing
a tableau, a formula is awake if the appropriate tableau rules have not yet
been applied to it; a formula is finished if the appropriate tableau rules have
been applied to it and it will not need to be considered again; a formula is
asleep if the appropriate tableau rules have been applied, but we may have
to consider the formula again if new indices are added to the branches on
which it occurs.7

Given a formula ϕ in the language of L+@, we can construct the tableau
rooted with χ as follows:

Begin

Step 1: Place 0, 1 :: ¬χ as the root of the tableau. Mark this as awake.

While the tableau is open and there are awake formulas, do:

Step n+1: In a breadth-first manner, choose the first awake prefixed for-
mula, µ, ν :: α. (That is, select the highest awake prefixed formula, and,
if there are several such formulas on the same level, choose the left-most
formula.) For each open branch B through µ, ν :: α, do:

(Propositional Variable): If α is a propositional variable p, or the nega-
tion of a propositional variable, do nothing.

(Non-Branching Propositional): If α is of the form ϕ ∧ ψ, ¬(ϕ ∨ ψ),
¬(ϕ→ ψ), or ¬¬ϕ apply the appropriate non-branching propositional rule,
adding the relevant formula(s) to the bottom of B, provided they do not
already appear on the branch, and mark them as awake.

(Branching Propositional): If α is of the form ϕ ∨ ψ, ¬(ϕ ∧ ψ), or ϕ →
ψ, fork B into two branches, B1 and B2 and add the appropriate prefixed

6Decidability for extensions containing F and ↑ is discussed in the appendix.
7We remain focused on actuality logics having K as their modal basis, and so do

not consider possible extensions here. If one wished to consider such avenues, the usual
complications concerning cycle checking would have to be confronted (for how these issues
are handled normally, one might consult [13] or [18]).
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formula (as dictated by the above rules) to the end of each branch, so long
as it doesn’t already appear on the branch, and mark it as awake. (E.g. in
the case of ϕ ∨ ψ, add µ, ν :: ϕ to B1 and µ, ν :: ψ to B2.)

(Introductory Modal Rules): If α is a π-formula (i.e. of the form ♦ϕ
or ¬�ϕ), add µ, ν.n :: π0 to the bottom of B where n is the least natural
number such that n is new to B. Mark µ, ν.n :: π0 as awake. Furthermore,
mark each formula of the form σ, ν :: �ψ or σ, ν :: ¬♦ψ on B as awake.

(Non-Introductory Modal Rules): If α is of the form ¬♦ϕ or �ϕ, add to
the bottom of B µ, ν.n :: ¬ϕ or µ, ν.n :: ϕ, respectively, for each ν.n occuring
on B, provided µ, ν.n :: ϕ does not already appear on B, and mark each as
awake.

(Actuality Rules): If α is of the form @ϕ or ¬@ϕ, then add µ, µ :: ϕ or
µ, µ :: ¬ϕ, respectively, to the end of B, provided it does not already appear
on B, and mark it as awake.

Once each branch through µ, ν :: α has been updated appropriately, if α
is of the form �ϕ or ¬♦ϕ, mark µ, ν :: α as asleep. Otherwise, mark it as
finished. End step n+ 1.

End

Theorem 4.1. Given a formula χ in the language L + @, any attempt to
prove χ according to the above procedure terminates in a finite number of
steps.

Proof. Assume not. That is, assume that the process described above can
go on forever. This involves the creation of an infinite tableau. (Note that
every “awakening” is accompanied by an extension of some branch.)

So, by König’s lemma, we must have an infinitely long branch B.
Consider the set of indices occurring on B:

P = {µ | 0, µ :: ϕ ∈ B for some ϕ}.

