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Abstract: In honour of Bob Meyer, the paper extends the use of his concept of
metacompleteness to include various classical systems, as much as we are able. To
do this for the classical sentential calculus, we add extra axioms so as to treat the
variables like constants. Further, we use a one-sorted and a two-sorted approach
to add classical sentential constants to the logic DJ of my book, Universal Logic. It
is appropriate to use rejection to represent classicality in the one-sorted case. We
then extend these methods to the quantified logics, but we use a finite domain of
individual constants to do this.

In [5], Meyer introduced the notion of coherence for logics that “can be
plausibly interpreted in their own metalogic” (p. 658). Meyer set up this idea
by introducing  v for a modal logic L such that v(�A) = T iff
` �A in L, with classical-style valuations for the connectives ‘⊃’ and ‘∼’. He
defined a formula A to be  iff v(A) = T , for all metavaluations v
of L, and the logic L to be  iff each theorem of L is metavalid. He
went on to show that a wide range of modal logics are coherent, and that, in
particular, the property ‘if ` �A ∨ �B then ` �A or ` �B’ holds for these
logics. He also showed that the relevant logics NR and E are coherent, with
NR satisfying the above property and with E satisfying a similar disjunctive
property, ‘if ` (A→ B)∨ · · ·∨(An → Bn)∨C, for C ‘→’-free, then ` Ai → Bi,
for some i, or ` C, where C is then a tautology.’
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Meyer in [6] used a preferred metavaluation for a logic L (defined below),
which essentially has the effect of expressing the theorems of L in an inductive
semantic-style form. Meyer then introduced the notion of -
 for L to mean that L is sound and complete with respect to this metaval-
uation. He went on to prove meta-completeness for a wide range of posi-
tive relevant logics, including their quantified logics, thus showing the priming
property,

α if ` A∨ B then ` A or ` B,

for the theorems of such logics. For the quantified logics, the additional prop-
erty,

β if ` ∃xA then ` At/x , for some term t,

was shown to hold.
Meyer set up the (preferred)  v (called the canonical quasi-

valuation v ′ in [6]) on the formulae of a quantified relevant logic L as follows :

(i) v(p) = F, for all sentential variables p.

(ii) v(A & B) = T iff v(A) = T and v(B) = T .

(iii) v(A∨ B) = T iff v(A) = T or v(B) = T .

(iv) v(A→ B) = T iff ` LA→ B and, if v(A) = T then v(B) = T .

(v) v(∀xA) = T iff v(At/x) = T , for all terms t, i.e. all individual variables
and constants.

(vi) v(∃xA) = T iff v(At/x) = T , for some term t.

Meyer used a simple induction on formulae to prove completeness, i.e. if
v(A) = T then ` LA, and he proved soundness, i.e. if ` LA then v(A) = T ,
using the usual induction on proof steps, thus establishing metacompleteness
for the quantified relevant logic L.

Before going on, we present some of the main relevant logics and their
quantified forms, including the ones explicitly referred to in this paper. Prim-
itives: ∼, &, ∨, →, ∀, ∃ (connectives and quantifiers); p, q, r, . . . (sentential
variables); f, g, h, . . . (predicate variables); x, y, z, . . . (individual variables).

A.
1. A→ A.

2. A & B→ A.

3. A & B→ B.

4. (A→ B) & (A→ C)→ .A→ B & C.
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5. A→ A∨ B.

6. B→ A∨ B.

7. (A→ C) & (B→ C)→ .A∨ B→ C.

8. A & (B∨ C)→ (A & B) ∨ (A & C).

9. ∼∼A→ A.

10. A→∼B→ .B→∼A.

11. A→ B→ .B→ C→ .A→ C.

12. A→ B→ .C→ A→ .C→ B.

13. A→ .A→ B→ B.

14. (A→ B) & (B→ C)→ .A→ C.

15. A→ .A→ A.

16. A→ .B→ A.

17. (A→ B∨ C) & (A & B→ C)→ .A→ C.

18. (A→ .B→ C)→ .B→ .A→ C.

R.
1. A, A→ B⇒ B.

2. A, B⇒ A & B.

3. A→ B,C→ D⇒ B→ C→ .A→ D.

4. A→∼B⇒ B→∼A.

5. A⇒ A→ B→ B.

6. A⇒ B→ A.

S S.
B = A1-9, R1-4.

DW = A1-10, R1-3.

DJ = A1-10, A14, R1-3.

TW = A1-12, R1-2.

EW = TW + R5.

RW = TW +A13.
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Q A.
1. ∀xA→ At/x , where t is free for x in A.

2. At/x→ ∃xA, where t is free for x in A.

3. ∀x(A→ B)→ .A→ ∀xB, where x is not free in A.

4. ∀x(A→ B)→ .∃xA→ B, where x is not free in B.

5. ∀x(A∨ B)→ A∨ ∀xB, where x is not free in A.

6. A & ∃xB→ ∃x(A & B), where x is not free in A.

Q R.

