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Abstract: This paper explores models for arithmetic in substructural logics. In the
existing literature on substructural arithmetic, frame semantics for substructural
logics are absent. We will start to fill in the picture in this paper by examining
frame semantics for the substructural logics C (linear logic plus distribution), R
(relevant logic) and CK (C plus weakening). The eventual goal is to find negation
complete models for arithmetic in R.

This paper is dedicated to my friend and mentor Professor Robert K. Meyer,
who taught me the joys of Relevant Arithmetic and so much more.

1  
Consider the Peano axioms for arithmetic.

Identity 0 = 0

∀x∀y(x = y→ y = x)

∀x∀y∀z
(
y = z→ (x = y→ x = z)

)
Successor ∀x∀y(x ′ = y ′ → x = y)

∀x∀y(x = y→ x ′ = y ′)

∀x(0 6= x ′)

Addition ∀x(x+ 0 = x)

∀x∀y
(
x+ y ′ = (x+ y) ′

)
Multiplication ∀x(x0 = 0)

∀x∀y(xy ′ = xy+ x)

Induction A(0), ∀x
(
A(x)→ A(x ′)

)
` ∀xA(x)
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Under the standard interpretation of the language (in which quantifiers range
over natural numbers) these axioms ring true. In fact, they ring true indepen-
dently of the theory of the conditional ‘→’ is read. If it is a merely material
conditional we have traditional Peano arithmetic. If it is an intuitionistic con-
ditional, we have intuitionistic Peano arithmetic. If it is the conditional of the
relevant logic R, then we have relevant arithmetic, studied by Meyer [5, 6, 7]. If
it is the conditional of a contraction free logic, then we have contraction free
arithmetics [12, 13]. Each of these different arithmetical theories have their
virtues. For any predicate logic X possessing the vocabulary ∀,→, ∼, we will
call the theory given by adding these axioms and rules to those of X, “X].”

Gödel has shown us that K] is not complete (where K is classical predicate
logic). As a result, neither is X] for any logic X weaker than K. One way to
complete K] is to add the infinitary ω rule.

A(0), A(0 ′), A(0 ′′), . . . ` ∀xA(x)

We will call the arithmetic given by replacing the induction rule from X] by
the ω rule, “X]].”1 K]] is complete. Here is why: One can prove by induction
on the complexity of A that A is provable or ∼A is provable. The crucial steps
are the base case—that s = t is provable iff the terms s and t denote the same
number, and s 6= t is provable iff the terms denote a different number. The
cases for conjunction, disjunction and negation are trivial. The ω rule means
that we can show that if A(n) is provable for every n, then ∀xA is provable.
And similarly, if A(n) is not provable for every n, then ∼A(n) is provable for
some n, and hence ∼∀xA is probable. Hence we have completeness for all
formulae.

So, if you think that K is a good account of the logic of quantifiers and
connectives, then you have reason to believe that K]] is true arithmetic. It is a
complete theory, giving you a definite answer for every arithmetic question.

The same cannot be said for X]] for other logics X. The most you can show
is that (given that X satisfies a few conditions2) X]] is extensionally complete.
That is, if A is a formula in the extensional (implication free) vocabulary, either
A or ∼A is provable. The proof is the same induction as before.3

Now, if you endorse a logic other than K—say X—then you must answer
this question: If X is the preferred logic, is X]] a good theory of arithmetic?
Take the case of R]]. In this theory there is no proof of 0 = 2 → 0 = 1,4 and

1It is simple to show that given the ω rule the induction rule follows.
2In particular, that X includes distributive lattice logic and a negation satisfying the de Mor-

gan laws.
3This proof obtains even in the absence of the law of the excluded middle.
4There is no way to reason from 0 = 2 to 0 = 1 using arithmetic operations alone. Reasoning

classically, you can import the theorem 0 6= 2 to deduce 0 = 2∧0 6= 2 from 0 = 2 alone, and from
that contradiction you can deduce 0 = 1. But in a logic respecting relevance, this reasoning
breaks down.
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no proof of ∼(0 = 2 → 0 = 1) either.5 However, it is a theorem of R]] that
(0 = 2 → 0 = 1) ∨ ∼(0 = 2 → 0 = 1). One could rightly ask which disjunct is
the case. In relevant arithmetic, is it true that if 0 = 2 then 0 = 1? R]] gives
you no guidance on the issue.

One way to proceed is to attempt to extend arithmetic further. We ought
try to find theories extending X]], which “fill in the blanks” in one way or other.
One simple way to do this is to move to K]], but this is giving up the game of
formalising a truly substructural arithmetic. To be sure, we can complete X]]

by adding theses such as 0 = 2 → 0 = 1, 0 = 3 → 0 = 2 and so on, but to do
so seems to erase all of the distinctions we wish to draw. If the conditional is
to indicate some kind of relevance, then it is surely more appropriate for our
theory to say that 0 = 2 → 0 = 1 is false. We ought have ∼(0 = 2 → 0 = 1) as a
claim in our arithmetic theory.