For B to be infinite, P must also be infinite. For if we take P to be
finite, then the number of prefixes in B is bounded by |{0} × P|. Also,
taking SubForm(χ) to be the (finite) set consisting of all subformulas of χ
along with the negation of all such formulas, the set of all possible formulas
on B is ({0} × P) × SubForm(χ), which is finite. Therefore, the only way
we could have an infinite B with a finite P would be if one of these prefixes
occurs an infinite number of times. However, this is not possible. For any
prefixed formula µ, ν :: ϕ, ϕ must either be a subformula of χ or the negation
of such a subformula. As there are only finitely many such formulas, and
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we avoid adding multiple occurrences of any particular prefixed formula, we
can only have a finite number of formulas prefixed by a particular pair on
B.

Given an index µ, define the length of µ, denoted length(µ), to the be
one more than the number of separating ‘.’ that occur in the index. That
is, the length of the index ‘1.1’ is two. The length of ‘1.2.1’ is three, etc.

For each n ∈ N greater than 0, define

Pn = {µ | µ ∈ P and length(µ) = n}.

Then P =
⋃

1≤n∈N
Pn.

There are now two possibilities allowing P to be infinite.
First, there is some n ∈ N such that |Pn| = ω. Alternatively, there are

infinitely many n such that Pn 6= ∅.
We consider these possibilities in turn.
In the first case, let n ∈ N be the smallest number such that |Pn| = ω.

Notice, however, that for there to be an infinite number of indices of length
n (for n > 1) there must be an infinite number of indices with length n− 1.
This is because new indices of length n (for n > 1) can only be attached to
the branch via the application of a π-rule to a prefixed π-formula where the
second index is of length n− 1, and π formulas are marked as “finished” as
soon as they are dealt with. Furthermore, as argued above, each numeral
can appear as the second index only a finite number of times. Thus, for
there to be an n s.t. |Pn| = ω, we would have to have an infinite number of
indices with length 1. However, the only two indices of length 1 that occur
in our prefixes are 0 and 1, and each of these can only occur a finite number
of times. Therefore, this case is impossible.

Moving to the second possibility then, assume that there are infinitely
many n such that Pn 6= ∅. Let m be the modal degree of χ (i.e. the number
of modal operators occuring in χ). Then the maximum length of the second
index in the prefix is m+ 1, since indices can only be lengthed by applying
the relevant π-rules. This, however, contradicts the possiblity of there being
infinitely many n such that Pn 6= ∅.

�

5 Tableaux for the Fixedly Operator

In [10], Martin Davies and Lloyd Humberstone, as a means of capturing
the intuition that being an actual world is a contingent property, address
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the benefits of including in their actuality logic an operator, F, called the
‘Fixedly’ operator, allowing one to quantify over actual worlds. Davies, in
[9], motivates such an operator in the following manner:

The semantic rule for the ‘Actually’-operator, ‘A’, has the
result that if ‘As’ is true with respect to any world then it is
true with respect to every world. So if ‘As’ is true then so is
‘�As’. While this is an immediate consequence of the intuitive
semantics for ‘A’, it does not accord well with the idea that it is
a largely contingent matter what is actually the case. Suppose,
for example, that the embedded sentence s means that the earth
moves, and that this is contingently true. Then, even allowing
that there is a notion of necessity expressed by the modal oper-
ator ‘�’ on which ‘As’ is necessarily true (that is, ‘�As’ is true),
we also want to say that there is another notion of necessity on
which ‘As’ is not necessarily true. This second notion of necessity
is needed to capture the intution that it is a contingent matter
which possible world is actual.8 (pp. 85)

In other words, and in our notation, while @p implies its necessitation,
�@p, we would like to be able to articulate the fact that p’s actuality is,
or might be, a contingent matter—contingent upon which world we take as
the actual one. The fixedly operator allows us to say just this. For example,
@p ∧ ¬F@p tells us that while p is true in the actual world, there is some
other world such that, were we to consider it actual, @p would no longer
hold.

This all motivates the following semantic clause for the fixedly operator9:

M, w0, w1 |= Fϕ iff M, w, w1 |= ϕ for all w ∈W

As Davies [9] points out, it is not the fixedly operator in isolation that
allows us to capture the desired second notion of necessity; if ϕ contains no
occurences of @, then Fϕ is true if and only if ϕ is. Rather, it is the fixedly
operator combined with the actuality operator that gives rise to the new
form of necessity and articulates the likes of “regardless of which world is
actual, some proposition actually holds”.

