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Abstract:

In a paper on the logical work of the Jains, Graham Priest considers a con-
sequence relation, semantically characterized, which has a natural analogue in
modal logic. Here we give a syntactic/axiomatic description of the modal for-
mulas which are consequences of the empty set by this relation, which is to say:
those formulas which are, for every model, true at some point in that model.

1  
Graham Priest [10] considers several alternative ways of formalizing the seman-
tic ideas – in particular, Anekantavada (“non-one-sidedness”) – in play in the Jain
logic of what is sometimes called the classical period. One of these treatments
involves models with items called facets to which truth is relativized.1 In a spirit
of egalitarian generosity, a formula is regarded as true tout court in a model if
it is true relative to some facet in the model, and interest is focussed on the
consequence relation defined by saying that A (a formula) is a consequence of
Γ (a set of formulas) when any model in which all formulas in Γ are true is a
model in which A is true. As is noted in [10] the formal set-up is analogous
to that of Kripke models for modal logic, but with facets playing the role of
worlds.2

1Another approach considered by Priest is a more traditional many-valued treatment, pur-
sued earlier in Ganeri [3], one of the papers cited in [10] and which can in turn be consulted for
further historical references. (See also [9].) In more detail, it should be added that this many-
valued approach involves a 7-valued logic, while even Priest’s modal-style treatment is “locally”
– facet-by-facet, that is – 3-valued. As Priest has pointed out to me, some of the bivalent modal
discussion that follows would be sensitive to the choice of designated elements if that aspect of
his modal treatment had been adopted.

2Our models will be taken to be of the form 〈W,R, V〉 in which W 6= ∅, R ⊆ W ×W and V
assigns to each propositional variable (sentence letter) a subset ofW. Truth for an arbitrary for-
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The consequence relation just singled out, however, does not correspond
to either of those usually attended to in modal logic: to the global consequence
relation holding between Γ and A when every model – perhaps in some re-
stricted class of models (for example, models whose accessibility relations are
transitive) – in which the formulas in Γ are true at every point (or every world)
has A true at every world, or to the local consequence relation which would re-
quire in this instance that in any model (perhaps in a restricted class) any point
at which all formulas in Γ are true is a point at which A is true. Priest’s con-
sequence relation, transposed into this modal setting, would instead have A a
consequence of Γ just in case for any model (again perhaps subject to restric-
tion), if for each formula in Γ there is some point in the model at which that
formula is true, then there is some point in the model at which A is true. In
view of the replacement of truth at all points by truth at at least one point, as
property to be preserved (relative to any model), we might think of this novel
consequence relation as the ‘dual global’ consequence relation.3

 1.1 As an example, we note that – imposing no restriction what-
ever on the class of models – ♦q has �p ⊃ p as a dual global consequence in
the sense just described. To see this, we borrow the simple observation from
Hughes [5] that in any model 〈W,R, V〉 no formula of the form �A ⊃ A can be
false at both x and ywhen Rxy. (This observation is put to striking effect in the
proof of Theorem 11 of [5]; themes from [5] have been subsequently taken up in
[4] and [1].) Now suppose ♦q is true at some point x in a model 〈W,R, V〉; this
means that for some y ∈ W, Rxy, so by the observation just recalled, �p ⊃ p
must be true either at x or at y in the model, showing it to be a consequence
in the current sense of ♦q.

While a study of the dual global consequence relation itself would certainly

mulaA at an element x ∈W is then given the usual inductive definition and will be written when
convenient as “M |=x A” in what follows, where M = 〈W,R, V〉. As Allen Hazen has pointed
out, the accessibility relations R in such models do not correspond to anything in Priest’s ‘facets’
models – though the picture in [10] could no doubt be enhanced to provide for an analogous
ingredient. Thus what the models of [10] most directly suggest is models in which the accessi-
bility relation is universal – determining the logic which in accordance with the notation in §3
below would be called Ṡ5.

