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Abstract

We present substructural negations, a family of negations (or neg-
ative modalities) classified in terms of structural rules of an extended
kind of sequent calculus, display calculus. In considering the whole
picture, we emphasize the duality of negation. Two types of negative
modality, impossibility and unnecessity, are discussed and “self-dual”
negations like Classical, De Morgan, or Ockham negation are rede-
fined as the fusions of two negative modalities. We also consider how
to identify, using intuitionistic and dual intuitionistic negations, two
accessibility relations associated with impossibility and unnecessity.

Introduction

We present substructural negations, a family of negations classified in terms
of structural rules of sequent calculus. The classification has originated from
the conception of negation as (negative) modality, defined in terms of acces-
sibility relation on frames. Correspondences between various principles
concerning negation and constraints on frames have been investigated in
the literature [2, 11, 15, 14, 16, 32, 33] 1. One of our contributions in this
paper is to give sequent calculus formulation of those correspondences. To
obtain expressive power sufficient for this purpose, we use an extension of
traditional sequent calculus, display calculus.

Another feature of the present work is an emphasis on duality of negative
modal operators. Besides the impossibility operator which is more familiar (A
is impossible here if it fails everywhere accessible from here), some authors
[17, 38] study unnecessity operator (A is unnecessary here if it fails somewhere
accessible from here). We discuss how to collapse or identify them into one to
obtain self-dual negations such as classical, De Morgan, or Okham negation.
Redefining them as “fusions” of two negations sheds new light on them.

∗takuro.onishi@gmail.com
1The recent entry [23] in Stanford Encyclopedia of Philosophy on negation in general contains

a discussion on this topic.
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We also inquire how to identify accessibility relations for impossibility
and for unnecessity, which are given independently in the first place. Axioms
and structural rules that correspond to the frames in which two relations
coincide will be presented. It turns out that we need the expressive power
of Bi-Intuitionistic logic that has two, intuitionistic and dual intuitionistic,
negations.

After briefly looking at Bi-Intuitionistic logic as our base logic in section
1, we introduce, in terms of frame semantics, four negations, two of impossi-
bility type, two of unnecessity type in section 2. Section 3 is for proof theory,
and section 4 for soundness and completeness. In section 5, we discuss a
family of negative modalities of various strengths, which was (formerly)
pictured in the form of a “kite”. The kite for impossibility is well known
(5.1). The one for unnecessity is also known, but here we define a transla-
tion to obtain a dual kite from the other (5.2). In 5.3 we show how the two
kites can be united. Lastly section 6 dicusses identification of accessibility
relations.

1 Bi-Intuitionistic Logic

Bi-Intuitionistic logic (BiInt), also known as HB (Heyting-Brouwer) logic,
is a conservative extension of Intuitionistic logic with co-implication← also
called dual implication or subtraction [29, 30].

Consider a language LB with four connectives, ∧,∨,→,← over count-
ably infinite atoms. The true proposition > is definable by implication as
q → q for some fixed atom q. The false proposition ⊥ is also defined as
q ← q using co-implication. In turn, intuitionistic negation ¬A is defind to
be A→ ⊥ and dual intuitionistic negation ∼A to be > ← A.

A Kripke model for BiInt simply is a Kripke model 〈W,6, |=〉 for In-
tuitionistic logic, where W is a nonempty set of states, 6 a reflexive and
transitive relation (pre-order) on W, and |= a relation between states and
atoms which is hereditary along 6. The pre-order 6 represents development
of knowldege or increasing of information. So we refer to it as information
order. The only difference from Intuitionistic logic is the additional clause
for co-implication. We write x |= A for ”A is true at a state x”. Then the
clause for co-implication is given as follows:

x |= A← B ⇐⇒ ∃y 6 x : y |= A&y 6|= B.

Note that the heredity property extends to arbitrary formulas including co-
implication. I.e. if x |= A and x 6 y, then y |= A for any formula A and any
states x,y in the frame.

Note that q ← q is false (not true) at every point of any model, hence
behaves properly as the false propostion⊥. The truth conditions for negation
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and dual negation are derived as follows:

x |= ¬A (= A→ ⊥) ⇐⇒ ∀y > x : y 6|= A;
x |= ∼A (= > ← A) ⇐⇒ ∃y 6 x : y 6|= A.

Validity is defined as usual. A formula is valid if it is true at every state
of every model. An inference is valid if it preserves truth at every state of
every model. Presence of co-implication (and the defined dual negation)
makes the logic quite symmetrical without collapsing it into classical logic.
For example, while A∧¬A is contradictory, A∨ ∼A is valid in BiInt. And
whereas the inference fromA to ¬¬A is valid but the converse not, one from
∼∼A to A is valid and the converse not.

2 Four negative modalities

We add to LB four unary operators B,C,I,J that express negative modality.
Call the extended language L. The first, B, expresses impossibility, defined
in terms of a binary accsessibility relation _, which is distinguished from
the information order:

x |= BA ⇐⇒ ∀y : x_ y⇒ y 6|= A.

Compatibility is a standard interpretation of the accessibility _. If A is
rejected or excluded as impossible at x (x |= BA), and nevertheless A is
accepted at y (y |= A), then x and y must be incompatible. So x _ y here
should be understood as compatibility between x and y. We also consider
another impossibility-type operator C that looks back through _:

x |= CA ⇐⇒ ∀y : y_ x⇒ y 6|= A.

The pair 〈B,C〉 are called split or Galois (connected) negations [22, 15].
We require the following frame condition to assure that truth of BA and

CA are hereditary along the information order 6:

6 ◦_ ⊆_ ⊇_ ◦> (hence 6 ◦_ = _ = _ ◦>).

where “◦” denotes the composition of relations and “>” denotes 6−1. 6 ◦
_ ⊆_ is for heredity of B and _ ⊇_ ◦> for C 2.

Below are what we call the basic principles (rules and axioms) character-
ising the impossibility operators B 3. We use here sequent notation.

A ` B
BB ` BA > ` B⊥ BA∧ BB ` B(A∨ B)

A ` BB
B ` CA

2The condition which is not only sufficient but necessary for heredity of B is 6 ◦_ ⊆
_◦>. Our condition is for (strictly) condensed frames in Dos̆en’s term. The difference makes
no difference about the set of valid formulas [11].

3“Characterising” means soundness and completeness. The deductive system defined
by the basic principles is sound and complete with respect to the class of frames with the
frame conditions above. Later we prove soundness and completeness of display calculus
instead of the basic principles.
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C also has the rules and axioms of the same form. The double line indicates
that the rule is bidirectional. The leftmost rule may be seen as justifying
the name of “negative modality”, since the contraposition rule is among
the properties possessed by very many, if not all, negation operators 4. We
also note that other two form of de Morgan laws hold here. Only the
intuitionistically unacceptable one, B(A ∧ B) ` BA ∨ BB, fails in this basic
setteing.