In these cases we have M, w0, w1 |= F@ϕ

8In [9] and [10] the underlying semantics, as well as the underlying modal logic (S5),
differs from ours, but the relevance of the discussion is unaffected.

9We note that the fixedly operator behaves in a very similar manner to Segerberg’s �
[25].
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iff M, w, w1 |= @ϕ for all w ∈W
iff M, w, w |= ϕ for all w ∈W .

Or, in other words, just in case ϕ is diagonally satisfied in M.

5.1 Tableau Rules for F

We can supplement the tableau rules of K + A with the following two rules
governing F:

For σ already occuring in the branch:
µ, ν :: Fϕ

σ, ν :: ϕ
Where σ is new on the branch:
µ, ν :: ¬Fϕ
σ, ν :: ¬ϕ

Finally, we need one more rule to ensure our trees close. Consider the
formula ¬(p ∧ ¬Fp). This is valid.10 However, it is not provable with the
current set of rules. Consider the following attempted tableau proof:

0, 1 :: ¬¬(p ∧ ¬Fp)
0, 1 :: p ∧ ¬Fp
0, 1 :: p
0, 1 :: ¬Fp
2, 1 :: ¬p

The problem is that we have used all available rules, but cannot close the
tableau as we would like. Furthermore, we cannot simply ignore the issue
and adjust our completeness proof as we did before. This is because we now
have the ability to modify the first index in the prefix, and so our inability
to close tableaux of this sort actually affects the formulas we classify as
provable (unlike before). Also, restricting our truth lemma is not possible
because of the cases for the F operator. Thus, we need to add a new rule to
deal explicitly with this scenario. Specifically, we add the following:

µ, ν :: p

σ, ν :: p
Where σ occurs on the branch.

The system K + A + F is obtained by adding these three new rules to
those of K + A.

10Because p → Fp will be a theorem of fixedly logic, while ϕ → Fϕ in general will
not (when ϕ contains occurrences of @), the logic of fixedly is not closed under uniform
substitutions.
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5.2 Soundness

Since we are merely adding new tableau rules, we can prove soundness and
completeness simply by supplementing the above proofs (from section 3)
with the cases governing the new rules for F. (The notions of proof are
the same as before – for example, in the presence of the fixedly operator, a
K + A1 proof becomes a K + A1 + F proof.)

Lemma 5.1. Given a satisfiable tableau, the tableau remains satisfiable after
the application of one of the above tableau rules.

Proof. We need only add to the proof of Observation 3.9 above. So, as
before, let T be a tableau, and B a satisfiable branch of T .

When B contains µ, ν :: Fϕ, we have thatM, θ(µ), θ(ν) |= Fϕ. Thus, for
all w ∈ W , M, w, θ(ν) |= ϕ, and, in particular, for all σ occuring on B we
have that M, θ(σ), θ(ν) |= ϕ. Thus B ∪ {σ, ν :: ϕ} is satisfied by θ.

For a B containing µ, ν :: ¬Fϕ, we have M, θ(µ), θ(ν) |= ¬Fϕ, and so
there must exist a w ∈ W where M, w, θ(ν) |= ¬ϕ. Define θ′ to be θ
extended with θ′(σ) = w where σ does not yet occur on B (and is therefore
undefined for θ, ensuring that θ′ is well-defined). ThusM, θ′(σ), θ(ν) |= ¬ϕ,
and so B ∪ {σ, ν :: ¬ϕ} is satisfied by θ′.

Assume now that B contains µ, ν :: p and that M, θ(µ), θ(ν) |= p. This
means that θ(ν) ∈ V (p). Therefore, for any w ∈ W , we will have that
M, w, θ(ν) |= p. But, given that W is the codomain of θ, we certainly have
thatM, θ(σ), θ(ν) |= p for any σ occuring on B. Thus, σ, ν :: p is satisfiable
by θ for all such σ.