One way to construct such a complete and genuinely substructural arith-
metic involves the use of metavaluations. Meyer and I have shown that the
theory E]] can be extended to a natural complete theory, which we call TE]],
for “true E arithmetic” [10]. This construction uses the technique of metaval-
uations to define the Truths of TE]] as follows:

• s = t is True iff s = t.

• A∧ B is True iff both A and B are True.

• A∨ B is True iff either A or B is True.

• ∼A is True iff A is not True.

• A→ B is True iff A→ B ∈ E]] and furthermore, if A is True, so is B.

The set of Truths so defined is a theory extending TE]]. It is genuinely sub-
structural, since it contains theses such as ∼(0 = 2 → 0 = 1), due to the
defining clause for negations. This technique produces a complete arithmetic,
but it has one major shortcoming. It works for the logic E of entailment, but
not for the logic R of relevant implication. In R, ∼A is equivalent to A→ f for
a particular proposition f. This means that we cannot both give negation the
extensional clause above (∼A is true iff A is not) while at the same time giving
implication the intensional clause (A→ B is when not only if A is true so is B,
but when also A → B is in the theory X]]). So, if we wish to complete R]] or
theories like it, we will need to use a different technique.

In this paper I will present a different technique for constructing models
for substructural arithmetics. This technique will help us shed new light on
the issue of the truths of substructural arithmetics, and it be able to provide a
number of complete extensions of R]]. It seems, however, that these complete
extensions of R]] are not completely satisfactory (we will be able to construct

5If there were, then K]] would be inconsistent, as R]] is a subtheory of K]], and we can prove
0 = 2→ 0 = 1 in K]].
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a consistent, complete arithmetic theory in which ∼(0 = 2 → 0 = 3), and
another in which ∼(0 = 3→ 0 = 2). However, the techniques discussed in this
paper does not allow us to satisfy both of them in the one model. So, I will end
this paper with suggestions for future work.

2  
The extant literature about models for substructural arithmetic has focussed on
the use of algebraic models for modelling arithmetics [9, 11]. The idea is simple.
We take a domain of objects, and a domain of truth values. The arithmetic
function symbols are interpreted by functions on the domain of objects, and
the predicate of identity is interpreted by a function mapping pairs of objects
in the domain to truth values in the propositional structures. The richer struc-
ture of the algebraic models of the non-classical logics choice enables us to
model arithmetics with unusual properties.

The approach of this paper is different. We will not use algebraic models of our
logics. We will not use three valued matrices or ever more complex algebras in
order to prove interesting results about arithmetics. Instead, we will use two
different kinds of frame semantics for substructural logics [15].

Frame semantics for logics like R are rather simple.6 A reduced frame for
a substructural logic is a quintuple F = 〈P, g, R,v, ∗〉 satisfying the following
conditions.

• P is a nonempty set of points, including a distinguished point g.

• R is a ternary relation on P.

• v is a partial order on P.

• ∗ is a one place operator on P.

• R satisfies the tonicity requirements: If Rabc a ′ v a, b ′ v b and c v c ′
then Ra ′b ′c ′.

• g is an identity point of R: Rgab if and only if a v b.

• ∗ is order inverting: If a v b then b∗ v a∗.

The propositional connectives are modelled on a frame by way of an evaluation
 relating points and propositions satisfying the following constraints:

• If a  A and a v b then b  A too.

• a  A∧ B if and only if a  A and a  B.
6This frame semantics for R and its neighbours was introduced by Routley and Meyer [16, 17]

in the 1970s. For a general discussion closest to the presentation here, see An Introduction to
Substructural Logics, Chapter 11 [15].
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• a  A∨ B if and only if a  A or a  B.

• a  A→ B if and only if for each b, c where Rabc, if b  A then c  B.

• a  ∼A if and only if a∗ 6 A.

Entailment on frames is truth preservation at all points. That is, A `F B if and
only if for each a ∈ F, if a  A then a  B. The identity point g is a witness for
these entailments since we have the following semantic entailment result.

A `F B if and only if g  A→ B in F.

The logic of these frames is quite weak. To extend the logic to model more
familiar substructural logics, conditions are imposed on R, ∗ and v. Here are
some conditions and their corresponding entailments:

R(ab)cd⇒ Ra(bc)d A→ B ` (C→ A)→ (C→ B)

Rabc⇒ Rbac A ` (A→ B)→ B

a v a∗∗ A ` ∼∼A

a∗∗ v a ∼∼A ` A
Rabc⇒ Rac∗b∗ A→ B ` ∼B→ ∼A

Raaa A∧ (A→ B) ` B
g v a A ` B→ A

In the first condition we use ‘R(ab)cd’ as a shorthand for ‘(∃x)(Rxcd ∧ Rabx)’
and ‘Ra(bc)d’ for ‘(∃x)(Raxd∧ Rbcx).’