There can be different motivations to study negation as impossibility. The
idea traces back to Birkhoff and von Neumann [3] who used incompatibility
(orthogonality, or perp) between the states of a Hilbert space to define nega-
tion in their quantum logic. Intuitionistic negation ¬ is also an impossibility
operator since, in Kripke semantics, ¬A is defined to be true at a state if
and only if it is impossible for A to hold however our body of knowledge ex-
tends. Here the modal accessibility for negation is just the information order.
Kosta Došen, separating accessibility from information order, studies neg-
ative modalities in the context of his investigation into intuitionistic modal
logic with M.Božić [4, 5, 8, 9, 10, 11, 13]. His study on negative modalities
was intended to form, together with the study of positive modal operators,
the theory of unary operators in general. In semantics for relevant logic [36],
De Morgan negation ofA is defined to be true at a state x if and only ifA is not
true at its “star state” x∗, where ∗ is not just a binary relation, but a function
of period two (x∗∗ = x). Relevant logicians such as Dunn and Restall argue
that the ∗-function can be made sense of by understanding it as a special
case of compatibility relation [16, 32].

Next let us introduce unnecessity operators, I and J, which are dual to
impossibility operators, and similar to dual intuitioinistic negation [17, 44].
They are defined in terms of yet another accessibility ^:

x |= IA ⇐⇒ ∃y : x^ y & y 6|= A;
x |= JA ⇐⇒ ∃y : y^ x & y 6|= A.

As in the case of impossibility, the frame condition for unnecessity operators
should be assumed in order to ensure heredity:

> ◦^ ⊆^ ⊇^ ◦6 (hence, > ◦^ = ^ = ^ ◦6).

The accessibility ^ may be understood as exhaustiveness. If IA fails at x,
then any state y related to xmust fill up the lack of negative information by
supporting A. That is, if x^ y, then x |= IA or y |= A, and similarly x |= A
or y |= JA. Thus, x and y are jointly exhaustive.

The frame condition makes sense under this interpretation. Let z > x^
y. Then any piece of negative information that fails at z also fails at x since

4See the SEP entry [23] for references on negations that do not satisfy the contraposition
rule.
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z > x, hence the lack would be filled up by some information in y since
x ^ y. Thus y and z are jointly exhaustive. Similarly if x ^ y 6 z, then
since z contains more information than y, obviously x and z are exhaustive.

Below are the basic principles (rules and axioms) for I and its relation to
J. You can see that it behaves as the dual of B.

A ` B
IB ` IA I> ` ⊥ I(A∧ B) ` IA∨ IB IA ` B

JB ` A

The only de Morgan law that fails is IA∧ IB ` I(A∨ B).
Let us summarize the definition of frames here.

Definition 2.1 (BiN-frame, model). A BiN-frame is a structure 〈W,6,_,^〉,
where W is a non-empty set of states, 6 is a reflexive and transitive infor-
mation order on W, and _ and ^ are binary accessibility relations on W
satisfying the following frame conditions:

6 ◦_ = _ = _ ◦> and > ◦^ = ^ = ^ ◦6.

ABiN-model is a structure 〈W,6,_,^, |=〉, where 〈W,6,_,^〉 is aBiN-
frame and |= ⊆ W × Atom satisfies the following heredity property: for any
x,y ∈ W and p ∈ Atom, if x |= p and x 6 y, then y |= p. The relation |=
extends to arbitrary formulas inductively preserving the heredity property.
Especially the clauses for negative modalities are given as follows:

x |= BA⇔ ∀y : x_ y⇒ y 6|= A; x |= CA⇔ ∀y : y_ x⇒ y 6|= A;
x |= IA⇔ ∃y : x^ y & y 6|= A; x |= JA⇔ ∃y : y^ x & y 6|= A.

We call BiN-frames and BiN-models simply frames and models. Validity
of formulas and inferences are defined as usual. We call BiN the logic
defined by this semantics.

3 Display calculus δBiN

In this section we present a display calculus δBiNwhich is sound and com-
plete with respect to the frame semantics of BiN. As suggested by failure of
Cut elimination in the system for S5 [25], the framework of standard sequent
calculus is not necessarily apt for modal logic. A similar phenomenon is ob-
served with Bi-Intuitionistic logic [26]. Several extensions to handle with
the difficulty have been proposed such as labelled sequent calculus, nested
sequent calculus, and deep inference system [6, 19, 20, 21, 26, 27, 28]. We ap-
ply the method of display calculus to negative modality on Bi-intuitionistic
logic.

The general idea and framework of display calculus (or display logic) is
originally due to N.Belnap [1]. A traditional sequent Γ ` ∆ consists of two
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sequences, multisets, or sets Γ ,∆ of formulas. Display calculus generalizes it
to arbitrary structures built from formulas (and atomic structures) by various
kinds of structural connectives of meta-level.

For BiInt, two slightly different display formulations are given by Goré
and Wansing [18, 42, 43]. The set of the rules below is taken from Wansing’s
version, while the symbols ; and > are Goré’s. Wansing also has been
developing the modal display calculus, modifying Belnap’s treatment of
unary structural connectives that models (positive) modal operators [39, 40,
41]. Unary structural connectives (or punctuation marks) for negation and
rules that govern them can be found in Restall’s book [33, p.124], though the
proof system is not of display style. The display calculus δBiN presented
below is just a combination of these items. Novelty of the paper consists in
structural rules and their correspondence to constraints on frames, which
we will see in section 5.

Definition 3.1 (Structures). The set S of structures is defined by the following
grammar:

X ::= A ∈ L | I | ]X | [X | X ; Y | X > Y.

A sequent is an expression of the form X ` Y consisting of structures X, Y.

Definition 3.2 (δBiN). The display calculus δBiN consists of the following
rules:
Axiom and Cut

(id) p ` p X ` Y ; A A ; X ` Y
(Cut)

X ` Y

Display rules

X ; Y ` Z
(;>1)

X ` Y > Z (;>2)
Y ; X ` Z

X ` Y ; Z
(>;1)

X > Y ` Z (>;2)
X ` Z ; Y

]X ` Y
(][L)

[Y ` X
X ` ]Y

(][R)
Y ` [X

Structural rules

X ; I ` Y
(IL)

X ` Y
X ` Y ; I

(IR)
X ` Y

(X ; Y) ; Z `W
(BL)

X ; (Y ; Z) `W
X ` Y ; (Z ; W)

(BR)
X ` (Y ; Z) ; W

X ` Y (KL)
X ; Z ` Y

X ` Y (KR)
X ` Y ; Z

X ; X ` Y
(WL)

X ` Y
X ` Y ; Y

(WR)
X ` Y

Logical rules

A ; B ` Y
(∧L)

A∧ B ` Y
X ` A Y ` B (∧R)
X ; Y ` A∧ B

A ` X B ` Y (∨L)
A∨ B ` X ; Y

X ` A ; B
(∨R)