3Various other descriptions of what is going on at the level of valuations (truth-value assign-
ments) come to mind. In the discussion after [10], Greg Restall observed that truth in a model –
as the property to be preserved – is defined supervaluationally (resp. subvaluationally) in terms
of truth at the model’s points for the global (resp. dual global) consequence relation. In the
terminology of [7], the model-level valuation is obtained by taking the conjunctive (resp. dis-
junctive) combination of the point-level valuations in the two cases. ‘Dual global consequence’
is to be parsed as ‘dual-global consequence’ rather than ‘dual global-consequence’: that is, we are
not here concerned with any of the candidates that might be considered for forming the dual
of a consequence relation ([12] and references therein – where the discussion is formulated in
terms of consequence operations) – as applied to the global consequence relation. The three-
fold distinction global/local/dual global here corresponds to the distinction global/local/indefinite
in [6], where, however, it was a classification of modal statements (or formulas) rather than
consequence relations that was at issue.
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be of interest, in what follows we mainly concern ourselves – on the ‘walk be-
fore you run’ principle – only with the consequences of the empty set by this
consequence relation. (Exception: the discussion surrounding Proposition 1.3
below.) This is in keeping with the general tendency of work in modal logic to
concentrate on logics construed very simple-mindedly as (certain) sets of for-
mulas. We observe in passing that while the set of global and the set of local
consequences of the empty set coincide, comprising simply the formulas true
at every point in every model – for short, the valid formulas4 – something new
is obtained when we take instead the set of dual global consequences of the
empty set: these are the formulas which are, for every model, true at some
point of that model. Because of this last “some”, we call such formulas ∃-valid.
Variations on the Hughesian theme of Example 1.1 furnish us with several illus-
trations:
 1.2 (i) The formula ♦q ⊃ (�p ⊃ p) is ∃-valid without being

valid.

(ii) The formula �(�p ⊃ p) is similarly ∃-valid but not valid.

(iii) Supposing we have available the truth and falsity constants > and ⊥, we
can obtain an even shorter example than (ii), by substituting ⊥ for p and
rewriting the result as: �♦>. (We could also have used > in place of q in
(i) above, as well as in Example 1.1.)

Some comments on the first and last of these examples are in order, begin-
ning with the latter. Heuristically, it is useful to consider a standard example
of a formula which can be true at a point in a model but which cannot be true
at all points in any model: ♦�⊥. Since in any model this formula must be false
at some point, we can take its negation as an example of a formula which must
be true at some point in every model. This is the formula figuring in Example
1.2(iii).5

We turn to Example 1.2(i). In view of Example 1.1, the fact that this formula
is ∃-valid raises the question whether the Deduction Theorem, in the sense of
the ⇒ direction of the ‘Deduction Detachment Theorem’ (or ‘DDT’), as it is
called in the abstract algebraic logic tradition:

(DDT) Γ,A ` B⇔ Γ ` A ⊃ B,
4A fuller discussion would require that we introduce the notion of validity on a frame, and

discuss validity over this or that class of frames; similarly with the notion of ∃-validity intro-
duced presently. To broaden the audience for this discussion, however, we keep restrict any
mention of frames to the footnotes.

5A further observation which may be a mere curiosity is that the formulas appearing under
1.2(i) and (ii) have both been associated with a property bearing the name ‘quasi-reflexivity’, here
distinguished: R is quasi-reflexive1 iff ∀x, y(Rxy → Rxx) and is quasi-reflexive2 iff ∀x, y(Rxy →
Ryy). 1.2(i) and 1.2(ii) then modally define the classes of frames whose accessibility relations are
quasi-reflexive1 and quasi-reflexive2, respectively.
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holds for ` as the dual global consequence relation in modal logic. Call this
relation DG. (Thus A is ∃-valid just in case DG A, i.e., ∅ DG A.) For the
case of Examples 1.1 and 1.2(i), Γ = ∅, and A and B are respectively ♦q and
�p ⊃ p. It is not hard to see that the Deduction Theorem is indeed satisfied
in full generality by DG:
 1.3 For any set Γ of formulas and any formulasA, B:

Γ,A DG B implies Γ DG A ⊃ B.