The result of adding all the conditions above the line is the substructural
logic C, which is R without the contraction axiom A ∧ (A → B) ` B. Adding
this gives us R, and adding instead the ‘irrelevance’ condition A ` B → A we
get the logic CK which is one of the strongest logics without the contraction
axiom. For more details on these substructural logics, see [15].

If we wish to model logics without negation, then we simply rid our frame
of ∗ and its conditions. Models for positive C, R and CK are given by the
corresponding classes of frames.

We can extend these models to interpret quantifiers, by means of a con-
stant domain interpretation. In the case of models of arithmetic with the ω
rule our job is even easier. We may use a substitutional interpretation, as we
have numerals as names for each object in the domain. We have the simple
rules:

• a  ∀xA(x) if and only if a  A(n) for each n.

• a  ∃xA(x) if and only if a  A(n) for some n.

Predicates then are modelled by their extension at each point in the model,
and function symbols are modelled by functions on the domain, as before. The
models which result are models of the quantified logics C, R and CK. All of the
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theses of these logics are true at the base point g of the models appropriate for
those logics. We will use these frames to construct models for the arithmetics
C]], R]] and CK]].

3    
A close inspection of the axioms reveals axioms of two different kinds. First,
there are those which are identities. Second, there are axioms which are at
heart, implications. The only rule left is the omega rule, which is dealt with by
our taking the domain of each of our frames to be the natural numbers. Let us
consider the identity axioms. These are as follows (free variables are implicitly
universally quantified)

0 = 0 x+ 0 = x x+ y ′ = (x+ y) ′

x0 = 0 xy ′ = xy+ x 0 6= x ′

These axioms are settled in our models by the behaviour of the identity relation
at the base point g, and by the interpretation of the functions. Since it is our
aim to make these models look as much like standard arithmetic as possible
except for the interpretation of the conditional, we take the interpretation
the constant 0 to be the number zero, and the interpretation of the functions
symbols for successor, addition and multiplication to be the functions addition,
successor and multiplication on the domain of natural numbers. Finally, the
extension of the identity relation at the base point is the standard identity
relation on the natural numbers. This ensures that each of these axioms are
dealt with. Except one. We have not ensured that 0 6= x ′, as this depends not on
what happens at the base point, but at the point g∗. This will have to wait for
a few sections for when we discuss negation.

The interest in these models of substructural arithmetic is not what hap-
pens at the base point g, but what happens elsewhere. This is what you would
expect. The aim of substructural arithmetic is not to collect together a de-
viant set of arithmetic facts but rather to explain different connections between
the classical arithmetic facts. The conditional provides the novelty, and this
is reflected by the fact that the non-standard evaluation occurs on different
points of the frame. These points can be considered to be different informa-
tion states, which give us the tools to extract the connections between differ-
ent arithmetic facts—what would happen in a hypothetical (but of course still
impossible) situation in which 0 = 2 helps us see what follows from identifying
0 and 2.

Let us see what models must satisfy in order to be models of substructural
Peano arithmetic. The implication axioms are simple.

x = y→ y = x x = y→ (y = z→ x = z)

x = y→ x ′ = y ′ x ′ = y ′ → x = y
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Let’s take these one at a time to see how we can make them hold in our models.
The first states, in the language of frames, that the extension of the identity
predicate at each point is symmetric. For if a  n = m then a  m = n too.

The second axiom connects the extension of identity at different points
related by R. In particular, we have the following condition:

Whenever Rabc, if a  n = m and b  m = l then c  n = l.

We will call this the R-transitivity of identity. We do not so much require that
identity be transitive at individual points, but we do require R-transitivity.

In the presence of the contraction condition for the logic R, R-transitivity
entails standard transitivity, since Raaa for each a. If a  n = m and a  m = l

then we must have a  n = l too. So, in R, identity is transitive at each
point in the frame. In the presence of the irrelevance condition for CK, we do
not necessarily have transitivity, but since g v a for each a, identity must be
reflexive at each point, as identity is reflexive at g.

The last two axioms connect identity at each point with the behaviour of
the successor function. If a  n = m then we must have a  n ′ = m ′, and
conversely, if a  n ′ = m ′ then a  n = m too. This means that the extension
of identity at the point a must act like a congruence relation under successor.
So at each point, the extension of identity must be symmetric, and it must be
what we call a weak congruence with respect to successor. It is to the study of
these symmetric weak congruences that we will now turn.

4     
A two place relation ρ on the set of natural numbers is a symmetric weak con-
gruence if and only if it is symmetric, and if nρm if and only if n ′ρm ′ for each
number n and m. Symmetric weak congruences are rather simple structures,
as can be seen by the following equivalence.
 1 The trace Traceρ of a symmetric weak congruence ρ is the set of all
numbers n such that 0ρn. The congruence ρ is determined uniquely by its trace
Traceρ. And conversely, any set X of numbers is the trace of some symmetric
weak congruence ρX.

