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Abstract

It is shown that logical contradictions are derivable from natural transla-
tions into first order logic of the description and background assumptions of
the Soros Game, and of other games and social contexts that exhibit conflict
and reflexivity. The logical structure of these contexts is analysed using proof-
theoretic and model-theoretic techniques of first order paraconsistent logic. It
is shown that all the contradictions that arise contain the knowledge opera-
tor K. Thus, the contradictions do not refer purely to material objects, and
do not imply the existence of inconsistent, concrete, physical objects, or the
inconsistency of direct sensory experience. However, the decision-making of
rational self-interested agents is stymied by the appearance of such intensional
contradictions. Replacing the rational self-interest axioms with axioms for
an appropriate moral framework removes the inconsistencies. Rational moral
choice in conflict-reflexive social contexts then becomes possible.

1 Introduction
In the Soros Game (a version of the Prisoner’s Dilemma) there are three agents, the
banker, and players a and b. Each player is given a card by the banker. On one side
is written ‘Give the other player $5’, and on the other ‘Give me $1’. The players do
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not know each other or communicate with each other. At time t “ 0 each player
chooses one of the instructions to give to the banker, and the banker carries out the
instructions so given one minute later at time t “ 1. The game is played only once,
the players are rational and self-interested, and the preceding description and back-
ground assumptions of the game are common knowledge. The Soros Game Context
comprises the description of the game together with the background assumptions.

The simple, Soros Game version of the Prisoner’s Dilemma is used here in order to
emphasise the closed nature of the game. In many versions of the Prisoner’s Dilemma
there are unresolved questions concerning issues such as loyalty, revenge, the prior
knowledge or assumptions of the players, etc., which can confuse the analysis. How-
ever, the Soros Game Context is closed, i.e. it is taken as part of the meaning of the
game that there are no post-game consequences for the players beyond the financial
gains the players receive from playing the game. Thus, there is no more to the game
than is stated in the game context, and once the game is over it’s over.

It is shown that natural translations into the language of first order logic of
the Soros Game Context, and of other contexts such as the Surprise Examination
Context and the Centipede Game Context, are inconsistent, where a sentence A
(set of sentences S) is inconsistent if there is a formula B such that the logical
contradiction B ^  B is derivable from A (from some finite subset of sentences of
S).

The base logics used in the formalisations of these game contexts are as follows.
LP is extensional paraconsistent logic, the Logic of Paradox of Priest, 1979. Clas-
sical logic, CL, is obtained from LP by adding the rule Modus Ponens pMP q :
A, A_B ñ B. LPK is obtained from LP by adding S5-type modal rules for the
knowledge operator K. CLK, equivalent to the classical system S5, is obtained from
LPK by adding pMP q. Thus, the logics are set up in such a way that the classical
systems (paraconsistent systems) are obtained from the corresponding paraconsistent
systems (classical systems) by adding (removing) pMP q. Since a set of sentences S is
inconsistent using the classical system CL (CLK) if and only if S is inconsistent in
the corresponding paraconsistent system LP (LPK) (Theorems 2 and 3), both the
classical and paraconsistent systems can be used in deriving the inconsistency the-
orems. However, it is technically much easier to use classical logic for this purpose,
and in Theorem 4 it is proved that the Soros Game Context is inconsistent when
the base logic is the classical system CLK. Once the Soros Game Context has been
proved to be inconsistent, the base logic then switches to LPK so that the logical
structure of the inconsistency can be investigated. Clearly the classical systems are
of no use here, since every formula is derivable from an inconsistent set of sentences
in classical logic. The main result here is that when LPK is used as base logic,
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no inconsistencies in the realm of concrete physical objects are derivable (Theorem
5). For example, the inconsistency of the Soros Game Context does not imply that
Player a both does and does not receive a payoff of $5. The inconsistencies that arise
always contain the knowledge operator K, and do not contradict the consistency of
direct sensory experience.

Game theory has often been proposed as a logical foundation for economics, and
as a framework allowing the unification of economics with the other social sciences
(Gintis, 2000), i.e. game theory is often viewed as the particle physics and cosmol-
ogy of economics. If the simple Soros Game Context is inconsistent, then it seems
almost certain that virtually all other economic game contents which exhibit conflict
and reflexivity are inconsistent too. Does this mean that game theory is bust? By
no means. As will be seen from the analysis, the axioms that do the damage are
those that formalise the neoclassical economics assumption of rational self-interest.
However, while rational self-interest is assumed in classical game theory, it is ex-
plicitly excluded as an assumption in evolutionary game theory. These and other
inconsistency theorems may well deliver a fatal blow to classical game theory. They
are, however supportive of the evolutionary approach.

The term ‘reflexivity’ is used throughout the paper when discussing inconsis-
tent games. It is not yet clear what is the root cause of the inconsistencies arising
in game theory, and the use of terminology standard in mathematical logic, such
as ‘self-reference’, ‘vicious circle’, ‘impredicativity’, etc. would prejudge the issue.
For example, while there are clear analogies between the Soros Game Context and
the Liar Paradox, the analogy is not exact; the Soros Game Context is not self-
referential in any obvious sense. Thus, the suggestive, yet flexible term ‘reflexivity’
is used instead. ‘Reflexivity’ was coined in Soros (1987). The paper can be regarded
as a formalisation within paraconsistent logic of some of the fundamental insights
contained in Soros’s work.

The plan of the paper is as follows. Section 2 clarifies some points on the authors’
philosophical stance on paraconsistent logic and paraconsistent mathematics. Sec-
tions 3, 4 and 5 present the formal logical material. Section 6 proves the inconsistency
of the Soros Game Context, and analyses the logical structure of this inconsistency.
Section 7 interprets the derivations of the inconsistency of the Surprise Examination
Context and of other backwards induction contexts of Priest (2000) within the para-
consistent interpretation presented here. The paper concludes in Section 8 with a
review and discussion of the main results.
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2 Paraconsistent mathematics
The derivation of a logical contradiction can be interpreted as a reductio proof that
the purported entities do not in fact exist. For example, the proof of the inconsistency
of the Russell Set, R, of all sets that are not members of themselves is sometimes
taken as a proof that no such set exists. The alternative is to treat the proof of the
inconsistency of R as a valid demonstration that inconsistent mathematical objects
exist, an approach which has lead to the creation of the emerging field of paracon-
sistent mathematics. For paraconsistentists, inconsistent mathematical objects are
perfectly valid generalisations of ordinary consistent mathematical objects, and de-
nouncing such inconsistent objects as ‘the work of the Devil’ makes no more sense
than similar denunciations of the negative integers or imaginary numbers in previous
centuries.

The reductio interpretation is more compelling in paradoxes like that of the Bar-
ber of Seville, who shaves all those men in Seville who do not shave themselves, the
paradox arising when it is asked who shaves the Barber. The obvious conclusion,
given the implicit assumption that the Barber is a man, is that no such barber exists.
However, in the case of games the reductio strategy seems not to work. For example,
the Soros Game Context and other inconsistent game contexts apparently do exist,
since there are people who appear to have rationally and self-interestedly played the
Soros Game, while no one has ever been shaved by the Barber of Seville.