Proof: Suppose Γ,A DG B, and we have a model M = 〈W,R, V〉 each formula
in Γ being true in M at some point or other (not necessarily the same point for
different formulas). We must show that there is some element of W at which
A ⊃ B is true. Pick any x ∈W. If M |=x A ⊃ B (notation as in note 2), then we
are done. So suppose M 6|=x A ⊃ B. Then M |=x A (and M 6|=x B, though we
don’t need this). Since we already knew that each formula in Γ is true at some
point or other in M, we can now extend this same claim to the case of Γ ∪ {A}.
As Γ,A DG B, there is accordingly some y ∈ W for which M |=y B. Thus
M |=y A ⊃ B, and we are done.

Unusually, the fate of (DDT) for DG is settled negatively not, as we have
just seen, by a failure of its ⇒ (‘Deduction’) half, but by its ⇐ (‘Detachment’)
half. For taking Γ as {A ⊃ B}, securing the right-hand side of (DDT), its ⇐
direction would give A,A ⊃ B DG B, which in turn implies, by the ‘Cut’, or
transitivity, property of consequence relations the (considerably weaker) con-
clusion that DG A and DG A ⊃ B together imply that DG B – a conclusion
whose falsity will be shown in Example 2.1 below.

Returning to from the vagaries of the consequence relation DG in its full
glory to the specific topic ∃-valid formulas, we conclude with another example
of such a formula which again fails to be valid, as in Examples 1.2, but which is
of a lower modal degree than all the cases listed there.
 1.4 The formula p ⊃ �p is ∃-valid but not valid. The falsity of this
conditional at a point implies the falsity of its consequent and hence the falsity
of p at some accessible point, at which accordingly the conditional itself is true.
So the conditional cannot be false throughout a model.

Some of these examples we have seen here will receive further attention in
the following section (in the discussion following Proposition 2.3).

2   ∃- 
We begin by recalling some established terminology for discussing modal log-
ics as sets of formulas. First, we are working in a language with a countable
supply of propositional variables (or sentence letters), amongst which three are
p, q, and r, and any functionally complete supply of boolean connectives (the
notation here is ¬, ∧, ∨, ⊃, ≡, with the usual arities and interpretations) along

Lloyd Humberstone, “Modal Formulas True at Some Point”, Australasian Journal of Logic (6) 2008, 70–82

http://www.philosophy.unimelb.edu.au/ajl/2008
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2008 74

with the 1-ary modal connective � (regarding ♦ as abbreviating ¬�¬). A modal
logic is set of formulas of this language which contains all truth-functional tau-
tologies and is closed under uniform substitution (of arbitrary formulas for
propositional variables) and Modus Ponens (equivalently in this setting: un-
der truth-functional consequence). A modal logic is normal if also contains
the formula �(p ⊃ q) ⊃ (�p ⊃ �q) and is closed under the rule (of Neces-
sitation): From A to �A. The smallest normal modal logic is called K, the
above description amounting to one particular axiomatization of it. A modal
logic S is quasi-normal if K ⊆ S; such a logic may fail to be normal because
it may not itself be closed under Necessitation. We need also the following
non-standard terminology. A modal quasi-logic is defined exactly as per the def-
inition of ‘modal logic’ above but without the requirement of closure under
Modus Ponens (equivalently, as we observed, the requirement of closure under
truth-functional consequence). When S is any modal quasi-logic (which in-
cludes the case of S a modal logic) which has been characterized axiomatically
– i.e., as the least quasi-logic containing given formulas (axioms) and closed
under given rules – we write `S A for A ∈ S and refer to A as a theorem, or
provable formula, of S.

