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1 
The standard Hilbert-style of axiomatic system yields the assertion of axioms
and, via the use of rules, the assertion of theorems. However, there has been lit-
tle work done on the corresponding axiomatic rejection of non-theorems. Such
Hilbert-style rejection would be achieved by the inclusion of certain rejection-
axioms (r-axioms) and, by use of rejection-rules (r-rules), the establishment of
rejection-theorems (r-theorems). We will call such a proof a rejection-proof (r-
proof ). The ideal to aim for would be for the theorems and r-theorems to be
mutually exclusive and exhaustive. That is, if a formula A is a theorem then it
is not an r-theorem, and ifA is a non-theorem then it is an r-theorem. The first
of these which ensures no overlap between the theorems and the r-theorems,
we will call rejection-soundness (r-soundness). The second of these which en-
sures that all non-theorems are rejected, we will call rejection-completeness
(r-completeness).

Both the set of theorems and the set of r-theorems are recursively enumer-
able, provided there are a finite number of axioms, rules, r-axioms, and r-rules.
This can be ensured by use of uniform substitution rules, if necessary. If such
a logic L is r-sound and r-complete then, as in [11, p. 307 (see also p. 284)], the
class T of all theorems of L is general recursive. Then, the predicate AεT is
general recursive and, by [11, p. 313], L is decidable. So, there are restrictions
on the logics for which both r-soundness and r-completeness hold, especially
r-completeness whose proof would usually embody a decidability argument.
R-soundness, on the other hand, can usually be shown either syntactically, se-
mantically or by metacompleteness. (See Section 2 for metacompleteness.)

Though the idea of rejection goes back to Aristotle, the first rejection sys-
tem was due to Łukasiewicz, who, in Chapters IV and V of [12], set up a
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complete axiomatization of sentential logic, coupled with the axiomatic re-
jection of all and only the non-theorems. His positive system was as follows
[12, pp. 80-1]:
 ∼, ⊃.


1. p ⊃ q ⊃ .q ⊃ r ⊃ .p ⊃ r.

2. ∼p ⊃ p ⊃ p.

3. p ⊃ .∼p ⊃ q.



1. A⇒ AB/p where B is substituted for each occurrence of p in A. (Rule of
Substitution.)

2. A,A ⊃ B⇒ B. (Rule of Detachment.)

For rejection, Łukasiewicz added the following: (We use the rejection sign
‘a’ here.)
- [12, p. 109]

1. a p

- [12, p. 96]

1. ` A ⊃ B,a B⇒ a A (Rule of rejection by detachment.)

2. a AB/p ⇒ a A (Rule of rejection by substitution.)

Łukasiewicz in [12, pp. 109-118], using an implicational normal form, re-
jected all the non-theorems of his assertion system, thus establishing r-sound-
ness and r-completeness and thereby axiomatically deciding all formulae. Sub-
sequently, Caicedo in [9] established another rejection system for sentential
logic, this time without making reference to an assertion system. An induction
argument on formula complexity is used to prove r-completeness.

2   
For what follows, we need to introduce the concepts of metacompleteness and
degree. Meyer in [13], introduced the concept of a metacompleteness, princi-
pally for the purpose of finding an easy proof of ‘If A ∨ B is a theorem then
either A is a theorem or B is a theorem’ for a suitable range of logics. In [13],
he proved this for a wide range of quantified positive relevant logics, but it was
Slaney in [15] who managed to add negation and prove the property for the
sentential relevant logics RW and TW.

To define metacompleteness for a sentential logic L, we inductively intro-
duce the following two metavaluations, v and v?, as in Slaney [15, pp. 162-5].
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(i) v(p) = F, for all sentential variables p.
v?(p) = T , for all sentential variables p.

(ii) v(A & B) = T iff v(A) = T and v(B) = T .
v?(A & B) = T iff v?(A) = T and v?(B) = T .

