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1 P
This paper has an interesting history. In 1986 during a visit by both Bob Meyer
and Roger Hindley to Wollongong, Roger raised, in my car, a problem he had
worked on. Bob said he had a solution to this, but as we heard nothing more
from him on this in the ensuing months we assumed that he had been wrong.
Some two years later I mentioned the problem at an  conference in .
Bob said, “But I have the solution to that, give me five minutes at the end
of your talk to explain it”. This I did, but after half an hour the conference
organisers decided the next speaker should get his chance and Bob could finish
his solution after the last conference talk. This he did in another 45 minutes.
I wrote all this down, took it back to Wollongong and there shortened Bob’s
solution to roughly that shown below. Bob was happy with my version, but
in his inimitable fashion extended it to a major paper of 78 pages [5], which
unfortunately still has only appeared as a preprint.

The joint paper, by now, is probably my most quoted one and I am pleased
to publish it here in tribute to Bob, in thanks for his friendship, numerous
stimulating discussions, joint work and for bringing relevant logic to Australia.
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2 I
A Hilbert-style version of an implicational logic can be represented by a set
of axiom schemes and modus ponens or by the corresponding axioms, modus
ponens and substitution. Certain logics, for example the intuitionistic impli-
cational logic, can also be represented by axioms and the rule of condensed
detachment, which combines modus ponens with a minimal form of substitu-
tion. Such logics, for example intuitionistic implicational logic (see Hindley
[3]), are said to be D-complete. For certain weaker logics, the version based
on condensed detachment and axioms (the  version of the logic)
is weaker than the original. In this paper we prove that the relevant logic T→
and any logic of which this is a sublogic, is D-complete.

One feature of condensed detachment is that it is exactly the rule applied
to the types of combinators or lambda terms when application is performed.
A combinator that has a type, can be interpreted as a Hilbert style proof of
the formula that is the type and a lambda term, that has a type, as a natural
deduction-style proof of that type (see Hindley [4]). The condensed detach-
ment rule may be viewed as the   of the Resolution Principle of
Robinson [7], to which it is closely related.

3 T→  C T→

The logic T→ (also known as BB′IW logic) is given by:

D 1 T  T→
A S
B : (A→ B)→ (C→ A)→ C→ B†

B′ : (A→ B)→ (B→ C)→ A→ C

I : (A→ A)

W : (A→ A→ B)→ A→ B

R  M P
A→ B,A ⇒ B

For details on T→ and other relevant logics such as T→−W (= BB′I - logic) see
Anderson and Belnap [1]. Condensed logics are given by:

D 2 C L
The condensed version of a given implicational logic is obtained when its ax-
iom schemes are replaced by axioms and its modus ponens rule by:

†We use association to the right for all implicational formulas.
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R  C D D

A→ B,C ⇒ σ1(B)

if there are substitutions σ1 and σ2 such that

1. σ1(A) = σ2(C)

2. Given 1, the total number of variable occurrences in σ1(B) is minimal.

3. Given 1 and 2, the number of distinct variables of σ1(B) is maximal.

N
1. This is a more concise version of  D, for details of the original (see

also Robinson [7] or Hindley [4]) and a proof of the equivalence see Bun-
der [2].

2. σ1(A), as defined above, is known as the most general unification (m.g.u)
or most general common instance (m.g.c.i) of A and C. Every common
substitution instance of A and C is also a substitution instance of σ1(A).

D 3 D-
An implicational logic is said to be D-complete if it is equivalent to its con-
densed version.

The names that we have given to our axioms actually are 
which have the formulas representing the axioms as their  .
(For details see Hindley [3]).

If we have combinators X and Y such that

X : A→ B

Y : C

and  D gives us σ1(A) = σ2(C), we write

XY : σ1(B).

