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Abstract: Ceteris Paribus clauses in reasoning are used to allow for defeaters of
norms, rules or laws, such as in von Wright [5]’s example “I prefer my raincoat
over my umbrella, everything else being equal”.

In [3, 4], a logical analysis is offered in which sets of formulas Γ , embedded in
modal operators, provide necessary and sufficient conditions for things to be
equal in ceteris paribus clauses. For most laws, the set of things allowed to vary
is small, often finite, and so Γ is typically infinite. Yet the axiomatisation they
provide is restricted to the special and atypical case in which Γ is finite.

We address this problem by being more flexible about ceteris paribus conditions,
in two ways. The first is to offer an alternative, slightly more general semantics,
in which the set of formulas only give necessary but not (necessarily) sufficient
conditions. This permits a simple axiomatisation.
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The second is to consider those sets of formulas which are sufficiently flexible to
allow the construction of a satisfying model in which the stronger necessary-and-
sufficient interpretation of [3, 4] is maintained.

The language Lcp of ceteris paribus logic, proposed in [3, 4], is intended to
represent propositions that are true only under the assumption that certain
conditions remain constant. It is a generalisation of earlier work by von Wright
[5] concerning ceteris paribus preferences. Suppose, for example, that I prefer
white wine to red. It does not follow that I prefer white wine while being
beaten with an iron bar to red wine while sitting on my deck reading a book.
My preference only holds ‘other things being equal’. Lcp is a propositional
modal logic with an operator 〈Γ〉 for each set of formulas Γ , which is intended
to represent the conditions that are kept constant.

[4] provides a simple axiomatisation of the set of those valid formulas of
Lcp that contain only modalities 〈Γ〉 for finite Γ . We’ll call such 〈Γ〉 finite modal-
ities. The full language, however, has modalities of arbitrary size. This paper
presents an axiomatisation of part of the full logic, the set of what we call ‘flex-
ible’ validities, and provides an alternative semantics Lcp for which all validities
are flexible, and so completely axiomatised.1

Before explaining these concepts any further, it is worth countering a few
objections. One might think that any investigation of the infinite modalities
has purely technical interest, at best. We are used to philosophical applications
of logic, especially to the behaviour of rational agents, that typically involves
reasoning about finite situations using finite languages. There are two aspects
to this objection that are particularly revealing in the present case. Firstly, the
restriction to finite situations makes a good deal of sense for the most part.
Consideration of ceteris paribus statements is an exception.

When I say that I prefer white wine to red, we expect a logical analysis
to be restricted to the concepts expressed by parts of the statement: white,
red, wine, preference, and me. But the ‘ceteris paribus’ clause adds an indefinite
realm of things that have to be held constant in the evaluation of the statement.
In some cases, it may be possible to restrict this to another finite set, but we
think it prudent to explore the general case first. Secondly, the restriction
to finite languages (languages with finitely long formulas) is well-motivated by
considerations of human comprehensibility. An infinite formula is unreadable.
It would be better, perhaps, to extend the language with finite terms that refer
to the infinite sets of ceteris paribus conditions. For example, we could add a
new modal operator 〈Prop〉 in which ‘Prop’ is a symbol denoting the set of all
propositional variables. This operator would express a very strong ceteris paribus
condition that all atomic propositions are held constant without needing to
list them all inside the diamond. But the suggestion is quickly followed by a

1The idea that repeated uses of the words ‘flexible’ and ‘flexibly’ is intended to convey is that
ceteris paribus statements have a inherent flexibility that resists a precise characterisation by a
rigid set of conditions that are held constant.
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very natural question: which of the infinite modalities can be dealt with in this
way? Our answer involves consideration of infinite sets of formulas and infinite
formulas and a careful study of the relationship between the two.

There is a third role for the infinite in our approach. We are interested in
characterising which ceteris paribus statements follow from a potentially infinite
amount of information. In more familiar terms, we want a strong completeness
result. Weak completeness for Lcp, namely a finite characterisation of the set
of Lcp validities, remains an open problem, and we hope that the work pre-
sented here will assist in its solution. But there is reason for wanting more. To
the extent that we are right in thinking that ceteris paribus statements involve
implicit reference to a potentially infinite range of things to be held constant,
we must also attempt to understand how the truth of a ceteris paribus statement
depends (or does not depend) on that infinite range.

In outline, the rest of the paper will go as follows. First, in Section 1, we
introduce the language of Lcp and its semantics. We distinguish between two
classes of models, the class of flexible ceteris paribus models, over which we state
a strong completeness theorem, and the more restricted class of ceteris paribus
models, which coincides with the logic studied in previous work. The logic
of ceteris paribus models is not compact and so axiomatising its more tractable
fragments becomes the main theme of the rest of the paper.

In a long Section 2, we study our problem in the setting of a slightly more
abstract language L(C) in which the sets of ceteris paribus conditions inside di-
amonds are replaced by single symbols called ‘parameters’, thus returning us
to the world of finitely long formulas.2 Parametric Ceteris Paribus Logic, as we
call it, has a simple axiomatisation, which is given in Section 2.1. It turns out,
however, that some models of L(C) are such that the ceteris paribus conditions
interpreting a given parameter c cannot be described by any set of formulas in
the language. That is to say, there is no set of formulas Γ such that 〈c〉 and 〈Γ〉
have the same interpretation in the model.

In Section 2.2, we give some preliminary results about the class of ‘language
models’: those for which every parameter represents ceteris paribus conditions
that can be described using sets of formulas. A finer-grained investigation of
language models proceeds in Section 2.3. There we define a ‘description’ to be
a function δ associating each parameter c with a set δ(c) of formulas intended
to represent the ceteris paribus conditions of c. A δ-model is one in which this
intention is realised. In Section 2.4 we define the δ-flexible validities using
some axioms and rules which are sound over δ-models. It is not a complete
axiomatisation of the set of L(C) formulas over δ-models for reasons discussed
above in the case of Lcp.

We continue with our unorthodox strategy, identifying sufficient condi-
tions for a set of formulas to be ‘δ-flexible’ and proving the main result, that

2Although, ‘finite’ here should be taken with a pinch of salt. In the general case, we need a
proper class of parameters.
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any δ-flexible set of formulas that is δ-flexibly consistent has a model. This is
done in Section 2.5. With all of this work done in the more abstract setting of
L(C), the next task is to apply it back to the original language of Lcp and return
to the examples listed above. That’s Section 3.

1 Ceteris Paribus 
The language Lcp is a language of propositional modal logic with a set Prop of
propositional variables and modal operators 〈Γ〉 for each set Γ of formulas. A
model M for Lcp is a tuple 〈W,R,≈, V〉 where W is a set of states, R a binary
accessibility relation on W and V a valuation function from Prop to subsets of
W.

The remaining component ≈ is a family of equivalence relations ≈Γ on W,
with Γ a set of formulas. The formulas in Γ contain the information that is to
be kept equal. There are two ways to understand this latter statement. In the
first instance, we may require that the formulas in Γ be kept equal between two
states u and v whenever u ≈Γ v. In the second instance, we may require that
the set Γ precisely defines when two states are equivalent, so that u ≈Γ v if
and only if the formulas in Γ are kept equal. We call the first kind flexible ceteris
paribus equivalence, the second ceteris paribus equivalence.

More precisely, a flexible ceteris paribus equivalence for a set of formulas Γ is
an equivalence relation on W with the following constraint:

If u ≈Γ v, then for each ϕ ∈ Γ , M,u |= ϕ iff M,v |= ϕ.

A model with this property will be called a flexible ceteris paribus model. A
ceteris paribus equivalence is fully defined by sets of formulas Γ , with the follow-
ing constraint:

u ≈Γ v iff for each ϕ ∈ Γ , M,u |= ϕ iff M,v |= ϕ

A model with this property will be called ceteris paribus model. In this case,
u ≈Γ v holds just in case states u and v satisfy exactly the same formulas in Γ . In
either case, the equivalence relation is used to interpret the modal operators:

M,u |= 〈Γ〉ϕ iff Ruv and u ≈Γ v and M,v |= ϕ for some v ∈W

These definitions are not obviously well-formed, so we will need to be a
little more precise, constructing Lcp and |= in stages. For each ordinal α, we
define Lα to be

ϕ ::= p ( p ∈ Prop) | ¬ϕ | (ϕ∨ϕ) | 〈Γ〉ϕ ( Γ ⊆ Lβ for some β < α)3

The satisfaction relation |=α is defined as follows:
3So, in particular, L0 is the language of propositional logic with variables in Prop, L1 has also

modalities of the form 〈Γ〉 for each set Γ ⊆ L0, Lω has modalities of the form 〈Γ〉 for each set
Γ ⊆ Ln for some n, and so on. Notice that if α 6 γ then Lα ⊆ Lγ.

Jeremy Seligman and Patrick Girard, “Flexibility in Ceteris Paribus Reasoning”, Australasian Journal of Logic (10) 2011, 67–99

http://www.philosophy.unimelb.edu.au/ajl/2011
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2011 71

M,u |=α p iff u ∈ V(p)

M,u |=α ¬ϕ iff M,u 6|=α ϕ
M,u |=α (ϕ∨ψ) iff M,u |=α ϕ or M,u |=α ψ
M,u |=α 〈Γ〉ϕ iff Ruv and u ≈Γ v andM,v |=α ϕ for some v ∈W

Note that each formula of Γ is in Lβ for some β < α, so ≈Γ is defined at an
earlier stage. The ordinal sequences Lα and |=α are both monotonic increasing
and so we can define Lcp and |= to be their respective unions. (Both are proper
classes.)

Standard abbreviations are used. In particular, the universal modality [Γ ] is
defined to be ¬〈Γ〉¬.

Henceforth, we will abuse notation slightly by using Lcp for the logic of
this language interpreted over ceteris paribus models, and Lcpf for the logic over
flexible ceteris paribus models. Both can be regarded as extensions of basic modal
logic by defining � = [∅] and ♦ = 〈∅〉. Indeed, the machinery of modal model
theory can be and has been applied to Lcp. [4] gives a number of results about
Lcp: the logic is invariant under bisimulation; it doesn’t have the finite model
property; it can be translated into basic modal logic with infinite disjunctions
and it is independent from propositional dynamic logic (PDL).