Inconsistent game contexts are of particular interest from the point of view of
paraconsistent mathematics. The inconsistent objects that mathematicians (or at
least those mathematicians actively working in the field of paraconsistent mathe-
matics) have hitherto accepted as real, are the kinds of entities that are in some
sense unobservable in principle, such things, for example as the Russell Set that oc-
curs at the Absolute Infinite, the infinity that lies beyond all infinities. Inconsistent
game contexts, however, bring paraconsistency down to Earth, since they arise in
many of the ordinary, everyday activities of business and economic life which exhibit
conflict and reflexivity.

However, paraconsistency cannot be brought down to Earth too far. Even the
most confirmed defender of paraconsistent mathematics baulks at the idea of, for
example an inconsistent beach ball that is red all over and green all over at the
same time. Such a concrete example of an inconsistent entity, contradicting the
consistency of direct sensory experience, could be accepted only at the expense of
radically and perversely changing the ordinary meanings of words. It appears to be
accepted by everyone that inconsistencies do not arise in the realm of the ordinary
concrete physical objects of everyday experience. However, game contexts, and other
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social constructs such as human-made laws, regulations, conventions and linguistic
entities, are abstract entities, not concrete objects, and the existence of inconsistent
game contexts does not imply the existence of inconsistent concrete objects. For
example, if two economics students Allie and Bobbie begin to play the Soros Game,
say, at 10.00 a.m., sitting at a certain table in a certain room in a certain college
building in a certain town, it does not follow from the inconsistency of the Soros Game
Context that Bobbie both has and does not have $5 in her hand at the completion
of the game. Thus, ‘At 10.01 a.m. the banker is handing Bobbie a $5 banknote’
is a sentence that is unambiguously true or unambiguously false, not both true
and false. The money held by Bobbie at the end of the game is, like the beach
ball, a concrete entity where no inconsistency can arise. What is inconsistent is
the sentence (an abstract object) describing the Soros Game Context, the sentence
itself modelling such abstract concepts as ‘knowledge’, ‘rationality’, ‘self-interest’ and
‘dominant strategy’.

That the inconsistency of abstract game contexts does not imply the inconsistency
of concrete physical entities follows from the results in the following sections, where
the structure of the inconsistency of the Soros Game Context is analysed using results
from the proof theory and model theory of paraconsistent logic.

3 Extensional paraconsistent logic
Sections 3, 4 and 5 present enough of the formal development of paraconsistent
and classical logic to give rigorous proofs of the technical results presented in the
paper. The notation, definitions and theorems given in Sections 3, 4 and 5 are fairly
standard. Readers can skim these sections to fix the notation and move on to Section
6.

An extensional first order language, L, comprises countably infinitely many in-
dividual variables, x, y, z, . . . ., the identity relation “, connectives  (negation), ^
(conjunction), _ (disjunction), the quantifiers @ (universal quantifier) and D (exis-
tential quantifier), and brackets (, ). These comprise the logical symbols of L, and
are common to all first order languages. L may contain, in addition certain non-
logical symbols, which depend on the application. The non-logical symbols comprise
individual constant symbols, a, b, c, . . . , n-place relation symbols, n ě 1, P n, Qn,
Rn, ..., and n-argument function symbols, n ě 1, fn, gn, hn, . . . . The particular
standard conventions used in this paper for building terms and formulas of L from
the symbols of L will be evident from the following development. It is noted, however
that AÑ B (material implication) is an abbreviation for p Aq_B and that AØ B
(material equivalence) is an abbreviation for pAÑ Bq ^ pB Ñ Aq.
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The closed Hilbert formulation of extensional paraconsistent logic, the Logic of
Paradox, LP , has the following axioms, rules and meta-rules.
Logical Axioms:

(A1) Every sentence of the form p@x0q...p@xnqpA_ Aq is a logical axiom of LP .

(A2) Every sentence of the form p@x0q...p@xnqt “ t is a logical axiom of LP .

Logical Inference Rules:

(R1) A,B ñ A^B (from A and B to infer A^B)

(R2) A^B ñ A (from A^B to infer A)

(R3) A^B ñ B

(R4) Añ A_B

(R5) B ñ A_B

(R6) Aô   A (Double Negation Law)

(R7)  pA^Bq ô  A_ B

(R8)  pA_Bq ô  A^ B (pR7q and pR8q are the De Morgan Laws)

(R9) A^B ô B ^ A

(R10) A_B ô B _ A (pR9q and pR10q are the Commutative Laws)

(R11) A^ pB ^ Cq ô pA^Bq ^ C

(R12) A_ pB _ Cq ô pA_Bq _ C (pR11q and pR12q are the Associative Laws)

(R13) A^ pB _ Cq ô pA^Bq _ pA^ Cq

(R14) A_pB^Cq ô pA_Bq^pA_Cq (pR13q and pR14q are the Distributive Laws)

(R15) Añ A^ A

(R16) A_ Añ A

(QR1) p@xqAñ Apt{xq

(QR2) Apt{xq ñ pDxqA
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(QR3) p@xq Aô  pDxqA

(QR4) pDxq Aô  p@xqA

(QR5) Añ p@xqA

(QR6) pDxqAñ A

(QR7) p@xqpA_Bq ñ p@xqA_B

(QR8) pDxqA^B ñ pDxqpA^Bq

(IR1) s “ t^Añ B, where B is obtained from A by replacing some free occurrences
of s with free occurrences of t.

In pQR1q and pQR2q the term t is free for x in A. In pQR5q and pQR6q x does
not occur free in A. In pQR7q and pQR8q x does not occur free in B.

Meta-rules:

(MR1) If Añ B is a rule then A^ C ñ B ^ C is a rule.

(MR2) If Añ B is a rule then A_ C ñ B _ C is a rule.

(MR3) If Añ B is a rule then p@xqAñ p@xqB is a rule.

(MR4) If Añ B is a rule then pDxqAñ pDxqB is a rule.

The closed Hilbert version of classical logic, CL, is obtained from LP by adding
just one rule scheme, Modus Ponens pMP q : A, A_B ñ B, for arbitrary formulas
A and B.

Let S be a set of formulas and A a formula. A derivation of A from S in LP is
a sequence of formulas A1, ..., An “ A such that for each i “ 1, ..., n:

1. Ai is a logical axiom of LP or an element of S, or

2. Ai follows from Aj and Ak by pR1q, for some j, k ă i, or

3. Ai follows from Aj by one of the other logical rules of LP .

If A is deducible from S then A is said to be a syntactic consequence of S, written
S $ A. For CL the definition is the same except that in (2) Ai may also follow from
Aj and Ak by pMP q, for some j, k ă i.
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4 Soundness and adequacy meta-theorems
Note that the following semantics is given in terms of the diagram of the model,
i.e. the set of atomic and negated atomic formulas that hold in the model, rather
than in terms of a truth function from atomic formulas into the truth values t0u
(false), t1u (true), and t0, 1u (true and false), as in Priest’s semantics for LP (Priest,
1979, 2006(a)). While both approaches give essentially the same technical results,
the diagram approach used here gives a somewhat smoother development overall for
the present applications and intended sequels.

