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Abstract: We develop the machinery for performing forcing over an
arbitrary (possibly non-wellfounded) model of set theory. For con-
sistency results, this machinery is unnecessary since such results
can always be legitimately obtained by assuming that the ground
model is (countable) transitive. However, for establishing prop-
erties of a given (possibly non-wellfounded) model, the fully de-
veloped machinery of forcing as a means to produce new related
models can be useful. We develop forcing through iterated forc-
ing, paralleling the standard steps of presentation found in [19] and
[14].

In this paper, we develop the basic theory of forcing in the context of arbi-
trary (rather than transitive) models of ZFC. For the purpose of establishing
relative consistency results, it is always possible to use a (countable) transitive
ground model, and the forcing machinery in this setting has already been well
developed (see for example [19]). There are occasions, however, in which the
objective is of a more model-theoretic nature; for instance, in studying various
types of extensions of a given, possibly non-wellfounded model M of set the-
ory, one may wish to consider forcing extensions of the model as a source of
examples. In the literature, the usual way of addressing this need is to work
with the Boolean-valued model MB, for some complete Boolean algebra B,
or to construct a Boolean ultrapower of M, again relative to some complete
Boolean algebra B; these techniques are discussed in [11]. In many such cases,
it could be useful to have on hand the fully developed machinery of forcing for
arbitrary models. The purpose of this paper is to fill this need.

A folklore insight about the matter is that roughly the same theorems
ought to hold true in the non-wellfounded case as for the transitive case (see
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for example [20, p. 2]). But if one attempts to formulate the results for the gen-
eral case precisely, many questions arise. For example, one would not expect
the forcing extension MG of a non-wellfounded model M to be the “smallest”
model including M and containing G (a result we call the Minimality Theo-
rem), though this assertion is true if M is transitive. One might instead expect
that the many forcing results of this kind, in the context of possibly ill-founded
models, would now be true “up to isomorphism,” in an appropriate sense. But
then, how would the standard fact, that, if P is a nontrivial partial order in M,
G 6∈M, be translated in the ill-founded context, “up to isomorphism”?

To answer these and other natural questions once and for all, we develop in
this paper the machinery of forcing for arbitrary models of ZFC. Many of the
differences from the transitive case are only minor modifications of the usual
results. There are some more significant variations, however, that stem from
the fact that, in the ill-founded context, it is no longer possible to define the
forcing extension as a transitive collapse. This means that elements of the forc-
ing extension end up being equivalence classes of names, and as a result, many
convenient methods of proof become unavailable. This fact most significantly
affects the proofs of the Minimality Theorem, just discussed, and the Two-
Step Iteration Theorem (which asserts that a two-step iteration is equivalent
to a certain one-step forcing). Our new statement and proof of the Minimality
Theorem makes use of the fact that even a non-wellfounded forcing extension
“believes” itself to be obtained by a collection of coherent transitive collapsing
functions; this lets us use the standard argument as a guideline, though more
bookkeeping is required. Verification that (MG)H is canonically isomorphic
to MG⊗H in the Two-Step Iteration Theorem turns out to be more difficult,
again because collapsing functions are not available here. In this case, a careful
examination of names is required to obtain the result.

The paper is organized as follows: In Section 1, we review basic facts about
partial orders, Boolean algebras, and models of set theory that have a possibly
non-wellfounded membership relation. In Section 2, we review the necessary
results on Boolean-valued models. In Section 3, we develop the analogues to
the usual theorems for one-step forcing and in Section 4, for two-step itera-
tions. Finally in Section 5, we make some remarks about general iterations;
as we will see, little work beyond that of Section 4 is needed to establish the
expected results for general iterations.

This paper is not the first to discuss the forcing machinery for arbitrary
models of set theory; in [21] forcing is introduced in the more general context
of semisets. However, the work in [21] was developed before the modern ap-
proach to forcing had been standardized, and model theorists might find this
approach inconvenient and impractical. The present paper has the advantage
of paralleling the familiar approaches to forcing found in [15] and [19] and may
therefore be more suitable as a ready reference.