�

Corollary 5.2. If ϕ has an K + A1 + F tableau proof, then it is generally
valid.

Corollary 5.3. If ϕ has an K + A2 + F tableau proof, then it is diagonally
valid.

5.3 Completeness

Previously, we used the notion of π-completeness (for a set of prefixed formu-
las) to address the issue of the new prefixes required by possibility formulas.
We need to do a similar thing now for the fixedly formulas. In particular,
we want to make sure that when we perform the Lindenbaum-Henkin con-
struction, not only do we have the necessary prefixed formulas dealing with
the modalities, but also those for the fixedly formulas.
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Definition 5.4 (Prefix-Complete). A set of formulas is prefix-complete
whenever:

• if µ, ν :: π ∈ Γ, then µ, ν.k :: π0 ∈ Γ for some k ∈ N;

• if µ, ν :: ¬Fϕ ∈ Γ, then σ, ν :: ¬ϕ ∈ Γ for some σ ∈ N.

(Where the definition of π-formulas given in Definition 3.13 is unchanged.)

We can now proceed with our new Lindenbaum-Henkin construction.
(Our notion of consistency is now one of K + A + F-consistency.)

Lemma 5.5 (Lindenbaum-Henkin Construction for Fixedly). Suppose Γ is
an K+A+F-consistent set of prefixed sentences that omits infinitely many
integers. Then there exists a prefix-complete and maximally consistent K
s.t. Γ ⊆ K.

Proof. Enumerate all prefixed formulas in the language: µ1, ν1 :: α1, µ2, ν2 ::
α2, . . . Define the following sequence of sets:

Γ1 = Γ
If αn is neither a π-formula nor a formula beginning with ¬F, and if

Γn ∪ {µn, νn :: αn} is consistent, then let Γn+1 = Γn ∪ {µn, νn :: αn}.
If αn is a π-formula, and if Γn ∪ {µn, νn :: αn} is consistent, then let

Γn+1 = Γn ∪ {µn, νn :: π, µn, νn.k :: π0} where ν.k does not occur in Γn.
If αn is a ¬F-formula of the form ¬Fϕ, and if Γn ∪ {µn, νn :: αn} is

consistent, then let Γn+1 = Γn ∪ {µn, νn :: ¬Fϕ, σ, νn :: ¬ϕ} where σ does
not occur in Γn.

Finally, in the last case, if none of these prior situations obtain, take
Γn+1 = Γn.

As before, each Γn will be consistent and omit infinitely many integers.
�

We can now construct a model that will satisfy a truth lemma. If ϕ is not
provable in K + A1 + F, then 0, 1 :: ¬ϕ is consistent. Thus, using the above
Lindenbaum-Henkin construction, we can create a set S that is maximally
consistent and prefix-complete. From S, we can construct a model failing to
satisfy ϕ by letting W be the set of indices occurring in S, µRν iff ν = µ.k
for some k ∈ N, and ν ∈ V (p) iff µ, ν :: p ∈ S for some µ (note that this will
imply it is so for any µ).

Lemma 5.6. For every formula α, and any indices µ and ν,

if µ, ν :: α ∈ S, then M, µ, ν |= α. if µ, ν :: ¬α ∈ S, then M, µ, ν 6|= α.
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Proof. Once again, a full proof involves a long structural induction. We only
include the base cases, and the cases related to the F operator, as the others
are essentially unchanged from Lemma 3.16.

If µ, ν :: p ∈ S, then, by definition of M, ν ∈ V (p). So M, µ, ν |= p.
If µ, ν :: ¬p ∈ S. Then, since S is consistent, we know that µ, ν :: p /∈ S.

Furthermore, we know, from the consistency of S as well as the fact that if a
prefixed formula appears in S, so do the results of applicable tableau rules,
that there is no σ s.t. σ, ν :: p ∈ S. Thus ν /∈ V (p), and so M, µ, ν 6|= p and
M, µ, ν |= ¬p.