(iii) v(A∨ B) = T iff v(A) = T or v(B) = T .
v?(A∨ B) = T iff v?(A) = T or v?(B) = T .

(iv) v(∼A) = T iff v?(A) = F.
v?(∼A) = T iff v(A) = F.

(v) v(A → B) = T iff ` A → B and, if v(A) = T then v(B) = T , and if
v?(A) = T then v?(B) = T .
v?(A→ B) = T .

We prove the following two lemmas.
 1 For all formulaeA, if v(A) = T then ` A, and if v?(A) = F then ` ∼A.

Proof: We prove these together by induction on formulae.

 2 For all formulaeA, if ` A then v(A) = T .

Proof: We use induction on the proof procedure for theorems.

 1 L is metacomplete, i. e. v(A) = T iff ` A, for all formulaeA.

Proof: By Lemmas 1 and 2.

The class of such metacomplete logics are called M1 logics by Slaney in
[16]. Using the above metavaluations, one can also establish a number of meta-
completeness properties, such as (I)–(VI) in Section 4 below. In [16], Slaney
also defined M2metacomplete logics by replacing ‘v?(A→ B) = T ’ in (v) above
by ‘v?(A→ B) = T iff, if v(A) = T then v?(B) = T ’.

The M1 metacomplete logics include the key contraction-less logics B,
DW and TW, and some weaker relevant logics such as DJ and TJ, both with
conjunctive syllogism added. The contraction-less logics, EW and RW, are
M2 metacomplete, as are the other contraction-less logics with the rule: A,
∼B⇒ ∼(A→ B), added. Metacomplete logics are important as they encompass
contraction-less logics, which have many special properties, the logic DJ, which
is conceptualized in Brady [2] and [7] as the logic of meaning containment, and
TJ, which can be used to solve the set-theoretic and semantic paradoxes (see
Brady [3] and [7]).

Roughly, the degree of a formula is the maximum depth of ‘→’ occurring in
it. Inductively:

(i) A sentential variable p has degree 0.

Ross T. Brady, “A Rejection System for the First-Degree Formulae”, Australasian Journal of Logic (6) 2008, 55–69

http://www.philosophy.unimelb.edu.au/ajl/2008
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2008 58

(ii) If A has degreem and B has degree n then A & B and A∨B have degree
max(m,n), whilst A→ B has degree max(m,n) + 1.

Formulae of low degree are more likely to occur in practice and indeed, in
Anderson and Belnap [1] and in Dunn [10], there has been extensive study of
the system Efde of first-degree entailments, common to relevant logics from B
through to R. The first-degree formulae of E can also be found in [1], whilst
those of the weaker M1 and M2 metacomplete logics can be found in Brady
[5]. It is the first degree of these M1 logics that we address in this paper.

3   
The issue of rejection systems has arisen in three recent contexts. The first
was in connection with the metacompleteness of relevant logics including sen-
tential constants some of which are classical. In order to fully represent their
classicality, Brady in [8] considered a formal notion of non-derivability to en-
sure that if a sentential constant p is derivable then ∼p is not derivable. Thus,
an axiomatic rejection system was introduced, with the following axioms and
rules.
- Given that, for each sentential constant p, none, one or
both of ` p and ` ∼p are added, in accordance with some recursive specifica-
tion, we add a p or a ∼p (or both), whenever the corresponding ` p or ` ∼p is
not included.
-

1. ` A→ B, a B⇒ a A.

2. a A, a B⇒ a A∨ B.

3. ` A∨ B, a A⇒ ` B.

Though metacompleteness and r-soundness was established for appropri-
ate logics, the question of r-completeness was left open.

The second and related recent context is in connection with the formal-
ization of the Law of Non-Contradiction in Brady [6]. There, it is proposed
that the Law is most appropriately formalised as a A & ∼A, or as ` A⇒ a ∼A,
immersed in an axiomatic rejection system.