One important difference between Lcp and its flexible counterpart Lcpf is
that the latter is strongly axiomatisable, whereas the former is not. Consider
a simple case where Γ = Prop, the set of all propositional variables. The
following set of formulas ∆ is satisfiable in flexible ceteris paribus models, but
not in ceteris paribus models:

∆ = Prop, {�p | p ∈ Prop},♦q,¬〈Prop〉q

To see this, consider the following flexible model, in which we suppose that
u 6≈Prop v:

Prop

u

Prop

v

In this model, u |= Prop and u |= �p for each p ∈ Prop and also u |= ♦q.
But u 6|= 〈Prop〉q, because u 6≈Prop v even though both u and v satisfy all of
Prop.

In ceteris paribus models, however, we can show that ∆ is unsatisfiable. Con-
sider a state u at which every propositional variable p and every formula �p
is satisfied. If ♦q also holds at u then there is an accessible state v at which
q holds. Moreover, every other propositional variable p must also hold at v,
because �p holds at u and Ruv. Thus u ≈Prop v. But then 〈Prop〉q holds at u
and so ¬〈Prop〉q cannot.

But every finite subset ∆0 of ∆ is satisfiable because at least one proposi-
tional variable (call it r) is missing. (It occurs in 〈Prop〉 but not as a formula
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in ∆0.) We can satisfy ∆0 at u in the model shown below, with R = {〈u, v〉},
V(r) = {v} and V(p) = W if p 6= r.

Prop \ {r}

u

Prop

v

Any system of axioms and finitary rules defines a compact consequence rela-
tion and so there can be no such system for Lcp.

This paper is mainly concerned with strong axiomatisations of fragments of
Lcp, which we will make precise below. For Lcpf, we can readily obtain a strong
axiomatisation, and thus compactness, based on the following two axioms:

(CP-Preservation) ` ϕ→ [Γ ]ϕ and 〈Γ〉ϕ→ ϕ for all ϕ ∈ Γ .
(CP-Inclusion) ` 〈Γ〉ϕ→ 〈Γ ′〉ϕ for each Γ ′ ⊆ Γ

 1 Flexible ceteris paribus logic, Lcpf, is strongly axiomatised by CP-Inclusion
and CP-Preservation together with the axioms and rules of normal modal logic.

We will come back to a fuller discussion of these two axioms in Section 2.1
and will prove Theorem 1 as a consequence of Lemma 5 below. We now focus
on the more difficult task of axiomatising fragments of Lcp.

One fragment that has already been shown to be strongly complete in [4]
is the finitary fragment of Lcp, in which all operators 〈Γ〉 are built from a finite
set Γ . The finitary fragment is axiomatised by the axioms and rules of basic
modal logic together with

〈ψ, Γ〉ϕ ↔ (ψ∧ 〈Γ〉(ψ∧ϕ)) ∨ (¬ψ∧ 〈Γ〉(¬ψ∧ϕ))

This one axiom scheme is sufficient to provide a recursive translation of the
finitary fragment into basic modal logic, and so completeness is obvious. We
can eliminate the ceteris paribus operators in one go using infinitary logic. If
Γ = {ψi}i∈I then we have

〈Γ〉ϕ ↔
∨
α∈Γ∗

(α∧ ♦(α∧ϕ))

where Γ∗ = {
∧
i∈I±ψi | ± ψi = ψi or ¬ψi} is the set of all possible conjunc-

tions of formulas in Γ (or their negations). In the finitary case, the righthand
side is a formula of basic modal logic; in the general case, it is a formula of
infinitary basic modal logic.

This finitary restriction only offers a partial solution to the problem of
axiomatising Lcp, as ceteris paribus clauses typically involve an infinite amount
of information. Instead, we offer another strategy.

We will provide (finitely characterisable) sufficient conditions for a set of
formulas not to be counterexample to compactness. A set of formulas satisfy-
ing these conditions will be called a ‘flexible set’. Our main theorem (Theorem
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18) then has the following form: any flexible set of formulas that is flexibly
consistent is satisfiable. By ‘flexibly consistent’ we mean that the set does not
contain formulas ϕ1, . . . , ϕn such that ¬(ϕ1 ∧ · · · ∧ ϕn) is a flexible validity,
for which we have a finite characterisation.

This approach is somewhat unorthodox but we hope it might be useful in
other branches of infinitary logic. The interest lies in the fact that the def-
inition of ‘flexible set of formulas’ and ‘flexible validity’ differ in a way that
indicates that we are discovering some real structure in the logical morass of
this infinitary language, and one that sheds some light on the nature of ceteris
paribus statements. So before developing the theory, we will list some examples
of flexible sets of formulas. We ask the reader to keep these examples in mind
when reading the subsequent definitions and theorems. We will come back to
them in Section 3.1.

Let Γ be a set of formulas of Lcp and let Prop(Γ) be the set of propositional
variables that occur in Γ outside modal operators.4 The following are sufficient
conditions for Γ to be flexible.

1. Γ contains only 〈∆〉 for finite ∆. This is the logic axiomatised in [4].
There is no restriction on the formulas occurring in ∆. They may be
complex formulas, also containing modal operators, and there can be
non-trivial logical relations between the formulas inside the operators
and those outside. But, importantly, ∆ is restricted to being a finite set.
As discussed above, this is a significant limitation because applications
(e.g., to preference logic) typically require that the ‘other things’ held
constant constitute an infinite set. For example, in formalising the state-
ment ‘ϕ is preferred to ψ’, von Wright requires that all propositional
variables other than those occurring in ϕ and ψ remain constant.

2. Γ contains only one modality 〈∆〉 in which ∆ = Prop \ Prop(Γ). In this
case, we will show that finitary inferences are sufficient for determining
the satisfiability of Γ . It is an important example, because it gives one
direct way of making sense of ‘ceteris paribus’, in which the ‘other things’
are all propositional variables not mentioned in the argument.

3. Γ contains many modalities 〈∆i〉, with ∆0 ⊂ ∆1 ⊂ · · · ⊆ Prop \ Prop(Γ).
Slightly generalising the previous example, we can consider a chain of
ceteris paribus modalities of increasing strength. Again, finitary inferences
are sufficient to characterise the logic of these modalities so long as there
is no interaction between the variables inside the modal operators and
those outside.

4. Γ contains only the modalities 〈Prop〉 and 〈∅〉 and Prop(Γ) is finite. If
there are only a finite number of propositional variables outside the scope

4All of this will be defined carefully in the following sections. Hopefully, it is clear enough
even at this point for the reader to get a general idea.
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of a modal operator then inferences about the maximal and minimal ce-
teris paribus operators are finitely characterisable. The restriction on the
number of propositional variables in Prop(Γ) is essential as we will see
shortly.

5. Γ contains modalities 〈∆〉 in which ∆ is any set of propositional variables,
only a finite number of which are in Prop(Γ).

6. Γ contains a finite set of modalities 〈∆1〉, . . . , 〈∆n〉 in which each ∆i con-
tains a cofinite set of propositional variables only finitely many of which
are in Prop(Γ). We will see in Section 3.1 that this is a generalisation of
von Wright’s ceteris paribus logic.

7. Γ = {ϕ} with ϕ containing only modalities with cofinite sets of propo-
sitional variables. This is a special case of the previous example, and
an important one for applications. Note in particular that in this case
the modal operators may contain propositional variables that also occur
outside modal operators.

2  ceteris paribus 
Our strategy for studying Lcp is to move to a more tractable logic in which the
sets of formulas inside the modal operators are replaced by something more
abstract, and then to examine how Lcp arises as a special case. So, instead of
sets of formulas inside our diamonds, we will use parameters, drawn from a pre-
ordered class C = 〈C,6〉. As before, the elements of C represent conditions
that must be held constant across a ceteris paribus modal transition, and c 6 d
means that parameter c represents a less restrictive condition than d. If c 6 d
for all d ∈ D ⊆ C then we say that c is a least element of D. Least elements will
play a significant role in some of our later results.

Define L(C) to be the language of propositional modal logic with propo-
sitional variables Prop and modal operators 〈c〉 for each c ∈ C. The original
ceteris paribus logic arises as the special case in which C = ℘(Lcp), 6 = ⊆ and
L(C) = Lcp.

A model for L(C) is a tuple M = 〈W,R,≈, V〉 where W is a set of states,
R a binary accessibility relation on W and V a valuation function from Prop to
subsets of W. For each c ∈ C, ≈c is an equivalence relation on W such that

(Ordering) if c 6 d then for all u, v ∈W, if u ≈d v then u ≈c v.

In other words, if c is less restrictive than d then whenever two states are
equivalent with respect to d, they are also equivalent with respect to c. Satis-
faction is defined as usual but with

M,u |= 〈c〉ϕ iff there is a v such that Ruv and u ≈c v, andM,v |= ϕ.
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The crucial difference from Lcp is that the meaning of ‘other things being
equal’ is specified in the model rather than in the language, using the equiv-
alence relations ≈c.

As usual, the satisfaction of formulas depends only on the vocabulary that
they contain, including the parameters. Given a formula ϕ of L(C), we say that
models M = 〈W,R,≈, V〉 and M ′ = 〈W,R,≈ ′, V ′〉 agree on ϕ if:

1. V(p) = V ′(p) for each propositional variable p in ϕ

2. R ∩ ≈c = R ∩ ≈ ′c for each parameter c in ϕ

 2 (Agreement) If M and M ′ agree on ϕ, then M,u |= ϕ iff M ′, u |= ϕ.

Proof: By induction on the structure of ϕ.

Notice that a model of L(C) can also be regarded as a standard model for
multi-modal propositional logic in which the operator 〈c〉 is represented by the
accessibility relation Rc = R∩ ≈c, so that

M,u |= 〈c〉ϕ iff Rcuv and M,v |= ϕ for some v ∈W

A structure of the form 〈W, {Rc}c∈C, V〉 will be called a normal model. It will be
convenient to work with normal models so that standard results from modal
logic can be applied. Note, however, that not all normal models are models for
L(C).
 3 Let M be a model of L(C) and let MN be a normal model for M. Then
M,u |= ϕ iffMN, u |= ϕ for anyϕ.

Proof: By induction on the structure of ϕ.

2.1 
The only new logical principle that we get for parametric ceteris paribus logic is
one that keeps track of the ordering of parameters:

(Inclusion) ` 〈d〉ϕ→ 〈c〉ϕ for each c 6 d

 4 The logic of L(C) is axiomatised by Inclusion together with the normal
rules and axioms for basic modal logic.5

As usual, the theorem is a consequence of a model existence lemma, which
is a little stronger than required here but whose strength will be needed later.
 5 If Γ is a set of formulas of L(C) that is consistent with respect to Inclusion
and the rules and axioms of basic modal logic, then there is a model M = 〈W,R,≈, V〉
and a state w ∈ W such that M,w |= Γ . Moreover, R has the structure of a tree with
rootw, and the property that if u ≈c v and u 6= v then either Ruv or Rvu.