The fact is quite simple to prove. If nρm then |n −m|, the absolute value
of the difference n −m is in the trace Traceρ. Conversely if n ∈ Traceρ then
mρ(n+m) and (n+m)ρm for each number m.
 2 The weak congruence ρ is reflexive if and only if 0 ∈ Traceρ. It is
transitive if and only if whenever m,n ∈ Traceρ then m+ n, |m− n| ∈ Traceρ.

The first part of this fact is immediate. The second is almost as immediate.
We have mρn and nρl if and only if |m − n|, |n − l| ∈ Traceρ. Similarly, mρl if
and only if |m− l| ∈ Traceρ. However |m− l| is either equal to |m− n| + |n− l|

if n is between n and l, and it is
∣∣|m− n| + |n− l|

∣∣ otherwise.
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So, points in models for substructural arithmetics have corresponding symmet-
ric weak congruences, the extension of identity at these points.

We can take the correspondence in reverse too. We can construct a frame out of
symmetric weak congruences. The identity relation on natural numbers, with
trace {0}, can be the base point in this frame. The congruences are related by
the following ternary relation R

Rρλχ if and only if whenever nρm and mλl, then nχl.

A corresponding condition on traces is simple: if n ∈ X and m ∈ Y then n+m

and |n −m| ∈ Z. This ternary relation is modelled explicitly after the connec-
tion between R and the extension of identity in any model for substructural
logics.

Congruences are also ordered by an inclusion relation v

ρ v λ if and only if whenever nρm then nλm.

This corresponds to the subset relation on traces.

Then congruence relations, together with R and v provide all the machinery
for frames of the logic C without negation.
 3 The class of symmetric weak congruence relations, ordered by v and
related by R, is a positive C frame. The class of transitive symmetric weak
congruence relations is a positive R frame, and the class of reflexive symmetric
weak congruence relations is a positive CK frame.

There are many requirements to check. The tonicity condition falls out
of the definitions. The symmetry condition Rabc ⇒ Rbac follows from the
symmetry of the congruence relations. The associativity condition is the most
tedious to check, but it is a restatement of a known fact of relation algebra: the
associativity of relational composition. Note that Rργχ if and only if (ργ) ⊆ χ,
where (ργ) is the relation defined by setting

n(ργ)l iff there is some m where nρm and mγl

Then, the associativity condition R(ab)cd⇒ Ra(bc)d is equivalent to checking
the associativity fact

(ρ(γχ)) v ((ργ)χ)

for relational composition, and this is an immediate consequence of the defi-
nition of composition.

The identity point g in a frame is the identity relation: (gρ) = ρ for any
relation ρ.For R, we have Rρρρ, as the congruence relations are transitive:
(ρρ) v ρ. For CK, we have g v ρ as congruence relations are reflexive.

So, frames constructed out of weak congruence relations give us models for our
logics (without negation). It is only a short step to make these models of the
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entire language of arithmetic (except for the axiom involving negation). We
take the domain to be the set of natural numbers, and we evaluate the identity
predicate in the obvious way:

• ρ  n = m if and only if nρm.

We interpret the function symbols in their standard way on the domain of
natural numbers. This gives us a model.
 4 This evaluation gives us a model of all of the positive axioms of Peano
arithmetic.

The demonstration of this fact involves running our argument thus far in
reverse. The symmetry of the relations gives us the symmetry axiom x = y →
y = x. The definition of the relation R gives us x = y→ (y = z→ x = z). The
fact that these are congruence relations ensures that x = y↔ x ′ = y ′, and the
behaviour of the functions ensures that each identity axiom (for addition and
multiplication) are satisfied at the base point g, as identity is interpreted there
in the normal fashion.

These models, for the positive parts of C]], R]] and CK]], are genuinely
substructural. In each model g 6 0 = 2→ 0 = 1. Take the congruence relation
ρ with trace {0, 2, 4, . . .}. We have ρ  0 = 2 but ρ 6 0 = 1. This relation is
symmetric, reflexive and transitive, so it appears in models for each of C]], R]]

and CK]]. In fact, we have g 6 0 = m→ 0 = n whenever m does not divide n,
as the trace {0,m, 2m, 3m, . . .} gives us a congruence relation in which 0 = m

holds but 0 = n does not.
These models are also, to some degree, natural. The base point g models

the arithmetic facts, and the other points are hypothetical arithmetic situa-
tions, in which the arithmetic truths are varied. The range of possible vari-
ations are constrained by the arithmetic laws such as the symmetry of iden-
tity. The degree of permissible variations establishes the connections between
arithmetic claims. We have 0 = 2 → 0 = 4 in R arithmetic, since identi-
fying 0 and 2 brings with it the identification of 0 and 4 by the transitivity
of identity. We have 0 = 2 ↔ 2 = 4, and 0 = 2 → (2 = 4 → 0 = 4), so
0 = 2 → (0 = 2 → 0 = 4) and by contraction, 0 = 2 → 0 = 4. This is reflected
in our models by the behaviour of the appropriate congruences. Once 0ρ2 we
must have 0ρ4 by transitivity. In logics without contraction, in which the num-
ber of times antecedents are used is important, we do not have 0 = 2→ 0 = 4.
The most we have is 0 = 2 → (0 = 2 → 0 = 4). Our model provides a coun-
terexample to 0 = 2 → 0 = 4, as the congruence with trace {2} (or {0, 2}, for
CK) does not contain 4, and so, we have a point at which 0 = 2 holds but 0 = 4

fails.