Since every valid formula is ∃-valid, letting “K̇” be a name for our as yet
unaxiomatized system whose theorems are to coincide with the ∃-valid formu-
las, we will have K̇ ⊇ K.6 By Examples 1.2, we have, more specifically, K̇ ) K.
It is not hard to see that the set of ∃-valid formulas is not closed under Ne-
cessitation – for example, prefixing a � to the formula in Example 1.4 yields a
formula which is not ∃-valid.7 One might jump to the conclusion that K is a
proper quasi-normal modal logic, i.e., a modal logic which is quasi-normal but
not normal. But this would be premature, because the existential quantifica-
tion in the definition of ∃-validity has the effect that we are not dealing with a
modal logic at all, but with a (‘proper’) modal quasi-logic.
 2.1 A1 = �(�p ⊃ p), from Example 1.2(ii) and a relettered ver-
sion A2 = �(�q ⊃ q) are both ∃-valid, while A1 ∧ A2 is not. So the set
of ∃-valid formulas is not closed under truth-functional consequence. To re-
formulate this as a counterexample to closure under Modus Ponens, we have
A1 ⊃ (A2 ⊃ (A1 ∧ A2)) ∃-valid, so two applications of Modus Ponens, each
of the antecedents here being ∃-valid, take us out of the class of ∃-valid formu-
las, from which it follows that the class of such formulas is not closed under
Modus Ponens. (In fact, the result of the first envisaged application, namely
A2 ⊃ (A1 ∧ A2) is ∃-valid, so it is the second application, specifically, that il-
lustrates the non-closure claim. The ∃-validity of A2 ⊃ (A1 ∧A2) is indicative
of another point, namely that whenever D is a truth-functional consequence

6We recall from note 2 that, as is standard, the ‘W’ of our models is always non-empty.
7Consider any model 〈W,R, V〉 with |W| > 2, R = W ×W and ∅ ( V(p) ( W. ♦(p ∧ ♦¬p)

is true throughout the model; but this formula is equivalent to the negation of the formula,
�(p ⊃ �p), currently under consideration.

Lloyd Humberstone, “Modal Formulas True at Some Point”, Australasian Journal of Logic (6) 2008, 70–82

http://www.philosophy.unimelb.edu.au/ajl/2008
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2008 75

of (any single formula) C – when C ⊃ D is a substitution instance of a tautology,
that is – if C is ∃-valid, then so is D. This is an immediate consequence of the
definition of ∃-validity, as indeed is the more general formulation that when-
ever `K C ⊃ D, if C is ∃-valid, then D is too. In the present case, C is A1 and D
is A2 ⊃ (A1 ∧A2).)

Not only do reletterings, as in the above example, preserve ∃-validity, but
arbitrary (uniform) substitutions do so, as is easily seen. (In outline: if A(B),
arising from the substitution of B for p (say), is not ∃-valid there is a model
〈W,R, V〉 at every point in which A(B) is false. Make a new model by changing
(only) V to V ′ with V ′(p) being the set of points at which B is true in 〈W,R, V〉.)
Thus extending the definition of quasi-normality so that it can apply to quasi-
logics (whose theorems include all those of K), our desired K̇ would qualify as a
‘quasi-normal modal quasi-logic’. One way to axiomatize a quasi-normal modal
logic is to take as axioms all the theorems of some normal modal logic, along
with new axioms, and use Modus Ponens and uniform substitution – but not
Necessitation – as the rules. The smallest modal logic extending K by the axiom
T = �p ⊃ p is axiomatized in this way in Segerberg [11]8 with T in the role of
‘new axiom’. Its theorems are the formulas true at every reflexive point in
every model (by contrast with KT, the least normal modal logic containing T,
whose theorems are the formulas true at every point in every reflexive model).9
The corresponding strategy here will have to be even more restrictive, since
as we have seen, Modus Ponens can destroy ∃-validity. Accordingly, we replace
Modus Ponens (in the axiomatization of K̇) with another rule, or family of rules,
namely those given here as (K̇)n for each n ∈ Nat, with ♦i indicating a string
of i occurrences of ♦:

(K̇)n

A∨ ♦A∨ ♦2A∨ . . .∨ ♦n−1A

A

The labelling has been chosen so that (K̇)n is the rule having a disjunctive pre-
8See pp. 178f. of [11]. A typo at line 2 of p. 178 has resulted in the appearance of an unwanted

“♦”. With this correction, T appears (in schematic form) as “Tn” for n = 0 there. We should
remark that in fact the rule of uniform substitution is not part of Segerberg’s axiomatizations,
since he uses schemata rather than individual axioms and takes T as the schema �A ⊃ A. We
will similarly avoid any mention of this rule in the axiomatization of K̇ below, on the basis of
which axiomatization the rule is nevertheless admissible.