The third is a rejection system, due to Meyer and Slaney in [14], for Abelian
logic A. They show that any formula of A is equivalent to a conjunctive normal
form of basic intensional formulae. This theorem can then be used to establish
a rejection system for A.

4    1r

It would be nice to develop r-sound and r-complete rejection systems for a
good range of decidable sentential relevent logics. To start this process, here
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we examine the first-degree metacomplete logic L1 of Brady [5]. L1 is the
common first-degree fragment of a range of weak metacomplete logics which
are all M1 logics. Thus, L1 is also B1, the first-degree fragment of the Routley-
Meyer basic logic B, and also DJ1, the first-degree fragment of the logic DJ of
Brady [2] and [7]. The assertion system L1 is axiomatized as follows in [5]:


1. A→ A.

2. A & B→ A.

3. A & B→ B.

4. A→ A∨ B.

5. B→ A∨ B.

6. A & (B∨ C)→ (A & B) ∨ (A & C).

7. ∼∼A→ A.



1. A→ B, B→ C⇒ A→ C.

2. A→ B, A→ C⇒ A→ B & C.

3. A→ C, B→ C⇒ A∨ B→ C.

4. A→ ∼B⇒ B→ ∼A.

- 

5. A, B⇒ A & B.

6. A⇒ A∨ B.

7. B⇒ A∨ B.

8. A⇒ ∼∼A.

9. ∼A⇒ ∼(A & B).

10. ∼B⇒ ∼(A & B).

11. ∼A, ∼B⇒ ∼(A∨ B).

As stated in [5], L1 consists of all the theorems of the first-degree entail-
ment system Efde of Anderson and Belnap [1, p. 158], obtained by applying
rules 1-4 to the axioms 1-7, with all its non-entailment theorems built up from
the Efde entailments by applying rules 5-11. The following metacompleteness
properties for L1 should be read in conjunction with it, most of these having
allowed its axiomatization to be simplified.
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(I) If ` A∨ B then ` A or ` B.

(II)  – ` ∼(A→ B).

(III) If ` A & B then ` A and ` B.

(IV) If ` ∼∼A then ` A.

(V) If ` ∼(A & B) then ` ∼A∨ ∼B.

(VI) If ` ∼(A∨ B) then ` ∼A & ∼B.

Note that, by (II), the logic L1 is an M1 logic in the sense of Slaney in [16],
in that it has no negated entailment theorems.

We consider the metacompleteness properties (I) and (III)–(VI) as rules
for the purposes of framing the rejection-rules in what follows. We add, to the
above assertion system L1, the following rejection-axioms and rejection-rules,
yielding L1r.
-

1. a p & ∼q & r & ∼r→ ∼p∨ q∨ s∨ ∼s.

2. a ∼(A→ B).

-

1. ` A→ B, a A→ C⇒ a B→ C.

2. ` B→ C, a A→ C⇒ a A→ B.

3. a A, a B⇒ a A∨ B.

4. a A⇒ a A & B.

5. a B⇒ a A & B.

6. a A⇒ a ∼∼A.

7. a ∼A⇒ a ∼(A∨ B).

8. a ∼B⇒ a ∼(A∨ B).

9. a ∼A, a ∼B⇒ a ∼(A & B).

10. a AB/p ⇒ a A, where B is uniformly substituted for p in A.

Sentential variables are used without the use of formula schemes in the r-
axioms, except for RA2 which is schematic, and a rejection-substitution rule
RR10 is used. Schemes are still used in the assertion system and in the state-
ment of the r-rules. The r-rules RR1-2 are reversals of rule R1 of the asser-
tion system L1. (The reversals of rules R2-4 of L1 are not needed for the
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r-completeness argument for L1r and so are omitted.) The r-rules RR3-9 em-
brace all the requirements for the rejection-metacompleteness result of Theo-
rem 3 to follow, some being reversals of appropriate metacompleteness proper-
ties of L1. Similar to L1 in [5], we will add some r-metacompleteness properties
to round out the logic L1r.