X ` A∨ B

X ` A B ` Y (→L)
A→ B ` X > Y

X ` A > B (→R)
X ` A→ B

A > B ` Y (←L)
A← B ` Y

X ` A B ` Y (←R)
X > Y ` A← B

Australasian Journal of Logic (12:4) 2015, Article no. 1



183

X ` A (BL)
BA ` ]X

X ` ]A
(BR)

X ` BA
X ` A (CL)
CA ` [X

X ` [A (CR)
X ` CA

]A ` Y
(IL)

IA ` Y
A ` Y (IR)

]Y ` IA
[A ` Y (JL)
JA ` Y

A ` Y (JR)
[Y ` JA

Example 3.3. The basic principles for B are derivable in δBiN:

A ` B (BL)
BB ` ]A

(BR)
BB ` BA

⊥ ` I (KR)
⊥ ` [I (][R)
I ` ]⊥

(BR)
I ` B⊥ (KL)> ` B⊥

A ` A
BA ` ]A

BA∧ BB ` ]A
A ` [(BA∧ BB)

B ` B (BL)
BB ` ]B

(∧L)
BA∧ BB ` ]B

(][R)
B ` [(BA∧ BB)

(∨L)
A∨ B ` [(BA∧ BB)

(][R)
BA∧ BB ` ](A∨ B)

(BR)
BA∧ BB ` B(A∨ B)

Structural rules tells us that the nullary I represents an empty structure
and the semicolon behaves like a comma in traditional sequents. You can see
from the logical rules that conjunction and disjunction are the object-level
counterpart of semicolon on the left and right hand side. Each propositional
connective reflects the corresponding structural connective [12, 37]. The
binary> is reflected at object-level by implication and co-implication on the
left and right hand side respectively. And the four negative operators have
] and [ as their home.

Double lines in the display rules indicate that the rules are bi-directional
and hence that the upper and lower sequents are equivalent. Given the
correspondence between structural and propositional connectives, the rules
concerning ; and > express the residuation and its dual at meta-level. (][L)
and (][R) are the meta-level expression of the fundamental connection be-
tween split negations (that is, equivalence betweenA ` BB and B ` CA, and
IA ` B and JB ` A).

An important function of display rules is to display an arbitrary substruc-
ture of a sequent as a whole antecedent or succedent of a sequent equivalent
to the original one. Namely, they establish the defining feature of display
calculus, display property. Whether a structure is displayed on the left or right
hand side is determined by its position or polarity in the original sequent.
So let us first define a notion of antecedent/succedent parts.

Definition 3.4 (Antecedent/succedent parts). In X ` Y, we say that X is an
antecedent part (AP) and Y is a succedent part (SP). And we define:

• IfW ; Z is an AP (SP) in X ` Y, then so areW and Z;

• WhetherW > Z is an AP or SP in X ` Y,W is an AP and Z is an SP;

• If ]W is an AP (SP) in X ` Y, thenW is an SP (AP);

• If [W is an AP (SP) in X ` Y, thenW is an SP (AP);
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Now the display property (or display theorem) is formulated as follows:

Definition 3.5. We say that two sequents are display equivalent if they are
derivable from each other using only display rules.

Theorem 3.6 (Display property). Let Z be a substructure in X ` Y. Then,

• If Z is an AP in X ` Y, then there exists a sequent Z ` W which is
display equivalent to X ` Y.

• If Z is an SP in X ` Y, then there exists a sequent W ` Z which is
display equivalent to X ` Y.

Proof. We refer the reader to an elegant proof by Restall [31]. �

Note that in virtue of the display property, logical rules are presented in
the “displayed” form in which the principal formulas have no side formulas
(or contexts).

Belnap’s aim was to make explicit general conditions for Cut elmina-
tion through the display propety. Thanks to his proof of the general Cut
elimination theorem, it suffices to check several conditions to establish Cut
elmination theorem for our system δBiN.

Theorem 3.7 (Cut elimination). If X ` Y is derivable in δBiN, it is derivable
without Cut.

Proof. See [1] for the general Cut elimination theorem. Reducibility of Cut
in the case where the Cut formula BA is principal in both premises is shown
as:

Π1

X ` ]A
(BR)

X ` BA

Π2

Y ` A (BL)
BA ` ]Y

(Cut)
X ` ]Y

{
Π2

Y ` A

Π1

X ` ]A
(][R)

A ` [X (Cut)
Y ` [X (][R)
X ` ]Y

�

4 Soundness and completeness

In this section we look at soundness and completeness of δBiNwith respect
to its frame semantics. The proof is rather standard5. So we just sketch the
proof.

To state the theorems we define a translation from sequents to formulas.
5 A completeness proof of the Hilbert system of Bi-Intuitionistic logic with respect to

Kripke models is given by Rauszer [30]. Decision procedure, proof search, and counter-
model construction for Bi-Intuitionistic (tense) logic based on various extended sequent
calculi have been investigated in [6, 19, 20, 21, 26, 27, 28]. Completeness concerning negative
modalities is proved by Dos̆en [11]. For a comprehensive exposition of frame semantics for
substructural logics and (positive and negative) modalities, see [33]
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Definition 4.1. Define a translation τ from sequents to formulas to be:

τ(X ` Y) = τ1(X)→ τ2(Y)

τ1(A) = A τ2(A) = A

τ(I) = >(= q→ q) τ2(I) = ⊥(= q← q)

τ1(X ; Y) = τ1(X)∧ τ2(Y) τ2(X > Y) = τ1(X)→ τ2(Y)

τ1(X > Y) = τ1(X)← τ2(Y) τ2(X ; Y) = τ2(X)∨ τ2(Y)

τ1(]X) = Iτ2(X) τ2(]X) = Bτ1(X)

τ1([X) = Jτ2(X) τ2([X) = Cτ1(X).

We say a sequent X ` Y is valid if the formula τ(X ` Y) is valid.

Theorem 4.2 (Soundness). If X ` Y is derivable in δBiN, then X ` Y is valid.

Proof. Induction on the construction of the derivation of X ` Y. �

In what follows we use a confused notation, that is, by X ` Y (X 0 Y),
we mean that the sequent is (not) derivable in δBiN. Completeness proof
appeals to well-known notions of maximal consistent pair and canonical model.

Definition 4.3 (Maximal consistent pair). For any (possibly infinite) sets x,y
of formulas, we define

x ` y ⇐⇒ ∃B1, . . . ,Bn ∈ x ∃C1, . . . ,Cm ∈ y :

B1 ; · · · ; Bn ` C1 ; · · · ; Cm.

x 0 y means that it is not the case that x ` y. A pair (x,y) is maximally
consistent if x ∪ y = L (the set of all formulas) and x 0 y.

Sequents such as x ` A or A;B ` y which consists of a finite structure
and a set of formulas should be analogously understood.

Lemma 4.4 (Pair extension). If x ′ 0 y ′, then there exists a maximal consistent
pair (x,y) such that x ′ ⊆ x and y ′ ⊆ y.