Another related area, which we do not pursue here, is the relationship be-
tween the forcing methodology and nonstandard universes, in the sense of non-
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standard mathematics. Nonstandard mathematics is the attempt to incorpo-
rate the objects and tools of nonstandard analysis into a ZFC-like foundation
for mathematics. The work in [9] and [16] survey the developments in this
area of research. Typically, a nonstandard set theory postulates three types of
objects: standard sets, internal sets, and external sets. Standard sets are meant
to correspond to the usual sets of mathematical concern. The class of internal
sets represents a (nonstandard) expanded universe consisting of the “ideal” el-
ements of standard sets. The external sets are “everything else”. Typically, the
applications of nonstandard mathematics exploit the relationship between the
standard and internal sets; a desirable goal is to formalize the techniques for
studying this relationship in the surrounding universe. One of the most suc-
cessful theories in this direction, developed in the work of Kanovei and Reeken
in [17, 18] is Hrbac̆ek Set Theory (HST). HST is rich enough to formulate nat-
ural questions about the class S of standard sets, the class I of internal sets,
and their relationship. An important example is (roughly stated) the question
of whether elementarily equivalent nonstandard extensions are always isomor-
phic (a more precise statement of this is known as the Isomorphism Property
or IP). The authors of [17] show that IP is not decidable from HST, and they
develop a version of forcing over models of HST in order to prove half of this
undecidability. The forcing methodology developed for this purpose overlaps
to some extent the work we have done here, though in [17], the aim is to es-
tablish consistency results rather than to give a full treatment of the topic of
forcing in this new context. However, as the referee pointed out to the author,
the forcing of [17] generalizes forcing in the nonstandard direction further than
we do here: The models we consider here, though possibly non-wellfounded,
still satisfy the Axiom of Regularity; they are internally standard. By contrast,
models of HST are not internally standard; forcing in this context could be
described as (in the words of the referee) “essentially nonstandard”.

The work in this paper was originally developed as a foundation for another
paper in which forcing machinery is developed for the language {∈, j}, where j
is a unary function symbol intended to represent an elementary embedding of
the universe; see [5]. At present, [5] and [4] are the main applications so far of
the material presented here.

1 : - , 
,   

Let M = 〈M,E〉 be a (possibly non-wellfounded) model of the language {∈}—in
particular, we assume M is a model of ZFC. The symbol ‘∈’ will be used both
for the formal symbol of the language and for the “real” membership relation
in the surrounding universe V .

We often need to consider the syntax of the language {∈} of set theory as
being formalized within set theory, and for this purpose, we follow [10]. In
particular, we represent in ZFC ∈-formulas φ by constant terms dφ e (added to
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ZFC by definitional extension), having the property that each is an element of
Vω (see [10, pp. 90-91]). We also use, without special mention, simple formulas
that describe properties of these sets. One such formula of particular impor-
tance is Sat(u,M, b) which asserts that u encodes the ∈-formula φ(x1, . . . , xm)

and 〈M,E(M)〉 |= φ(b(1), . . . , b(m)), where b is a function defined on ω that
specifies set parameters. As in [10], Sat(u,M, b) is a ∆ZFC

1 formula.
Our arguments often require several models with different membership re-

lations. To help avoid confusion about where arguments are taking place at
various stages of a proof, we adopt the convention of indicating that 〈M,E〉
satisfies an atomic formula x ∈ y at (a, b) by writing

〈M,E〉 |= aEb

rather than 〈M,E〉 |= a ∈ b. (Formally, E can be thought of as the binary
〈M,E〉-class defined by 〈M,E〉 |= E(a, b) iff 〈M,E〉 |= a ∈ b.)

For any X ∈M, we let

XE = {x ∈M : M |= xEX},

XE2 = {YE : Y ∈M and M |= Y EX}.

The set XE is the extension of X.
We shall assume at the outset that the standard natural numbers (in V)

form a (possibly proper) initial segment of the natural numbers of M. Indeed,
we will assume from now on that(

Vω
)V ⊆ (Vω)ME and ∀x ∈

(
Vω
)V ∀y ∈ (Vω)ME [(M |= yEx) =⇒ y ∈ x

]
.

Using extensions, we can obtain external representatives of the ordered
pairs and functions living in M. First we define a pairing function op = opM :

M2 →M:

op(x, y) = unique u ∈M such that M |= u = (x, y). (1.1)

For any X, Y, t ∈ M for which M |= “t : X→ Y is a function”, we define a
function graph(t) = graphM(t) having domain XE by

∀x, y ∈M
(
graph(t)(x) = y ⇐⇒ M |= t(x) = y

)
.

For any n ∈ ω and any R ∈ M for which M |= “R is an n-ary relation”, we
define an n-ary relation rel(R) = relM(R) as follows:

∀(x1, . . . , xn) ∈Mn
[
(x1, . . . , xn) ∈ rel(R) ⇐⇒

M |= (x1, . . . , xn) ∈ R
]
.

(1.2)

 1 Suppose M = 〈M,E〉 is a model of ZFC.

(1) For all x, y ∈M, (x, y) = op(x, y)E2 .
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(2) If M |= “R is a unary relation”, then rel(R) = RE.

(3) Suppose M |= “t : X→ Y is a function”.