An LP model for a language L is an ordered pair M “ă D, I ą, where D is
a non-empty domain, and I, the interpretation function, is a function from the set
of all individual constant symbols, relation symbols and function symbols of L such
that:

1. Ipcq is an element of D for each individual constant symbol c.

2. For each n-place relation symbol P n other than the identity relation symbol,
“, IpP nq is a set of expressions of the form P npd1, . . . , dnq or  P npd1, . . . , dnq,
where d1, . . . ., dn are elements of D, such that at least one of P npd1, . . . , dnq,
 P npd1, . . . , dnq is in IpP nq for every d1, . . . , dn in D.

3. Ip“q is a set of expressions of the form d1 “ d2 or  d1 “ d2, where d1 and d2
are elements of D, such that:

(a) d1 “ d2 is in Ip“q if and only if d1 is identical to d2, and

(b) If d1 is not identical to d2 then  d1 “ d2 is in Ip“q.

4. Ipfnq is an n-argument function from Dn to D for each n-argument function
symbol fn.

A valuation v onM is a function from the set of individual variables of L such that
vpxq is an element of D for each variable x. The valuation v is extended recursively
to a function on all terms by vpfnpt1, . . . , tnqq “ Ipfnqpvpt1q, . . . , vptnqq, for terms
fnpt1, . . . , tnq. If A is a formula then the satisfaction of A at v in M , (i.e. the
truth of A in M with respect to the valuation v), v (M A, is given by the following
recursive definition.

1. IfApt1, . . . , tnq is an atomic or negated atomic formula then v ( A iffApvpt1q, . . . , vptnqq
is in IpAq.
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2. v ( A^B iff v ( A and v ( B.

3. v ( A_B iff v ( A or v ( A.

4. v (  pA^Bq iff v (  A or v (  B.

5. v (  pA_Bq iff v (  A and v (  B.

6. v (   A iff v ( A.

7. v ( p@xqA iff v́ ( A for every valuation v́ that differs from v only in that v́
may take a different value of D at x. Such a v́ is called an x-variant of v.

8. v ( pDxqA iff v́ ( A for some x-variant v́ of v.

9. v (  p@xqA iff v́ (  A for some x-variant v́ of v.

10. v (  pDxqA iff v́ (  A for every x-variant v́ of v.

A is a semantic consequence of S, S ( A, if for every modelM and every valuation
v in M , v (M B for every formula B in S implies v (M A. A sentence A holds, or
is true in a model M if v (M A for every valuation v in M ; otherwise A fails, or is
false in M .

A classical model (CL model, or consistent model) is defined as for an LP model
except that clauses (1) and (2)(b) of the definition of the interpretation function I
are changed to (1)´ and (2)(b)´, as follows.

(1)´ For each n-place relation symbol P n other than the identity relation symbol,
“, IpP nq is a set of expressions of the form P npd1, . . . , dnq or  P npd1, . . . , dnq,
where d1, . . . ., dn are elements of D, such that exactly one of P npd1, . . . , dnq,
 P npd1, . . . , dnq is in IpP nq for every d1, . . . , dn in D.

(2)(b)´ Ip“q is a set of expressions of the form d1 “ d2 or  d1 “ d2, where d1 and d2
are elements of D, such that d1 is not identical to d2 if and only if  d1 “ d2 is
in Ip“q.

Theorem 1. (Soundness and Adequacy Meta-Theorems for LP and CL) Let
A be a formula and let S be a set of formulas in the language L. Then S $LP A
(S $CL A) if and only if S (LP A (S (CL A).

Proof. Soundness and adequacy meta-theorems for the closed Hilbert formulations of
paraconsistent and classical logic of this paper are given in the Appendix of Daynes
(2000) (where LP is called CPQ and CL is called CLQ).
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Although LP is much weaker than CL, it is nevertheless the case that if S is
inconsistent in CL then it is also inconsistent in LP .

Theorem 2. (a) Let A be derivable from S in CL. Let B0, B0 Ñ C0, . . . , Bn, Bn Ñ

Cn be all the antecedents of applications of pMP q used in this derivation. Then
A_pB0^ B0q_. . . _pBn^ Bnq is derivable from S in LP . (b) If S is inconsistent
in CL then it is inconsistent in LP .

Proof. (Outline) (a) If Bi, Bi Ñ Ci ñ Ci is a step in the CL derivation of A from
S, replace the step with the derived LP rule: Bi, Bi Ñ Ci ñ Ci _ pBi ^ Biq. The
extra disjunct pBi ^  Biq is then carried along as a passenger in the rest of the
derivation. (b) By (a), if a logical contradiction A ^  A is derivable from S in CL
then a formula, C, of the form pA^ Aq_pB0^ B0q_ . . . _pBn^ Bnq is derivable
from S in LP .  C is a logically valid formula of CL, and it is a well-known fact that
all classically valid formulas are derivable in LP . Therefore, the logical contradiction
C ^ C is derivable from S in LP .

5 Extensional and intensional logics
To formally model the rational self-interest assumption it is necessary to introduce
intensional knowledge operators, K, where for a sentence A, KA is interpreted as
‘It is known that A’. In general there will be more than one K operator. For
example, the intended interpretation of Kpa,tqA may be that A is known by a at time
t. However, in the analysis of the Soros Game only a single K operator is required.
This is because the context of the game is common knowledge, and because the
Soros Game is a 1-step game, so that there is no need to distinguish what is known
at different times. Thus KA is interpreted as ‘It is known (by everyone) at the start
of the game (at time t “ 0) that A’.

The logic CLK is obtained from CL by extending the definitions of Section 3 as
follows. The language of CL is expanded by adding a single knowledge operator K,
the formation rules for constructing formulas are extended by adding the formation
rule: If A is a formula then KA is a formula, and the following new logical axioms
and rules are adjoined.

(A3) If A is a logical axiom then KA is a logical axiom.

(KR1(a)) KAñ A

(KR1(b))  Añ  KA
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(KR2(a)) KA,KB ñ KpA^Bq

(KR2(b))  KpA^Bq ñ  KA_ KB

(KR3(a)) KAñ KKA

(KR3(b))  KKAñ  KA

(KR4(a))  K Añ K K A

(KR4(b))  K KAñ KA

(MRK) If Añ B is a logical rule then KAñ KB is a logical rule.

(KMP) KA,KpAÑ Bq ñ KB

pA3q says that rational agents know the axioms of logic, and pKR2paqq, pKMP q
and pMRKq say that rational agents know the logical consequences of known propo-
sitions. pKR1paqq says that known propositions are true. pKR3paqq formalises the
common knowledge assumption, since it says ‘If A is known (by everyone) then it is
known (by everyone) that A is known (by everyone)’. pKR4paqq says that if rational
agents know that A might be true, i.e. that A is not known to be false, then this
fact is known. pKRipbqq is the contrapositive of pKRipaqq, for i “ 1, 2, 3 and 4.

These new axioms and rules formalise a stronger notion of knowledge and ratio-
nality than is actually required in the inconsistency proofs. In particular, the rules
pKR4paqq and pKR4pbqq are not used anywhere in the inconsistency proofs, as is
evident from the proofs themselves. However, it is convenient to include pKR4paqq
and pKR4pbqq since it gives a logic with a much simpler formal semantics.