For the fixedly cases, we first consider the presence of µ, ν :: Fϕ ∈ S.
This implies the presence of σ, ν :: ϕ in S for every σ found in S. Thus, we
have M, σ, ν |= ϕ for all σ, and so M, σ, ν |= Fϕ.

Finally, when µ, ν :: ¬Fϕ ∈ S, then, by the fact that S is prefix-complete,
we have that there is some σ s.t. σ, ν :: ¬ϕ ∈ S, and so M, σ, ν |= ¬ϕ.
However, this is sufficient to ensure that M, µ, ν 6|= Fϕ. �

Corollary 5.7. If α is generally valid, it has a K + A1 + F tableau proof.

Corollary 5.8. If α is diagonally valid, it has a K + A2 + F tableau proof.

Proof. This proceeds in precisely the same manner as for A1. The only
difference is that when building our set S, we start with 0, 0 :: ¬ϕ rather
than 0, 1 :: ¬ϕ. �

6 Adding ↑
Finally, in this section we will specify tableau rules for the ↑ operator, and
demonstrate that these rules can straightforwardly be added to the rules of
K + A or K + A + F.

The semantic condition for ↑ is:

M, w, v |=↑ ϕ iff M, v, v |= ϕ

Intuitively, ↑ allows us to store the current evaluation index as the ref-
erence index with the effect that subsequent @ operators will refer to this
stored world, and not the original reference world. Thus, such an operator
is required to formalize natural language sentences involving these types of
shift of reference.11

11Cresswell [7] illustrates this need by way of the following example: “If it might have
been that everyone actually rich was poor, then the economy would have been in bad
shape”. One can consult [7] for a more detailed discussion regarding the usefulness of this
operator, as well as for more examples.
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The semantic condition naturally suggests the following tableau rules,
for any µ and ν:

µ, ν ::↑ ϕ
ν, ν :: ϕ

µ, ν :: ¬ ↑ ϕ
ν, ν :: ¬ϕ

Since the ↑ operator introduces an apparatus for altering the first index,
whenever we wish to add these rules, we must also, just like for F, also add
the rule:

µ, ν :: p

σ, ν :: p

When these three rules are added to the system K + A, we obtain the
system we can call K+A+X. If we add just the first two rules to K+A+F,
we get the system K + A + F + X.

As before, we have two different notions of proof, and these are straight-
forwardly altered so as to accommodate the new operator. Thus we will now
talk about, for example, K + A1 + X proofs and K + A2 + F + X proofs.

6.1 Soundness

Since we are again just adding new rules, proving soundness (and com-
pleteness in the next subsection), only involves amending the corresponding
proofs for our previous systems. Specifically, we need a new version of
Lemma 5.1, showing that the new rules preserve satisfiability.

Lemma 6.1. Given a satisfiable tableau, the tableau remains satisfiable after
the application of one of the new rules for ↑.

Proof. Note that we just need to consider the rules for ↑ since the rule
governing the indices of propositional variables is already included in Lemma
5.1.

So let T be a tableau containing the satisfiable branch B.
If B contains µ, ν ::↑ ϕ we have that there is some M and θ such that

M, θ(µ), θ(ν) |=↑ ϕ. Thus M, θ(ν), θ(ν) |= ϕ, and so B ∪ {ν, ν :: ϕ} is
satisfiable.

On the other hand, if B contains µ, ν :: ¬ ↑ ϕ thenM, θ(µ), θ(ν) |= ¬ ↑ ϕ,
and so M, θ(ν), θ(ν) 6|= ϕ. Therefore, B ∪ {ν, ν :: ¬ϕ} is satisfiable.

�

Corollary 6.2. The following soundness results follow:
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1. If ϕ has an K + A1 + X tableau proof, then it is generally valid.