So, these models exhibit quite a degree of genuinely substructural behaviour.
Unfortunately, as they stand, these models do not support negation. Remedy-
ing this is the focus of the last section of this paper.
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5  
The structure of weak congruence relations is quite rich, but is not rich enough
to model negation. Let’s focus on the logic R to see why. Consider the traces
of symmetric and transitive weak congruences. The identity trace is {0}. There
is also the empty trace ∅. Every other transitive trace must contain 0, since if
n ∈ Traceρ, we have 0ρn and nρ0, so by transitivity, 0ρ0. So, 0 ∈ Traceρ. If {0}

is the identity trace, and if we wish the theory at {0} (the set of claims which are
taken to be true at {0}) to be complete, then almost every point in our model
will be complete, as every for every point a, other than the empty set, we have
{0} v a. This is a problem when it comes to modelling negation.

To see why, we need to understand a little more about how the ∗ operator
works. The operator ∗ takes points in frames to their informational “dual”.
The negation, ∼A is true at a just when A does not hold at a∗. When a 6= a∗,
the way is open forA∧∼A to be true atA, or forA∨∼A to fail at a. This makes
the semantics of substructural logics quite flexible.7 The operator ∗ interacts
with inclusion in the obvious, order inverting way. If a v b, then we must have
b∗ v a∗. A point a is consistent and complete just when a = a∗ (then, negation at
a behaves classically). It is said to be consistent if a v a∗, for then a 6 A∧ ∼A.
It is said to be complete if a∗ v a, for then, a  A ∨ ∼A for each A. If ∗ is of
period two (that is, if a∗∗ = a for each a) then a is complete, a∗ is consistent,
and vice versa.

The following result is a straightforward consequence of our definitions:
 5 If a v b and a is consistent and complete, then b is consistent only
when a = b (for b∗ v a∗ = a v b, so b v b∗ ensures that b = a). Similarly, if
b v a and a is consistent and complete, then b is complete only when a = b.

In our model of symmetric transitive weak congruences, we would like the
base point g to be consistent and complete. It follows that ∅ is consistent, but
not complete, and every other point is complete, but not consistent. As there are
many symmetric transitive weak congruences extending the identity, it follows
that no ∗ operation of period two can be defined on this class. If it could, then
{0, 2, 4, . . .}∗ and {0, 3, 6, . . .}∗ would both be ∅. Which do you choose for ∅∗?

There is no doubt that this class of congruences has too few incomplete points
to be a frame for R. Let’s explore one way to attempt to remedy this defecit.
(It will turn out to fail, but the manner in which it fails will be instructive, and
will point to another model construction.)

Consider theories: sets of formulas closed under logical consequence. The
set of formulas true at a point in a reduced R model is a theory. If T is an
R-theory, then so is T∗ = {A : ∼A 6∈ T }. We will call this theory the double of T .

7But of course, it makes the interpretation of the operator ∗ rather difficult. I will not engage
in this discussion here. For more on the interpretation of negation in relevant logics and the
operator ∗, I refer the reader to papers by Meyer and Martin [8], Dunn [4] and Restall [14].
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Consider now the theory T given by adding 0 = 2 to the set of R]] truths
and closing under consequence. This theory contains 0 = 2, 0 = 4, and 1 = 3

and so on, together with 0 = 0, 0 6= 1, 0 6= 2 and other arithmetic truths.
We have 0 6= 0 since transitivity gives 0 = 2 → (0 = 0 → 0 = 2), so by
contraposition, 0 = 2→ (0 6= 2→ 0 6= 0) and modus ponens gives 0 6= 0 as well.

Consider the double T∗. It doesn’t contain 0 = 0 (as our original theory has
0 6= 0) or 0 = 1 (T contains 0 6= 0) or 0 = 2 (T contains 0 6= 2). It does contain
0 6= 1 and 0 6= 3 etc. (as T does not contain 0 = 1, 0 = 3). The result is as follows

{0 = 0, 0 6= 0, 0 6= 1, 0 = 2, 0 6= 2, 0 6= 3, . . .} ⊂ T
{0 6= 1, 0 6= 3, 0 6= 5, . . .} ⊂ T∗

Similarly, if we consider the theory S given by adding 0 = 3, it and its double
look like this:

{0 = 0, 0 6= 0, 0 6= 1, 0 6= 2, 0 = 3, 0 6= 3, 0 6= 4, . . .} ⊂ S
{0 6= 1, 0 6= 2, 0 6= 4, 0 6= 5, . . .} ⊂ S∗

The theories S∗ and T∗ are genuine R]] theories (they are closed under all of the
R]] implications). They both contain no identities. However, they are different.
They are different not in which identities they assert, but in which identities
they rule out. Our models so far do not provide any way of reflecting this
situation. These different theories are mirrored only in the empty point ∅. To
remedy this, we would hope to extend the R]] model of symmetric transitive
weak congruences by replacing ∅ by a collection of new points: doubles of the
existing points in our frame. However, to do this, we would need to define the
inclusion relation and R on both the original points and their doubles, in such
a way as to continue to validate the conditions for an R-frame.