5We take the axioms and rules of basic modal logic to be all propositional tautologies, (K)
[c](p→ q)→ ([c]p→ [c]q), (MP) from ϕ and (ϕ→ ψ) infer ψ, and (Gen) from ϕ infer [c]ϕ.
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Proof: Suppose Γ is consistent and C is a set.6 Take the canonical structure
M = 〈W, {Rc}c∈C, V〉 with W the set of maximal consistent subsets of L(C)

and relations Rc defined in the usual way: Rcuv iff for all ϕ in v, 〈c〉ϕ is in
u. This is a normal model which may not be an L(C) model. In a standard
way, we can prove that there is a maximal consistent extension Γ+ of Γ such
that Γ is satisfied at Γ+ (which is a member of W) when the modalities are
interpreted as normal modal operators. Let R be the union of all the Rc and
define N = 〈W,R, V〉. Now unravel N with respect to R from the state Γ+ to
get the structure N ′ = 〈W ′, R ′, V ′〉, which is a tree whose root we will call
w.7 For each u in W ′, let u ′ be its source in M and define R ′cuv iff Rcu

′v ′.
In particular, w ′ = Γ+. The normal model M ′ = 〈W ′, {R ′c}c∈C, V ′〉 has the
following properties:

1. M ′, u |= ϕ iff M,u ′ |= ϕ for every ϕ ∈ L(C).

2. R ′ =
⋃
c R
′
c is irreflexive, asymmetric and intransitive (if Rxy and Ryz

then not Rxz).

3. R ′d ⊆ R ′c iff c 6 d

Property 1 follows from the fact that M ′, u is bisimilar to M,u ′, by the unrav-
elling construction, which also ensures 2. Property 3 is due to Inclusion in the
right-to-left direction. For the left-to-right direction, note that if c 66 d then
(〈d〉p∧ ¬〈c〉p) is consistent and so can be extended to a point of the canonical
model that is Rd-related to a point where p holds but which is not Rc related
to any such point.

Now we build an L(C) model M ′′ = 〈W ′, R ′, {≈c}c∈C, V ′〉 by taking ≈c to
be the smallest equivalence relation containing R ′c. That this is an L(C) model
follows from 3, above. We only need to verify thatM ′′, w is equivalent toM ′, w
and hence to M,w ′, so that Γ is satisfied in M ′′ at w. That is, we must show
that for every u ∈W ′ and ϕ ∈ L(C).

M ′′, u |= ϕ iff M ′, u |= ϕ

This is done by induction on the structure of ϕ. The only non-trivial case is
when ϕ has the form 〈c〉ψ. Given the L(C) interpretation of 〈c〉, it suffices to
show that R ′′∩ ≈c= R ′c.

That R ′c ⊆ R ′′∩ ≈c follows directly from the definitions of R ′′ and ≈c. For
the converse, suppose for contradiction that R ′′uv and u ≈c v but not R ′cuv.
Then ≈ ′c = ≈c \ 〈u, v〉 includes R ′c. By construction, ≈ ′c is not reflexive only if

6If C is a proper class, we carry out the construction using L(CΓ ) instead of L(C), where CΓ
is the set of parameters occurring in Γ . When we have an L(CΓ ) model that satisfies Γ , we can
extend it to a model for L(C) by defining ≈c for c ∈ C \ CΓ more-or-less arbitrarily. We need
only ensure that the 6 ordering is preserved, i.e. that ≈d⊆≈c if c 6 d. This can be done by
setting ≈d=

⋂
{≈c | c 6 d and c ∈ CΓ }.

7Unravelling is described in [2, p. 62–63].
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u = v. But since R ′′ is irreflexive and R ′′uv, u 6= v and so ≈ ′c is reflexive. Like-
wise, ≈ ′c is symmetric and transitive because R ′′ is asymmetric and intransitive.
But then ≈ ′c is an equivalence relation containing R ′c which is strictly smaller
than ≈c, contradicting the definition of ≈c.

Finally, if u ≈c v and u 6= v then R ′′uv or R ′′vu. Otherwise, ≈c would not
be the smallest equivalence relation extending R ′c.

As promised, we return to the proof of Theorem 1, repeated here:

(CP-Preservation) ` ϕ→ [Γ ]ϕ and 〈Γ〉ϕ→ ϕ for all ϕ ∈ Γ .
(CP-Inclusion) ` 〈Γ〉ϕ→ 〈Γ ′〉ϕ for each Γ ′ ⊆ Γ

 1 Flexible ceteris paribus logic, Lcpf, is strongly axiomatised by CP-Inclusion
and CP-Preservation together with the axioms and rules of normal modal logic.

Proof: Suppose that ∆ is consistent with respect to the above-mentioned rules
and axioms. Recall that with C taken to be sets of formulas of Lcp ordered
by ⊆, we can identify the language of Lcp with L(C). Applying Lemma 5, ∆ is
satisfied by a state w of a model M = 〈W,R,≈, V〉. Moreover,

(*) If u ≈Γ v then either Ruv or Rvu.

What remains to be shown is that M is a flexible ceteris paribus model, i.e.
that u ≈Γ v implies that for all ϕ ∈ Γ , M,u |= ϕ iff M,v |= ϕ. So assume
that u ≈Γ v and that M,u |= ϕ. By (*), either Ruv or Rvu. In the first case,
using the CP-Preservation axiom M,u |= ϕ → [Γ ]ϕ, we get that M,v |= ϕ.
In the second case, we get instead that M,v |= 〈Γ〉ϕ, but the CP-Preservation
axiom 〈Γ〉ϕ → ϕ then implies that M,u |= ϕ. Since the argument is entirely
symmetrical between u and v, we get that for all ϕ ∈ Γ , M,u |= ϕ iffM,v |= ϕ,
as desired.

2.2  
An obvious question to ask of an L(C) model is whether equivalence relations
≈c can be described by sets of formulas. If they can, we get one step closer
to the language Lcp. So, say that an L(C) model M = 〈W,R,≈, V〉 is a language
model if for each c ∈ C there is a set Σc of formulas such that

u ≈c v iff for all ϕ in Σc, M,u |= ϕ iff M,v |= ϕ.

Restricting to the class of language models for L(C) gives a strictly stronger
logic.
 6 Not every satisfiable set of formulas of L(C) has a language model.

Proof: Suppose C has only conditions c and d with c 6 d but not d 6 c. Con-
sider the two-point model M2 with Ruv and Rvu and u ≈c v but not u ≈d v,
and an empty propositional valuation.
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u v
c

Note that u and v are indistinguishable and so satisfy the same formulas.
Now let T2 be the theory of M2, u in L(C). Suppose, for contradiction, that T2
is satisfied at pointw of language modelM. Then 〈c〉> is in T2 soM,w |= 〈c〉>
and so there is a w ′ such that Rww ′ and w ≈c w ′. The formula 〈d〉⊥ is also
in T2, so w 6≈d w ′. Thus there is a formula ϕ in Σd such that M,w |= ϕ and
M,w ′ 6|= ϕ. But then ϕ is in T2, so M2, u |= ϕ and M2, v |= ϕ. Then M2, u |=
[c]ϕ, and so [c]ϕ is also in T2, and so M,w |= [c]ϕ, which is incompatible with
Rww ′, w ≈c w ′ and M,w ′ 6|= ϕ.

An example of a rule of inference that is sound for language models but
not arbitrary models can be constructed as follows. Let P(c, d) be the class of
formulas 〈d〉(ψ∧ 〈c〉¬ψ) for each ψ such that ψ→ [c]ψ is L(C)-invalid.8 Then
the rule states:

(PN) P(c, d), 〈d〉ϕ ⇒ 〈c〉ϕ

Before proving this, we prove a simple lemma which will be used again
below.
 7 If ϕ and ¬ϕ are L(C)-invalid for some ϕ, then 〈c〉ϕ → [c]ϕ is also L(C)-
invalid.

Proof: Suppose ϕ and ¬ϕ are L(C)-invalid for some ϕ, then there are two
rooted models M,u and M ′, v such that M,u |= ϕ and M ′, v |= ¬ϕ for some
u, v. Now, construct a new model M ′′ by taking the disjoint union of M and
M ′ with an additional point w with Rwu and Rwv, and w ≈c u,w ≈c v and
u ≈c v (as shown on the left, below):

8One might question whether this is a genuine rule of inference, on the grounds that P(c, d)
is semantically defined. In the case that C is countable, L(C) is decidable (because it has a com-
plete axiomatisation and obviously has the finite model property, since Inclusion is preserved
when taking submodels), and so P(c, d) could also be defined in an entirely syntactic manner.
When we move to uncountable C, or worse, a C that is a proper class, this argument does
not work; moreover, even if P(c, d) were syntactically defined, the fact that it is a proper class
stretches the boundaries of what we ordinarily think of as a rule of inference. Fortunately, noth-
ing in what follows depends on this classification. We will not be proposing PN as part of any
system of logic.
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w

M,u

M ′, v

M ′′

c

c
c w

MN, u

M ′N, v

M ′′N

c

c

By Lemma 3, there is an equivalent normal modal M ′′N, with Rcwu and Rcwv
but neither Rcuv nor Rcvu, as shown on the right. Now, the generated model
of M ′′N at u is just MN which (by Lemma 3) agrees with M on ϕ, and the
generated model M ′′N at v is just M ′N which (by Lemma 3) agrees with M ′ on
ϕ, so (again by Lemma 3) M ′′, u |= ϕ and M ′′, v |= ¬ϕ. Therefore, M ′′, w |=
〈c〉ϕ, but M ′′, w 6|= [c]ϕ.

Now for the main theorem of this section:
 8 PN is sound for language models but unsound over arbitrary models.

Proof: For a counterexample to PN, notice that ifψ→ [c]ψ is L(C)-invalid, then
there is a pointed model 〈Pψ, pψ〉 of ψ∧ 〈c〉¬ψ. So letM be a model consisting
of the disjoint union of all the Pψ, together with a point u such that Rupψ and
u ≈d pψ.

u pψ

Pψ
d

Since the model can be normalised, in a manner similar to the proof of Lemma 7,
we can be sure that the truth value of a formula at pψ in M are the same as
its value at pψ in Pψ. Now u 6≈c pψ, so the conclusion 〈c〉> is not satisfied
by u. But u |= 〈d〉> and for each 〈d〉(ψ ∧ 〈c〉¬ψ) in P(c, d), we have that
pψ |= ψ∧ 〈c〉¬ψ. Since u ≈d pψ, all the premises are satisfied by u.