Proof. Standard. �

Proposition 4.5. For any maximal consistent pair (x,y), the following hold:
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(1) A ∈ x ⇐⇒ x ` A (2) A ∈ y ⇐⇒ A ` y
(3) A∧ B ∈ x ⇐⇒ A ∈ x & B ∈ x (4) A∧ B ∈ y ⇐⇒ A ∈ y or B ∈ y
(5) A∨ B ∈ x ⇐⇒ A ∈ x or B ∈ x (6) A∨ B ∈ y ⇐⇒ A ∈ y & B ∈ y
(7) A→ B ∈ y =⇒ B ∈ y (8) A← B ∈ x =⇒ A ∈ x
(9) BA ∈ y =⇒ there is a maximal consistent pair (x ′,y ′) such that

xB ∩ x ′ = ∅ & A ∈ x ′

(10) CA ∈ y =⇒ there is a maximal consistent pair (x ′,y ′) such that
x ∩ x ′C = ∅ & A ∈ x ′

(11) IA ∈ x =⇒ there is a maximal consistent pair (x ′,y ′) such that
xI ∪ x ′ = L & A ∈ y ′

(12) JA ∈ x =⇒ there is a maximal consistent pair (x ′,y ′) such that
x ∪ x ′J = L & A ∈ y ′

where x◦ = {A | ◦A ∈ x} for ◦ ∈ {B,C,I,J}.

Proof. We look at only (11). Assume that IA ∈ x, i.e. x ` IA. First we show
that (xI)c 0 A, where (xI)

c = L \ xI. Suppose the contrary. Then there are
B1, . . . ,Bn < xI such that B1 ∧ · · ·∧Bn ` A. By the basic principles for I and
Cut, it follows that IA ` IB1 ∨ · · · ∨ IBn. By Cut with x ` IA, we have
x ` IB1 ∨ · · · ∨ IBn, hence IB1 ∨ · · · ∨ IBn ∈ x. But by (5), IBi ∈ x for
some i, which means that Bi ∈ xI. A contradiction. Applying Lemma 4.4 to
(xI)

c 0 A, we obtain a maximal consistent pair (x ′,y ′) such that (xI)c ⊆ x ′
and A ∈ y ′. (xI)c ⊆ x ′ is equivalent to xI ∪ x ′ = L. �

This proposition suggests the following definition of canonical model.

Definition 4.6. We define the canonical model 〈W∗,6∗,_∗,^∗, |=∗〉 as:

W∗ := {x ⊆ L | (x, xc) is a maximal consistent pair},
x 6∗ x ′ ⇐⇒ x ⊆ x ′

x_∗ x ′ ⇐⇒ xB ∩ x ′ = x ∩ x ′C = ∅
x^∗ x ′ ⇐⇒ xI ∪ x ′ = x ∪ x ′J = L

x |=∗ p ⇐⇒ p ∈ x.

It is immediate that the valuation |=∗ is hereditary and that the frame condi-
tions are satisfied. Hence the canonical model is a BiNmodel.

Now the following lemma almost completes the proof of completeness.

Lemma 4.7. For any x ∈W∗ in the canonical model and any formula A,

x |= A ⇐⇒ A ∈ x.
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Proof. Induction on the complexity of A. Use Lemma 4.5. �

Theorem 4.8 (Completeness). If a sequent is valid, then it is derivable in
δBiN.

Proof. Suppose that X 0 Y. Then obviously τ1(X) 0 τ2(Y). By Lemma 4.4, we
have a maximal consistent pair (x,y) such that τ1(X) ∈ x and τ2(Y) ∈ y. By
Lemma 4.7, x |= τ1(X) and x 6|= τ2(Y) in the canonical model. That is, the
sequent X ` Y is not valid. �

We note that each accessibility is determined by one of its two conditions
because they are equivalent.

Lemma 4.9. In the canonical model,

xB ∩ y = ∅ ⇐⇒ x ∩ yC = ∅
xI ∪ x ′ = L ⇐⇒ x ∪ x ′J = L.

Proof. Assume that xB∩y = ∅, and yetA ∈ x∩yC for someA. Then CA ∈ y,
so CA < xB, and hence BCA < x. ButA ∈ x implies BCA ∈ x sinceA ` BCA
is provable. A contradiction. Therefore x ∩ yC = ∅. The converse and the
case for I,J are similar. �

This fact tells that once you introduce a negative modality you obtain its
split twin for free.

5 The united kite of negation

The four negations discussed so far are very weak. Stronger negations
are obtained by imposing various constraints or axioms. The family of such
negations has been pictured in the form of a “kite”, one for impossibility type,
one for unnecessity type. In subsection 5.1, we review the correspondences
between frame constraints and axioms investigated in the literature, show
that (almost) all of them can be represented by structural rules of our display
calculus, and raise problems concerning double negation elimination and
correspondence to star semantics. In 5.2, we define a translation of sequents,
rules, and frame constraints, which gives the kite of unnecessity from that
of impossibility at one time. Comparison of the two kites tells us that
identifying impossibility and unnecessity would solve the problem raised.
We present axioms, constraints, and structural rules for that.

5.1 The kite of impossibility

Let us begin with the kite of impossibility. Below is a list of corresponding
pairs of axioms and frame constraints. All of them already appeared in
Dos̆en’s work [11] except for FDM (Final de Morgan), which we can find in
[33]. See also [2, 13, 17, 32, 44] for detailed proofs and discussions.
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Theorem 5.1. In the table below, each sequent (axiom) is valid in a frame if
and only if the frame satisfies the constraint in the same row. Moreover they
are all canonical. That is, for each extension of BiNwith some axioms below,
its canonical model satisfies the corresponding constraints.

DNI A ` BBA ∀xy : x_ y⇒ y_ x

Con A→ B ` BB→ BA ∀xy : x_ y⇒ ∃z : x 6 z&y 6 z& x_ z

LNC A∧ BA ` B ∀x : x_ x

B>⊥ B> ` ⊥ ∀x∃y : x_ y

LEM B ` A∨ BA ∀xy : x_ y⇒ x > y

FDM B(A∧ B) ` BA∨ BB ∀xyz : x_ y& x_ z⇒
∃w : y 6 w& z 6 w& x_ w

DNE BBA ` A ∀x∃y : x_ y&∀z : y_ z⇒ x > z

These pairs can be represented by structural rules of δBiN. Although
we found them by hand, they could be automatically obtained from axioms
through the general recipe presented in [7].

Theorem 5.2. Each of the following structural rules correponds to the con-
straint with the same name. That is, a frame satisfies the constraints if and
only if the rule preserves the validity in the frame. And Cut elimination
holds for any extension of δBiN with any set of these structural rules.

X ` ]Y
(DNI)

Y ` ]X
X ` ](Y ; Z)

(Con)
X ` Y > ]Z

X ` ]Y
(LNC)

X ` Y > I

X ` ]I
(B>⊥)

X ` I
X ; Y ` Z

(LEM)
X ` ]Y ; Z

X ` ](Y ; Z)
(FDM)

X ` ]Y ; ]Z

Proof. We present derivations of axioms using corresponding structural rules
(double lines indicate (consecutive) applications of display rules).