2. If ϕ has an K + A2 + X tableau proof, then it is diagonally valid.

3. If ϕ has an K + A1 + F + X tableau proof, then it is generally valid.

4. If ϕ has an K + A2 + F + X tableau proof, then it is diagonally valid.

6.2 Completeness

For the proof of completeness we will just modify the proof of Lemma 5.6, the
truth lemma used in the completeness of the logics with the fixedly operator.
Note that if one wants a completeness proof for the system containing rules
for ↑, but without fixedly, it is lemma 3.16 that needs to be altered. In
this latter case, one needs to take some care as simply adding cases to the
induction corresponding to the new rules will not be sufficient: one must also
modify the truth lemma to encompass arbitrary indices in both positions,
as in the proof of Lemma 5.6. Again, this will be rendered unproblematic
by the presence of the rule prohibiting the presence, for example, of both
µ, ν :: p and ρ, ν :: ¬p in a maximally consistent and prefix-complete set.

Therefore, as before, we construct a maximally consistent (with respect
to K + A + F + X) and prefix-complete set S, and let M be the model
in which W is the set of indices from S, µRν iff ν = µ.k for some k, and
v ∈ V (p) just in case µ, ν :: p ∈ S for some µ. Then we can prove the truth
lemma, as before.

Lemma 6.3. For every formula α, in the modal language containing @,F,
and ↑, and any indices µ and ν,

if µ, ν :: α ∈ S, then M, µ, ν |= α
if µ, ν :: ¬α ∈ S, then M, µ, ν 6|= α

Proof. We only include the cases relevant for ↑.
Specifically, if µ, ν ::↑ ϕ ∈ S then ν, ν :: ϕ ∈ S, and so M, ν, ν |= ϕ, and

so M, µ, ν |=↑ ϕ.
In the second case, if µ, ν :: ¬ ↑ ϕ ∈ S then ν, ν :: ¬ϕ ∈ S, and so

M, ν, ν 6|= ϕ, and M, µ, ν 6|=↑ ϕ.
�

Corollary 6.4. This gives the following completeness results:

1. If α is generally valid, it has a K + A1 + X tableau proof.
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2. If α is diagonally valid, it has a K + A2 + X tableau proof.

3. If α is generally valid, it has a K + A1 + F + X tableau proof.

4. If α is diagonally valid, it has a K + A2 + F + X tableau proof.

7 Conclusion

Formal accounts of two-dimensional modal logics represent an interesting
and growing area of philosophical logic. The results in this paper are in-
tended to provide a foundation for inquiries in this area for those interested
in tableau methods. Particularly, the results on the fixedly operator repre-
sent the most obvious addition to a previously underexplored area. We have
presented doubly-indexed prefixed tableau systems for some basic modal
logics supplemented with the actuality and fixedly operators, as well as the
↑ operator, and proved these systems sound and complete with respect to
a two-dimensional semantics. In addition, it was shown that the standard
decision procedures often used to establish decidability for tableau systems
can be adapted in a straight-forward manner to the doubly-indexed case for
the actuality operator.

There remains, however, a great deal of work to be done. Most obviously,
the problem of various sorts of quantification presents itself, as does the issue
of how to handle other two-dimensional operators. It should also be noted
that many of the advantages of two-dimensionality can also be obtained
via hybrid logics [2]. Thus, it may be natural to apply techniques from
hybrid tableaux (e.g. [3]) to the two-dimensional case, and to investigate
further their interconnectedness. However, we have refrained from such an
investigation here as hybrid logics have expressive power far in excess of the
two-dimensional systems considered in this paper, and the current project
is to see how to produce tableaux using these more limited resources. We
intend to explore these problems in future projects.
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A Finite Model Property for F and ↑
The usual techniques for constructing filtrations can be put to use here, with
only minor modifications. We prove the results for the full logic (containing
↑), but things would work fine were one only interested in various fragments.