1. A⇒ ∀xA.

Q S.
Any of the above sentential systems L can be extended to their corresponding
quantified system LQ by the addition of all the quantificational axioms and
the rule. However, despite the wide range of relevant logics covered, Meyer’s
metavaluation did not work for logics with the usual De Morgan negation,
though he did show that a constructive negation could be added. Subsequently,
Slaney, in [8], established metacompleteness for the major contraction-less
logics, TW, EW and RW, all with De Morgan negation, using an additional
metavaluation v∗, shown as follows with L being one of these three logics
(Slaney used predicates M and M∗ in [8]):

(i) v(p) = F, for all sentential variables p.

v∗(p) = T , for all sentential variables p.

(ii) v(A & B) = T iff v(A) = T and v(B) = T .

v∗(A & B) = T iff v∗(A) = T and v∗(B) = T .

(iii) v(A∨ B) = T iff v(A) = T or v(B) = T .

v∗(A∨ B) = T iff v∗(A) = T or v∗(B) = T .

(iv) v(∼A) = T iff `L∼A and v∗(A) = F.

v∗(∼A) = T iff v(A) = F.

(v) v(A→ B) = T iff `L A→ B, if v(A) = T then v(B) = T , and if v∗(A) = T

then v∗(B) = T .

v∗(A→ B) = T iff, if v(A) = T then v∗(B) = T . (for RW and EW)
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v∗(A→ B) = T . (for TW)

As a result, he was able to prove that TW, EW and RW are prime, i.e. they sat-
isfy (α) above. He also showed that TW has no theorems of the form ∼(A→ B)

and that, for EW and RW, ` ∼(A → B) iff ` A and ` ∼B. However, the proof
can be simplified slightly by dropping ` ∼A from the evaluation of v(∼A) and
completeness shown by proving ‘ifv(A) = T then ` A’ and ‘if v∗(A) = F then
` ∼A’ together by induction on formulae. Then, Slaney, in [9], provided re-
duced semantics for two broad types of logics, with a completeness argument
made simpler by the use of the priming property (α) for these logics. In the
process, Slaney established metacompleteness for two classes of logics, 1 log-
ics and 2 logics, 1 logics generalizing upon the TW case above, and 2 logics
generalizing upon the RW and EW case. Slaney defines 1 and 2 logics as
follows:

An 1 logic is any system that can be axiomatized as B plus any of the
axioms 10–12, 14–17, with or without rule 6.1

An 2 logic is one axiomatized as B plus rule 5, plus any of the axioms
10–13, 15–16, 18, with or without rule 6.

However, none of the 1 logics nor the 2 logics contain as a theorem the Law
of Excluded Middle (LEM), this being easily explained by noting that neither
p nor ∼p are provable in any of these logics, the priming property (α) is easily
derivable from metacompleteness, and thus that p ∨∼p is not provable for any
p. Thus, no tautology is derivable in any of these logics, since all the normal-
forming operations can be performed in systems containing B and any deriv-
able tautology would be equivalent to a conjunctive normal form, each conjunct
of which would be a derivable disjunction containing an excluded middle. The
main object of this paper is to find a way of extending metacompleteness to
classical systems with the LEM, in particular. Indeed, there is some concern
expressed in Universal Logic [1] that the full advantage of the metacomplete-
ness of the logic DJdQ (theorem-wise equivalent to the logic DJQ) cannot be
realized because of the subsequent addition of classical sentences which, in
particular, satisfy the LEM. As a result, Slaney’s work in [9] has been bypassed
in [1] because it is argued that a broad range of sentences ought to be classically
evaluated, which would then invoke the addition of the LEM (A ′∨ ∼A ′) and
the Disjunctive Syllogism Rule, DS, (∼A ′, A ′ ∨ B⇒ B) for these classical sen-
tencesA ′, schematically represented within the logic by a separate sort: A ′, B ′,
C ′, . . . So, we wish to find some way of extending metacompleteness to include
classical sentences and, thus, to re-establish Slaney’s reduced semantics with
its simpler completeness argument.

1Giambrone notes in [2] that Axiom 17 does not have a postulate in the Routley-Meyer
semantics. This was originally noted in [7], p. 345. However, the metacompleteness argument
still goes through for this axiom.
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1 T S C.
We start by considering sentential calculus itself. Metacompleteness ought to
be good for a logic as it yields the intuitive property (α), requiring that for each
provable disjunction one of its disjuncts be provable. Were metacompleteness
to hold, what does this require of the logic? In particular, since the LEM is a
theorem, it would follow that either A or ∼A is a theorem, for each formula
A. Clearly not both are theorems since the DS would then yield all formulae
B and the system would trivialize. So, exactly one of A and ∼A would be theo-
rems. In particular, for each sentential “variable” p, one of p and ∼p would be a
“theorem”.

This raises two points, firstly in connection with p being a variable and
secondly with p or ∼p being a theorem. If one of p and ∼p is a theorem, for
each p, then this is somewhat like a truth-value assignment to each variable, as
one would give for an interpretation in the semantics. As far as p is concerned,
it would behave in the syntax more like a constant than a variable, leaving
the metavaluation looking more like an ordinary valuation. This we will have
to see. On the second point, neither p nor ∼p are provable as theorems in
sentential calculus, for any p, and so, if the normal axioms and rule of sentential
calculus are kept, one of p and ∼p would have to be added as an extra axiom,
for each of the denumerably many variables p. However, this would have to
be done recursively as part of a recursive axiomatization, and so not all the
non-denumerably many corresponding valuations would be realizable in such
axiomatizations. In any case, any non-recursive specification of valuations will
not represent a set of valuations needed for any practical purpose. We are now
ready to check the metacompleteness.