Paraconsistent modal logic, LPK is obtained from CLK by deleting pMP q and
rule pKMP q, the K version of Modus Ponens.

Note that CLK is just a reformulation of the first order modal logic S5 with
identity. Such a reformulation is necessary. It would be awkward to use a standard
formulation of S5, since deleting pMP q from such a formulation would not give LPK.

The semantics for CLK is the usual constant domain possible worlds semantics,
where the accessibility relation R is an equivalence relation. Thus, a CLK model,
M , of the first order language L can be taken to be a non-empty indexed set of CL
models M “ tMi “ă D, Ii ą: i P Ju, where each Mi is a CL world as in Section
4, such that the domain D of each world Mi is the same for each i P J , and such
that each interpretation function Ii, i P J , assigns the same element of D to each
individual constant symbol of L, and the same function to each function symbol of L.
For the identity relation symbol “, Iip“q “ td “ d : d P Du Y t d1 “ d2 : d1, d2 P D
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and d1 not identical to d2u, for each i P J . The relations assigned to the non-logical
relation symbols of L, however depend on the index i. A valuation, v, again assigns
an element vpxq of D to each individual variable x. The satisfaction of a formula A
at v at world Mi, v (Mpiq A is as for Section 4, extended with the clause: For every
i in J , v (Mpiq KA iff v (Mpjq A for every j P J . A sentence A is true in the model
M if every valuation v satisfies A in the distinguished base world M0.

The definitions for LPK are as for CLK except that now the Mi are taken to be
LP worlds, and the following clause for negated K formulas is added: For every i in
J , v (Mpiq  KA iff for some j P I, v (Mpjq  A.

While adequacy results are well-known for the classical first order modal logics,
the situation for paraconsistent first order modal logics is less clear. Priest (2008,
Appendix 11(a)) proves adequacy for the propositional fragments of various para-
consistent modal logics. While the extension of these results to the first order case
appears to be straightforward, there is currently no published proof in the literature.
However, for the purposes of this paper only the soundness of LPK with respect to
the semantics, and the following analogue of Theorem 2 are required.

Theorem 3. (a) Let A0, . . . , An be a derivation of An from S in CLK. Let Knp0qB0,
Knp0qpB0 Ñ C0q, . . . , K

npkqBk, K
npkqpBk Ñ Ckq be all the antecedents of applications

of pMP q used in this derivation (including the K versions of pMP q given by the rule
pKMP q, where K0A “df A, and Kn`1A “df KKnA). Then An _ pB0 ^  B0q _

. . . _pBk^ Bkq is derivable from S in LPK. (b) If S is inconsistent in CLK then
it is inconsistent in LPK.

Proof. (Outline) (a) The basic trick behind the proof is the same as in Theorem 2.
The details of the formal proof by induction on the length n of the derivation of An

from S are omitted. (b) follows directly from (a).

6 Paraconsistent analysis of the Soros Game
The Soros Game Context is defined as in Section 1. The standard non-formal analysis
of the Soros Game Context is as follows. Since the players a and b each have the
choices ‘Give the other player $5’ and ‘Give me $1’, considering a’s position it is clear
that a will be better off choosing to take $1 whatever choice is made by b. Similarly
it is clear that b will be better off choosing to take $1, whatever choice is made by a.
Thus, ($1, $1) is a Nash equilibrium of the game, and moreover, choosing to take $1
is a dominant strategy for each player. Therefore, the optimal strategies are for each
player to choose ‘Give me $1’ at time t “ 0, when they will receive $1 each at time
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t “ 1. The puzzling aspect of the game is that both players would have been better
off if each had chosen to give $5, when they would each have received $5. Despite
this the standard position in game theory is that the rational strategy for each player
is to choose to take $1.

It will now be shown that the following formalisation of the Soros Game in first
order logic is inconsistent.

The language of the Soros Game Context comprises:

The epistemic operator K (There is no need to have different K operators for
the banker and for the different players, since all the axioms of the Soros Game
Context are common knowledge. Also, since the Soros Game is a 1-step game
there is no need to distinguish knowledge at different times. Thus, only one
K operator is required, with KA meaning ‘It is known by everyone, at the
beginning of the game at time t “ 0, that A’).

Individual constant symbols T , G (the choices made at time t “ 0, where T is
to take $1 from the banker, and G is to instruct the banker to give $5 to the
other player), 0, 1, 5 and 6 (the numerals for the numbers zero, one, five and
six). In the interests of parsimony there is no need to introduce individual
constant symbols for the players a and b or the banker.

1-place relation symbols PC (where ‘PCpxq’ means that x is a permissible choice
at time t “ 0), Ca, Cb (where ‘Cipxq’ means that player i chooses x at time
t “ 0, i “ a, b), Pa, Pb (where ‘Pipxq’ means that player i receives payoff x at
time t “ 1, i “ a, b).

2-place relation symbol ă (where ă denotes the ordinary linear ordering of the
natural numbers, with 0 ă 1 ă 5 ă 6).

The axioms of the Soros Game Context are given next, each axiom being followed
by a non-formal English translation or explanation:

Axiom (1) If c and d are individual constant symbols from tT,G, 0, 1, 5, 6u then:

1. If c and d are distinct such symbols then  c “ d is an axiom.

2. If c and d are from the set of numerals t0, 1, 5, 6u and the numbers ć and d́
corresponding to c and d are such that ć is less than d́ then c ă d is an axiom;
otherwise  c ă d is an axiom.

3. p@xqpx “ T _ x “ G_ x “ 0_ x “ 1_ x “ 5_ x “ 6q.
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By Axiom (1) the domain of discourse contains exactly the six distinct objects
T , G, 0, 1, 5 and 6, and the usual ă relation holds between the numbers 0, 1, 5 and
6.

Axiom (2) p@xqpPCpxq Ø x “ T _ x “ Gq.

The permissible choices for the players at time t “ 0 are exactly T and G.

Axiom (3) pCapT q _ CapGqq ^ pCbpT q _ CbpGqq.

Players a and b each must make at least one of the permissible choices, T (take
$1) or G (give $5).

Axiom (4)  pCapT q ^ CapGqq ^  pCbpT q ^ CbpGqq.

No player can choose both T and G, i.e. at most one choice is permitted.

By Axioms (2), (3) and (4) each player makes exactly one choice from tT,Gu.

Axiom (5) pCapT q^CbpT q Ñ Pap1q^Pbp1qq^ pCapT q^CbpGq Ñ Pap6q^Pbp0qq^
pCapGq ^ CbpT q Ñ Pap0q ^ Pbp6qq ^ pCapGq ^ CbpGq Ñ Pap5q ^ Pbp5qq.

This gives the payoffs to players a and b at time t “ 1 depending on the choices
made by a and b at time t “ 0.

Axiom (6) p@xqp@yqpPapxq ^ Papyq Ñ x “ yq ^ p@xqp@yqpPbpxq ^ Pbpyq Ñ x “ yq.

No player can receive two different payoffs.