A ` A B ` B (→L)
A→ B ` A > B
A→ B ; A ` B

(BL)
BB ` ](A→ B ; A)

(Con)
BB ` A→ B > ]A

A→ B ; BB ` ]A
(BR)

A→ B ; BB ` BA
A→ B ` BB > BA (→R)
A→ B ` BB→ BA

A ` A (BL)
BA ` ]A

(LNC)
BA ` A > I
A ; BA ` I

(∧L)
A∧ BA ` I

A ` A (KL)
I ; A ` A

(LEM)
I ` ]A ; A

I > A ` ]A
(BR)

I > A ` BA
I ` A ; BA

(∨R)
I ` A∨ BA
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A ` A (BL)
BA ` ]A

(DNI)
A ` ] BA

(BR)
A ` B BA

I ` > (BL)
B> ` ]I

(B>⊥)
B> ` I (KR)
B> ` ⊥

...
A;B ` A∧ B

(BL)
B(A∧ B) ` ](A;B)

(FDM)
B(A∧ B) ` ]A; ]B

B(A∧ B) > ]A ` ]B
(BR)

B(A∧ B) > ]A ` BB
B(A∧ B) > BB ` ]A

(BR)
B(A∧ B) > BB ` BA
B(A∧ B) ` BA;BB

(∨R)
B(A∧ B) ` BA∨ BB

Recall that > = q→ q so I ` > is derivable in δBiN.
Soundness of each rule with respect to the corresponding constraint is

easily checked. For Cut elimination, it suffices to check by eye that the
conditions for general Cut elmination hold. �

Now familiar negations are obtained by adding some of the above axioms
(or correspondingly, constraints or structural rules). The hierarchy was
originally depicted by Dunn [15, 14, 16] in the form of a kite, but now no
longer looks like so through modifications [38, 44] 6:

Classical

De Morgan

Int

Min

Qmin

Pmin

Ockham

LNC or LEM

LEM

LNC

DNE

Con

DNI
FDM+B>⊥

DNI+DNE

The weakest negation in our framework, B in BiN with no addtional
axiom or constraints, is preminimal negation (Pmin), which is what we called
split negation with its twin C 7. It is clear that adding DNI (Double Negation
Introduction) or symmetry of the accessibility _, the split negations get
equated, i.e. we have BA a` CA. The collapsed negation is quasi-minimal

6An even more comprehensive diagram can be found in [35]. It contains those negations
that cannot be captured by the compatibility or exhaustiveness semantics.

7Here we follow [17, 44] for the nomenclature of negations.
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negation. The axiom Con (minimal Contraposition) turns quasi-minimal
negation into minimal negation. It is equivalent to the negation in minimal
logic defined as A→ r for some fixed, arbitrary atom r.

If one assumes further the axiom LNC (Law of Non-Contradiction), or
equivalently requires that _ be reflexive, B gets absorbed to intuitionistic
negation. Indeed, the axiom B>⊥ or the seriality constraints suffices. It is
easily checked that Con + DNI + B>⊥ is equivalent to Con + LNC. While
we have BA a` ¬A under these constraints, _ is not necessarily equated
with 6. Instead we then have _ = 6 ◦>. And notice that the clause for ¬A
can be rephrased as:

x |= ¬A ⇐⇒ ∀y : x 6 ◦ > y⇒ y 6|= A.

This explains the equivalence BA a` ¬A.
Finally classical negation8 is obtained by adding LEM (Law of Excluded

Middle) or DNE (Double Negation Elimination). The extension is not con-
servative in a sense because it makes the whole logic classical (Peirce’s law
((A → B) → A) → A becomes provable). And classical logic is also ob-
tained by MC (Material Conditional) which corresponds to symmetry of the
information order 6.

MC A→ (B∨ C) ` (A→ B)∨ C
X ` Y > (W ; Z)

(MC)
X ` (Y > W) ; Z

Back to quasi-minimal negation and strengthen it with DNE. We obtain
de Morgan negation. The constraint for DNE implies the star postulate (found
by Restall [34], the name taken from [24]), in effect that every state has a
maximal state among those compatible with x, namely:

∀x∃y : x_ y&∀w : x_ w⇒ y > w, (*)

and they is the star statex∗ ofx (we have it thatx |= BA iffx∗ 6|= A). Moreover,
the ∗-function is of period two since we have x 6 x∗∗ by symmetry of _
(DNI) and x∗∗ 6 x by DNE. De Morgan negation is reduced to classical
negation by adding LNC or LEM.

There is another way to get at de Morgan negation. Ockham negation
is preminimal negation plus FDM and B>⊥. According to Zhou [44], it is
the weakest negation that has star semantcs, or equivalently that is com-
plete with respect to the class of frames satisfying the condition (*) above
(He called them star-crossed frames). De Morgan negation is equivalently
rewritten as Ockham negation (*) plus DNI and DNE (x = x∗∗).

We raise two problems here. First, as noticed, no structural rule for DNE
has been found. We don’t have a proof of that there is none either. But

8 Or Ortho negation if the base logic of conjunction and disjunction is non-distributive.
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the general recipe in [7] is not applicable to it (the axiom BBA ` A is not
soluble in their term). There is a lacuna to be filled in the whole picture.
Secondly, although the extension of δBiNwith the axioms FDM+B>⊥ (the
logic of Ockham negation) is complete with respect to star-crossed frames, it
does not correspond to the condition (*). There is a frame that satisfies the
conditions for FDM + B>⊥ (hence validates them) but not (*) 9. Here is a
lack of correspondence.

These are problems concerning Ockham and de Morgan (and hence clas-
sical) negation. These problems will be solved by introducing another way
to obtain these “self-dual” (in the sense shortly made clear) negations, that
is, by redefining them as fusions of two negations. To see this, we shoud
look at the kite of unnecessity.