So, basing the axiomatization of sentential calculus on that of Whitehead
and Russell [10], we have the following schematic system, but with additional
axioms:

: ∼, ∨.

: &, ⊃.

A.
1. A∨A ⊃ A.

2. B ⊃ A∨ B.

3. A∨ B ⊃ B∨A.

4. A∨ (B∨ C) ⊃ B∨ (A∨ C).

5. B ⊃ C ⊃ .A∨ B ⊃ A∨ C.
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R.

1. A, A ⊃ B⇒ B.

A A.
For each sentential variable p, exactly one of p and ∼p is added, in accordance
with some recursive specification r. We will call the system SCr, for this speci-
fication r. We inductively set up the metavaluation v, without its associated v∗,
as it is superfluous here.

(i) v(p) = T or F, according as p or ∼p is an additional axiom, for all senten-
tial variables p.

(ii) v(∼A) = T iff v(A) = F.

(iii) v(A∨ B) = T iff v(A) = T or v(B) = T .

We proceed, similarly to that of Slaney in [8], through the following complete-
ness and soundness lemmas, embracing the simplification mentioned above,
and of course there is no ‘→’.
 1 If v(A) = T thenA is a theorem of SCr, and if v(A) = F then ∼A is a theorem
of SCr.

Proof: We prove both together by induction on formula construction. Use is
made of axiom 2, the theorems, A ⊃ ∼∼A, A ⊃ A ∨ B and ∼A&∼B⊃∼( A ∨ B),
rule 1 and the derived rule, A, B⇒ A & B.

 2 IfA is a theorem of SCr then v(A) = T .

Proof: By the usual induction on proof steps, using the definition of ‘⊃’.

Thus, we have established:
 1 The sentential calculus SCr is metacomplete.
 The priming property (α) holds for SCr, i.e. if ` A ∨ B then ` A or
` B.

Here, the metacompleteness amounts to soundness and completeness with
respect to a recursive valuation of the ordinary sentential calculus semantics.
One should note the ease of this proof in comparison to the usual completeness
arguments in Hunter [3]. Note also that Lemma 2 shows that the axiomatiza-
tion is consistent, and in particular that if p(∼p) is added then ∼p (p) is not
derivable.

Another way of looking at this metacompleteness result is to consider the
sentential variables as constants, which, if they are to be treated properly as
constants, would have properties represented as extra axioms. Here, however,
because of structural limitations, all that can be said about sentential constants
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is that they are true or false, which can then be represented as axioms consist-
ing of the respective unnegated or negated forms of the sentential variable.
This must be a recursive specification since it would involve usage of senten-
tial constants in practice.

This is then another way of doing sentential calculus: use constants, do not
include variables. However, formula-schemes can be used to replace the usage
of variables, which they generally do anyway in formalizations without a uni-
form substitution rule. Variables would only be necessary if there is sentential
quantification, and even then one can probably just use bound variables.

2 A C S  DJ,   S’ 1
 2 .

In Universal Logic [1], classical sentences are added by using a second sort of
sentential variables, given by p ′, q ′, r ′, . . . . However, these are better seen as
constants, not only because of the considerations above in Section 1 but also in
the light of the view of classicality given in the book [1], where sentences have
to be individually examined to see whether they are indeed classical. So, we will
proceed to use sentential constants instead of these variables. Then we can fol-
low the treatment in Section 1 by adding additional axioms and corresponding
metavaluations for the classical sentential constants, p ′, q ′, . . . in accordance
to their truth or falsity. (We will keep the same symbolism as in [1].) For the
sake of uniformity, we will put the general sentential variables, ranging over
both classical and non-classical sentences, as constants, metacompleteness still
applying, as we will see below. However, we will also consider leaving the gen-
eral sentential variables as they were, and adding classical sentential constants.
Further, we will consider the prospect of having just the one sort of sentential
constants, with classicality of individual sentences having to be derived within
the system.

2.1 T T- A.

Universal Logic is based on the logic DJd, which is DJ with the addition of the
meta-rule:

MR1. If A⇒ B then C∨A⇒ C∨ B.

Due to the metacompleteness of DJ, they have the same theorems and so
we will just use DJ. We set up DJ with general sentential constants, p, q, r,
. . . , instead of variables, adding the classical sentential constants, p ′, q ′, r ′, . . . ,
with additional axioms as described in Section 1. For the general constants, we
add the further axioms: For each sentential constant p, none, one or both of
p and ∼p is added, in accordance with some recursive specification. We still
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use the schemes, A, B, C, . . . , to represent formulae and A ′, B ′, C ′, . . . , to rep-
resent classical formulae, which are built up entirely from classical sentential
constants, using only ∼, & and ∨. As in [1], for the classical formulae A ′, we
add the axiom and rule:

CA1. A ′∨ ∼A ′. (LEM)

CR1. ∼A ′, A ′ ∨ B⇒ B. (DS)

These enable all the tautologies of sentential calculus to be derived with
help from DJ. Let us call this combined system DJcC, the superscript ‘c’ being
for the constants and the capital ‘C’ for the classical extension. The metavalu-
ations v and v∗ are then as follows:

(i) v(p) = T or F, according as p is an additional axiom or not, for all senten-
tial constants p.

v∗(p) = F or T , according as ∼p is an additional axiom or not, for all
sentential constants p.

v(p ′) = T or F, according as p ′ or ∼p ′ is an additional axiom, for all
classical sentential constants p ′.

v∗(p ′) = v(p ′).