We need the following rejection-theorems:
-

1. a p. (RA1 × RR10)

2. a ∼p. (RT1 × RR6 × RR10)

A rejection system in the style of Caicedo [9], i. e. without reference to
the assertion system, can also be created, though rather tediously. This can be
done by replacing the assertions ` A→ B of RR1 and ` B→ C of RR2 by each
of the L1 theorems actually used in the proof of Theorem 4, i. e. in the proof
of r-completeness. We then drop these theorems from the statement of the
rules, yielding pure rejection rules. R-soundness and r-metacompleteness will
still apply.

5 -  -  1r

R-soundness can be proved immediately by an easy syntactical method.
 2 L1r is r-sound, i. e. for all formulaeA, if ` A then  – a A.

Proof: We show that if a A then  – ` A, by induction on the r-proof pro-
cedure. The r-axioms are non-theorems of L1. RA1 is not a tautological en-
tailment, from which it follows that it is not a theorem of any relevant logic
from B through to R, and RA2 is a metacompleteness property. The r-rules
preserve non-theoremhood of L1. RR1-2 preserve non-theoremhood by R1,
RR3-9 by metacompleteness properties (I), (III)–(VI), and RR10 by the use of
the schematic method in L1.

For rejection-metacompleteness, we inductively introduce the two
rejection-metavaluations, vr and v?

r, which will relate to the rejection-theorems
in a similar way to that of metavaluations and theorems of the assertion logic
L1 (see Section 2).

(i) vr(p) = T .

v?
r(p) = F.

(ii) vr(A & B) = T iff vr(A) = T or vr(B) = T .

v?
r(A & B) = T iff v?

r(A) = T or v?
r(B) = T .

(iii) vr(A∨ B) = T iff vr(A) = T and vr(B) = T .
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v?
r(A∨ B) = T iff v?

r(A) = T and v?
r(B) = T .

(iv) vr(∼A) = T iff v?
r(A) = F.

v?
r(∼A) = T iff vr(A) = F.

(v) vr(A→ B) = T iff a A→ B.

v?
r(A→ B) = F.

To establish r-metacompleteness, we prove the following lemmas.
 3 For all formulaeA, if vr(A) = T then a A, and if v?

r(A) = F then a ∼A.

Proof: We prove these together by induction on formulae.
p. By RT1 and RT2, together with RR10 to introduce
other variables.
A & B. By RR4, RR5 and RR9.
A∨ B. By RR3, RR7 and RR8.
∼A. By RR6.
A→ B. By RA2.

 4 For all formulaeA, if a A then vr(A) = T .

Proof: We use induction on the proof procedure for rejection-theorems.
RA1. By (v).
RA2. By (iv), (v).
RR1-2. By (v).
RR3. By (iii).
RR4-5. By (ii).
RR6. By (iv).
RR7-8. By (iii), (iv).
RR9. By (ii), (iv).
RR10. We use induction on formula construction to establish to-

gether (I) if vr(A
B/p) = T then vr(A) = T , and (II) if

v?
r(A

B/p) = F then v?
r(A) = F. We straight-forwardly use

(i)–(v) and RR10.

 3 L1r is r-metacomplete, i. e. vr(A) = T iff a A, for all formulae A.

Proof: By Lemmas 3 and 4.

This r-metacompleteness yields a number of properties, which enable the
axiomatization of L1r to be enhanced.

(Ir) If a A & B then a A or a B.

(IIr) If a A∨ B then a A and a B.
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(IIIr) If a ∼∼A then a A.

(IVr) If a ∼(A & B) then a ∼A∨ ∼B.

(Vr) If a ∼(A∨ B) then a ∼A & ∼B.

These are admissible rules of L1r, in that r-theoremhood is preserved.
Thus, we can use them as such, in addition to the primitive rules RR1-10, and,
in particular, we will use (Ir) and (IIr) in determining the r-completeness of
L1r to follow.