Now, suppose that M,u satisfies the premises P(c, d) and 〈d〉ϕ, and there
is a description Σc of c. Then there is a v in M such that Rduv and M,v |=
ϕ. To conclude that M,u |= 〈c〉ϕ, we will show that u ≈c v. Suppose for
contradiction that u 6≈c v. Then there is a ψ ∈ Σc such that M,u |= ψ and
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M,v |= ¬ψ or M,u |= ¬ψ and M,v |= ψ. In either case, ψ and ¬ψ are L(C)-
invalid. But this implies that 〈c〉ψ → [c]ψ is also L(C)-invalid, from Lemma
7.

So we cannot have that both ψ → [c]ψ and 〈c〉ψ → ψ are L(C)-valid, and
so either 〈d〉(ψ ∧ 〈c〉¬ψ) is in P(c, d) or 〈d〉(¬ψ ∧ 〈c〉¬¬ψ) is in P(c, d). Then
there is a point w in M such that Ruw and which satisfies either ψ ∧ 〈c〉¬ψ
or ¬ψ ∧ 〈c〉¬¬ψ. In either case, there is a s such that w ≈c s but ψ is not
preserved between w and s, contradicting our choice of ψ ∈ Σc.

2.3 
To study language models further, we need to refer to ways of associating pa-
rameters with descriptions of them. So we’ll say that a description δ for C is
a function that maps each c ∈ C to a set δ(c) of L(C) formulas such that
δ(c) ⊆ δ(d) if c 6 d.

A model M is described by δ if it satisfies the following condition:

u ≈c v iff for all ϕ ∈ δ(c), M,u |= ϕ iff M,v |= ϕ

A model M is a δ-model if δ is a description of M. Clearly, every δ-model is
a language model, so we already have an example of a model that is not a δ-
model and a rule of inference that is sound for all δ-models. Nonetheless, in
some circumstances, we can change a model into a δ-model. Given a model
M = 〈W,R,≈, V〉, let [δ]M be the model 〈W,R,≈[δ], V〉 where

u ≈[δ]c v iff for each ϕ ∈ δ(c), M,u |= ϕ iff M,v |= ϕ

This satisfies the Ordering condition, and so [δ]M is a model. In general, we
cannot be sure that it is a δ-model.9 But if, for example, a condition c is
such that δ(c) consists of formulas without any conditions at all, Agreement
Lemma 2 ensures that the δ-model property for c, at least, is satisfied in [δ]M.
We say that such parameters have ‘depth’ zero. Parameters whose description
contains only parameters of depth zero have depth one, and so on. That is, we
define a sequence C0,C1, . . . of sets of parameters, where

Cα = the set of those c ∈ C such that for every ϕ ∈ δ(c) and
d ∈ C, if d occurs in ϕ then d ∈ Cβ for some β < α.

The depth of c is the smallest ordinal α such that c ∈ Cα. For any formula
ϕ, the depth of ϕ is the smallest ordinal α such that every parameter occurring
in ϕ has depth < α. Note that having no depth is different from having depth
0. We say that δ is well-founded iff every parameter has a depth.10

9For example, suppose C = {c, d}, δ(c) = ∅, δ(d) = {〈c〉>}, and M is the two-state model with
W = {u, v}, R = {〈u, v〉}, and ≈c = ≈d = the identity relation on W. Then neither u nor v satisfy
〈c〉> in M, so u ≈[δ]d v. But also u ≈[δ]c v so [δ]M,u |= 〈c〉> and [δ]M,v 6|= 〈c〉>.

10This is equivalent to the well-foundedness (in the standard sense) of the relation that holds
between d and c iff d occurs in some formula of δ(c).
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We can now give a way of constructing δ-models for well-founded δ, which
we will use later in the service of our completeness results. The basic idea is to
apply [δ] repeatedly over an ordinal sequence, taking limits judiciously:

[δ0]M = M

[δα+1]M = [δ][δα]M

[δλ]M = 〈W,R,≈[δλ], V〉

with ≈[δλ]c=

{
≈[δα+1]c if c has depth α < λ
≈c otherwise

Finally, the limit δ∞ is defined similarly to the limit-ordinal case:

[δ∞]M = 〈W,R,≈[δ∞], V〉

where for each parameter c of depth α, ≈[δ∞]c=≈[δα+1]c.
The following technical lemmas show that this is a sensible definition.

 9 (i) [δ∞]M,w |= ϕ iff [δα]M,w |= ϕ for allϕ of depth6 α.
(ii) ≈[δ∞]c = ≈[δα+1]c for all c of depth6 α.

Proof: By induction on α.
(i) [δ∞]M and [δα]M have the same valuation, so the result follows from the

Agreement Lemma 2 if we can show that for any parameter d occurring in ϕ,

R∩ ≈[δ∞]d= R∩ ≈[δα]d

Let β be the depth of d. Then β < α. There are three cases, depending
on whether α is 0, a successor or a limit ordinal. If α = 0, there is no such
parameter d in ϕ, so there is nothing to prove. If α = γ+ 1, then γ < α, so by
inductive hypothesis (ii),

≈[δ∞]d=≈[δγ+1]d .

But γ+ 1 = α, so we are done. Finally, if α is a limit ordinal, then

≈[δα]d=≈[δβ+1]d=≈[δ∞]d .

(ii) Suppose c has depth β 6 α. If β = α then we are done, by definition of
δ∞. So assume β < α. Then the following are equivalent:

u ≈[δ∞]c v

u ≈[δβ+1]c v by definition of δ∞,
since c has depth β

[δβ]M,u |= ψ iff [δβ]M,v |= ψ for all ψ ∈ δ(c), by definition of δβ+1

[δ∞]M,u |= ψ iff [δ∞]M,v |= ψ for all ψ ∈ δ(c), by inductive hypothe-
sis (i), since the depth
of ψ 6 β < α

[δα]M,u |= ψ iff [δα]M,v |= ψ for all ψ ∈ δ(c), by part (i), since the
depth of ψ 6 β < α

u ≈[δα+1]c v by definition of δα+1
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 10
(i) [δα]M,w |= ϕ iff [δβ]M,w |= ϕ for allϕ of depth6 β < α.
(ii) ≈[δα]c = ≈[δβ+1]c for all c of depth6 β < α.

Proof: Part (i) is a direct consequence of Lemma 9(i). For part (ii), since β < α,
the claim follows from definition if α is a limit ordinal. So assume that α =

σ + 1. Then, β 6 σ, so ≈[δα]c = ≈[δσ+1]c = ≈[δ∞]c by Lemma 9(ii). But
≈[δ∞]c = ≈[δβ+1]c, by definition of δ∞.

 11 If δ is well-founded then [δ∞]M is a δ-model.

Proof: Suppose δ is well-founded, then c ∈ Cα for some α. The following are
equivalent:

u ≈[δ∞]c v

u ≈[δα+1]c v by definition of [δ∞].
[δα]M,u |= ϕ iff [δα]M,v |= ϕ for all ϕ ∈ δ(c), by definition of

≈[δα+1]c.
[δ∞]M,u |= ϕ iff [δ∞]M,v |= ϕ for all ϕ ∈ δ(c), by Lemma 9(i), since

the depth of ϕ 6 the
depth of c 6 α

2.4   L(C)  
The restriction to a particular description δ suggests a more specific axiom and
rule:

(δ-Preservation) ` ϕ→ [c]ϕ and ` 〈c〉ϕ→ ϕ, for all ϕ ∈ δ(c).
(δ-Expansion) If ` (θ→ ϕ) or ` (θ→ ¬ϕ) for each ϕ ∈ δ(d) \ δ(c)

then ` (θ∧ 〈c〉(θ∧ψ))→ 〈d〉ψ

The axiom δ-Preservation expresses the defining property of formulas in
δ(c): that they are preserved across Rc links in the model. δ-Expansion is a
partial converse. Note that it is a possibly infinitary rule rather than an axiom
scheme. We will call the resulting modal logic L(C)δ. It is an extension of
L(C) because Inclusion is derivable. In fact, we get the following strengthened
version of Inclusion:11

(δ-Inclusion) ` 〈c〉ϕ→ 〈d〉ϕ, when δ(d) ⊆ δ(c).

 12 LCP is sound for δ-models.
11When δ(d) ⊆ δ(c), δ(d) \ δ(c) = ∅, so we can pick θ to be a tautology.
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Proof: The validity of δ-Preservation in δ-models is clear, so we only prove
δ-Expansion.

Suppose M is a δ-model and either θ → ϕ or θ → ¬ϕ is valid in M for
each ϕ ∈ δ(d) \ δ(c). Take u arbitrary such that M,u |= θ ∧ 〈c〉(θ∧ψ). Then
M,u |= 〈c〉(θ ∧ ψ), so there exists a v such that u ≈c v and M,v |= θ ∧ ψ, and
so also M,v |= θ. Now for any ϕ ∈ δ(d), either ϕ ∈ δ(c) and so M,u |= ϕ iff
M,v |= ϕ, or ϕ ∈ δ(d) \ δ(c). But then M |= θ→ ϕ or M |= θ→ ¬ϕ, and since
both M,u |= θ and M,v |= θ, we also get that M,u |= ϕ iff M,v |= ϕ. Thus
u ≈d v. But M,v |= ψ, so M,u |= 〈d〉ψ.

The rule PN, which we showed to be sound for language models, but not
admissible in L(C), is admissible in L(C)δ:
 13 Every L(C)δ model validates PN.

Proof: As a reminder, P(c, d) is the set of formulas 〈d〉(ψ ∧ 〈c〉¬ψ) for each ψ
such that ψ→ [c]ψ is L(C)-invalid, and PN is the following rule:

(PN) P(c, d), 〈d〉ϕ ⇒ 〈c〉ϕ

Suppose that M is a L(C)δ model and that P(c, d) is satisfied at a point u in M.
We will show that every ϕ in δ(c) is either an L(C) validity or an L(C) contra-
diction, and so the premises of δ-Expansion hold with θ a tautology. Then, the
conclusion is equivalent to (〈d〉ϕ→ 〈c〉ϕ), and we are done.