(ii) v(A & B) = T iff v(A) = T and v(B) = T .

v∗(A & B) = T iff v∗(A) = T and v∗(B) = T .

(iii) v(A∨ B) = T iff v(A) = T or v(B) = T .

v∗(A∨ B) = T iff v∗(A) = Tor v∗(B) = T .

(iv) v(∼A) = T iff v∗(A) = F.

v∗(∼A) = T iff v(A) = F.

(v) v(A → B) = T iff A → B is a theorem, if v(A) = T then v(B) = T , and if
v∗(A) = T then v∗(B) = T .

v∗(A→ B) = T .

We follow Slaney [8] and Section 1 in establishing metacompleteness.
 3 If v(A) = T then A is a theorem of DJcC, and if v∗(A) = F then ∼A is a
theorem of DJcC.

Proof: As before, we prove both together by induction on formula construc-
tion, making use of some simple derived rules of DJcC.
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We also need the following lemma:
 4 For all classical formulaeA ′, v(A ′) = v∗(A ′).

Proof: By induction on classical formulae, constructed from classical sentential
constants using ∼, & and ∨.

 5 IfA is a theorem of DJcC then v(A) = T .

Proof: By the usual induction on proof steps, using Lemma 4 for CA1 and CR1.

Thus:
 2 The system DJcC is metacomplete.
 For DJcC, if ` A∨ B then ` A or ` B.

Metacompleteness still holds with the general sentential variables left as
they were in [8] and in [1], and the classical sentential constants introduced as
above, i.e. with the base case of the metavaluations as follows:

(i) v(p) = F, for all sentential variables p.

v∗(p) = T , for all sentential variables p.

v(p ′) = T or F, according as p ′ or ∼p ′ is an additional axiom, for all
classical sentential constants p ′.

v∗(p ′) = v(p ′).

Metacompleteness can also be shown for Slaney’s 1 and 2 logics, with either
general sentential constants or variables, by checking Lemma 5 for the further
axioms and rules. Note that for 2 logics, v∗(A → B) = T iff, if v(A) = T then
v∗(B) = T .

2.2 T O- A.

It may be thought that a single sort of general sentential constants would be
neater and philosophically preferable in that the classical sentences would then
naturally occur as a subset of the general sentences. To do this, we remove the
additional axioms for classical sentential constants from DJcC, leaving just the
ones for the general sentential constants, and also remove the axiom CA1 and
the rule CR1. We can then define p as a   
iff exactly one of p and ∼p is added as an axiom. We call this system DJc, its
metavaluation being as for DJcC, but with the base case as follows:
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(i) v(p) = T or F, according as p is an additional axiom or not, for all senten-
tial constants p.

v∗(p) = F or T , according as ∼p is an additional axiom or not, for all
sentential constants p.

Then, if we build up classical formulae A entirely from classical sentential con-
stants using ∼, & and ∨, as before, we can show that v(A) = v∗(A), as we did in
Lemma 4 for DJcC. The other lemmas and metacompleteness also follow for
DJc. From these, we can then show that exactly one of A and ∼A are deriv-
able in DJc, for all classical formulae A. Thus, CA1 is provable but CR1 is
only an admissible rule since it relies on the non-derivability of A, given the
theoremhood of ∼A.

However, to define classicality in this way loses one of the main benefits of
the single sort, that is, to allow any formula A, such that exactly one of A and
∼A is a theorem, to be a classical formula. Thus, classicality would be derived
within the system rather than be formed using formation rules. This definition,
which we will call T -, will include the earlier one, which we will
now call F-, and enable further formulae to be classical that were
not so before.

By using the second sort, we were essentially able to say that the constant
p ′ was an axiom whilst ∼p ′ was not, or that ∼p ′ was an axiom whilst p ′ was
not. Such constraints were not possible using general constants since if p were
an axiom then either ∼p might also be an axiom or maybe not. So the sort of
classical sentences and formulae not only enables us to say that such formulae
A ′ or their negations ∼A ′ are derivable but also that their respective negated
forms ∼A ′ or unnegated forms A ′ are not derivable. So, with a single sort, to
capture classicality fully within the syntax one would need some method of
representing non-derivability.

Standard Hilbert-style axiomatizations (of a single sort) only represent
derivability and, in order to represent non-derivability, we would need to add
additional apparatus. Such a thing would be , usually symbolized
as ‘a’ whilst derivability is symbolized as ‘` ’. The idea of rejection goes back
to Aristotle, but it was Łukasiewicz in [4] (see pp. 67–72, 94–8, and Ch. ,
esp. p. 109.), who included rejection in his ∼, ⊃ sentential calculus axioma-
tization by adding the rejection axiom, a p, the rejection substitution rule,
a A(B/p, . . . , Bn/pn)⇒ a A(p, . . . , pn), and the rejection modus ponens rule,
` A ⊃ B,a B ⇒ a A. Using just these, he was able to prove that all non-
theorems were rejectable.2

We can also use rejection here to represent one half of classicality, as fol-
lows. We set up the additional axioms and rules, to be added to DJc, to obtain
the system DJcR.