6 -  1r

R-completeness does involve some preliminary work. We first need to get
some characterization for the non-theorems of L1. However, let us start with
the theorems. For each theorem A of L1, using metacompleteness properties
(I), (III)–(VI), as well as the rules R5-7, we can establish a disjunctive nor-
mal form B consisting of a disjunction of conjunctions of basic formulae, i. e.
sentential variables, negated sentential variables, entailments and negated en-
tailments. (It is important for the negations to be pushed through first, outer
ones before inner ones, as the normal-forming rules do not operate inside the
scope of a negation.) Here, we include disjunctions consisting of a single dis-
junct, which would then be a conjunction of basic formulae. We also include
conjunctions consisting of a single conjunct, which would just be a basic for-
mula. As in Slaney [15, p. 166], by metacompleteness property (I), at least one
of the disjuncts C of B must be a theorem, and hence each of its conjuncts is
a theorem. Since sentential variables, negated sentential variables and negated
entailments are non-theorems, the only basic formulae that can be theorems
are entailments. So, the theorem disjunct C must consist of a conjunction of
first-degree entailments. These first-degree entailments must be theorems of
Anderson and Belnap’s Efde of [1]. Thus, for any theorem A of L1, there is a
disjunctive normal form B, consisting of a disjunction, at least one disjunct C
of which consists of a conjunction of Efde theorems.

Non-theorems, on the other hand, are better put into conjunctive normal
form. So, each non-theorem A of L1 can be put into a conjunctive normal
form B, using (I), (III)–(VI), and R5-7, as above, but with a conjunction of dis-
junctions of basic formulae, allowing for single conjuncts and disjuncts. By R5,
there is at least one conjunct C which is a non-theorem of L1, and, by R6-7,
each of its disjuncts is a basic formula which is a non-theorem. Such basic
formulae are sentential variables, negated sentential variables, entailments and
negated entailments. Each sentential variable, negated sentential variable and
negated entailment is a non-theorem, whereas the entailment non-theorems
are non-theorems of Efde. So, to prove r-completeness of L1, we have to re-
ject sentential variables, negated sentential variables and negated entailments,
as well as the non-theorems of Efde. Then, we have to retrace the conjunctive
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normal-forming steps, using rejection-rules and r-metacompleteness proper-
ties, until we get back to our non-theorem A. We do all this in the following
theorem.

However, before we do, we first look at the structure of the non-theorems
of Efde. In Anderson and Belnap [1, pp. 151-158], the theorems of Efde, called
tautological entailments, can all be put into normal form consisting of dis-
junctive normal form in the antecedent and conjunctive normal form in the
consequent, i. e. A1 ∨ · · · ∨ Am → B1 & · · · & Bn. Whenever we pair any
disjunct Ai from the antecedent with any conjunct Bj from the consequent,
i. e. Ai → Bj, we get an entailment between a conjunction of atoms and a
disjunction of atoms, with at least one atom in common, where an atom is a
sentential variable or a negated sentential variable. So, the non-theorems of
Efde are those with normal forms A1 ∨ · · · ∨ Am → B1 & · · · & Bn, with
some pair Ai → Bj having no atom from the conjuncts of Ai in common with
an atom from the disjuncts of Bj. Again, this process must be reversed for
rejection.
 4 L1r is r-complete, i. e. for all formulaeA, if  – ` A then a A.

Proof: By RT1, RT2 and RR10, any sentential variable q and any negated sen-
tential variable ∼ s is an r-theorem. By RA2, any negated entailment is an
r-theorem as RA2 is schematic. We proceed in five stages. In the first three
stages, we reject the non-theorems of Efde.