So suppose that ψ is in δ(c). Since M validates δ-Preservation, (ψ → [c]ψ)

and (〈c〉ψ→ ψ) are both satisfied everywhere. So the formulas 〈d〉(ψ∧ 〈c〉¬ψ)

and 〈d〉(¬ψ∧ 〈c〉¬¬ψ) are false at u, and hence not in the set P(c, d). But then,
by the definition of P(c, d), both (ψ → [c]ψ) and (¬ψ → [c]¬ψ) (equivalently
(〈c〉ψ→ ψ)) must be L(C) valid. That eitherψ or ¬ψ is L(C)-valid, follows from
Lemma 7.

Notice that if δ(d) \ δ(c) is a finite set ϕ1, . . . , ϕn, the rule δ-Expansion is
equivalent to adding axioms

(θ∧ 〈c〉(θ∧ψ))→ 〈d〉ψ

for each formula θ of the form ±ϕ1 ∧ · · · ∧ ±ϕn, where ±ϕi is either ϕi or
¬ϕi. The rule of δ-Expansion is only a partial converse of δ-Preservation and
the three principles are not sufficient for a complete axiomatisation of the logic
of L(C) over δ-models. This can be seen from the following counterexample,
adapted from the proof of Theorem 6.12

: Let C consist of two conditions c and d with
c 6 d and d 66 c, as in the proof of Theorem 6, and let δ(c) be

12Strictly speaking, a counterexample is unnecessary. We can be sure of the inadequacy of
δ-preservation from compactness considerations, given that Lcp is a special case of L(C).
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the empty set and δ(d) the set of all formulas of L(C). The theory
T2 constructed in the proof of Theorem 6 contains all formulas of
the form ϕ → [x]ϕ and 〈x〉ϕ → ϕ, for x = c, d and so is trivially
consistent with δ-Preservation. But it has no language models, and
so, a fortiori, no δ-models. So we get a counterexample by show-
ing that T2 is also consistent with δ-Expansion. Suppose for con-
tradiction that it is not. Then there is a formula θ such that for
every formula ϕ of L(C), either ` (θ → ϕ) or ` (θ → ¬ϕ), and
¬(θ ∧ 〈c〉(θ ∧ ψ)) → 〈d〉ψ is in T2. Then θ ∈ T2 and so M2, u |= θ.
Now let q be a propositional variable not in θ and letM ′2 be likeM2

but with the complementary valuation for q, i.e. V ′(q) = W \V(q).
By Lemma 2,M ′2, u |= θ. ButM2, u |= q iffM ′2, u |= ¬q. And so by
Lemma 12, M2 and M ′2 provide counterexamples to ` (θ→ q) and
` (θ→ ¬q), contradicting the choice of θ.

The problem lies not with PN but with the fact that we have no converse of
δ-Preservation. We would like to ensure that if d 66 c then there is a formula ϕ
that is guaranteed not to be preserved along ≈c somewhere in the model. Any
such converse will be an infinitary rules (when δ(c) is infinite) and so is beyond
the scope of our present approach.

2.5 δ-
Instead, we invoke our new strategy and define the concept of a ‘δ-flexible’ set
of formulas, with respect to which we then prove a (flexible) version of strong
completeness.

First, some preliminary definitions. For any set of formulas Γ , let Prop(Γ)

be the set of propositional variables that occur in ϕ for some formula ϕ in Γ .
Similarly, for any set C of parameters and description δ, let Prop(C, δ) be the
set of propositional variables that occur in δ(c) for some c ∈ C.

Say that a set C of parameters is δ-tracking if c 6 d whenever δ(c) ⊆ δ(d) for
all c, d ∈ δ. This is the converse of the defining condition for descriptions. Our
general concept of a description allows for some leeway between the modalities
and their description by sets of formulas but to build models for suitable sets
of formulas we need the finer control that comes from δ-tracking.

Say that a set C of parameters is δ-irreducible iff for each c, δ(c) ⊆ Prop and
for each non-empty subset D ⊆ C, if δ(c) ⊆ Prop(D, δ) then δ(c) ⊆ δ(d) for
some d ∈ D. For example, with parameters c0 < c1, c2 < c3 and δ, δ ′ given by

δ δ ′

c0 ∅ ∅
c1 {p} {p}

c2 {q} {q}

c3 {p, q, r} {p, q}
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δ is irreducible but δ ′ is not because δ ′(c3) ⊆ δ ′(c1) ∪ δ ′(c2) but neither
δ(c3) ⊆ δ(c1) nor δ(c3) ⊆ δ(c2). The irreducibility condition is the key to
flexibility. If C is δ-irreducible then the inclusion relation between description
sets is determined by a single propositional variable, which we call a ‘sprinkle’
because of its role in the model-building construction to follow. We say that
an assignment of a propositional variable pc (the sprinkle) to each non-least el-
ement c ∈ C is a δ-sprinkling iff c 6 d iff pc ∈ δ(d) for each c, d ∈ C with c a
non-least element.
 14 If C is δ-irreducible and δ-tracking then it has a δ-sprinkling.

Proof: Suppose c ∈ C is a non-least element. Then the setDc = {d ∈ C | δ(c) 6⊆
δ(d)} is non-empty by δ-tracking, and δ(c) 6⊆ Prop(Dc, δ), by δ-irreducibility.
Hence, δ(c)\Prop(Dc, δ) 6= ∅, so we can pick a sprinkle pc ∈ δ(c)\Prop(Dc, δ).
Now for any d ∈ C, if c 6 d then δ(c) ⊆ δ(d) so pc ∈ δ(d). Conversely, if
pc ∈ δ(d), then because pc 6∈ Prop(Dc, δ) we must have d 6∈ Dc, so δ(c) ⊆ δ(d)
and by δ-tracking, c 6 d.

Now for any finite set of formulas {ϕ1, . . . , ϕn} a state description is a formula
of the form ±ϕ1 ∧ · · · ∧ ±ϕn where ±ϕi is either ϕi or ¬ϕi. We say that a
set C of parameters is δ-finitary iff for each c ∈ C there is a finite set of formula
ϕ1, . . . , ϕn ∈ δ(c) such that for every ϕ ∈ δ(c) and every state description σ,
either (σ→ ϕ) or (σ→ ¬ϕ) is a theorem of L(C).

The primary examples of δ-finitary sets of parameters are those whose de-
scription sets are all finite. But we can get examples of δ-finitary descriptions
with infinite description sets from finite models:
 15 Suppose M is a finite L(C) model and P is a finite set of propositional vari-
ables. For each c ∈ C, let δ(c) be the set of formulas ϕ whose variables are all in P and
which are invariant across c-links, i.e.,M,u |= ϕ iffM,v |= ϕ, for all u ≈c v. Then C

is δ-finitary.

Proof: Without loss of generality, assume that Prop = P. Otherwise, we can
take a reduct of M to the language based only on propositional variables in P.
Let M1, . . . ,Mn be the modal-equivalence classes of M, so that u, v ∈ Mi for
some i iff

M,u |= ϕ iff M,v |= ϕ for all ϕ ∈ L(C)

Then there is a finite sequence ϕ1, . . . , ϕn of formulas such that for u ∈Mi,

M,u |= ϕ iff (ϕi → ϕ) is a theorem of L(C).

The construction of these formulas is a standard technique in modal logic be-
cause Prop is finite.13

Consider c ∈ C. Let C1, . . . , Cm be the ≈c-equivalence classes in M and
define formulas ψ1, . . . , ψm by

13See, for example, [1, Theorem 32, p. 266].
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ψi =
∨

{ϕj | Mj ⊆ Ci}

These formulas are in δ(c) because they are invariant across c-links. Now if
Mj is not a subset of Ci then they are disjoint. (Otherwise, there would be
u, v ∈ Mj with u ∈ Ci and v 6∈ Ci, so there must be a ϕ ∈ δ(c) such that
M,u |= ϕ and M,v 6|= ϕ, or vice versa, which contradicts u, v ∈Mi.) So

M,u |= ψi iff u ∈ Ci

This is because the following are equivalent:
M,u |= ψi
M,u |= ϕj for some Mj ⊆ Ci
u ∈Mj for some Mj ⊆ Ci
[u] ⊆ Ci where [u] is the modal-equivalence class of u
u ∈ Ci by the disjointness of [u] and Ci if [u] 6⊆ Ci.

Now let ϕ ∈ δ(c). Then ϕ has a constant value within any Ci. Either (1)
M,u |= ϕ for each u ∈ Ci or (2) M,u |= ¬ϕ for each u ∈ Ci. In case (1), for
each Mj ⊆ Ci and u ∈ Mj, M,u |= ϕ, and so (ϕj → ϕ) is an L(C) theorem.
But then (ψi → ϕ) is also an L(C) theorem because ψi is a disjunction of the
set of ϕj for Mj ⊆ Ci. In case (2), by similar reasoning, (ψi → ¬ϕ) is also an
L(C) theorem. So now either

(±ψ1 ∧±ψm → ϕ) or (±ψ1 ∧±ψm → ¬ϕ) is a theorem of L(C)

This holds for each c ∈ C and so C is δ-finitary.

Next, we need the concept of an ‘implicit’ parameter. A formula ϕ may
not contain parameter c but it may contain a parameter d such that c occurs
in a formula of δ(d). In this case, we say that c occurs implicitly in ϕ. More
generally, the set of parameters CΓ that occur implicitly in a set of formulas Γ are
those that occur in formulas of Γ or of δ(c) for some parameter c implicit in Γ .
This, of course, is an inductive definition.14

Now the flexibility of a set of formulas is defined in terms of the description
sets for its implicit parameters. We say that Γ is δ-flexible iff δ = δ1 ∪ δ2 ∪ δ3
such that

1. CΓ is δ1-irreducible

2. CΓ is δ2-finitary

3. Prop(CΓ , δ1) is disjoint from both Prop(Γ) and Prop(CΓ , δ3)

Moreover, if δ2(c) is empty for each c ∈ CΓ and CΓ is also δ1 tracking, say
that Γ is δ-semiflexible. This slightly more rigid kind of description is essential
to our main construction.

14More precisely, CΓ is the smallest subset of C for which Γ and the image of CΓ under δ are
both contained in L(CΓ ).
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So, to recap, for a set of formulas to be flexible, the description of its pa-
rameters splits into three parts: the part that only contains propositional vari-
ables, which track the6-order, the part that can be eliminated using δ-Expansion
because is it basically no more than a finite extension, and the part that is help-
fully logically independent of the other parts. Removing the finite extensions
takes us back to a semi-flexible core which will form the scaffolding of our
model building techniques below.