2I thank Assoc. Prof. David Londey for including this material in his .. subject at the
University of New England, in 1966.
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A A.
Given that, for each sentential constant p, none, one or both of ` p and ` ∼p

are added, in accordance with some recursive specification, we add a p or a∼p
(or both), whenever the corresponding ` p or ` ∼p is not included.

A R.
AR1. ` A→ B,a B⇒ a A.

AR2. a A,a B⇒ a A∨ B.

AR3. ` A∨ B,a A⇒ ` B.

A formula A is T- iff ` A and a∼A, or ` ∼A and a A.
The previous axiom CA1 follows immediately for classical A, whilst for for

the previous rule CR1, let ` ∼A and ` A∨ B. Since A is classical, a A and, by
AR3, ` B. (We will shortly show that it is not the case that both ` A and a A,
for any A.)

We set up the base case of the metavaluations v and v∗ as follows:

(i) v(p) = T or F, according as p is an additional axiom or a rejection axiom,
for all sentential constants p.

v∗(p) = F or T , according as ∼p is an additional axiom or a rejection
axiom, for all sentential constants p.

The remainder of the metavaluations follows those of DJc and DJcC.
 6 If v(A) = T then ` A, and if v∗(A) = F then ` ∼A.

Proof: As for Lemma 3.

 7 If ` A then v(A) = T , and if a A then v(A) = F.

Proof: We prove both of these together by induction on the combined proof
steps for both the theorems and the rejection theorems. We only need to con-
sider the new axioms and rules involving rejection, all of which
are clear.

 1 It is not the case that both ` A and a A, for anyA.
 2 ( i ) If ` A and a ∼A then v(A) = v∗(A) = T .

( ii ) If ` ∼A and a A then v(A) = v∗(A) = F.

( iii ) Hence, ifA is a T -classical formula then v(A) = v∗(A).
 3 The logic DJcR is metacomplete, i.e. ` A, iff v(A) = T , and hence if
` A∨ B then ` A or ` B.
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Corollary 2 yields a soundness result for T -classical formulae. To obtain the
corresponding completeness result, i.e. ‘if v(A) = v∗(A) then A is T-classical’,
one would generally try to prove ‘if v(A) = F then a A ′, and ‘if v∗(A) = T

then a ∼A’. However, by formula induction, these are provable for all →-free
formulae, yielding:
 8 IfA is an→-free formula then :

( i ) if v(A) = v∗(A) = T then ` A and a ∼A, and

( ii ) if v(A) = v∗(A) = F then ` ∼A and a A. Hence, if A is an F-classical formula
then:

( iii ) A is T-classical, since v(A) = v∗(A).

There are also some T -classical formulae that are not F-classical , since (α)
if ` A, and a ∼A then ` A∨B and a ∼( A∨B), regardless of B, and (β) if ` ∼A

and a A then ` ∼( A & B) and a A & B, regardless of B.
To try to continue with the induction, if we were to prove ‘if v∗(A) = T

then a ∼A’ for formulae of form A→ B, we would need to add a ∼( A→ B) as
an extra axiom, for all formulae A and B, which would be fine, since v(∼( A →
B)) = F and hence there are no theorems of the form ∼( A → B). However, to
prove ‘if v(A→ B) = F then a A→ B’ one would need to establish a complete
rejection system for DJ which included the rejection of all non-theorems of the
form A→ B. We would have to leave this onerous task for another occasion.

The single sort can also be used for 1 and 2 logics, with all the above
results applying. The only difference for 2 logics would be that in the above
continued induction to prove ‘if v∗(A → B) = T then a ∼( A → B)’ and ‘if
v(A → B) = F then a A → B’, we seem to require both ` B → .A → B and
` ∼A→ .A→ B as axioms of the 2 logic.

3 T P C.
In order to establish metacompleteness of predicate calculus, there must be
no free individual variables, since either A(x) or ∼A (x) must be provable in
a metacomplete system with a free variable x. Similarly to sentential calculus,
we also replace sentential and predicate variables by corresponding constants.
With the standard assignment to the metavaluation v for ∀, the usual meta-
completeness argument fails to go through with an infinite domain of individ-
ual constants. There appears to be a need for the infinitary rule, A(a), A(a2),

. . . , A(an), . . . ⇒ ∀xA(x), where {a, a2, . . . , an, . . .}, is the infinite set of con-
stants, in order to establish the completeness half of the proof.3 However, as

3If predicate calculus with an infinite domain of individuals were metacomplete then it is
likely that Peano Arithmetic would follow suit, with the metacompleteness yielding complete-
ness (in Godel’s sense). Note that the infinitary rule used to establish metacompleteness has the
same form as the ω-rule required for completing Peano Arithmetic.
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we will prove below, the argument is fine when there are a finite number of con-
stants making up the domain, and the rule, A(a), A(a2), . . . , A(an)⇒ ∀xA(x),
where {a, a2, . . . , an, . . .} is the set of constants, is added. Thus, we proceed to
re-axiomatize the predicate calculus along these lines.