9A reflexive point is a point accessible to itself and a reflexive model is one in which all
points are reflexive. In a notation like that of Segerberg [11], disregarding the superscript – see
the previous note – this would be called K[T]. The semantic characterization of this logic given
in [11] is different from that just given (though equivalent), being put there in terms of models
with distinguished elements – truth at which is what matters for validity and all of which have
to be reflexive for the class of models w.r.t. which K[T] is sound and complete. (A referee
has complained of the ‘deplorable prolixity’ involved in referring to KT by that name rather
than simply as T. I prefer not to use labels which are ambiguous as between referring to modal
principles and to modal logics, however, and accordingly follow the nomenclature of [2] in this
respect.)
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miss with n disjuncts.10 Sometimes in what follows we write “♦0A” in place of
A for the first disjunct.
 2.2 For each n, the rule (K̇)n preserves ∃-validity.

Proof: Suppose the premiss for an application of (K̇)n is ∃-valid. Thus any
model contains a point verifying at least one of the disjuncts, say ♦iA, of this
premiss, in which case in i steps of the relation R from that point is a point at
which A is true (0 6 i 6 n). Thus A, the conclusion of this application of (K̇)n,
is ∃-valid.

As in the case of the usual proof that Necessitation preserves validity, the
above proof shows more than what the lemma claims, since it shows that any
model in which a premiss for the rule is true somewhere, is itself a model (not
just there is some model or other) in which the conclusion is true somewhere.

We now have all we need to present our axiomatization of K̇:

: All theorems of K. : (K̇)n for each n ∈ Nat.

This axiomatization may seem artificial, unenlightening and cumbersome, e.g.,
in respect of the number of axioms and rules. It is convenient to work with for
the moment, however, and we postpone looking at simpler alternatives until
Section 3 (especially Proposition 3.2). Some words are in order on what might
seem to be an alternative – though not simpler, by any customary criterion – to
those with expectations grounded in modal logics as opposed to modal quasi-
logics. The expectation might be that we can replace the rules (K̇)n with rules
having instead several schematic letters in the premiss-disjuncts, disjoined in
the conclusion, as we illustrate here for a variant along these lines of (K̇)3:

A∨ ♦B∨ ♦♦C

A∨ B∨ C

One might think that using this evidently ∃-validity-preserving rule in place
of (K̇)3 does not result in the loss of any K̇ theorems, since we can recover the
effect of (K̇)3 by taking the special case in which C = B = A, giving conclusion
A ∨ A ∨ A which we simplify to obtain the original (K̇)3 conclusion A. In
fact, though, there is no machinery available to effect the simplification just
alluded to in the current quasi-logical setting. The envisaged variant of our
axiomatization (with rules like that inset above replacing all the (K̇)n) delivers
as theorems at most the K-theorems and those disjunctive formulas which are
∃-valid but not valid.

Another alternative to the rules (K̇)n would allow greater freedom on the
iterations of ♦ in the premiss, not insisting instead that they be 0, 1, 2, etc., but
allowing that they be any k1, . . . , km ∈ Nat.

10Of course literally speaking like the premiss is either just A or is a binary disjunction se-
lected as desired, so here what is meant by “disjuncts” is the formulas A, ♦A, ♦2A, appearing as
disjuncts in the above unbracketed representation of a (K̇)n premiss.
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Liberalized (K̇) rules:
♦k1A∨ ♦k2A∨ . . .∨ ♦kmA

A

These rules, one for each 〈k1, . . . , km〉, are again ∃-validity preserving, and have
the original rules (K̇)n as special cases. They could therefore be used in the ax-
iomatization of K̇ without affecting the class of theorems – though they are not
in general derivable, but only admissible, in the axiomatization given above.
That axiomatization turns out to be the most convenient for the completeness
proof below (Proposition 2.5). But let us begin with the issue of soundness.
 2.3 (Soundness.) Every theorem of K̇ is ∃-valid.

Proof: Since all K-theorems are ∃-valid, the result follows by Lemma 2.2.

Of course we should also like to establish that the converse of Proposition
2.3 holds. To inspire confidence, as well as to make some observations of inter-
est in their own right, we revisit some earlier examples of ∃-valid formulas. Let
us look at Examples 1.2(ii) and 1.4.