We ask the reader to forgive this somewhat technical definition until our
theorems are proved. After that, we will be returning to Lcp and the exam-
ples of flexible sets given in the introduction will be fully explained. The main
bridge to our result uses sprinkles that witness each modality occurring implic-
itly in a flexible set of formulas but without interacting with non-sprinkles in
an appropriate way.
 16 If Γ is δ-semiflexible then there is a δ-sprinkling of CΓ such that for any
c, d ∈ CΓ ,

1. no sprinkle occurs in Γ

2. ifϕ ∈ δ(c) then eitherϕ is a sprinkle orϕ contains no sprinkle.

3. if pc ∈ δ(d) then c 6 d.

Proof: Suppose Γ is δ-semiflexible. Then δ = δ1 ∪ δ3 such that CΓ is δ1-
irreducible and δ1-tracking, and so has a δ1-sprinkling c 7→ pc, by Lemma 14.

1. By condition 3 of δ-flexibility, Prop(Γ) and Prop(CΓ , δ1) are distinct and
since the latter contains all the sprinkles, no sprinkle occurs in Γ .

2. Suppose ϕ ∈ δ(d) for some d ∈ CΓ . Then ϕ is either in δ1(d) or in δ3(d).
In the first case, ϕ must be a propositional variable, so if it contains a
sprinkle it just is that sprinkle. In the second case, any propositional
variable it contains must be in Prop(CΓ , δ3), which is disjoint from the
sprinkle-containing Prop(CΓ , δ1), condition 3 of the definition of flexi-
bility, and so it can contain no sprinkle.

3. Suppose pc ∈ δ(d) for some d ∈ CΓ . Then pc is either in δ1(d) or in
δ3(d). But for the reason just mentioned, δ3(d) cannot contain a sprinkle
and so pc ∈ δ1(d). So by the definition of δ1-sprinkling, c 6 d.

The lemma tells us that we can work with a set of propositional variables—
the sprinkles—that encode the ordering of parameters without interacting
with Γ or the other formulas in the description sets. This is enough to build
δ-models, as the following result shows.
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 17 Given a well-founded description δ for C, every δ-semiflexible set Γ of L(C)

formula is satisfied by a δ-model if it is consistent with δ-Inclusion and δ-Preservation
together with the axioms and rules of normal modal logic.15

Proof: Suppose Γ is δ-semiflexible and consistent. Then by Lemma 16 there is
a sprinkle pc for each c ∈ CΓ for which δ(c) 6= ∅. By Theorem 4, there is a
model, M = 〈W,R,≈, V〉 and w0 ∈ W such that M,w0 |= Γ . Our strategy will
be as follows:

1. Define a model M ′ = 〈W,R,≈, V ′〉 in which the valuation function is
changed, from V to V ′, only for the sprinkles, so the distribution of each
sprinkle pc appropriately encodes the equivalence relation ≈c; specifi-
cally, when Ruv,

u ≈c v iff (u ∈ V ′(pc) iff v ∈ V ′(pc))

2. Show that Γ is satisfied by the δ-model [δ∞]M ′ at w0.16

For the first stage, we define V ′ by partitioning the set W of states. From the
proof of Theorem 4, we may assume that R is a tree with root w0. In other
words, each state w other than w0 has a mother ŵ, being the unique state for
which Rŵw. We can partition the states of W into generations, starting at the
root: W0 = {w0} and Wn+1 = {w ∈ W | ŵ ∈ Wn}. Thus Wn is the set of
states exactly n transitions along R from w0. Now for each sprinkle pc, let

V0(pc) = {w0}

Vn+1(pc) = Vn(pc) ∪ {w ∈Wn+1 | ŵ ∈ Vn(pc) and ŵ ≈c w}

∪ {w ∈Wn+1 | ŵ 6∈ Vn(pc) and ŵ 6≈c w}

And then let

V ′(p) =

{ ⋃
n Vn(pc) if p = pc for some c ∈ CΓ

V(p) otherwise

The construction ensures precisely that if Ruv then for each sprinkle pc,

(*) u ≈c v iff (u ∈ V ′(pc) iff v ∈ V ′(pc))

For the second stage, note that M and M ′ agree on the formulas of Γ be-
cause they differ only on the valuation of sprinkles, which do not occur in Γ . So
by Lemma 2, M ′, w0 |= Γ . Next, we must show that the [δ] operation produces
only models that also agree on Γ . [δ] does not change the valuation, so all we
need to check is that for each α

(**) for all c ∈ CΓ , R∩ ≈c= R∩ ≈[δα]c

15We only need δ-Inclusion rather than the full power of δ-Expansion here. The latter will be
used in the next lemma.

16Where [δ∞] is the construction used in Lemma 11.
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From (**), we get that that M ′ and [δ∞]M ′ agree on Γ . This is because they
have the same valuation, V ′, and for every parameter c occurring in Γ , if α
is the depth of c, then ≈[δ∞]c=≈[δα+1]c, by definition of δ∞. This in turns
implies that R∩ ≈c= R∩ ≈[δ∞]c, by (**). Then, by Lemma 2, [δ∞]M ′, w0 |= Γ .

For the proof of (**), we proceed by induction on α. The case in which
α = 0 is trivial, since [δ0]M ′ = M ′. For the successor case, suppose α = β+ 1,
c ∈ CΓ and Ruv. We must show that:

u ≈c v iff u ≈[δβ+1]c v

First the left-to-right direction. Suppose that u ≈c v and ϕ ∈ δ(c). We
must show that [δβ]M ′, u |= ϕ iff [δβ]M ′, v |= ϕ. There are two cases, depend-
ing on whether or not ϕ is a sprinkle.

Case (i): ϕ is the sprinkle pd for some d ∈ CΓ . But then pd ∈ δ(c) and
so d 6 c, by Lemma 16 part 3. So by the basic constraint on L(C)-models,
u ≈d v. Then by (*), u ∈ V ′(pd) iff v ∈ V ′(pd), and so [δβ]M ′, u |= pd iff
[δβ]M ′, v |= pd, because M ′ and [δβ]M ′ have the same valuation.

Case (ii): ϕ is not a sprinkle. Then ϕ does not even contain a sprinkle, by
Lemma 16 part 2. So V(p) = V ′(p) for each propositional variable p occurring
in ϕ, and for all parameters d occurring in ϕ, by inductive hypothesis, R∩ ≈d
= R∩ ≈[δβ]d.17 Hence M and [δβ]M ′ agree on ϕ, and so by Lemma 2, M,w |=
ϕ iff [δβ]M ′, w |= ϕ for each w ∈ W. Finally, δ-Preservation ensures that
M,u |= ϕ iff M,v |= ϕ, and so [δβ]M ′, u |= ϕ iff [δβ]M ′, v |= ϕ, as required.

Now for the right-to-left direction. Suppose u ≈[δβ+1]c v. There are two
cases, depending on whether c is a least element of CΓ .

Case (i): c is a least element. Since R in M ′ is defined as the union of the
Rc’s, and because we already assumed that Ruv, it must be that Rduv for some
d. But c 6 d because c is a least element, and so u ≈c v.

Case (ii): c is a non-least element. Then it has a sprinkle pc ∈ δ(c), so
[δβ]M ′, u |= pc iff [δβ]M ′, v |= pc, so u ∈ V ′(pc) iff v ∈ V ′(pc), so u ≈c v by
(*).

Finally, for the case in which α is a limit ordinal,

≈[δα]c=

{
≈[δγ+1]c if c has depth γ < α
≈c otherwise

But γ < α and α is a limit ordinal, so γ+1 < α, and so by inductive hypothesis,
R∩ ≈c= R∩ ≈[δγ+1]c and we are done.

We can now extend this result to δ-flexible sets to get our main theorem.
 18 If δ is well-founded then every L(C)δ-consistent δ-flexible set has a δ-
model.

17It is here that we use the fact that CΓ contains all of the parameters implicit in Γ , and not
just those that occur explicitly in Γ .
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Proof: Suppose Γ is L(C)δ-consistent and δ-flexible. Then δ = δ1 ∪ δ2 ∪ δ3 such
that

1. CΓ is δ1-irreducible

2. CΓ is δ2-finitary

3. Prop(CΓ , δ1) is disjoint from both Prop(Γ) and Prop(CΓ , δ3)

We need to subtract the δ2 part from the description of each parameter. In
languages such as Lcp this is straightforward because it contains ceteris paribus
modalities for every set of formulas. But in the general case, we will need to add
some parameters to possess these stripped-down descriptions. So first make a
copy of C: C− = {c− | c ∈ C} where the c− are new parameters with c− 6 d−

iff δ1(c) ⊆ δ1(d), so that C− is δ1-tracking. Define δ−(c−) = δ1(c) ∪ δ3(c). In
other words, each new parameter c− is associated with those formulas in the
description of c that are not in the finitary part. Now expand to C† = C ∪ C−

with c− 6 d iff c 6 d and 6 preserved within C and C− and define δ† to be
δ ∪ δ−.18 Note in particular that δ†(c−) ⊆ δ†(c) and δ2(c) = δ†(c) \ δ†(c−).