5.2 The kite of unnecessity

Corresponding triples of axioms, frame constraints, and structural rules for
unnecessity can be obtained through a “dualising” translation from the list
for impossibility above. Define the translation (−)• of formulas as: p• = p

for atom p and

(A∧ B)• = A• ∨ B• (A∨ B)• = A• ∧ B•

(A→ B)• = B• ← A• (A← B)• = B• → A•

(BA)• = IA• (CA)• = JA•

(IA)• = BA• (JA)• = CA•

The translation extends to sequents built from structures, and inferences:

I• = I A• = A•

(X ; Y)• = X• ; Y• (X > Y)• = Y• > X•

(]X)• = ]X• ([X)• = [X•

(X ` Y)• = Y• ` X•
( X ` Y
W ` Z

)•
= Y• ` X•
Z• `W•

It should be clear how to extend it to expressions involving schematic letters.
For example, axioms and rules are translated as:(
A∧BA ` B

)•
= B ` A∨IA

(
B(A∧B) ` BA∨BB

)•
= IA∧IB ` I(A∨B)( X ` ]Y

X ` Y > I
)•

=
]X ` Y

I > X ` Y
( X ` ](Y ; Z)
X ` Y > ]Z

)•
=

](X ; Y) ` Z
]X > Y ` Z

9Consider the frame of the natural numbers with its standard ordering, and the universal
compatibility relation, that is, n _ m for any natural numers n and m. Then the frame
conditions and additional conditions for FDM and B>⊥ are trivially satisfied. But there
is no maximal state (number) that is compatible with, say, 0 since 0 is compatible with all
natural numbers.
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Further we extend it to (first-order expressions of) frame constraints ϕ.
Let ϕ• be the constraint obtained from ϕ by replacing all _ with ^ and all
6 with >, and vice versa. For example,(

∀xy : x_ y⇒ x > y
)•

= ∀xy : x^ y⇒ x 6 y

The following propositions ensure that correspondence among axioms,
constraints, and rules is preserved through the translation.

Proposition 5.3. A sequent S is derivable in an extention of δBiInt with a
structural rule R if and only if S• is derivable in δBiInt+ R•.

Proposition 5.4. A sequent S is valid in any frame that satisfies a constraint
ϕ if and only if S• is valid in any frame with the constraint ϕ•.

Proposition 5.5. A constraint ϕ is satisfied by any frame that validates a
sequent S if and only if ϕ• is satisfied by any frame that validates S•.

The latter two propositions follow from the lemma below:

Lemma 5.6. For any modelM = 〈W,6,_,^, |=〉, letM• := 〈W,>,^,_, |=•〉,
where x |=• p if and only if x 6|= p. It is easy to see that the heredity property
and the frame conditions are satisfied in M•. Then for any x ∈ W and any
formula A,

x |= A ⇐⇒ x 6|=• A•.
Proof. Induction on the complexity of A. We look at two cases.

x |= A→ B ⇐⇒ ∀y : x 6 y&y |= A⇒ y |= B

⇐⇒ ∀y : y > x&y |= A⇒ y |= B

⇐⇒ ∀y : y > x&y 6|=• A• ⇒ y 6|=• B• (IH)
⇐⇒ x 6|=• B• ← A• [= (A→ B)•].

x |= BA ⇐⇒ ∀y : x_ y⇒ y 6|= A
⇐⇒ ∀y : x_ y⇒ y |=• A• (IH)
⇐⇒ x 6|=• IA• [= (BA)•].

�

Here are the list and kite for I.

(DNI)• = DNEI IIA ` A ∀xy : x^ y⇒ y^ x

(Con)• = DCon IA← IB ` B← A ∀xy : x^ y⇒ ∃z : x > z&y > z& x^ z

(LNC)• = LEMI B ` A∨ IA ∀x : x^ x

(B>⊥)• = >I⊥ > ` I⊥ ∀x∃y : x^ y

(LEM)• = LNCI A∧ IA ` B ∀xy : x^ y⇒ x 6 y

(FDM)• = DFDM IA∧ IB ` I(A∨ B) ∀xyz : x^ y& x^ z⇒
∃w : y > w& z > w& x^ w

(DNE)• = DNII A ` IIA ∀x∃y : x^ y& ∀z : y^ z⇒ x 6 z
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]X ` Y
(DNII)

]Y ` X
](X ; Y) ` Z

(DCon)
]X > Y ` Z

]X ` Y
(LEMI)

I > X ` Y
]I ` Y

(>I⊥)
I ` Y

X ` Y ; Z
(LNCI)

X ; ]Y ` Z
](X ; Y) ` Z

(DFDM)
]X ; ]Y ` Z

D-Classical

D-De Morgan

D-Int

D-Min

D-Qmin

D-Pmin

D-Ockham

= ClassicalI

= De MorganI

= OckhamI

LEMI or LNCI

LNCI

LEMI

DNII

DCon

DNEI
DFDM+>I⊥

DNII+DNEI

The subscript (−)I indicates that the negation, axiom or rule is expressed by
I. (−)B will also be used to avoid confusion. The initial “D” is for “dual”.

Each node of the above kite is the translation of the corresponding impos-
sibility. For example, the translation of the basic principles ofB (that specifies
preminimal negation) specifies dual preminimal negation (D-Pmin) as listed
below (items on the same row are associated by the translation). Indeed they
are the basic principles of unnecessity. Now you will notice that dual Ock-
ham, de Morgan, and classical negations are just Ockham, de Morgan, and
classical negations expressed by I. Each of them satisfies the same princi-
ples as the translated one (so we write like “OckhamI”). Thus, these three
negations translates into themselves through the dualising (−)•, hence they
can be called self-dual negations.

D-Pmin A ` B
IB ` IA

A ` B
BB ` BA Pmin

I> ` ⊥ > ` B⊥
I(A∧ B) ` IA∨ IB BA∧ BB ` B(A∨ B)

D-Ockham IA∧ IB ` I(A∨ B) B(A∧ B) ` BA∨ BB OckhamB
= OckhamI > ` I⊥ B> ` ⊥

D-De Morgan A ` IIA BBA ` A De MorganB
= De MorganI IIA ` A A ` BBA

D-ClassicalI B ` A∨ IA or A∧ BA ` B or ClassicalB
= ClassicalI A∧ IA ` B B ` A∨ BA
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5.3 Identification of impossibility and unnecessity

As can be seen from the table above, the basic principles of I contain the ad-
ditional axioms (FDM and B>⊥) for OckhamB, expressed by I. Conversely,
the additional axioms for OckhamI have the same form as two of the basic
principles for B. This suggests that if we identify B and I, that is, if we
add to preminimal (or dual preminimal) negation the axioms BA ` IA and
IA ` BA, then the resultant negation is Ockham negation. Identifying the
dual negations is another way to obtain self-dual negations. These axioms
can be represented by frame constraints and structural rules.

Proposition 5.7. Below is the corresponding triples for identification of B
and I. They are also canonical.

IB IA ` BA ∀xzw : x_ z& x^ w⇒ z 6 w X ` Y (IB)
]Y ` ]X

BI BA ` IA ∀x∃y : x_ y& x^ y [X ` [Y (BI)
Y ` X

Proof. We look at only correspondence and canonicality for IB. It is routine
to check that the constraints validate the axiom and rule. The axiom is
derived using the rule as follows:

A ` A (IB)
]A ` ]A

(IL)
IA ` ]A

(BR)
IA ` BA

Now suppose that a frame does not satsify the constraint. Then we have
x, z, and w such that x_ z, x^ w, but z � w. Define a valuation of p as:

u |= p ⇐⇒ z 6 u.

It is clear that this valuation is hereditary. Then since z � w, we havew 6|= p,
and hence x |= Ip. On the other hand, z |= p since z 6 z. Therefore
x 6|= Bp by x _ z. Thus IA ` BA is not valid in any frame without the
constraint. This extablishes correspondence among the axiom, constraint,
and structural rule.