By the above axioms each player makes exactly one choice at time t “ 0, and
receives exactly one payoff at time t “ 1, these payoffs being determined by
the choices made by the players at the start of the game at time t “ 0 in
accordance with the payoff rules of the Soros Game.

Axiom (7) p@xqp@yqp@zqp@wqpKpPCpxq ^ PCpzq ^ pCapxq Ñ Papyqq ^ pCapzq Ñ
Papwqq^w ă yq Ñ Capxqq^ p@xqp@yqp@zqp@wqpKpPCpxq^PCpzq^ pCbpxq Ñ
Pbpyqq ^ pCbpzq Ñ Pbpwqq ^ w ă yq Ñ Cbpxqq.

If it is known that the payoff y to a at time t “ 1 of permissible choice x at
time t “ 0 is greater than the payoff w to a at time t “ 1 of permissible choice
z at time t “ 0, then a chooses x at time t “ 0, and similarly for b. The use of
material implication in this axiom requires further justification, as given below.

Axiom (8) p@xqpPCpxq^Kp@yqp@zqp@wqp@uqpPCpyq^PCpwq^ppCapxq^Cbpyq Ñ
Papzqq ^ pCapwq ^ Cbpyq Ñ Papuqq ^  x “ w Ñ u ă zqq Ñ Capxqqq ^
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p@xqpPCpxq^Kp@yqp@zqp@wqp@uqpPCpyq^PCpwq^ppCbpxq^Capyq Ñ Pbpzqq^
pCbpwq ^ Capyq Ñ Pbpuqq ^  x “ w Ñ u ă zq Ñ Cbpxqqq.

If it is known that the payoff, z, to a of permissible choice x is higher than the
payoff, u, of permissible choice w, for every permissible choice w different from
x, for any permissible choice, y, by b, then a chooses x, i.e. if it is known that
choosing x is a dominant strategy for a then a chooses x, and similarly for b.
This axiom too is given further justification below.

Axiom (9) If Axiom pnq, n “ 1, ..., 8, is an axiom of the Soros Game Context then
KpAxiom pnqq is an axiom of the Soros Game Context.

This, together with the K rules of CLK formalises the common knowledge
assumption.

The formalisation of the Soros Game Context, pSGCq, is defined to be the con-
junction of Axiom p1q to Axiom p9q.

Axioms p1q to p6q are self-evidently valid formalisations of very basic aspects
of the Soros Game Context and appear to be indisputable. Axioms p7q and p8q,
which formalise aspects of the rational self-interest assumption, appear to be unob-
jectionable provided Ñ is taken to be the indicative implication of ordinary English
(or maybe some other ordinary language implication, such as the subjunctive con-
ditional). However, Ñ stands for material implication, and is it generally accepted
that material implication is not an adequate formalisation of the ordinary language
indicative implication (and almost universally accepted that it is not an adequate for-
malisation of the ordinary language subjunctive conditional). Therefore, Axioms p7q
and p8q require further justification beyond the merely suggestive ordinary language
translations that follow the statements of the axioms.

Firstly, it is accepted that Axioms p7q and p8q do not fully capture the meaning
of the informal translations immediately following the statements of these axioms.
Indeed, it is clear that the most complete and accurate formalisations of economic
game contexts require the use of intensional implications, i.e. implications which,
unlike the extensional material implication, require some kind of many-worlds seman-
tics for their formal analysis. While there is considerable debate as to the correct
identification, classification, analysis and formalisation of the appropriate intensional
implications, it is certainly the case that game-theoretic contexts are intensional in
nature.

However, it is not required that the material implication forms of Axioms p7q
and p8q capture the full meaning of their ordinary language translations. While it is
accepted that pSGCq fails to capture the full meaning of the non-formal Soros Game
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Context, for the results of this paper it is sufficient only that the axioms of pSGCq
be true, given the intended interpretation of the formal symbols.

Perhaps the best way to see the truth of Axiom p7q is to take its negation,
 pAxiom p7qq, and to observe that a certain consequence of  pAxiom p7qq, the
sentence p˚q below, is clearly false of rational self-interested agents in the Soros
Game Context.
 pAxiom p7qq is the disjunction: p pAxiom p7qqqpaq _ p pAxiom p7qqqpbq “df

pDxqpDyqpDzqpDwqpKpPCpxq^PCpzq^pCapxq Ñ Papyqq^pCapzq Ñ Papwqq^w ă
yq ^  Capxqq _ pDxqpDyqpDzqpDwqpKpPCpxq ^ PCpzq ^ pCbpxq Ñ Pbpyqq ^ pCbpzq Ñ
Pbpwqq ^ w ă yq ^  Cbpxqq.

From the first disjunct, p pAxiom p7qqqpaq, the following sentence, p˚q, is deriv-
able in CLK, making use of Axioms p1q´p6q together with theK-versions of Axioms
p1q ´ p6q:

p˚q pDx1qpDy1qpDx2qpDy2qpKppCapx1q ^ Papy1qq _ pCapx2q ^ Papy2qqq ^Kpy1 ă y2q ^
KpPCpx1qq ^KpPCpx2qq ^ Capx1qq

Non-formally, in p˚q Agent a, i.e. Allie, says to herself: ‘I know that I will choose
x1 at t “ 0 and receive $y1 at t “ 1, or I will choose x2 at t “ 0 and receive $y2 at
t “ 1. In addition I know that y1 ă y2 and that both x1 and x2 are choosable, i.e.
that both x1 and x2 are permissible choices, and yet I will choose x1, i.e. I know
that choosing x1 gives a smaller payoff than choosing x2, and yet I will choose x1’.
But this is not how Allie would actually reason if she were acting rationally and
self-interestedly in the context of the Soros Game.

In the above argument the closed nature of the game becomes important. p˚q is
false for a rational self-interested Allie, because choosing x2 and receiving the higher
amount of $y2 has no consequences beyond the purely financial outcomes as given
by the game. For example, Allie’s choice does not provide knowledge useful to the
other player in future social interactions that would have adverse consequences for
Allie herself. Once the game is over it’s over.

Since p˚q follows from p pAxiom p7qqqpaq, and p˚q is false of rational self-interested
players in the closed context of the Soros Game, p pAxiom p7qqqpaq is false. By
an exactly analogous argument the second disjunct of  pAxiom p7qq, p pAxiom
p7qqqpbq, is also false. Thus,  pAxiom p7qq is false of rational self-interested agents
in the closed Soros Game Context, and so Axiom p7q must be the one that is true.

A similar analysis of the negation of Axiom p8q,  pAxiom p8qq, shows that Axiom
p8q is true under the intended interpretation of the formal symbols, since  pAxiom
p8qq says, in the presence of Axioms p1q´p6q together with theK-versions of Axioms
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p1q´p6q, that at least one of the players does not choose a known dominant strategy,
an assertion that is clearly false.

Finally, Axiom p9q expresses the non-controversial fact that the Soros Game
Context is known by both players.

Theorem 4. The Soros Game Context is inconsistent.