P.
{a, a2, . . . , an, . . .}, . (the finite set of individual constants)

f, g, h, . . . (predicate constants)

x, y, z, . . . (bound individual variables)

p, q, r, . . . (sentential constants)

∼, ∨, ∀ (connectives and quantifier)

F R.
1. Each sentential constant p is an atomic formula.

2. If f is a predicate constant and b, . . . , bm are individual constants then
fb . . . bm is an atomic formula.

3. If A and B are formulae then ∼A and A∨ B are formulae.

4. If A is a formula, x is a bound individual variable and a is an individual
constant then ∀xAx/a is a formula, where Ax/a is A with all occurrences
of a (if any) replaced by x.

. A & B,A ⊃ B,∃xA, as usual.

A.
1. A∨A ⊃ A.

2. B ⊃ A∨ B.

3. A∨ B ⊃ B∨A.

4. A∨ (B∨ C) ⊃ B∨ (A∨ C).

5. B ⊃ C ⊃ .A∨ B ⊃ A∨ C.

6. ∀xA ⊃ Aa/x.

7. ∀x(A ⊃ B) ⊃ .A ⊃ ∀xB. [Note that x does not occur free in A.]
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R.
1. A, A ⊃ B⇒ B.

2. A(a), A(a2), . . . , A(an)⇒ ∀xA(x), where the ai’s and the x occur in the
same places within A.

A A.
In accordance with some recursive specification r, we add exactly one of p and
∼p, for each sentential constant p, and exactly one of fb . . . bm and ∼fb . . . bm,
for each atomic formula of form fb . . . bm. We will call the system PCr, for this
specification r. PCr is an extension of the usual predicate calculus PC, with the
each of the free variables in any theorem replacable by each of the constants,
{a, a2, . . . , an, . . .}.

We inductively set up the metavaluation v, with the addition of ∀, in the
manner of Meyer [6], but without free variables.

(i) v(p) = T or F, according as p or ∼p is an additional axiom.

v(fa . . . an) = T or F, according as fa . . . an or ∼fa . . . an is an additional
axiom.

(ii) v(∼A) = T iff v(A) = F.

(iii) v(A∨ B) = T iff v(A) = T or v(B) = T .

(iv) v(∀xA) = T iff v(Ab/x) = T , for all individual constants b.

 9 If v(A) = T then A is a theorem of PCr, and if v(A) = F then ∼A is a
theorem of PCr.

Proof: We prove both together by induction on formula construction. Use is
made of rule 2 and the theorem, ∼Ab/x ⊃ ∼∀ xA.

 10 IfA is a theorem of PCr then v(A) = T .

Proof: By the usual induction on proof steps.

Thus, we have established:
 4 The predicate calculus PCr is metacomplete, and thus if ` A ∨ B then
` A, or ` B, and if ` ∃xA then ` Ab/x, for some b.
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4 A C S  DJQ.

4.1 T T- A.

For DJQcC, we add to DJcC in Section 2, {a, a2, . . . , an, . . .}, (the finite set
of individual constants), f, g, h, . . . (general predicate constants), f ′, g ′, h ′,
. . . (classical predicate constants), and x, y, z, . . . (bound individual variables).
The classical predicate constants f ′ yield classical atomic formulae f ′b . . . bm

when combined with any string of individual constants b . . . bm of appropriate
length. F-classical formulae, which are built up entirely from classical atomic
formulae, of forms p ′ and f ′b . . . bm, using only ∼, & and ∨, ∨, ∀ and ∃, are
again symbolized: A ′, B ′, C ′, . . . .

Additional axioms, as described in Section 3 for each classical atomic for-
mula of form f ′b . . . bm, are added to DJcC. For the general atomic formulae
of form fb . . . bm, we add the further axioms:

For each formula fb . . . bm, none, one or both of fb . . . bm and
∼fb . . . bm, are added, in accordance with some recursive specification.

The axiom CA1 and rule CR1 are again included for classical formulae. For
general formulae, we add to DJcC the axioms QA1–6 of DJQ, but the condi-
tions on them are deleted, not being relevant to the current system based on
constants. The rule QR1 is replaced by R2 of Section 3, which will suffice for
classical formulae as well.

We add the following to the metavaluations v and v∗ of DJcC:

(i) v(fb . . . bm) = T or F, according as fb . . . bm is an additional axiom or
not.

v∗(fb . . . bm) = F or T , according as ∼fb . . . bm is an additional axiom or
not.

v(f ′b . . . bm) = Tor F, according as f ′b . . . bm or ∼f ′ b . . . bm is an addi-
tional axiom.

v∗(f ′b . . . bm) = v(f ′b . . . bm).

(vi) v(∀xA) = T iff v(Ab/x) = T , for all individual constants b.

v∗(∀xA) = T iff v∗(Ab/x) = T , for all individual constants b.

(vii) v(∃xA) = T iff v(Ab/x) = T , for some individual constant b.

v∗(∃xA) = T iff v∗(Ab/x) = T , for some individual constant b.