Finally to show canonicality, suppose that x _∗ z and x ^∗ w in the
canonical model. We show z ⊆ w. If A ∈ z, then since xB ∩ z = ∅, we have
A < xB, that is, BA < x. By IA ` BA, it follows that IA < x. But since
x^∗ w, i.e. xI ∪w = L, we can conclude that A ∈ w, and hence z ⊆ w. �

Let us denote by B = I the pair of these axioms or constraints. The point
of using B = I can be seen clearly from:

Proposition 5.8. The constraint B = I is equivalent to the following condi-
tion:

∀x∃y : x_ y& x^ y&∀z : x_ z⇒ z 6 y& ∀w : x^ w⇒ y 6 w. (**)

Australasian Journal of Logic (12:4) 2015, Article no. 1



195

Proof. Assume B = I. Then for any x, we have y such that x_ y and x^ y

by BI. And x _ z, together with x ^ y, implies z 6 y by IB. Similarly
for the last conjunct. Thus, B = I implies (**). Conversely, (**) obviously
implies BI. And if x _ z and x ^ w, then by (**), z 6 y and y 6 w, and
hence z 6 w. Thus IB holds. �

The condition (**) is a stronger version of (*), which claims the existence
of a special state x∗(= y in the proof) for each state x that is not only maximal
among the compatible, but also minimal among the jointly exhaustive with
x. Of course we then have:

x |= BA ⇐⇒ x∗ 6|= A ⇐⇒ x |= IA.

Note that now there is correspondence between the axioms and (**), which
was lacked in the case of (*). The language of B (or compatibility) does not
have enough expressive power to represent star-crossed frames. Both of
B and I (or correspondingly, compatibility and exhaustivity) are required.
And in particular, we have revealed that assuming the existence of star states
is nothing but identifying impossibility with unnecessity.

Moreover this strategy solves the other problem as well: the lack of struc-
tural rule for DNEB (and one for DNII by the translation), which is necessary
for obtaining De Morgan negation. Recall that De Morgan negation is Ock-
ham negation augmented with DNE and DNI. But now Ockham negation
is supposed to be the fusion of B and I. So De Morgan negation then can be
obtained by adding DNIB and DNEI only. And they have structural rules.
We do not need DNEB and DNII:

De Morgan = Ockham + DNE + DNI
= (B = I) + DNE + DNI
= (B = I) + DNEI + DNIB.

Now we have got the united kite:

Classical

De Morgan

D-Int Int

D-Min Min

D-Qmin Qmin

D-Pmin Pmin

Ockham

LEMB or LNCI

LNCI LEMB

LEMI LNCB

B=I

w/ Qmin
B=I

w/ D-Qmin
DCon Con

DNEI DNIB
B=I B=I

DNEI DNIB
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Note that Qmin (D-Qmin) should be identified by B = I with D-Qmin
(Qmin) which has DNEI (DNIB) to get at De Morgan.

Now all the axioms in this figure have its corresponding structural rules.
In other words, each negation placed below Classical negation in the kite is
obtained from Classical negation by restricting some structural rules. In this
sense they are substructural negations.

6 Bi-relational frames

We have been working with “tri-relational” frames (and models), namely
frames equipped with, besides information order, compatibility and exhaus-
tiveness relations independent from each other. In this section we consider
identifying them. It reveals the expressive power of Bi-Intuitionistic logic.

Dunn and Zhou [17] propose the following axioms (in our symbols):

BA∧ IB ` I(A∨ B) B (A∧ B) ` BA∨ IB

The logic BiN plus these axioms is complete with respect to the class of
bi-relational frames in which the unique modal accessibility, say R, takes care
of both B and I, and satisfies only the weaker frame conditions:

6 ◦ R ⊆ R ◦> > ◦ R ⊆ R ◦6

The former is for heredity of B and the latter for I. The problem is that the
pair of axioms does not correspond to the constraint _ = ^ in tri-relational
frames10.

Božić and Došen consider a different idea in the context of intuitionistic
(positive) modal logic, HK�♦ [5]. The frame for HK�♦ is also defined as
tri-relational in the first place. To � and ♦, distinct relations, say R� and
R♦, are associated, and frame conditions for them are required to ensure
heredity. To make it a bi-relational frame logic they added to HK�♦ the
following axioms that contain intuitionistic negation:

♦A∨ �¬A ¬(♦A∧ �¬A).

But their axioms are not satisfactory either. As in Dunn and Zhou’s case,
the logic HK�♦ plus the above axioms is complete with respect to the class

10 Consider a frame F of two states x, y, with x_ x, x^ x, x_ y, y_ x, y^ x, y_ y,
y 6 x, x 6 x, and y 6 y. In this frame, though _ ,^, the two axioms above are valid.
BA ∧ IB ` I(A ∨ B): Suppose that x |= BA ∧ IB. Then x 6|= A by x _ x, and x 6|= B

since x^ x and there is no other complement state of x. So we obtain x |= I(A∨ B). And
if y |= BA∧ IB, we have x 6|= A∨ B, and hence y |= I(A∨ B).
B(A∧ B) ` BA∨ IB: Suppose x |= B(A∧ B). Then x 6|= A∧ B. Suppose in addition that

x 6|= BA. Then A holds at x or y. But in either case we have x |= A since y 6 x. So x 6|= B,
and hence x |= IB by x ^ x. And similarly if y |= B(A ∧ B) and y 6|= BA, then x |= A and
hence x 6|= B. Since y^ x, we obtain y |= IB. Thus B(A∧ B) ` BA∨ IB is also valid in F.
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of bi-relational frames, where the unique modal accessibility satisfies only
the weaker frame conditions as an accessibility for ♦. In their terms, the
accessibility is (strictly) condensed as one for � but not condensed as one
for ♦. And the axioms also do not correspond to the constraint R� = R♦ in
tri-relational frames. Indeed, ♦A ∨ �¬A does correspond to the constraint
R� ⊆ R♦, but ¬(♦A∧�¬A) does not correspond to the converse, R♦ ⊆ R�11.

The lack of correspondence and duality can be remedied by using dual
intuitionistic negation.

Proposition 6.1. The following structural rule, axiom, and frame constraint
correspond to each other and canonical in the same sense as above:

]X ` Y
I > X ` [(I > Y)

, B ` B∼A∨ IA and _ ⊆^.

And by the translation (−)•, we have another triple:

X ` ]Y
[(X > I) ` Y > I

, I¬A∧ BA ` B and ^ ⊆_.

Thus, these pairs of rules or axioms correspond to the class of birelational
frames (that is, frames in which _ = ^).

Proof. Below is a derivation of the axiom. An inference appealing to the
structural rule is indicated by (_ ⊆^).