Proof. By Theorem 3(b), to show that the Soros Game Context is inconsistent, the
classical system CLK can be used as base logic. It is shown that there is a logical
contradiction K that is a CLK-semantic consequence of the Soros Game Context.
By the adequacy meta-theorem for CLK (i.e. for the classical modal logic S5), K
is CLK-syntactic consequence of the Soros Game Context. Thus, the Soros Game
Context is inconsistent. Let M “ tMi : Mi “ă D, Ii ą, i P Ju be a CLK model
with base world M0 such that all the axioms of the Soros Game Context are true in
M , i.e. such that all the axioms are true at the base world M0. By Axioms p1q to
p6q it is clear that choosing T is a dominant strategy for each player. By Axiom p9q,
Axioms p1q to p6q are known, and by the K rules of CLK the logical consequences
of known axioms are also known. Thus, it is known that choosing T is a dominant
strategy for each player. By Axiom p8q both a and b choose T . Thus CapT q^CbpT q
holds at M0. Again, by the K rules of CLK, KpCapT q ^CbpT qq holds at M0. Since,
by Axiom p4q, each player can make only one choice p˚q : Kp@xqpCapxq Ø Cbpxqq
holds at M0. Therefore, p˚˚q : KpCapT q Ø CbpT qq ^ KpCapGq Ø CbpGqq holds at
M0. By p˚˚q and Axiom p7q, CapGq, i.e. since it is known that a and b make the
same choice, a choosing G determines that b also chooses G, which gives a higher
payoff to a than a (and hence b also) choosing T . Therefore a chooses both T and
G, contradicting Axiom p4q. Thus, take K to be CapT q ^  CapT q.

The next theorem shows that no Beach Ball type inconsistencies are derivable
from the Soros Game Context.

Theorem 5. For no K-free formula A is it the case that A^ A is derivable from
the Soros Game Context pSGCq using LPK as base logic, i.e. no concrete inconsis-
tencies are derivable from the Soros Game Context in paraconsistent logic.

Proof. Consider the following LPK model, M , of pSGCq. M “ tM0 “ă D, I0 ą
,M1 “ă D, I1 ąu, with base world M0. D “ the set of symbols tT,G, 0, 1, 5, 6u.
For each individual constant symbol c of the language of the Soros Game Context,
Iipcq “ c, i “ 0, 1. M0 is taken to be a consistent LP world in which Axioms p1q to
p6q are true, and in which PCpT q, PCpGq, CapT q, CbpT q, Pap1q and Pbp1q hold, i.e.
M0 is a consistent LP world in which a and b each choose the dominant strategy, and
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each receive a payoff of $1. These specifications determine the values of I0 exactly.
M1 is exactly the same as M0, except that CapGq, CbpGq, CapT q and  CbpT q also
hold atM1, so thatM1 is over determined, or inconsistent. To see thatM is a model
of pSGCq it is first be shown that Axioms p1q to p8q hold at both worldM0 and world
M1. By the clause for the satisfaction of a formula of the form KB at a world, it then
follows that KpAxiom pnqq holds at each world, for each n “ 1, ..., 8. Thus, all the
axioms of pSGCq hold at the base world M0, and M is a model of pSGCq. Clearly
the K free axioms, Axioms p1q to p6q hold at both M0 and M1. To see that Axiom
p7q holds at each world, consider the first conjunct of Axiom p7q, Axiom p7qpaq:
p@xqp@yqp@zqp@wqpKpPCpxq ^ PCpzq ^ pCapxq Ñ Papyqq ^ pCapzq Ñ Papwqq ^ w ă
yq Ñ Capxqq. This is of the form: p@xqp@yqp@zqp@wqpKA Ñ Capxqq, which is LPK
equivalent to p˚q: p@xqp@yqp@zqp@wqp KA_Capxqq. A valuation v satisfies  KA at a
worldMi if and only if v satisfies  A at some worldMj. It is shown that  A holds at
M1 for all choices of x, y, z and w, and hence that p˚q holds at both M0 and M1.  A
is  pPCpxq^PCpzq^ pCapxq Ñ Papyqq^ pCapzq Ñ Papwqq^w ă yq, which is LPK
equivalent to p˚˚q:  PCpxq_ PCpzq_pCapxq^ Papyqq_pCapzq^ Papwqq_ w ă
y. The only way to try to make p˚˚q fail at M1 is to take x and z to be T or G, and
to take both y and w to be 1. However, this valuation makes  w ă y to be the
true formula  1 ă 1, making p˚˚q true at M1. Thus Axiom p7qpaq is true at both
M0 and M1, and similarly for Axiom p7qpbq. Therefore Axiom p7q is true at both
M0 and M1. A similar argument works for Axiom p8q. The first conjunct of Axiom
p8q is Axiom p8qpaq: p@xqpPCpxq^Kp@yqp@zqp@wqp@uqpPCpyq^PCpwq^ppCapxq^
Cbpyq Ñ Papzqq ^ pCapwq ^ Cbpyq Ñ Papuqq ^  x “ w Ñ u ă zqq Ñ Capxqqq.
This is of the form p@xqpPCpxq ^ KA Ñ Capxqq,which is LPK equivalent to p`q:
p@xqp PCpxq_ KA_Capxqq. When x takes any of the values 0, 1, 5 or 6,  PCpxq,
and hence p`q, is true at bothM0 andM1. When x “ T , Capxq, and hence p`q, is true
at bothM0 andM1. It remains to deal with case x “ G. When x “ G the formula A
is LPK equivalent to p``q: pDyqpDzqpDwqpDuqpPCpyq^PCpwq^ppCapGq^Cbpyq Ñ
Papzqq ^ pCapwq ^ Cbpyq Ñ Papuqq ^  G “ w ^  u ă zq. To make p``q true at
M1 take y “ w “ T and z “ u “ 1. Thus  A holds at M1 under this valuation,
so that  KA holds at both M0 and M1 under this valuation. Therefore p`q also
holds at M0 and M1 for x “ G, and p`q holds at both M0 and M1 for all values of
x. Thus Axiom p8qpaq holds at both M0 and M1, and similarly for Axiom p8qpbq.
Therefore Axiom p8q is true at bothM0 andM1. Thus all the axioms of pSGCq hold
at the base world M0. Since M0 is a consistent LP world, for no extensional (i.e.
K free) sentence A is it the case that both A and  A hold at M0. Since M is an
LPK model of pSGCq it follows by the soundness meta-theorem for LPK that for
no K-free formula A is it the case that A^ A is derivable in LPK from pSGCq.
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It is interesting to observe that it is the inconsistency of the world M1 in the
above model that is responsible for making both Axioms p7q and p8q true in the
model. M1 is inconsistent because both players choose both T and G in M1. If one
of the players were to choose only G in M1 then that player would not choose the
dominant strategy, and Axiom p8q would fail. If none of the players were to choose
G, then the proof of Axiom p7q would break down at the following point; the formula
p˚˚q:  PCpxq _  PCpzq _ pCapxq ^  Papyqq _ pCapzq ^  Papwqq _  w ă y would
fail in M1 by taking x “ z “ G, w “ 1 and y “ 5.

Theorem 6. There is a logical contradiction derivable from the Soros Game Context
of the form KA^ KA.