Let c be any parameter that occurs implicitly in Γ . It is δ2-finitary and so
there is a finite set of formula ϕ1, . . . , ϕn ∈ δ2(c) such that for every ϕ ∈ δ2(c)
and every state description σ either (σ → ϕ) or (σ → ¬ϕ) is a theorem of
L(C)δ2 . Let Σc be the set of those state description, then for each σ ∈ Σ, the
following are all theorems of L(C)δ† :

(1) (σ→ [c]σ) by δ2-Preservation
(2) (σ∧ 〈c〉ψ)→ (σ∧ 〈c〉(σ∧ψ)) from (1) by normal modal logic
(3) (σ∧ 〈c〉(σ∧ψ))→ (σ∧ 〈c−〉(σ∧ψ)) by δ†-Inclusion and modal logic

because δ†(c−) ⊆ δ†(c)
(4) (σ∧ 〈c〉ψ)→ (σ∧ 〈c−〉(σ∧ψ)) from (2) and (3)
(5)

∨
{σ | σ ∈ Σc} by propositional logic

(6) 〈c〉ψ↔
∨
σ∈Σc(σ∧ 〈c〉ψ) from (5) by propositional logic

(7) 〈c〉ψ→
∨
σ∈Σc(σ∧ 〈c−〉(σ∧ψ)) from (4) and (6) and

propositional logic
(8) σ→ ϕ or σ→ ¬ϕ for each ϕ ∈ δ2(c) by δ2-finitary
(9) (σ∧ 〈c−〉(σ∧ψ))→ 〈c〉ψ from (8) by δ†-Expansion

because δ2(c) = δ†(c) \ δ†(c−)

(10)
∨
σ∈Σc(σ∧ 〈c−〉(σ∧ψ))→ 〈c〉ψ from (9) by propositional logic

(11) 〈c〉ψ↔
∨
σ∈Σc(σ∧ 〈c−〉(σ∧ψ)) from (7) and (10)

Now let ψc be the formula
∨
σ∈Σc(σ ∧ 〈c〉−(σ∧ψ)). We have shown that

〈c〉ψ ↔ ψc is a theorem of L(C)δ† . This can now be used to eliminate the
18This is a description because the C and C− are disjoint and δ− satisfies the defining condition

for descriptions on each part, and moreover, if c− 6 d then c 6 d so δ†(c−) = δ−(c−) =

δ1(c) ∪ δ3(c) ⊆ δ(c) ⊆ δ(d) = δ†(d).
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occurrences of any c ∈ CΓ from any formula in favour of c−. Let ϕ− be the
result of systematically replacing occurrences of 〈c〉ψ by ψc, for each c ∈ CΓ .19

It then follows that ϕ↔ ϕ− is also a theorem of L(C)δ† .
Let Γ− = {ϕ− | ϕ ∈ Γ }. Now Γ is δ-consistent and so δ†-consistent, be-

cause δ and δ† agree on all the parameters implicit in Γ , which are all in C.
And since Γ− is obtained from Γ only by replacing logical equivalents, it is also
L(C)δ† consistent. Moreover, by Lemma 12, if M is a δ†-model and w is in the
domain of M then

M,w |= Γ iff M,w |= Γ−

Moreover, from any δ†-modelMwe can get a δ-modelM ′ just by forgetting the
interpretation of parameters in C−. This model will satisfy the same formulas
of L(C) at the same points. And, finally, Γ−, all of whose implicit parameters
are in C−, is δ†-semiflexible. So by Lemma 17, Γ− is satisfied by a δ†-model M
at some point w, and hence the δ-model M ′ also satisfies Γ at w.

3   Lcp
The above results about parametric ceteris paribus logic have consequences for
the fully explicit language Lcp. To make the connection, recall that Lcp is
a special case of L(C) in which C is the collection of subsets of Lcp ordered
by Γ1 6 Γ2 iff Γ2 ⊆ Γ1. Since this makes C a proper class, we will typically
restrict our attention to a suitable set-sized fragment of L(C). For example,
when looking for models satisfying a set Γ of L(C) formulas, it is sufficient to
consider the language L(CΓ ), which contains Γ . The set CΓ is just the set of
those ∆ which occur as 〈∆〉 in some formula of Γ , since in Lcp, any implicit
occurrence is also an explicit occurrence.

With this definition of C and taking δ to be the identity function, we get
the following axioms for Lcp:

(CP-Preservation) ` ϕ→ [Γ ]ϕ and 〈Γ〉ϕ→ ϕ for all ϕ ∈ Γ .
(CP-Expansion) If ` (θ→ ϕ) or ` (θ→ ¬ϕ) for each ϕ ∈ Γ \ Γ ′

then ` (θ∧ 〈Γ ′〉(θ∧ψ))→ 〈Γ〉ψ

Call the logic obtained by adding these to the axioms and rules of normal
modal logic, LCP. As before the inclusion principle is derivable:

(CP-Inclusion) ` 〈Γ〉ϕ→ 〈Γ ′〉ϕ for each Γ ′ ⊆ Γ

19Specifically, [p]− = p

[¬ϕ]− = ¬[ϕ]−

[(ϕ∧ψ)]− = [(ϕ− ∧ψ−)]

[〈c〉ψ]− =

{
ψc if c ∈ CΓ
〈c〉[ψ]− otherwise
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LCP is an extension of the axiomatisation of the finite fragment of Lcp given
by [4] (and discussed in Section 1) because all formulas of the form

〈ψ, Γ〉ϕ ↔ (ψ∧ 〈Γ〉(ψ∧ϕ)) ∨ (¬ψ∧ 〈Γ〉(¬ψ∧ϕ))

are derivable.20

The correspondence between Lcp with the logic LCP and L(C) with the
logic L(C)δ at both the syntactic and semantic levels can now be noted with
the following two lemmas.
 19 A set of formulas Γ is LCP-consistent iff it is L(CΓ )δ-consistent, when δ is
the identity function.

Proof: By definition of the axioms.

 20 A set Γ of Lcp formulas is satisfiable (in an Lcp model) iff it is satisfiable in
an L(CΓ ) δ-model, where δ is the identity function.

Proof: If the L(CΓ ) δ-model M = 〈W,R,≈, V〉 satisfies Γ then the Lcp model
M ′ = 〈W,R, V〉 also satisfies Γ , as the relation ≈∆ in both models coincides for
∆ ∈ CΓ . Specifically, the following are equivalent:

u ≈∆ v in M
for each ϕ ∈ δ(∆), M,u |= ϕ iff M,v |= ϕ M is a δ-model
for each ϕ ∈ ∆, M,u |= ϕ iff M,v |= ϕ δ is the identity function
u ≈∆ v in M ′ definition in M ′

Conversely, given any Lcp model M = 〈W,R, V〉 that satisfies Γ , let M ′ be
the L(C) model 〈W,R,≈, V〉 with ≈ defined in the Lcp way: u ≈Γ v iff for each
ϕ ∈ Γ , M,u |= ϕ iff M,v |= ϕ. Again, for similar reasons, M ′ is a δ-model and
satisfies Γ .

We can now specialise the concept of δ-flexibility as follows21:
20CP-Inclusion and CP-Preservation are used to go from left to right and CP-Expansion is used

from right to left.
21Notice that we do not need anything explicit relating to δ-tracking, as the 6 order is given

by ⊆ in Lcp, so that Γ1 6 Γ2 iff Γ1 ⊆ Γ2.
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  : A set Γ of Lcp formulas is flexible iff
each modality 〈∆〉 occurring in Γ is of the form 〈∆1, ∆2, ∆3〉 where

1. ∆1 is irreducible: ∆1 ⊆ Prop and if

∆1 ⊆
⋃
∆ ′∈D

∆ ′1

and 〈∆ ′〉 occurs in Γ for each ∆ ′ ∈ D, then ∆1 ⊆ ∆ ′1 for some
∆ ′ ∈ D

2. ∆1 tracks the order of ∆ \ ∆2:

∆ \ ∆2 ⊆ ∆ ′ \ ∆ ′2 iff ∆1 ⊆ ∆ ′1

3. ∆2 is finitary: there is a finite set {ϕ1, . . . , ϕn} ⊆ ∆ such that for
each ϕ ∈ ∆2

either (±ϕ1 ∧ · · ·∧±ϕn)→ ϕ or (±ϕ1 ∧ · · ·∧±ϕn)→ ¬ϕ

is a tautology, where ±ϕi is either ϕi or ¬ϕi.

4. none of the propositional variables in ∆1 occurs in ∆3 or in any
formula of Γ except within a modal operator.

Checking definitions, it can easily be verified that
 21 A set Γ of Lcp formulas is flexible iff Γ is δ-flexible (as a set of L(CΓ ) formu-
las) with δ the identity function.

And with this, we can prove the following as a special case of Theorem 18.
 22 Every flexible and LCP-consistent set of formulas is satisfiable.

Proof: Suppose Γ is flexible and LCP-consistent. Then by Lemma 21 it is also
δ-flexible and by Lemma 19 it is L(CΓ )δ-consistent, where δ is the identity func-
tion. We also need to know that δ is well-founded, i.e. that C =

⋃
n Cn. This

follows from the inductive definition of Lcp itself. So, by Theorem 18, Γ is
satisfiable in an L(CΓ ) δ-model. Finally, by Lemma 20, Γ is satisfiable in an Lcp
model.

From a different perspective, we can see an Lcp formula as the result of
applying a description to a parametric formula. Indeed, for a well-founded
description δ for a condition set C, we can demonstrate an equivalence between
the logic of L(C) and the fragment of Lcp obtained by iteratively replacing each
symbol c by δ(c).

To make this precise, let Lcp(C) be the language of propositional modal
logic with propositional variables Prop, whose modalities are of the form 〈c〉
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for c ∈ C and 〈Γ〉 for Γ ⊆ Lcp(C). Note that this language contains both L(C)

and Lcp. The semantics for this language is the obvious combination of its
components. We take an L(C) model M = 〈W,R,≈, V〉 and define ≈Γ in the
usual way: u ≈Γ v iff for each ϕ ∈ Γ , M,u |= ϕ iff M,v |= ϕ. Then define

M,u |= 〈c〉ϕ iff Ruv and u ≈c v and M,v |= ϕ for some v ∈W
M,u |= 〈Γ〉ϕ iff Ruv and u ≈Γ v and M,v |= ϕ for some v ∈W

Note that if ϕ is an Lcp formula then M,u |= ϕ iff M ′, u |= ϕ, where M ′ is the
Lcp model 〈W,R, V〉.

Given a description δ of L(C), let:
δα(c) = {ϕ[δ, α] | ϕ ∈ δ(c)}
ϕ[δ, α] = result of replacing in ϕ all parameters c of depth β < α by δβ(c).
ϕ[δ,∞] = result of replacing in ϕ all parameters c of depth α by δα(c).

So δ0(c) = δ(c), δ1(c) is the result of replacing in ϕ all parameters c of
depth 0 by δ(c), δω(c) is the result of replacing in ϕ all parameters c of depth
n by δn(c), and so on. The satisfaction of formulas of sufficiently low depth is
coordinated between models M and [δα]M in the following manner:
 23 For a formulaϕ of depth6 α,

[δα]M,w |= ϕ iffM,u |= ϕ[δ, α]

Proof: By induction (i) on α and then (ii) on ϕ. For the base cases, note that
[δ0]M = M and [δα]M and M agree on propositional variables. For the second
induction, the only interesting case is when ϕ has the form 〈c〉ψ.