XY is then a combinator with principal type σ1(B). Thus the combinator in-
dicates the proof, using D, of the formula which is its principal type. For our
purposes here, it is sufficient to regard XY as a name for σ1(B).
As examples we have:
BB′ : (p→ q→ r)→ (p→ (r→ s)→ q→ s)

BB′W : (p→ p→ q)→ (q→ r)→ p→ r.
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4 T D-  T→

Before we can prove T→ D-complete we need a definition and some prelimi-
nary results.

D 4 P  N P
(i) p is in a positive position in p.

(ii) If an occurrence of p is in a positive position in A, this occurrence of p
is in a positive position in B→ A and in a negative position in A→ B.

(iii) If an occurrence of p is in a negative position in A, this occurrence of p
is in a negative position in B→ A and in a positive position in A→ B.

 1 If no variable is repeated in A then A → A is a theorem of condensed BB′I
logic.

Proof: By induction on k the number of (distinct) variables in A.
If k = 1 by I, ` p→ p

If k > 1 A ≡ B→ C and the lemma holds for B and C,
i.e. ` B→ B and ` C→ C.
Also B(B′B)(BBB′) : (p→ q)→ (r→ s)→ (q→ r)→ p→ s,
so by D, ` (r→ s)→ (B→ r)→ B→ s

and so ` (B→ C)→ B→ C.

 2 If A(p) is a formula the variables of which (p among them) appear exactly
once each, then if p is in a positive position inA(p) in condensed BB′I logic:

` (p→ u)→ A(p)→ A(u) (1)

and if p is in a negative position inA(p) in condensed BB′I logic

` (u→ p)→ A(p)→ A(u). (2)

Proof: We proceed by induction on the length of A(p).
If A(p) is atomic A(p) = p and (1) obviously holds.
Assume now that the result holds for formulas shorter than A(p), then there
are 4 cases:

1. A(p) = B→ C(p) and p is a positive position in A(p)

2. A(p) = C(p)→ B and p is a positive position in A(p)

3. A(p) = B→ C(p) and p is a negative position in A(p)

4. A(p) = C(p) → B and p is a negative position in A(p)

(where of course p is not in B).
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C 1 By the induction hypothesis, as p is in a positive position in C(p):

` (p→ u)→ C(p)→ C(u) (3)

By BB(B(B′B)(BBB′)) : (p→ q)→ (t→ r→ s)→ t→ (q→ r)→ p→ s.
As every variable is in B only once by Lemma 1 :

` B→ B

so by D :
` (t→ r→ s)→ t→ (B→ r)→ B→ s

so by D and (3)

` (p→ u)→ (B→ C(p))→ B→ C(u).

which is (1).

C 2 Now p is in a negative position in C(p), so

` (u→ p)→ C(p)→ C(u) (4)

i.e.
` (p→ u)→ C(u)→ C(p) (5)

By

BB(B(B(B′B′)B)B) : (p→ q)→ [t→ (r→ s).→: t→ .(s→ p)→ (r→ q)]

and by ` B→ B, we have

` (t→ (r→ s))→ t→ (s→ B)→ r→ B

so by (5)
` (p→ u)→ (C(p)→ B)→ C(u)→ B,

which is (1).

C 3 Now p is in a negative position in C(p) so (4) holds. The required
result (2) is now obtained exactly as in Case 1 with u→ p for p→ u throughout.

C 4 Now p is in a positive position in C(p) so (3) holds, and hence

` (u→ p)→ C(u)→ C(p)

the result (2) is now obtained as in Case 2 with u→ p for p→ u.
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 3 IfA(p, q) is a formula, the variables of which (p and q among them) appear
exactly once each, then

` B→ C→ [A(p, q)→ A(u, v)]

is a theorem of condensed BB′I logic, where if p is in a positive position in A(p, q), B is
p→ u and if in a negative position, u→ p; if q is in a positive position inA(p, q), C is
q→ v and if in a negative position v→ q.