Proof. Let A be a formula such that pSGCq $LPK A ^  A. By rule pKR1pbqq of
LPK, pSGCq $LPK A^ KA. By Axiom p9q of pSGCq, and axiom pA3q and rules
pKR2paqq, pKMP q and pMRKq of LPK, pSGCq $LPK KA^ KA.

The main consequence of Theorems 5 and 6 for the rational self-interest assump-
tion of economic theory is that in conflict-reflexive contexts the decision-making of
rational self-interested agents is stymied by the appearance of true logical contradic-
tions of the form KA^ KA (‘Something is both known and not known’).

7 Priest on backwards inductions
Priest (2000) proves the inconsistency of natural formalisations of the Surprise Exam-
ination Context, and of the Centipede Game Context of Rosenthal (1982). Priest’s
inconsistency results are summarised in Section 7.1. The resolution of these incon-
sistencies within the LPK framework of this paper is given in Section 7.2. Priest’s
response to the inconsistencies arising in game contexts is given in Section 7.3. The
comparison of Priest’s and the authors’ interpretations concludes in Section 7.4.

7.1 Priest’s formalisations of the Surprise Examination and
Centipede Game Contexts

Priest (2000) gives a formalisation of the Surprise Examination Context, pSECq,
making essential use of an intensional implication operator,ÑP , that is different from
material implication, and which is detachable (i.e. Modus Ponens: A,AÑP B ñ B,
holds forÑP ). From pSECq the logical contradiction αp1q^ αp1q is derived, where
αp1q^ αp1q is read ‘There both will and will not be a first examination on one of the
days 1, ..., n’. What makes this contradiction disturbing is that it is a contradiction

Australasian Journal of Logic (12:1) 2014, Article no. 3



36

of the Beach Ball kind, i.e. pSECq implies an inconsistency in the realm of concrete
physical objects, since a first examination occurring and not occurring on one of the
days is like a red-all-over and green-all-over beach ball.

Priest also presents a formalisation of the Centipede Game Context, again making
use of a detachable intensional implication operator ÑP . In Priest (2000, Footnote
30) he gives a many-worlds model showing that his formalisation of the Centipede
Game Context is consistent, and in Priest (2000, Footnote 31) he notes that his
formalisation becomes inconsistent if ÑP is taken to be material implication and
if the obviously true axiom ‘No player can take $1 and $2 on the same move’ is
added to the context (an axiom that for some reason he does not include in his main
discussion of this context).

7.2 The LPKn interpretation of Priest’s results

LPKn refers to the family of systems obtained from LP by the addition of modal
operators Kn, where the intended interpretation of KnA is ‘A is known at time
t “ n’. Detailed specifications of the LPKn systems are not required in order to
outline the authors’ interpretation of Priest’s results.

The LPKn treatment of the Surprise Examination Context is to take Priest’s
implication ÑP to be material implication, as in the Soros Game Context. In that
case Modus Ponens for ÑP fails, and the derivation of the Beach Ball type inconsis-
tency αp1q ^  αp1q, using LPKn as base logic is no longer possible. The Surprise
Examination Context remains inconsistent, but the inconsistency is now of the Soros
Game Context kind, i.e. what are derivable are not concrete Beach Ball type incon-
sistencies, but only true contradictions essentially involving the knowledge operator
K.

The authors’ treatment of Priest’s results for the Centipede Game Context is the
same as for the Surprise Examination Context. The implication operatorÑP is again
interpreted as material implication, and LPKn is used as base logic. Exactly as for
the Soros Game and Surprise Examination Contexts, the Centipede Game Context
is inconsistent, but no inconsistencies of the Beach Ball kind are derivable, as can be
seen by suitably adapting the many-worlds model of Priest (2000, Footnote 30) and
applying the relevant soundness result.

Thus, the LPKn approach leads to a uniform treatment of all three contexts,
and perhaps of inconsistent, conflict-reflexive contexts in general. It is important
to note, however, that such formalisations, like the formalisation of the Soros Game
Context in Section 6, are incomplete. The absence of a detachable intensional im-
plication operator in LPKn means that there are certain intensional facts about
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these contexts that cannot be formalised in LPKn. Note too though, that although
these LPKn formalisations are incomplete, they are sound (the axioms are true un-
der the intended interpretation), and the formalisations are sufficiently complete for
the logical contradictions to be derivable. Thus, the LPKn framework allows some
significant initial progress to be made in investigating the inconsistent structure of
game contexts, despite the fact that the LPKn formalisations are blind to those
intensional properties of game contexts that can be captured only by a detachable
intensional implication operator.

7.3 Priest’s interpretation

Priest’s response to the derivations of inconsistencies in game contexts differs from
that of the authors. The main point of difference is as follows, and is discussed first
in relation to the inconsistency results of the Soros Game Context.

Priest takes issue with the use of material implication in Axioms p7q and p8q of
the Soros Game Context1. Only Axiom p7q is discussed, with similar remarks being
applicable to Axiom p8q. Axiom p7q formalises the concept of an ideally rational
and self-interested agent, where an ideally rational and self-interested agent is one
who actually behaves rationally and self-interestedly. Technically this idealness is
formalised by taking Ñ as material implication. When Ñ is material implication,
Axiom p7q says that if a’s choosing x at time t “ 0 gives more money at time t “ 1
than choosing z at time t “ 0, then a actually chooses x at time t “ 0 (and similarly
for b), i.e. a and b behave ideally rationally in the Soros Game because they actually
do what is rational. Priest takes the proof of the inconsistency of the Soros Game
Context in Theorem 4 as a reductio proof; from Theorem 4 he concludes that it is
logically impossible for there to be such ideally rational and self-interested agents,
just as the paradox of the Barber of Seville shows the existence of such a barber to
be logically impossible.

This does not mean that he accepts the truth of the negation of Axiom p7q.
Rather, he takes Axiom p7q to be vacuously true. Putting in the universal quantifiers
before Axiom p7q gives:

For all agents a and b who behave ideally rationally and self-interestedly in the
context of the Soros Game, Axiom p7q.

For Priest it is logically impossible for there to be any such ideally rational and
self-interested agents and so the axiom is vacuously true. In contrast, the authors’

1Personal communication.
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view is that agents can, and in fact sometimes do, behave ideally rationally, partic-
ularly in certain simple, well-defined, closed contexts such as versions of the game
contexts under consideration, and they therefore take Axiom p7q (and Axiom p8q)
to be non-vacuously true for such contexts.

A detailed Priestian formalisation of the Soros Game Context using an intensional
detachable implication, ÑP , is not presented here. For present purposes it is enough
to say that such a formalisation, if it were sufficiently complete, would lead to rational
dilemmas, i.e. to true sentences of the form: ‘Agent a is rationally obliged to do x and
at the same time agent a is rationally obliged not to do x’. Priest (2006(b), Chapter 6)
derives such a rational dilemma in a Prisoners’ Dilemma Context (of which the Soros
Game Context is a special case) by formalising his non-ideal rationality principles
and using essentially the same argument as in the proof of Theorem 4.