Some of these conditions are straightforward to meet, and the others are
not. Our target frame is made up of the collection of congruence relations
on the class of natural numbers (non-empty symmetric transitive weak congru-
ences are equivalence relations, and hence, congruences), together with a point
a ′ for each congruence a—except for g, which needs no double, since the aim
of the exercise is to set g∗ = g so that what is true at g is consistent and com-
plete. So, we define the operator ∗ to take congruences to their doubles and
back.

g∗ = g a∗ = a ′ a ′∗ = a

The inclusion relation places each of the doubles under each of the congru-
ences. The doubles are ordered inversely.

a ′ v b always a v b ′ never a ′ v b ′ iff b v a

This ensures that a v b iff b∗ v a∗. Now, for ease of presentation, we shall
suppose that for every relation a—including g—we have its double a ′. In the
special case of g, we simply set g ′ = g. The sole difference between ′ and ∗ is
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that ∗ is a function on the entire set of relations and doubles, whereas ′ picks
out the set of doubles (the extra objects together with g), and the original
congruence relations (except for g) are not identical to a ′ for any a.

Now, to make this structure an R frame, we need to define the ternary
relation R, and this is where the difficulties emerge. Some constraints are,
again, relatively straightforward: the commutativity condition (if Rabc then
Rbac) and contraposition (if Rabc then Rac∗b∗) impose some constraints on
any definition of R.

Rab ′c ′ ⇐⇒ Rb ′ac ′ ⇐⇒ Racb

Similarly, the fact that each shadow a ′ is below g, means that Rabc ′ holds only
when Rabg (by tonicity). Now, for reflexive, transitive weak congruences a and
b, Rabg only when a = b = g. But in any reduced R-frame, if Rggx we must
have x v g. So, we must have.

Rabc ′ ⇐⇒ a = b = c ′ = g

The next choice which is settled is Ra ′b ′c. In this case, if the result is to be
a reduced R frame, we need Ra ′b ′c to hold whenever Rgb ′c (by tonicity, since
a ′ v g), and then, Rgb ′c holds if and only if b ′ v c. But this holds always, since
the doubles are under the congruences. So, we have

Ra ′b ′c always.

These are the simple cases. The remaining cases are for Rab ′c, Ra ′bc and
Ra ′b ′c ′. These should be interdefinable, since Rab ′c iff Rb ′ac (by commuta-
tivity) iff Rb ′c ′a ′ (by contraposition). The most striaghtforward constraint on
the definition of Ra ′bc (and hence on the other clauses) is that

Ra ′bc if either b v c or b v a

since if b v c then Rgbc and hence Ra ′bc by tonicity. Similarly, if b v a then
Rc ′ba, and hence Rbc ′a, and Rba ′c, giving Ra ′bc. However, this provides a
necessary condition for Ra ′bc (and the other clauses), but not a sufficient one.

Unfortunately, no way of deining R satisfying these conditions also satisfies
the associativity condition, that R(ab)cd ⇒ Ra(bc)d. The crucial case is ver-
ifying that if R(xy ′)zu then Rx(y ′z)u. To see why this is the case, we need to
examine the structure of R a little more.
 6 Every reflexive symmetric transitive weak congruence relation is deter-
mined uniquely by the smallest nonzero number (if any) related to zero. The
trace ρ is equivalent to the equivalence of natural numbers modulo |ρ| for some
number ρ (or ∞ when ρ is identity).

This is a straightforward piece of elementary number theory, and a con-
sequence of Fact 2. Consider Traceρ, and set |ρ| to be its smallest nonzero
member (and ∞ if there is none). By transitivity, ρ identifies all of the numbers
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modulo |ρ|. To see that it cannot identify any more, notice that we cannot have
mρn where the distance between m and n is less than |ρ|, since if mρn, then
0ρ|m−n|, but |ρ| was chosen as the smallest number identified with zero. There
can be no pairs of numbers in the series related any closer than |ρ| apart.

Now we can expose some more of the underlying nature of the accessibility
relation in the original positive frame.
 7 Among the reflexive, symmetric weak congruence relations, Rργχ if
and only if both |ρ| and γ| divide |χ|. Also, among inclusion relations, ρ v γ if
and only if |γ| divides |ρ|.

In the statement of this fact, we have used the obvious convention that n
divides ∞, which corresponds to the fact that the identity relation is included
in every trace. In what follows, we will use the notation ‘ρn’ to denote the
relation of equivalence modulo n. Identity is ρ∞.