() We start with entailments between conjunctions of atoms and disjunc-
tions of atoms. By RA1, a p & ∼q & r & ∼r → ∼p ∨ q ∨ s ∨ ∼s and, by apply-
ing RR1 to the antecedent and RR2 to the consequent, a p & p & · · · & p

& ∼q & ∼q & · · · & ∼q & r & r & · · · & r & ∼r & ∼r & · · · & ∼r

→ ∼p ∨ ∼p ∨ · · · ∼p ∨ q ∨ q ∨ · · · ∨ q ∨ s ∨ s ∨ · · · ∨ s ∨ ∼s ∨ ∼s ∨ · · · ∨ ∼s,
for any number of repetitions of the variables, and with the occurrences of
the variables arranged in any order and bracketed in any way within the an-
tecedent and within the consequent. Applying RR10 to expand the range
of variables in their respective positions, we get a p1 & p2 & · · · & pi

& ∼q1 & ∼q2 & · · · & ∼qm & r1 & r2 & · · · & rp & ∼r1 & ∼r2 & · · · & ∼rp
→ ∼p1∨∼p2∨· · · ∼pj∨q1∨q2∨· · ·∨qn∨s1∨s2∨· · ·∨sq∨∼s1∨∼s2∨· · ·∨∼sq.
We can still allow repetitions of variables within each of these four categories,
represented by the four types of variables and also rearrangements of variables
within the antecedent and within the consequent. Note that the p’s, and also
the q’s, can properly overlap, i. e. some p’s can occur in the antecedent side and
not in the consequent side or vice versa, and similarly with the q’s. We confine
the r’s and ∼r’s to the same variable range on the antecedent side and the s’s
and ∼s’s to the same variable range on the consequent side. This then exhausts
all possibilities for non-theorems of Efde, which are entailments between con-
junctions of atoms and disjunctions of atoms, provided the four distinct classes
of variables, represented by the p’s, q’s, r’s and s’s are all non-empty. In order to
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reject such non-theorems of Efde where at least one of these classes of variables
are empty (leaving at least one of the p’s, q’s or r’s non-empty and at least one
of the p’s, q’s or s’s non-empty), we take sub-conjunctions of the antecedent
and sub-disjunctions of the consequent, this being justified by RR1 and RR2.
Thus, we are able to reject all entailments between conjunctions of atoms and
disjunctions of atoms, where there is no atom in common.

() We now build up the rejection of entailments between disjunctive nor-
mal forms and conjunctive normal forms, A1 ∨ · · · ∨ Am → B1 & · · · & Bn,
where at least one pair Ai → Bj has no atom from the conjuncts of Ai in
common with an atom from the disjuncts of Bj. These rejections of form,
a A1 ∨ · · · ∨ Am → B1 & · · · & Bn, follow from Ai → Bj by RR1 and RR2,
since ` Ai → A1 ∨ · · ·∨Am and ` B1 & · · · & Bn → Bj, for any i and j.

() All the normal-forming equivalences, C ↔ D, and their contextual
forms, C(C) ↔ C(D), are provable in Efde, and hence in L1. So, by RR1 and
RR2, any non-theorem of Efde can now be rejected.

() We now reject the appropriate conjunctive normal forms, consisting of
a conjunction of disjunctions of basic formulae. We have already rejected all
basic formulae that are non-theorems. By repeated uses of RR3, any disjunc-
tion of rejected basic formulae is also rejected, and, by repeated RR4 and RR5,
any conjunction with at least one conjunct being a rejected disjunction of basic
formulae is rejected. So, we have rejected all non-theorem conjunctive normal
forms of basic formulae.

() It remains to reject all the non-theorems of L1. We use rule versions
of the normal-forming equivalences to reject arbitrary non-theorems of L1r,
given the rejection of the above conjunctive normal forms. We need to use
the r-rules RR3-9, together with the help of r-metacompleteness properties
(Ir) and (IIr). We build up the inner negations first as we can only apply the
rejection rules and properties (Ir) and (IIr) in conjunctive and disjunctive con-
texts. The use of metacompleteness properties are justified here since they
essentially backtrack down a given r-proof to a certain step or steps, yielding
an r-proof of this formula (or formulae) or allowing a rebuilding of the proof of
a new r-theorem from it (or them).