A ` A (IR)
]A ` IA

(_ ⊆^)
I > A ` [(I > IA)

(∼R)
∼A ` [(I > IA)
I > IA ` ]∼A

(BR)
I > IA ` B∼A
I ` B∼A ; IA

(∨R)
I ` B∼A∨ IA

Next we show that the axiom is valid in a frame F = 〈W,6,_,^〉 only if
_ ⊆ ^. Suppose that _ * ^, that is, there are points x,y in W such that
x_ y but x 6^ y. Define a valuation of an atom p as: for any u ∈W,

u |= p ⇐⇒ x^ u.

This valuation is hereditary in virtue of the frame condition for I. Then by
x 6^ y we have y 6|= p. And it follows from x _ y that x 6|= B∼A. On the

11Consider, for example, a frame F of two states x,ywith xR�x, xR♦x, xR♦y, yR�x, yR♦x,
yR♦y, y 6 x, x 6 x, and y 6 y. In this frame, the frame conditions (6 ◦ R� ⊆ R� ◦ 6 and
> ◦ R♦ ⊆ R♦ ◦>) are satisfied, R� ⊆ R♦ but not conversely, and the two axioms are valid.
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other hand, for all state u, if x ^ u, then u |= p. Hence x 6|= IA. Thus
x 6|= B∼A∨ IA.

Checking soundness of the structural rule is routine. Lastly let us show
the corresponding triple is canonical. Assume xB ∩ y = ∅ in the canonical
model. To show xI ∪ y = L, suppose A < xI, that is, IA < x. Then since
B∼A ∨ IA ∈ x, we have B∼A ∈ x, hence ∼A ∈ xB. So ∼A < y, which
implies A ∈ y by the theorem I ` A∨ ∼A in Bi-Intuitionistic logic. �

We note that B∼ is just a necessity operator along the accessibility _ and
I¬ is a possibility operator along ^.

x |= B∼A ⇐⇒ ∀y : x_ y⇒ y 6|= ∼A

⇐⇒ ∀y : x_ y⇒ ∀z 6 y : z |= A

⇐⇒ ∀y : x_ y⇒ y |= A

(∵_ = _ ◦> : the frame condition for C)
x |= I¬A ⇐⇒ ∃y : x^ y & y 6|= ¬A

⇐⇒ ∃y : x^ y & ∃z > y : z |= A

⇐⇒ ∃y : x^ y & y |= A

(∵^ = ^ ◦6 : the frame condition for J)

So the axiom B ` B∼A∨ IA says that if A is not necessary along _ then it
is un-necessary along ^, and I¬A∧ BA ` B that it is not the case that A is
both possible along ^ and impossible along _.

In the logic of positive modal operators,�¬A can express impossibility of
A along R�. That is why ♦A∨ �¬A corresponds to the constraint R� ⊆ R♦.
On the other hand for the converse R♦ ⊆ R�, we need an expression of
unnecessity along R♦, but it requires dual intuitionistic negation. In fact,
¬(�A∧♦∼A), in which♦∼A expresses unnecessity along R♦, corresponds
to R♦ ⊆ R�.

7 Conclusion

We have seen how our familiar negations are obtained by imposing struc-
tural rules or frame constraints upon the weakest negation (weakest in our
framework). Conversely, those negations are obtained from the strongest,
Classical negation by restricting structural rules. In this sense, they are
substructural negations.

This is, we think, more than a matter of wording because we met a phe-
nomenon characteristic to substructural logics, namely, fusion or splitting
of logical operators. It was one of important discoveries of linear logic that
conjunction and disjunction split into the additive and the multiplicative
through restriction of structural rules. Analogously to this, self-dual nega-
tion is analyzed as a fusion of two negations dual to each other, or it divides
into two by restricting structural rules.
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This analysis, as we have seen, makes the whole picture nicer. Double
negation laws can be expressed by structural rules. The condition for star-
crossed frames has the corresponding axioms and structural rules. It might
be said that the analysis is conceptually not so appealing, though. It blurs
the distinction between the universal and existential quantifiers (for impos-
sibility and unnecessity respectively). Self-dual negation, then, might be
regarded as a confusion. Is it a way of making good sense of them? I believe
it is. I expect that a dualist conception exemplified by the analysis presented
here would give us a deeper understanding of symmetry underlying nega-
tion and logic in general. But to flesh it out requires a more comprehensive
formal framework and a more detailed philosophical discussion, which are
beyond the reach of this paper 12.
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[6] Buisman, L., and Goré, R. A cut-free sequent calculus for bi-
intuitionistic logic. In Automated Reasoning with Analytic Tableaux and
Related Methods, N. Olivetti, Ed. Springer, 2007, pp. 90–106. http:
//dx.doi.org/10.1007/978-3-540-73099-6_9.

[7] Ciabattoni, A., Ramanayake, R., andWansing, H. Hypersequent and
display calculi: a unified perspective. Studia Logica 102 (2014), 1245–
1294. http://dx.doi.org/10.1007/s11225-014-9566-z.

12The conceptual concern about the analysis of self-dual negation is rightly raised by the
anonymous referee. The author is grateful to the referee also for many useful comments
and suggestions. My thanks go as well to Katsuhiko Sano for discussion on a draft of the
paper. This work is partly supported by Grant-in-Aid for JSPS Fellows.

Australasian Journal of Logic (12:4) 2015, Article no. 1

http://dx.doi.org/10.1007/BF00284976
http://dx.doi.org/10.1007/BF00284976
http://dx.doi.org/10.1007/BF00284976
https://www.academia.edu/6511039/A_Modality_Called_Negation_-_Mind
 https://www.academia.edu/6511039/A_Modality_Called_Negation_-_Mind
https://www.academia.edu/6511039/A_Modality_Called_Negation_-_Mind
 https://www.academia.edu/6511039/A_Modality_Called_Negation_-_Mind
http://www.jstor.org/stable/1968621
http://www.jstor.org/stable/1968621
http://www.jstor.org/stable/1968621
http://www.jstor.org/stable/1968621
http://www.filozof.uni.lodz.pl/bulletin/pdf/12_3_2.pdf
http://www.filozof.uni.lodz.pl/bulletin/pdf/12_3_2.pdf
http://www.filozof.uni.lodz.pl/bulletin/pdf/12_3_2.pdf
http://www.filozof.uni.lodz.pl/bulletin/pdf/12_3_2.pdf
http://dx.doi.org/10.1007/BF02429840
http://dx.doi.org/10.1007/BF02429840
http://dx.doi.org/10.1007/BF02429840
http://dx.doi.org/10.1007/BF02429840
http://dx.doi.org/10.1007/978-3-540-73099-6_9
http://dx.doi.org/10.1007/978-3-540-73099-6_9
http://dx.doi.org/10.1007/978-3-540-73099-6_9
http://dx.doi.org/10.1007/978-3-540-73099-6_9
http://dx.doi.org/10.1007/s11225-014-9566-z
http://dx.doi.org/10.1007/s11225-014-9566-z


200

[8] Dos̆en, K. Intuitionistic double negation as a necessity operator.
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