The following lemmas and theorem then present no difficulty.
 11 If v(A) = T thenA is a theorem of DJQcC, and if v∗(A) = F then ∼A is a
theorem of DJQcC.
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 12 For all classical formulaeA ′, v(A ′) = v∗(A ′).
 13 IfA is a theorem of DJQcC then v(A) = T .
 5 The system DJQcC is metacomplete, if ` A∨ B then ` A, or ` B, and
if ` ∃xA then ` Ab/x, for some b.

Metacompleteness still holds with general sentential variables replacing the
general sentential constants, general predicate variables replacing general pred-
icate constants and free or bound individual variables replacing bound individ-
ual variables. However, one maintains the finite set of individual constants
ranging over the domain. The general axioms and rules R1–3 of DJQ are used,
with terms t representing free individual variables or individual constants. We
add the rule R2 of Section 3 to apply to general formulae. We note that QR1,
A ⇒ ∀xA, is then an admissible rule, as each individual constant ai can be
substituted for x in the proof of A, and then R2 (of Section 3) can be applied
to yield ∀xA. F-classical formulae are constructed as before, using bound vari-
ables only. The axiom CA1 and the rules CR1 and also R2 (of Section 3) apply
to F-classical formulae A ′.

Case (i) of the metavaluations v and v∗ is as follows:

(i) v(p) = F, for all sentential variables p.

v∗(p) = T , for all sentential variables p.

v(p ′) = T or F, according as p ′ or ∼p ′ is an additional axiom.

v∗(p ′) = v(p ′).

v(ft . . . tm) = F, for all general atomic formulae of form ft . . . tm.

v∗(ft . . . tm) = T , for all general atomic formulae of form ft . . . tm.

v(f ′b . . . bm) = Tor F, according as f ′b . . . bm or ∼f ′ b . . . bm is an addi-
tional axiom.

v∗(f ′b . . . bm) = v(f ′b . . . bm).

Cases (vi) and (vii) for ∀xA and ∃xA are as above. Metacompleteness can also
be shown for Slaney’s 1 and 2 logics, with the standard quantificational ex-
tension, with either general constants or general variables, as elucidated above.

4.2 T O- A.

Like the sentential case, we have a single sort of general formulae, removing
the axioms for classical formulae from DJQcC, just leaving the ones for the
general formulae (including R2 of Section 3). Let A be an atomic formula of
form p or fb . . . bm. We defineA as an F-classical atomic formula iff exactly one
of A and ∼A is added as an axiom. We call this system DJQc, its metavaluation
being as for DJQcC, but with the following base case:
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(i) v(p) = T or F, according as p is an additional axiom or not.

v∗(p) = F or T , according as ∼p is an additional axiom or not.

v(fb . . . bm) = T or F, according as fb . . . bm is an additional axiom or
not.

v∗(fb . . . bm) = F or T , according as ∼fb . . . bm is an additional axiom or
not.

We build up F-classical formulae A entirely from F-classical atomic formulae
using ∼, & and ∨, ∀ and ∃, where ∀xA and ∃xA are F-classical iff Ab/x is F-
classical, for all individual constants b. We can then show that v(A) = v∗(A),
for F-classical A. The other lemmas and metacompleteness also follow for
DJQc, and exactly one of A and ∼A are derivable in DJQc, for all F-classical
formulae A.

As previously, we also set up DJQcR incorporating rejection. We have the
following additional axioms and rules, to be added to DJQc, to obtain DJQcR.

A A.
Let A be an atomic formula, i.e. of form p or fb . . . bm. Given that, for each
atomic formulaA, none, one or both of ` A, and ` ∼A are added, in accordance
with some recursive specification, we add a A or a ∼A (or both), whenever the
corresponding ` A, or ` ∼A is not included.

A R.
AR1. ` A→ B,a B⇒ a A.

AR2. a A, a B⇒ a A∨ B.

AR3. ` A∨ B, a A⇒ ` B.

AR4. a A(a), a A(a2), . . . , a A(an)⇒ a ∃xA(x).

Again, a formula A is T -classical iff ` A, and a ∼A, or ` ∼A and a A. We set up
the base case of the metavaluations v and v∗ as follows:

(i) v(A) = T or F, according as A is an additional axiom or a rejection axiom,
for all atomic formulae A.

v∗(A) = F or T , according as ∼A is an additional axiom or a rejection
axiom, for all atomic formulae A.

The remainder of the metavaluations follows those of DJQc and DJQcC.
 14 If v(A) = T then ` A, and if v∗(A) = F then ` ∼A.

Proof: As for Lemmas 3, 6 and 11.
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 15 If ` A then v(A) = T , and if a A then v(A) = F.

Proof: As for Lemmas 7 and 13. We only need to consider the quantificational
axioms and rule involving rejection, all of which are clear.

 1 It is not the case that both ` A and a A, for anyA.
 2 ( i ) If ` A, and a ∼A then v(A) = v∗(A) = T .

( ii ) If ` ∼A and a A then v(A) = v∗(A) = F.

( iii ) Hence, ifA is a T -classical formula then v(A) = v∗(A).
 6 The logic DJQcR is metacomplete, i.e. ` A, iff v(A) = T .