7     1

One of the side benefits of an r-sound and r-complete rejection system for a
logic is that one can test a potential semantics for such a logic by just proving
soundness twice, once for the assertion system and once for the rejection sys-
tem, both with respect to the chosen semantics. The result of this would be
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that the usual soundness would show that all theorems are valid in the seman-
tics and that the other soundness would show that all r-theorems, i. e. non-
theorems, are invalid in the semantics. We will appropriately call this other
soundness, converse soundness or c-soundness.

One would expect this process to be easier than proving completeness,
together with soundness, thus providing an opportunity to experiment with
the semantics. And, as stated in Brady [5], one of the hopes in studying degree
fragments of logics was to try to establish simple semantics for them. This
leaves us with the immediate task of putting up a suitable semantics for the
first-degree fragment L1. The semantics given in [5] is a standard Routley-
Meyer semantics over two levels, with just T and T? at level 1 and with the usual
(possibly infinite) set of worlds at level 0, the levels representing the maximum
degree of formulae to be evaluated there.

To get some idea of how to get a simple semantics for L1, we should first
look at the semantics, given in Anderson and Belnap [1, pp. 206-7], for the first-
degree fragment Efdf for the logic E. It is a 2-stage semantics, first assessing
first-degree entailments as true or false using an intensional De Morgan lattice,
and then, using these assignments of truth or falsity to sentential variables,
evaluating first-degree formulae in terms of these entailments and sentential
variables, using classical truth-functions.

Let Q be a model, 〈L, v〉, where L is an intensional De Morgan lattice and
v is an assignment of sentential variables to elements of L. v extends to an
interpretation I for all zero-degree formulae, evaluating them as elements of L,
in the usual De Morgan manner. The valuation conditions of the semantics for
Efdf are then as follows:

LetA and B be zero-degree formulae, positioned inside an ‘→’, i. e. of depth
1 in a first-degree formula under consideration for validity. Alternatively, let C
and D be of depth 0 in such a formula.

(i) I(A) = T iff v(A) ∈ T , where T is the truth filter of L.

(ii) I(A→ B) = T iff I(A) 6 I(B) in L.

(iii) I(∼C) = T iff I(C) = F.

(iv) I(C & D) = T iff I(C) = T and I(D) = T .

(v) I(C∨D) = T iff I(C) = T or I(D) = T .

So, the mode of evaluation of a zero-degree subformula depends on where
in the overall formula it lies.

A first-degree formula C is valid in the semantics iff I(C) = T , for all inter-
pretations I.

For our semantics S1 of L1, we should and can rectify this disparity by
maintaining the same valuation conditions throughout a first-degree formula.
In fact, we will project the valuation conditions for Dunn’s intuitive semantics
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of Efde (see [10]) over formulae of depth 0 as well. However, what we do is to
evaluate the entailment A → B by quantifying over all interpretations, which
is quite appropriate for a true entailment and it is what Dunn does for validity
of A → B. If we do not do this, the entailment would be evaluated like an
implication, i. e. just ‘if T ∈ I(A) then T ∈ I(B)’ in Dunn’s semantics, which
would not only be inappropriate for the logics L of [5], of which L1 is their
first-degree fragment, but also would let in formulae such as A∨ (A→ B) and
A∨ ∼B∨ (A→ B) as valid.

As in Dunn [10], valuation in S1 is over the 4 subsets of {T, F} and inter-
pretation conditions are stated in terms of the membership of T and F in such
subsets. The valuation v assigns a subset of {T, F} to each sentential variable
and is extended to an interpretation I over all first-degree formulae, using the
following conditions:

(i) I(p) = v(p), for all sentential variables p.

(ii) T ∈ I(∼A) iff F ∈ I(A).