Now we can expose the failure of associativity in any frame consisting of
these congruence relations and their doubles. As I mentioned, the crucial case
is the step from R(xy ′)zu to Rx(y ′z)u. If R(xy ′)zu then it follows that the
intermediate point is either an original relation, or a shadow: we have either
Rxy ′w and Rwzu (it is a congruence) or Rxy ′w ′ and Rw ′zu (it is a shadow).
What is supposed to follow from this is Rx(y ′z)u. Again, the intervening point
is either a congruence, or a shadow. If it is a congruence, we have Ry ′zv and
Rxvu. If it is a shadow, we have Ry ′zv ′ and Rxv ′u. In other words, what we
require is the following condition:

If either (a) Rxy ′w and Rwzu or (b) Rxy ′w ′ and Rw ′zu then there
is some congruence v such that either (i) Ry ′zv and Rxvu or (ii)
Ry ′zv ′ and Rxv ′u.

Now, we do not know exactly when Rxy ′w or Rw ′zu holds, but we do know
that if x v y then Rxy ′w, and that if z v u then Rw ′zu. In particular, if the
required condition holds, then at the very least, we have

If either (a) x v y and Rwzu or (b) Rxy ′w ′ and z v u then there is
a congruence v such that either (i) Rxvu or (ii) Ry ′zv ′.

We have also discarded a clause from each of (i) and (ii) as they will play no
part in what follows. Now we will rewrite the conditions in such that the
shadows disappear. The remaining conditions can be expressed in terms of the
congrences alone

If either (a) x v y and Rwzu or (b) Rxwy and z v u then there is a
congruence v such that either (i) Rxvu or (ii) Rzvy.

Now, let me abuse notation just a little, and stop considering the congrences
x, y, z etc., and consider now their periods. Instead of the congruence x, we
have its period, which we shall also call ‘x’. Rewriting the condition, we have
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If either (a) y | x, u | z and u | w or (b) y | x, y | w and u | z then
there is a some v such that either (i) u | x and u | v (ii) y | z and
y | v.

This condition fails when x = y = 2, u = z = 3 and w = 6. In this case we
have both (a) 2 | 2, 3 | 3 and 3 | 6 (b) 2 | 2, 2 | 6 and 3 | 3, but neither (i) since
u = 3 - 2 = x nor (ii) since y = 2 - 3 = z.
 8 There is no embedding of the R-frame of symmetric transitive weak
congruences into an R-frame consisting of the congruence relations and a dou-
ble for each relation, satisfying g∗ = g.

So, this quest for a negation complete and consistent R arithmetic has
failed. The failure can point our way, however, to a different kind of success.
Our accessibility relation R, at least on the original points of the frame (before
adding the shadows) collapses into the inclusion relation, with the equivalence

Rabc⇐⇒ a v c and b v c

This is the characteristic frame condition corresponding to the mingle axiom.

A→ (A→ A)

Our frame for R without negation was in fact for a stronger logic—it validated
R+ together with mingle. This motivates attempting to define negation in an-
other way: through the simple three-valued frames for RM due to Dunn [2, 3].

6 ,   
Dunn’s frames for RM are simple strucrures. Each RM frame is a totally or-
dered set of points 〈P,v〉.8 The complexity required to interpret a substruc-
tural logic is found in the definition of satisfaction. The evaluation relation
bifurcates into two relations + and −. The two relations + and − are
an evaluation on an RM frame when they satsify the following conditions for
completeness and heredity, relating points and atomic sentences:

• Either a + p or a − p.

• If a v b then if a + p, b + p too. Similarly, if a − p then b − p

too.

The relations encode positive and negative information. Positive and negative
information are exhaustive (by the lights of RM, at least). And information
that we grasp is preserved as we shift from one point to another, up the ordering.
Completeness and heredity jointly entail either that every point is exactly the

8Compare the simplicity of this definition of a frame with the relative complexity of the
definition of a reduced ternary frame with negation.
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same as far as information goes, or that as information is added, it becomes
inconsistent.

An evaluation can be used to interpret the other connectives in a straight-
forward manner:9

• a + ∼A if and only if a − A.

• a − ∼A if and only if a + A.

• a + A∧ B if and only if a + A and a + B.

• a − A∧ B if and only if a − A or a − B.

• a + A∨ B if and only if a + A or a + B.

• a − A∨ B if and only if a − A and a − B.

• a + A→ B if and only if for each b w a, (a) if b + A then b + B,
and (b) if b − B then b − A.

• a − A→ B if and only if either (c) a + A and a − B or (d)
a 6+ A→ B.

There are three distinctive features of these clauses. First, the conjunction, dis-
junction and negation clauses are what one would expect once we pull positive
and negative information apart.10 Second, the components (a) and (b) in the
positive clause for the conditional are required for the conditional A → B to
support modus ponens and contraposition (we wish A→ B to give us ∼B→ ∼A).
Third, the components (c) and (d) in the negative clause for the conditional are
required in order to validate the RM inference from A∧ ∼B to ∼(A→ B), and
in order to ensure that completeness holds for conditional formulas.