For the first of these the formula concerned is �(�p ⊃ p). An easy seman-
tic check reveals that the following disjunction is valid and hence K-provable:

(�p ⊃ q) ∨�(�r ⊃ p).

(It may be helpful to think of the first disjunct as following from ¬�p and the
second from �p.) A well-known admissible rule of K (derivable on the basis of
the axiomatization mentioned above) takes us from any provable disjunction
A∨ B to �A∨ ♦B. Applying this rule to our disjunction gives:

�(�p ⊃ q) ∨ ♦�(�r ⊃ p),

which is therefore K-provable, along with all its substitution instances, and in
particular the result of substituting p for q and r. But this last formula now has
the form of a premiss for (K̇)2.

In the case of Example 1.4, the formula concerned is p ⊃ �p. Again we
note the K-provability of the ‘variegated’ disjunction

(q ⊃ �p) ∨ ♦(p ⊃ �r),

and again we replace the extraneous variables q and r by p to obtain a premiss
to apply (K̇)2 to. The conclusion of that application is the desired formula.

To put these examples into a more general light let us, inspired by Example
1.1, call A a Hughes formula if for any point in any model, A is true at that point
or at all points accessible to that point. And similarly let us callA a weak Hughes
formula if for any point in any modelA is true at that point or else at some point
accessible to it. In other words, A is a Hughes formula (weak Hughes formula)
just in case A∨�A (resp. A∨♦A) is valid. Note that Hughes formulas are not
in general ∃-valid, while weak Hughes formulas are (by (K̇)2, in view of Lemma
2.2 and the fact that validity implies ∃-validity). Example 1.4 (p ⊃ �p) is a weak
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Hughes formula, accounting for its ∃-validity. (Of course a formula which is
∃-valid need not be a weak Hughes formula; example: p ⊃ ��p – if false at a
point this must be true at some successor of a successor, rather than at some
successor the falsifying point itself.) As [5], recalled in Example 1.1, observed,
�p ⊃ p is a Hughes formula. While, as just noted, not all such formulas are ∃-
valid, it is not hard to see that wheneverA is a Hughes formula,�A and (for any
formula B) ♦B ⊃ A are weak Hughes formulas and hence ∃-valid, accounting
for Examples 1.2(i) and (ii).

We return to the project of showing that K̇, as axiomatized above, is ade-
quate to its appointed task of yielding all the ∃-valid formulas. Strictly speak-
ing, it is the “if ” half of the following result that serves as a lemma for the
completeness theorem11 (though the discussion in the following section draws
on the characterization of K̇-provability provided by the full result).
 2.4 For any formula A, `K̇ A if and only if for somen ∈ Nat, `K ♦0A∨ . . .∨

♦nA.

Proof: The “if” direction follows from the fact that if the cited disjunction is
K-provable, it is an axiom of K̇, so one application of the rule (K̇)n gives the
result.
For the “only if ” direction, suppose that `K̇ A. We show that there is a proof
of A from the above axiomatization in which the only one of the rules (K̇)n

is applied and in which it is applied only once. Suppose otherwise, so that a
proof involves an application of (K̇)m to a K̇-axiom (i.e., K-theorem) followed
by a further application of (K̇)n, where possibly m = n (and possibly not). Let
B be the intermediate conclusion. So B was obtained from ♦0B ∨ . . . ∨ ♦mB,
and B itself is of the form ♦0A ∨ . . . ∨ ♦nA. Thus the axiom in question had
the form

n∨
i=0

♦i(

m∨
j=0

♦jA)

and distributing the ♦s across the ∨s in K, we could equally well have begun
with the following K-theorem

n∨
i=0

m∨
j=0

♦i♦jA,

or in other words:
n∨

i=0

m∨
j=0

♦i+jA.

Eliminating any repeated disjuncts and re-ordering the disjuncts, this means
that we have as K-provable:

11This was pointed out to me by Allen Hazen, who observes that stating the lemma only in
that direction would enable one to obtain the “only if ” direction as a corollary to Theorem 2.5,
if desired.
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♦0A∨ . . .∨ ♦m+nA

from which we obtain the desired conclusion, A, by one application of
(K̇)m+n+1.