F ∈ I(∼A) iff T ∈ I(A).

(iii) T ∈ I(A & B) iff T ∈ I(A) and T ∈ I(B).

F ∈ I(A & B) iff F ∈ I(A) or F ∈ I(B).

(iv) T ∈ I(A∨ B) iff T ∈ I(A) or T ∈ I(B).

F ∈ I(A∨ B) iff F ∈ I(A) and F ∈ I(B).

(v) T ∈ I(A → B) iff, for all interpretations I ′, if T ∈ I ′(A) then T ∈ I ′(B),
and if F ∈ I ′(B) then F ∈ I ′(A).

F 6∈ I(A→ B).

We add ‘if F ∈ I ′(B) then F ∈ I ′(A)’ to the T -valuation forA→ B to directly
show that the contraposition rule R4 preserves truth. R4 can still be shown to
hold without it, as in Dunn [10], but the duality between T and F here is nice.
Also, the choice of F-valuation for A → B is appropriate for the logics L of
[5], which are all M1 metacomplete with no negated entailment theorems (see
Slaney [16]).

A first-degree formula A is valid in the semantics S1 iff T ∈ I(A), for all
interpretations I. S1 will also apply to zero-degree formulae, i. e. those without
‘→’, but as with metacomplete logics there are no valid zero-degree formulae.
As indicated above, if we prove soundness and c-soundness for L1 with respect
to S1 we will indeed have established soundness and completeness.
 5 (Soundness Theorem) For all first-degree formulaeA, ifA is a theorem
of L1 thenA is valid in the semantics S1.
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Proof: Clearly, the axioms of L1 are all valid in S1 and the rules of L1 preserve
the membership of T in interpretations in S1.

 6 (C-Soundness Theorem) For all first-degree formulae A, if A is an
r-theorem of L1r thenA is invalid in the semantics S1.

Proof: We show that each axiom is invalid and that each rule preserves invalid-
ity.

RA1. Put v(p) = T , v(q) = F, v(r) = {T, F} and v(s) = ∅.

RA2. By the F-valuation for A→ B.

RR1-2, 4-8, 10. By the corresponding validity preservation or by re-use of
the interpretation yielding the invalidity of the premise to yield the invalidity
of the conclusion.

RR3, 9. Because of the two premises in these rules, different interpretations
can yield their respective invalidities. We need to construct an interpretation
which suffices to make the conclusion invalid. For RR3, let T 6∈ I1(A) and
T 6∈ I2(B), for some interpretations I1 and I2. We construct I3 by assigning
values to the variables occurring in A ∨ B. If the variable p occurs in A ∨ B

at depth 0, then put I3(p) = I1(p) ∩ I2(p). If p does not occur at depth 0
in A ∨ B, then its value in I3 is immaterial. By the interpretation conditions,
T 6∈ I1(A) iff some mix of conjunctions and disjunctions of T 6∈ I1(p), F 6∈ I1(q),

T 6∈ I1(B → C) and F 6∈ I1(D → E), for some variables p, q, . . . (or none),
and for some entailments B → C, D → E, . . . holds. These variables and
entailments are all the expessions of such type that occur at depth 0 in A.
Now, I3(B → C) = I1(B → C) and I3(p) ⊆ I1(p), for any p and B → C at
depth 0, and so the same mix of conjunctions and disjunctions of expressions,
T 6∈ I3(p), F 6∈ I3(q), T 6∈ I3(B → C) and F 6∈ I3(D → E), holds for I3. Hence,
T 6∈ I3(A). Similarly, by I3(B → C) = I2(B → C) and I3(p) ⊆ I2(p), for any p
and B → C at depth 0, we also conclude T 6∈ I3(B). Thus, T 6∈ I3(A ∨ B), as
required.

RR9. This is similar. Given F 6∈ I1(A) and F 6∈ I2(B), for some I1 and I2, we
construct I3 such that F 6∈ I3(A & B).
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