Let β be the depth of c. Then β < α, so by Lemma 10, ≈[δα]c = ≈[δβ+1]c.
Thus, [δα]M,w |= 〈c〉ψ iff [δα]M,v |= ψ for some v such that Rwv and

w ≈[δβ+1]c v

iff [δα]M,v |= ψ for some v such that Rwv and
[δβ]M,w |= θ iff [δβ]M,v |= θ for all θ ∈ δ(c),
by definition of ≈[δβ+1]c.

For θ ∈ δ(c), the depth of θ 6 β < α, so [δβ]M,u |= θ iff M,u |= θ[δ, β], by
induction hypothesis (i).

Hence, [δα]M,w |= 〈c〉ψ iff [δα]M,v |= ψ for some v such that Rwv and
M,w |= θ[δ, β] iffM,v |= θ[δ, β] for all θ ∈ δ(c).

But δβ(c) = {θ[δ, β] | θ ∈ δ(c)}.
Hence, [δα]M,w |= 〈c〉ψ iff [δα]M,v |= ψ for some v such that Rwv and

M,w |= χ iff M,v |= χ for all χ ∈ δβ(c).
But since β < α, θ[δ, β] = θ[δ, α], by definition, so δβ(c) = δα(c), also by

definition.
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So, [δα]M,w |= 〈c〉ψ iff [δα]M,v |= ψ for some v such that Rwv and
M,w |= χ iff M,v |= χ for all χ ∈ δα(c).

iff M,v |= ψ[δ, α] for some v such that Rwv
andM,w |= χ iffM,v |= χ for all χ ∈ δα(c),
by inductive hypothesis (ii).

iff M,w |= 〈δα(c)〉ψ[δ, α] by semantic defini-
tion.

iff M,w |= (〈c〉ψ)[δ, α], because the depth of
c = β < α.

Now, for any description δ and any formula ϕ in L(C), ϕ[δ,∞] is a formula
of Lcp. This establishes the following interpretation of L(C) into Lcp:
 24 [δ∞]M,w |= ϕ iffM,u |= ϕ[δ,∞]

Proof: Suppose ϕ has depth α. Then any parameter c occurring in ϕ has depth
β < α. By definition, ≈[δ∞]c=≈[δβ+1]c and by Lemma 10, ≈[δβ+1]c=≈[δα]c, so
by Lemma 2,

[δ∞]M,w |= ϕ iff [δα]M,w |= ϕ

And by Lemma 23,

[δα]M,w |= ϕ iff M,u |= ϕ[δ, α]

But ϕ[δ,∞] = ϕ[δ, α] (since ϕ has depth α) and we are done.

The logic of L(C) over δ-models is therefore strongly related to the frag-
ment of Lcp given by the image under ϕ[δ, α]. A set of L(C)-formulas Γ if satis-
fiable in a δ-model iff for a sufficiently large α, the image Γ [δ, α] is satisfiable in
an Lcp-model. A formula ϕ is a consequence of Γ over δ-models iff ϕ[δ, α] is a
consequence of Γ [δ, α] in Lcp. The ordinal α can be taken to be the supremum
of the depths of formulas in Γ,ϕ.

3.1 
We will now return to the examples of flexible sets given in the introduction
and show that they are indeed flexible. Recall that we use Prop(Γ) to denote the
set of propositional variables that occur in some formula of Γ outside a modal
operator.22 In each case, we must analyse the modality 〈∆〉 into three disjoint
components ∆1, ∆2 and ∆3, ensuring that ∆1 and ∆3 contain no formulas with
propositional variables in Prop(Γ). Furthermore, the description δ1:∆ 7→ ∆1

22The qualification ‘outside a modal operator’ was not needed when this was defined for L(C)

formulas but in Lcp the modal operators can also contain propositional variables and we need to
exclude these from Prop(Γ).
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must be shown to be irreducible and δ2:∆ 7→ ∆2 must be shown to be fini-
tary. We will call δ1 and δ2 the ‘first component’ and the ‘second component’,
respectively.23

1. Γ contains only 〈∆〉 for finite ∆. In this case, take ∆1 = ∆3 = ∅. Then
∆2 = ∆ is finite and so the second component is finitary. The modalities
〈∆〉ϕ can then be eliminated, as shown above, with:

〈∆〉ϕ↔
∨
σ∈Σ∆

(σ∧ 〈∅〉(σ∧ϕ))

with Σ∆ the set of state descriptions of ∆. This is the standard reduction
of finitary ceteris paribus modalities to basic modal logic.

2. Γ contains only one modality 〈∆〉 in which ∆ = Prop \ Prop(Γ). In this
case ∆ = ∆1∪∆2∪∆3 where ∆2 = ∆3 = ∅. ∆1 = ∆ is irreducible because
it contains only propositional variables. The other condition for irre-
ducibility is trivially satisfied because 〈∆〉 is the only modality occurring
in Γ . Alternatively, if ∆ is non-empty, we could take ∆1 = {p} for some
p ∈ ∆ and ∆3 to be the remaining propositional variables not in Prop(Γ).
The propositional variable p will serve as the sprinkle in Lemma 16.

3. Γ contains many modalities 〈∆i〉, with ∆0 ⊂ ∆1 ⊂ ... ⊆ Prop \ Prop(Γ).
In this case ∆i = ∆i1 ∪ ∆i2 ∪ ∆i3 where ∆2 = ∆3 = ∅. The sets ∆i1 =

∆i are irreducible because they contain only propositional variables and
for any non-empty set {∆j}j∈I of these sets

⋃
j∈J ∆j = ∆maxJ which is

itself in the set. Alternatively, we could take ∆i1 to {pi} where pi is any
propositional variable occurring in ∆i but not in ∆j for j < i, and then
put the remaining propositional variables in ∆i3. Again, the variable pi
is the sprinkle from Lemma 16.

4. Γ contains only the modalities 〈Prop〉 and 〈∅〉 and Prop(Γ) is finite. In this
case, take Prop = Prop1 ∪ Prop2 ∪ Prop3 where Prop1 = Prop \ Prop(Γ),
Prop2 = Prop(Γ) and Prop3 = ∅. Each component of ∅ is of course
empty. Since Prop2 is finite it is finitary for the same reason as was given
in example 1. Again, we could put only a sprinkle in Prop1 and the rest
in Prop3.

5. Γ contains modalities 〈∆〉 in which ∆ is any set of propositional variables,
only a finite number of which are in Prop(Γ). This is only a slight gen-
eralisation of the last example: ∆1 = ∆ \ Prop(Γ), ∆2 = ∆ ∩ Prop(Γ) and
∆3 = ∅. ∆2 is again finite and so the second component is finitary.

23As was previously noted, we do not need to pay special consideration to tracking in Lcp,
because the 6 order is given by ⊆.
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6. Γ contains a finite set of modalities 〈∆1〉, . . . , 〈∆n〉 in which each ∆i
contains a cofinite set of propositional variables only finitely many of
which are in Prop(Γ). The latter condition implies that Prop(Γ) is also
finite. To say that ∆i is cofinite is to say that Prop \ ∆i is finite. Take
∆i1 =

⋂n
i=1 ∆i \ Prop(Γ). This is the same set of propositional variables

for each i, the cofinite set of those variables that occur in all of the ∆i
but not in Prop(Γ). Then take ∆i2 = ∆i \∆i1 and ∆3 = ∅. The first com-
ponent is trivially irreducible - there is only one modal operator which
contains only propositional variables - and the second component is fi-
nite and so finitary.
This example is a generalisation of the initial treatment of ceteris paribus
preference logic by von Wright in [5]. In this system, a preference for,
say, coffee c over tea t can be expressed as cPt. According to von Wright,
if surrounding conditions change in the world, then the preference might
also change. I would change my preference for coffee over tea if the cof-
fee you offered me was old and cold. But if the conditions stay constant,
then I would always choose coffee over tea. To capture this idea, von
Wright proposed that we should keep constant all the propositions that
are not in the preference statement – constant in the sense that we have
been investigating throughout this paper. In the case of cPt, this means
that we would keep constant all propositional variables other than c and
t. Let ∆ = Prop \ {c, t}, then a ceteris paribus preference for coffee over tea
can be expressed as cP∆t. If Prop is infinite, than ∆ is cofinite and von
Wright’s preference logic becomes a special case of the example under
discussion.

7. {ϕ} contains only modalities with cofinite or finite sets of propositional
variables. The modalities with finite sets of propositional variables can
be reduced to the modality 〈∅〉 (which is a least element) and the modali-
ties with cofinite sets can be reduced to a modality 〈∆〉 as in the previous
example – with ∆ the intersection of all sets occurring in modalities in
ϕ minus the propositional variables in ϕ outside modalities. This leaves
just two modalities 〈∆〉 and 〈∅〉, neither of which contain propositional
variables in Prop(ϕ).

The final examples gives a complete axiomatisation of a new fragment of
Lcp:
 25 The fragment of Lcp consisting of those formulas whose modal operators
contain either a cofinite or finite set of propositional variables is completely (weakly)
axiomatised by LCP.

None of these examples exploit the possibility of adding formulas in the
∆3 component. But further examples can be obtained by adding these at will,
subject only to the tracking constraint. Moreover, the construction used in
Lemma 15 enables us to generate examples with infinite ∆2.
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4    
Given the lack of an axiomatisation for the standard logic of Lcp, we have iso-
lated (finitely characterisable) sufficient conditions for a set of formulas to be
satisfiable. A set satisfying those conditions is called flexible and Theorem 22
shows that such a set is satisfiable whenever it is consistent. This motivated
a new semantics for Lcp, under which the formulas Γ in the modality 〈Γ〉 are
taken to represent conditions on ceteris paribus equivalence that are necessary
but not necessarily sufficient. Flexible Ceteris Paribus Logic was shown to have
a strongly complete and natural axiomatisation.

The question of the weak axiomatisation of Lcp with standard semantics
remains open but we conjecture that there is no such axiomatisation in the
general case. When the sets Γ in modalities 〈Γ〉 are required to be countable,
there is more prospect of success, by analogy with the infinitary logic Lω1,ω,
but we do not yet have a result.

Our approach to the initial problem involved the articulation of the more
abstract language L(C) in which ceteris paribus conditions are represented only
by parameters drawn from a partially ordered set C. We think that this lan-
guage is worthy of investigation in its own right. In particular, it would be
interesting to impose more structure on C, while falling short of the full ex-
pressive power of Lcp. For example, it is fairly easy to see how the introduction
of Boolean operators on parameters can be axiomatised, and the partial order
on parameters could be used to represent a number of different relations (the
expertise of agents, their influence in a community, etc.)
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