To obtain the converse of Corollary 2, i.e. ‘if v(A) = v∗(A) then A is T -
classical’, we try to prove ‘if v(A) = F then a A’ and ‘if v∗(A) = T then a ∼A’.
However, by formula induction, these are provable for all →-free formulae,
yielding:

 16 IfA is an→-free formula then:

( i ) if v(A) = v∗(A) = T then ` A, and a ∼A, and

( ii ) if v(A) = v∗(A) = F then ` ∼A and a A. Hence, if A is an F-classical formula
then:

( iii ) A is T-classical, since v(A) = v∗(A).
We can also take advantage of the rejection mechanism to drop the re-

quirement of a finite domain of individuals, leaving it open for us to explore
the extent of T -classicality of formulae, interpreted over an infinite domain. So,
we replace the finite set {a, a2, . . . , an, . . .} of individual constants by a recur-
sive sequence {a, a2, . . . , an, . . .}, . Since we can no longer use R2, as it would
become infinitary, we need some way of establishing universally quantified for-
mulae, not only for the proof theory but also for metacompleteness. The only
recourse seems to be to re-introduce individual variables and the associated
rule QR1 of DJQ.

So, we set up the system DJQcvR, which is DJQcR with the above individ-
ual constants and with individual variables: x, y, z, . . . , and with the following
associated changes. We symbolize terms as t1 , t2, . . . , representing individual
constants or variables. We construct formulae in a similar manner to that for
DJQ.

For all atomic formulae A of forms p and ft1t2 . . . tm, where the ti’s are
terms, we add as axioms none, one or both ofA or ∼A, subject to the conditions
that if A is added then At/x must also be added, for all terms t, and if ∼A is
added then ∼At /x must also be added, for all terms t. We use the original
axioms and rules of DJQ, including QA1–6 and QR1. We add the rejection
axioms and rules, where these axioms ensure that each atomic formula is either
an axiom or a rejected one, and not both, and the rules are AR1–3.
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The rule, a A ⇒ a ∃xA, is not added as a A does not imply a Ac/x,
for any constant c, and we need a Ac/x, for all c, in order to justify a ∃xA.
Unfortunately, the absence of this rule will weaken our treatment of classicality,
taking away some of the advantage of adding QR1.

For formulae A, that can contain free variables, we define a T -classical for-
mula A, where ` A, and a ∼A, or ` ∼A and a A. An F-classical formula is built
up from T -classical atomic formula using ∼, & and ∨, ∀ and ∃ only, where ∀xA
and ∃xA are F-classical iff At/x is F-classical , for all terms t.

We set up the cases (i), (vi) and (vii) of the metavaluations v and v∗ as fol-
lows:

(i) v(A) = T or F, according as A is an additional axiom or a rejection axiom,
for all atomic formulae A.

v∗(A) = F or T , according as ∼A is an additional axiom or a rejection
axiom, for all atomic formulae A.

(vi) v(∀xA) = T iff v(At/x) = T , for all terms t.

v∗(∀xA) = T iff v∗(At/x) = T , for all terms t.

(vii) v(∃xA) = T iff v(At/x) = T , for some term t.

v∗(∃xA) = T iff v∗(At/x) = T , for some term t.

In (vi) and (vii), we follow Meyer [6], p. 510, in using all the terms, but with
bound variable rewriting in A when t is bound upon substitution into A.
 17 If v(A) = T then ` A, and if v∗(A) = F then ` ∼A.

Proof: Use QR1.

 18 If ` A then v(A) = T , and if a A then v(A) = F.

Proof: We follow Meyer in [6], pp. 512-3, in verifying the quantificational ax-
ioms QA1–6 and rule QR1.

 1 It is not the case that both ` A and a A, for anyA.
 2 ( i ) If ` A, and a ∼A then v(A) = v∗(A) = T .

( ii ) If ` ∼A and a A then v(A) = v∗(A) = F.

( iii ) Hence, ifA is a T -classical formula then v(A) = v∗(A).
 7 The logic DJQcvR is metacomplete, i.e. ` A iff v(A) = T .

If we try to prove ‘if v(A) = F then a A’ and ‘if v∗(A) = T then a ∼A’, these
are provable for all formulae built using only ∼, & and ∨ . Let an SF-classical
formula be a quantifier-free F-classical formula. Hence:
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 19 IfA is an→-free quantifier-free formula then:

( i ) if v(A) = v∗(A) = T then ` A, and a ∼A,

( ii ) if v(A) = v∗(A) = F then ` ∼A and a A, Hence, ifA is an SF-classical formula
then:

( iii ) A is T-classical, since v(A) = v∗(A).

However, there are some T -classical formulae with quantifiers. If ` At/x

and a ∼At/x, for some term t, then ` ∃xA and a ∼∃ xA. If ` ∼At/x and
a At/x , for some term t, then ` ∼∀xA and a ∀xA. Unfortunately, we are
unable to prove a ∃xA and a ∼∀xA from a At/x , for all terms t, and a ∼At

/x, for all terms t, respectively, without the use of an infinitary rule. This
is the problem with establishing the T -classicality of all F-classical formulae.
Thus, this is the casualty of dropping the finite domain. We can still, however,
establish v(A) = v∗(A), for all F-classical formulae A, which means that exactly
one of A and ∼A is provable in DJQcvR, though, as we said before, this relies
on a meta-theoretic notion of non-provability.

All these results for the single sort can be shown for 1 and 2 logics.
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