Making use of a modal rational obligation operator O, a rational dilemma is a
true sentence of the form OA ^ O A. Note that this is not a true contradiction
because it is not of the form B ^  B. The authors’ formalisation of the Soros
Game Context, on the other hand does lead to true contradictions of the form:
‘A is known and at the same time it is not the case that A is known’, i.e. to true
contradictions of the form KA^ KA. From the point of view of the many-worlds
semantics of Section 5, and its various extensions, the difference between Priest’s
and the authors’ interpretations is that in Priest’s formulation true contradictions
can occur only in possible worlds, but not in the actual world (the base world). If
the rational dilemma OA ^ O A holds in the actual world, then the contradiction
A^ A holds in a possible world, while in the authors’ formulation the contradiction
KA^ KA holds in the actual world.

Thus, in the Soros Game Context Priest avoids the appearance of true contradic-
tions holding in the actual world by denying the logical possibility of ideally rational
behaviour.

Regarding the Centipede Game Context Priest does not need to do anything,
since, as noted in Section 7.1 the formalisation of the Centipede Game Context
using Priest’s non-material ÑP is already consistent.

Priest does need to do something, however with his formalisation of the Surprise
Examination, since even with the Priestian non-material ÑP a true contradiction
holding in the actual world is obtained. Priest’s solution is to reject the principle
of the persistence of knowledge over time, rule pKq : KiA ñ Ki`1A, and if that is
done the derivation of the inconsistency no longer goes through. The final sections of
his paper are mainly concerned with arguing that it is plausible to reject pKq in the
context of the Surprise Examination, and in other backwards induction contexts. In
contrast the authors retain rule pKq in backwards induction contexts, their view being
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that, while there are strong arguments for rejecting pKq in general, the persistence of
knowledge over time is a highly plausible principle when applied to sufficiently simple,
well-defined, closed contexts, including many versions of the Surprise Examination
and Centipede Game Contexts. Retaining rule pKq ensures the derivation of true
non-Beach Ball type contradictions holding in the actual world.

Thus, in the Surprise Examination Context Priest avoids the appearance of true
contradictions holding in the actual world by denying the logical possibility of ideal
knowledge that persists over time.

Overall, Priest’s strategy in dealing with inconsistent game contexts is to ar-
gue that derivations of logical contradictions holding in the actual world should be
interpreted as reductio arguments, proving the logical impossibility of certain ide-
alisations of rationality and knowledge. The authors’, in contrast, bite the other
bullet, retaining the logical possibility of ideal rationality and knowledge at the cost
of accepting the existence of true logical contradictions (though not of the Beach
Ball kind) holding in the actual world.

7.4 Concluding remarks on Priest’s interpretation

From the discussion of Section 7.3 an important point arises, namely, that from the
point of view of the main thesis of this paper on the logical limits of rational self-
interest as a foundation for economic theory, Priest’s position is even more damaging.
Under the authors’ interpretation, in conflict-reflexive contexts the decision-making
of ideally rational self-interested agents will be stymied by the appearance of true
contradictions of the formKA^ KA (A is both known and not known). This is bad
enough. However, under Priest’s interpretation it is logically impossible for there to
be any ideally rational self-interested agents to be making decisions in the first place.
Further, under Priest’s interpretation the decision-making of self-interested and non-
ideally rational agents will be stymied by the appearance of rational dilemmas of the
form OA^O A (‘I rationally ought to do A and I rationally ought not to do A’).

8 Concluding remarks
In the paper it is shown that a natural formalisation of the Soros Game Context in
first order logic is inconsistent, and interpreting the results of Priest (2000) within
the paraconsistent framework shows the inconsistency of natural formalisations of
the Surprise Examination and Centipede Game Contexts. The inconsistencies that
arise always contain the knowledge operator K. No inconsistency can be proved
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purely in the realm of concrete physical objects, i.e. the Beach Ball Problem does
not arise.

The derivations of the inconsistencies in these contexts are sufficiently uniform
and routine that it is conjectured that similar results are provable for a very wide
class of game contexts which exhibit both conflict and reflexivity. Such conflict and
reflexivity is apparent in many business, economic and other social contexts. Indeed,
except for special limiting cases such as perfect competition, the existence of conflict
and reflexivity in strategic interactions between economic agents appears to be the
rule rather than the exception.

It should not, perhaps be surprising that conflict-reflexive social contexts are in-
consistent. Such contexts are analogous to the following version of the Liar Paradox:

(α) Sentences α and β are not both true

(β) Sentences β and α are not both true

The Liar sentences exhibit conflict; (α) undermines (β), and vice versa. The Liar
sentences also exhibit reflexivity; from the symmetrical nature of the Liar it follows
that each sentence undermines, not only the other sentence but also itself. It is the
combination of conflict and reflexivity that leads to the paradox.

In the Soros Game the players are in conflict with each other (from the self-interest
assumption), and reflexivity follows from the symmetrical nature of the game. By
symmetry, for every formula Apaq true of a, Apbq must also be true of b, and vice
versa, i.e. a and b are indiscernibles. All this is common knowledge. Therefore, the
rational self-interested players know that it follows from the meaning of the Soros
Game Context that the choice made by each player is logically dependent on the
choice made by the other player. Again, it is the combination of conflict and logical
dependence that leads to paradox.

The above discussion of the logical dependence holding between the choices made
by the players makes use of intensional notions. LPK, lacking a detachable inten-
sional implication operator, is unable to state this logical dependence explicitly. How-
ever, sufficient of the reflexivity of the Soros Game Context is expressible implicitly
in the language of LPK for the contradictions to be derivable.

Considering the Liar Paradox aspects of conflict-reflexive social contexts, it would
perhaps be more surprising if such contexts were not inconsistent.

From the standpoint of paraconsistent mathematics, inconsistent conflict-reflexive
social contexts exist (at least in the same sense that the counting numbers 1, 2, 3, ...exist,
in whatever sense that may be), and true logical contradictions, of the non-Beach
Ball kind, hold of these contexts in the actual world. Inconsistent conflict-reflexive
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situations arise when social agents engage in social interactions following the prin-
ciples of rationality and self-interest. In that case the decision-making process is
stymied by the appearance of true logical contradictions. Rational self-interested
decision-making then becomes logically impossible.

However, this excludes only rational choice in combination with self-interest; ra-
tional decision-making is possible provided such decision-making occurs within an
appropriate moral framework. Within the constraints given by such a moral frame-
work, rational decision-making is no longer stymied by the appearance of inconsisten-
cies, and rational choice then becomes possible. For example, following the Golden
Rule of treating the other player in the way one would like to be treated oneself,
perhaps the most widely-accepted conventional moral principle, leads the players
in the Soros Game each to give $5, and for the players in the Centipede Game to
take turns and share the money equally (In the examples given in the paper, our
fictional friends Allie and Bobbie do in fact make the rational moral choice, each
giving the other player $5). In the Soros Game Context, treating the decision as a
rational moral choice, rather than as a choice based on rational self-interest, amounts
to deleting the rational self-interest axioms, Axiom p7q and Axiom p8q of the Soros
Game Context, and replacing them with an axiom stating that each player makes
the choice that maximises the payoff to the other player, given that the other player
follows the same altruistic strategy. In this case no inconsistency arises. Similarly,
the conventional moral framework leads to consistent formalisations of the Centipede
Game Context and of many other conflict-reflexive social contexts.
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