 2.5 (Completeness.) Every ∃-valid formula is a theorem of K̇.

Proof: Suppose that 0K̇ A. We must find a model at every point of which A is
false, showing A not to be ∃-valid. As 0K̇ A, the following set of formulas is
K-consistent: {¬A,�¬A,��¬A, . . . ,�k¬A, . . .}. Otherwise some finite subset,
which without loss of generality we may take to be {¬A,�¬A, . . . ,�n¬A}, for
some n, would be K-inconsistent, which implies that `K ♦0A ∨ . . . ∨ ♦nA,
contradicting the supposition that 0K̇ A, by Lemma 2.4. Thus in, e.g., the
canonical model for K there is a point at which each of ¬A, �¬A, ��¬A, . . . ,

�k¬A, . . . is true. Taking the submodel generated by that point we get a model
at every point in which A is false.

Thus, combining Propositions 2.3 and 2.5, we have the desired conclusion
that ∃-validity and K̇-provability coincide.

3   
Instead of looking at formulas true at some point in every model, we could
for example consider those formulas true at some point in every model with
a reflexive accessibility relation. We could axiomatize a modal quasi-logic K̇T
as we axiomatized K̇ in the preceding section, except for allowing as axioms all
theorems of the normal modal logic KT, rather than just those of K. We would
of course lose some of our examples of formulas which are ∃-valid though not
valid (reconstruing these notions with a reflexivity condition in force), includ-
ing all of Examples 1.2 and the conjunctive formula in Example 2.1. A complete-
ness result in this case could be obtained exactly along the lines of Proposition
2.5, mutatis mutandis. And an obvious simplification of the rules (K̇)n would be
available since `KT (A∨♦A∨. . .♦n−1A) ≡ ♦n−1A, so we could drop all but the
last disjunct of their premisses. Similarly, in Ṡ4 ( = K̇T4, where 4 is �p ⊃ ��p),
all these simplified rules could be collapsed to one, with premiss schematically
represented as ♦A, and conclusion A. (Presently we shall see – Proposition 3.2
– that the rules (K̇)n can be replaced by a single rule even for K̇ itself.)

What if we wanted, however, to provide a modal quasi-logic extending by
the rule (K̇)n a normal modal logic which was not decidable? A treatment in
the style here contemplated for K̇T would not deserve the name of an axiomati-
zation, since – a standard observation, here – without a recursive set of axioms,
mechanical proof checking is not possible. In that case, one can instead employ
any axiomatization of the original logic together with the rules (K̇)n subject to
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a ‘global derivational constraint’12 forbidding the application of the one of the
latter rules before any application of a rule which is not one of them. A similar
axiomatization could be given for K̇ itself, if the basis given in Section 2 is felt
to be unwieldy or uninformative with its vast suite of axioms.

We can also reduce the number of distinctive rules used in that basis, since
the collection of rules {(K̇)n|n ∈ Nat} can be replaced by the single rule (K̇)2

which figured in our working through of earlier examples in the discussion after
Proposition 2.3 (though this rule will typically need to be applied more than
once, by contrast with the earlier {(K̇)n). By contrast with the axiomatization
of K̇ with the full panoply of (K̇)n rules, this one will typically have to be used
several times in a proof.13 We illustrate this with the case of (K̇)4, with premiss

A∨ ♦A∨ ♦♦A∨ ♦♦♦A.

Instead of obtaining A by applying (K̇)4, we reformulate the premiss as the
K-equivalent:

((A∨ ♦A) ∨ ♦(A∨ ♦A)) ∨ ♦(((A∨ ♦A) ∨ ♦(A∨ ♦A))),

and apply (K̇)2, three times to derive A. We must check that this strategy is
always available.

Consider two sequences of formulas based on a given formula A. First let
Pn(A) be a premiss for (K̇)n, i.e., be the formula A ∨ ♦0A ∨ . . . ∨ ♦n−1A.
Secondly define Qn(A) thus:

Q0(A) = A; Qn+1(A) = Qn(A) ∨ ♦Qn(A).