Definition A.1. Let M = 〈W,R, V 〉 be a relational model, and Γ a set of
formulas in our language (with �,@,F, ↑). Define the relation ∼Γ on W by

x ∼Γ y iff for all α ∈ Γ,M, x, x |= α iff M, y, y |= α

Remark A.2. ∼Γ is an equivalence relation.

Let [x]Γ, or just [x], when the context is unambiguous, be the equivalence
class of x.

Definition A.3 (Filtration). Let M = 〈W,R, V 〉 be a relational model
and Γ a set of formulas closed under subformulas. A filtration is a model
MΓ = 〈WΓ, RΓ, VΓ〉 such that:

WΓ := {[x] | x ∈W};

if wRv then [w]RΓ[v];

if [w]RΓ[v] then, for all �ϕ ∈ Γ, ifM, w0, w |= �ϕ thenM, w0, v |= ϕ;

VΓ(p) := {[x] | x ∈ V (p)} for all propositional letters in Γ (for those
not in Γ, the function can be arbitrarily defined). (The definition of
∼Γ ensures that [x] ∈ VΓ(p) iff [y] ∈ VΓ(p) when x ∼Γ y.)

We can often just assume we are working with a specific filtration, namely
the quotient structure ofM by ∼Γ (called the smallest filtration in [1]), with
the accessibility relation defined by

[x]RΓ[y] iff ∃w ∈ [x], z ∈ [y] s.t. wRz

Lemma A.4. When Γ is a finite, subformula-closed set of formulas, then
MΓ is finite, with cardinality bounded by |℘(Γ)|.

Proof. Define g : WΓ → ℘(Γ) by

g([x]) := {α ∈ Γ |M,x, x |= α}

Assume that x ∼Γ y. Then, for all α ∈ Γ, M, x, x |= α iff M, y, y |= α.
Thus g([x]) = g([y]), and so g is well-defined.
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Furthermore, if [x] 6= [y], then ∃α ∈ Γ s.t. (wlog) M, x, x |= α but
M, y, y 6|= α. Thus α ∈ g([x]) but α /∈ g([y]). Hence, g is injective.

�

Theorem A.5. LetMΓ be a filtration with Γ a subformula-closed set. Then,
for all α ∈ Γ and all x, y ∈W

M, x, y |= α iff MΓ, [x], [y] |= α

Proof. In the case where α is some propositional variable p, M, x, y |= p iff
y ∈ V (p) iff [y] ∈ VΓ(p) (by definition of MΓ) iff MΓ, [x], [y] |= p.

The boolean cases are straightforward.
If α is of the form �ϕ, then M, x, y 6|= �ϕ implies the exists of some

w ∈ W s.t. yRw and M, x, w 6|= ϕ. Then, since ϕ ∈ Γ, MΓ, [x], [w] 6|= ϕ.
Also, [y]RΓ[w], by definition, and so MΓ, [x], [y] 6|= �ϕ.

In the other direction, MΓ, [x], [y] 6|= �ϕ implies that there is a [w]
such that [y]RΓ[w] and MΓ, [x], [w] 6|= ϕ. This gives M, x, w 6|= ϕ, and so
M, x, y 6|= �ϕ (from the definition of MΓ).
M, x, y |= @ϕ iff M, x, x |= ϕ iff (IH) MΓ, [x], [x] |= ϕ iff MΓ, [x], [y] |=

@ϕ.
M, x, y |= Fϕ iffM, w, y |= ϕ for all w ∈W iff (IH)MΓ, [w], [y] |= ϕ for

all [w] ∈WΓ iff MΓ, [x], [y] |= Fϕ.
M, x, y |=↑ ϕ iff M, y, y |= ϕ iff (IH) M[y], [y] |= ϕ iff (semantic defini-

tion of ↑) M, [x], [y] |=↑ ϕ.
�

Corollary A.6. Validity is decidable for K+A1+F+ ↑ and K+A2+F+ ↑.

Proof. For any formula α, if ¬α is satisfiable it is satisfiable on a model of
size 2n where n is the number of subformulas of α. There are only finitely
many such models (up to isomorphism). �
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