Proof:

B[B(B′B′)B′](BB′) : (s→ r→ p)→ (u→ p→ q)→ s→ u→ r→ q

By Lemma 2,
` B→ A(p, q)→ A(u, q)

and
` C→ A(u, q)→ A(u, v)

so by two applications of D

` B→ C→ A(p, q)→ A(u, v)

 4 Any proof in an implicational logic can be rewritten as a proof in the corre-
sponding condensed logic followed by zero or more applications of the rule of substitution.

Proof: We prove this by induction on the length of the proof. Any one step
proof, i.e. an axiom scheme, is a substitution instance of an axiom of the cor-
responding condensed logic.
If A→ B = [A1/p1, . . . , An/pn](C→ D)

and A = [Bk/pk, . . . , Bm/pm]E where C → D and E and theorems of the con-
densed logic, it is clear that C and E have an m.g.u. F, and that A is a substitu-
tion instance of F. G the result of applying D to C→ D and E, will than have B
as a substitution instance. Thus the lemma holds.

 1 IfA(p1) is a theorem of any condensed logic that includes B,B′ and I and
r and s are variables not inA(p1) thenA(r→ s) is a theorem of that logic.

Proof: We will write A(p1) as A′(p1, p1, . . . , p2, p2, . . . , pn) where all the oc-
currences of the variables of A(p1) (namely p1, p2, . . . , pn) are represented.

In A′ we now replace the ith occurrence of pj by pji for all appropriate i
and 1 6 j 6 n). A′(p11, . . . , p1k1

, p21, . . . , pn1, . . . , pnkn) is then a formula in
which every variable appears exactly once.
By Lemma 1,

` A′(r→ s, p12, . . . , p1k1
, . . . , pnkn)→ A′(r→ s, p12, . . . , p1k1

, . . . , pnkn)

Also ` A′(p1, p1, . . . , p1, p2, . . . , pn),

so by D ` A′(r→ s, r→ s, . . . r→ s, p2, . . . , pn)

i.e. ` A(r→ s).

R. K. Meyer and M. W. Bunder, “The D-Completeness of T→”, Australasian Journal of Logic (8) 2010, 1–8

http://www.philosophy.unimelb.edu.au/ajl/2010
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2010 7

 Any substitution that does not identify variables is admissible in any con-
densed logic that has B,B′ and I.
 2 IfA(p1, p2) is a theorem of any condensed logic that includes B,B′, I and
W thenA(p1, p1) is a theorem of that logic.

Proof: We write A(p1, p2) as A′(p1, p1, . . . , p2, . . . , pn, . . . , pn), as in the proof
of Theorem 1 and choose distinct variables p11, . . . , pnkn to replace these as
before.
We then have by Lemma 3:

` B→ C→ A′(p11, . . . , p1k1
, p21, . . . , pnkn)

→ A′(u, p12, . . . , p1k1
v, p22, . . . , pnkn)

where B is p11 → u or u→ p11 and C is p21 → v or v→ p21.
If B = p11 → u and C = p21 → v or B ≡ u → p11 and C ≡ v → p21, we have
by D and W:

` B→ A′(p11, p12, . . . , p1k1
, p11, p22, . . . , pnkn)

→ A′(u, p12, . . . , p1k1
, u, p22, . . . , pnkn)

and by D and I

` A′(p11, p12, . . . , p1k1
, p11, p22, . . . , pnkn

)

→ A′(p11, p12, . . . , p1k1
, p11, p22, . . . , pnkn

)

We have
` A′(p1, . . . , p1, p2, p2, p3, . . . , pn)

so by D
` A′(p1, . . . , p1, p1, . . . , p1, p3, . . . , pn)

i.e. A(p1, p1).
If B ≡ p11 → u and C ≡ v→ p21

or B ≡ u→ p11 and C ≡ pu → v,

we have by D and W

` B→ A′(p11, p12, . . . , p1k1
, u, . . . , pnkn)

→ A′(u, p12, . . . , p1k1
, p11, . . . , pnkn)

and by D and I the same as above.

 3 Any logic that has B,B′, I andW is D-complete.

Proof: By Lemma 4 and Theorems 1 and 2.
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