By induction on n, we have:
 3.1 For any formulaA, and any n ∈ Nat, `K Pn(A) ≡ Qn(A).
 3.2 If all the rules (K̇)n except for (K̇)2 are dropped from the axioma-
tization of K̇ given in Section 2, all theorems of K̇ remain provable.

Proof: If A is an axiom in the original basis, it is an axiom in the reduced basis
currently envisaged. We know from the proof of Lemma 2.4 that if one of the
(K̇)n rules has been applied, there is a proof of A in which there is only one
such application. If n = 1, A is an axiom and no such application is required.
If n = 2, we apply (K̇)2 from the reduced basis. If n > 2 we make repeated
applications of (K̇)2 as follows. Replace the K-provable premiss Pn(A) of a
single application of (K̇)n by Qn(A), also K-provable by Lemma 3.1. Apply (K̇)2

n− 1 times to get a proof of A from the new basis.
12The phrase is George Lakoff’s, from the late 1960s, and has nothing to do with the semantic

local/global contrast mentioned in our opening section. See [8], p. 72, for further references and
applications to logic.

13Recall that the proof of Lemma 2.4 showed at most one appeal needed to be made to these
rules in any proof – which we can formulate as the claim that every provable formula has a
proof in which there is exactly one such appeal, since we can use (K̇)1 in the absence of another
(K̇)n-application.
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Another application of Lemma 3.1 is to the question of which normal modal
logics are themselves already closed under all the rules (K̇)n (n ∈ Nat), since
from it we infer that this is equivalent to being closed under the single rule (K̇)2.
The question is then easily answered since the latter is in turn equivalent (for
any modal logic, in fact) to having as a theorem p ⊃ �p. Not that this comes as
a surprise, since the smallest normal modal logic (and we could equally well say
‘quasi-normal’ here) containing this formula, KTc in the notation of Chellas [2],
is sound and complete w.r.t. the class of one-point models, restricted to which
the concepts of ∃-validity and validity coincide.

I would like to close with the following observations from Allen Hazen.
Hazen observes that one could define the ∃-validity of a first order (non-modal)
open formula to be equivalent to the validity of its existential closure is. The
set of ∃-valid formulas is then analogous to the set of modal formulas true at
some point in every model (the theorems of Ṡ5, mentioned in note 2), and from
Herbrand’s Theorem one can obtain the following characterization of these
formulas. A formula is ∃-valid if and only if some disjunction of alphabetic vari-
ants of it and its partial ∃-closures is valid, where by a partial ∃-closure of a first
order formula is meant the result of binding some or all of its free variables by
initial existential quantifiers. As Hazen remarks, this characterization is sug-
gestive of our rules (K̇)n (though as I would add: these rules admit of the simpli-
fication mentioned above à propos of Ṡ4, to the single rule ♦A/A).14 He further
draws attention to predicate-logical cases analogous to those under Example
2.1 which show these first order ∃-valid formulas are not closed under conjunc-
tion or Modus Ponens. The open formula (Fx→ ∀x � Fx) ∧ (Gx→ ∀x �Gx), for
instance, is not ∃-valid, though each of its conjuncts is.


I am grateful to Graham Priest for making available the written version of [10],
and to him and Allen Hazen for all their comments, as well as to two AJL
referees for helpful corrections.


[1] P. Balbiani, I. Shapirovsky, and V. Shehtman, ‘Every World Can See a

Sahlqvist World’, pp. 69–85 in G. Governatori, I. Hodkinson and Y.
Venema (eds.), Advances in Modal Logic, Volume 6, College Publications,
London 2006.

[2] B. F. Chellas, Modal Logic: An Introduction, Cambridge University Press,
Cambridge 1980.

14This corresponds to the fact that re-construed as first order formulas, modal formulas have
exactly one free variable.

Lloyd Humberstone, “Modal Formulas True at Some Point”, Australasian Journal of Logic (6) 2008, 70–82

http://www.philosophy.unimelb.edu.au/ajl/2008
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2008 82

[3] J. Ganeri, ‘Jaina Logic and Philosophical Problems’, History and Philoso-
phy of Logic, Vol. 23 (2003), 267–281.

[4] R. Goldblatt, I. Hodkinson, and Y. Venema, ‘Erdős Graphs Resolve
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