Dunn proves [2] that completeness and heredity hold for all sentences, and
not just atomic ones, and that at each point all theorems of R and the mingle
axiom, are true (that is, if A is a theorem of R + mingle then a + A in each
RM model). The fact that v is a total order is required in the proof to ensure
heredity. Without a total order, heredity may break down.

These models for RM allow us to model negation without requiring incom-
plete points. Even though A → B ∨ ∼B is invalid in RM, we do not need an
incomplete point to invalidate it. In our model we need merely to have a point
b such that b − B ∨ ∼B (by setting b − B and b + B—we are inconsistent
about B at the point b) without b − A. This is straightforward, provided we
can be inconsistent about B without making A false.

We need only to interpret quatifiers, and then we can construct our models
for arithmetic. For quantifiers, we do the usual thing, with a fixed domain of
quantification, the standard numbers:

9These clauses are taken directly from Dunn’s original paper [2], with only a change in nota-
tion.

10They are shared with Priest’s logic LP, Nelson’s constructive negation, and so on.
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• a + ∀xA(x) if and only if a + A(n) for each n.

• a − ∀xA(x) if and only if a − A(n) for some n.

• a + ∃xA(x) if and only if a + A(n) for some n.

• a − ∃xA(x) if and only if a − A(n) for each n.

Now, we have all the raw materials to define a class of models for RM]].
 9 Any subset of numbers of {1, 2, . . . ,∞} totally ordered by the relation
of divisibility determines a model for RM]], in which the points are the con-
gruence relations ρn for the chosen values of n, for which we set ρn v ρm if
and only if m divides n, and

• ρn + l = m if and only if l ≡ m (mod n).

• ρn − l 6= m if and only if l 6= m, or n 6= ∞.

We require the total ordering of congruences in order for this to be an RM
frame. Heredity on atomic relations is given by the definition of ordering: if
l ≡ m (mod n) and ρn v ρ ′n, then n ′ divides n, so we have l ≡ m (mod n ′) too.
Negative information changes less. At the consistent point ρ∞, only actually
distinct numbers are taken to be distinct. At all other points, even identical
numbers are taken to be distinct. So heredity holds here. Completeness is
immediate, since at the point ρ∞, l = m is true if and only if it is not false.
At all other points, more obtains, not less, so completeness is not violated
anywhere. The result is a model for RM]] by the usual reasoning.

Now, consider a model in which we include the point ρ2. At ρ2 we have
0 = 2, but we do not have 0 = 3. So, at any ρ2 and earlier point in the model,
we do not have 0 = 2 → 0 = 3. We have ρ2 + ∼(0 = 2 → 0 = 3), since
ρ2 6+ 0 = 2→ 0 = 3 because ρ2 + 0 = 2 and ρ2 6+ 0 = 3.

Similarly, if our model contains ρ3, we have ∼(0 = 3→ 0 = 2) holding at ρ3
and at every earlier point in the model. However, no RM model contains both
ρ2 and ρ3, since 2 doesn’t divide 3 and 3 doesn’t divide 2. Nonetheless, we can
go fairly far.
 10 The model corresponding to a subset of numbers {1, 2, . . . ,∞} con-
taining ∞ determines a consistent complete model of RM]]. Whenever ρn is
a point in the model and 0 6≡ m (mod n), then at ρ∞ in this model we have
∼(0 = n→ 0 = m).

The point ρ∞ is consistent and complete. It is consistent for atomic for-
mulas by construction. The fact that is is consistent for all formulas is a
straightforward induction on the complexity of formulas. Since in our model
ρn + 0 = n but ρn 6+ 0 = m whenever 0 6≡ m (mod n), we have ρ∞ 6+ 0 =

n→ 0 = m, and hence ρ∞ + ∼(0 = n→ 0 = m) as desired.
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So, we have at last found consistent and complete models of arithmetic in
R—actually, models in RM—in which irrelevant implications between identi-
ties are denied. We can model ∼(0 = 2→ 0 = 3) (provided we include ρ2). And
∼(0 = 3 → 0 = 2) (provided we include ρ3). Unfortunately, we cannot model
both.

7 
These constructions open up more questions than they answer. Is there a con-
sistent and complete model of R]] in which all irrelevant conditionals between
identities are denied? In each of the models we have examined, is there a sim-
ple axiomatisation of the claims true at g(= ρ∞)? What else can we say about
models in the logics C and CK? The symmetry of weak congruences is tied up
with the symmetry axiom x = y → y = x. Why not reject symmetry? (In the
absence of contraction we have rejected transitivity of identity at each point,
after all.) Is there any way we can keep symmetry of identity at the base point
without having symmetry everywhere else? Does rejecting symmetry give us
models of weaker substructural logics? What about other mathematical theo-
ries? Do these models tell us anything useful about the behaviour of identity
in substructural logics?
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