(a) graph(t) is one-one if and only if M |= “t is one-one”.
(b) graph(t) is onto if and only if M |= “t is onto”.
(c) Suppose n, k ∈ ω and

M |= X = 〈X, R, f〉 and Y = 〈Y, S, g〉 are first-order structures of the same
type, R and S are n-ary, and t : X→ Y is structure-preserving.

Then X′ = 〈XE, rel(R), graph(f)〉 and Y′ = 〈YE, rel(S), graph(g)〉 are
first-order structures of the same type and graph(t) : X′ → Y′ is structure-
preserving.

Proof. The proofs of (2) and (3) are easy. For (1), let u = op(x, y). If z ∈M and
M |= z Eu, then M |=

[
z = {x} ∨ z = {x, y}

]
. Therefore, there are v,w ∈M such

that

(a) M |= v = {x} ∧w = {x, y}

(b) vE = {x} and wE = {x, y}

(c) M |= u = {v,w}, and

(d) uE = {v,w}.

We have

uE2 = {zE : z ∈M and M |= z Eu}

= {vE, wE}

= {{x}, {x, y}}

= (x, y).

Typically, we will be interested in forcing with a partial order, and to do
so we will embed it into its Boolean algebra completion. All partial orders
(P,6P), denoted simply by P usually, will be assumed to have a largest element,
denoted 1P or simply 1. A Boolean algebra B can be specified by providing
an order relation 6 on B that makes B a complemented distributive lattice, or
by providing operations ∨,∧,∗ and constants 0, 1 satisfying the usual axioms
of a Boolean algebra (see [3, Section 4]). We also define auxiliary operations
→,↔,− by

b→ c = b∗ ∨ c

b↔ c = b→ c ∧ c→ b

b− c = b ∧ c∗.
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A complete Boolean algebra is a Boolean algebra B for which
∨
X exists for

every X ⊆ B.
If P and Q are partial orders, a function i : P → Q is called a complete

embedding if the following hold (see [19, VII]):

(a) ∀p1, p2 ∈ P
(
p1 6 p2 =⇒ i(p1) 6 i(p2)

)
(b) ∀p1, p2 ∈ P

(
p1 ⊥ p2 ⇐⇒ i(p1) ⊥ i(p2)

)
(c) ∀q ∈ Q∃p ∈ P∀r ∈ P

(
r 6 p =⇒ (i(r) and q are compatible in Q)

)
.

A map e : P → Q is called a dense embedding if the following hold:

(a) ∀p1, p2 ∈ P
(
p1 6 p2 =⇒ e(p1) 6 e(p2)

)
(b) ∀p1, p2 ∈ P

(
p1 ⊥ p2 =⇒ i(p1) ⊥ i(p2)

)
(c) i ′′P is dense in Q.

Suppose B,C are complete Boolean algebras and i : B → C is a homomor-
phism. Then i is said to be complete if, for all X ⊆ B, i(

∨
X) =

∨
(i ′′X). In

particular, if B is a subalgebra of C, then B is a complete subalgebra if the in-
clusion map is a complete homomorphism. Typically, if i : B → C is a one-one
complete homomorphism, we will identify B with its image under i (which is a
complete subalgebra of C).

The next theorem lists several standard results about partial orders and
Boolean algebras that we will need; proofs can be found in [15, Section 17], [3],
or [19, VII].

 2

(1) Every partial order P has a unique (up to isomorphism) Boolean algebra completion.
That is, for each P, there exist a complete Boolean algebra ro(P) (the regular open
algebra of P), unique up to isomorphism, and a dense embedding e : P → ro(P) \

{0}.

(2) If B and C are complete Boolean algebras and i : B → C is a function, then i is a
complete injective homormorphism if and only if i � B \ {0} : B \ {0}→ C \ {0} is
complete in the sense of partial orders.

(3) Suppose P,Q are partial orders and B = ro(P) and C = ro(Q). If i : P → Q is
a complete embedding of partial orders and eP : P → B, eQ : Q → C are dense
embeddings, then i lifts to a complete injective homomorphism i : B→ C.

(4) (Rasiowa-Sikorski) Suppose B is a Boolean algebra, a ∈ B, a 6= 0, and {X0,

X1, . . . , Xn, . . .} is a countable family of subsets of B such that for each n, there is
b ∈ B such that b =

∨
Xn. Then there is an ultrafilter U ⊆ B such that a ∈ U

and for each n, ∨
Xn ∈ U implies Xn ∩U 6= ∅. (1.3)
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If e is a dense embedding that witnesses the fact that B = ro(P), we will
often write e : P → B for convenience, rather than e : P → B \ {0}.

Suppose M = 〈M,E〉 is a model of ZFC and B ∈ M is such that M |=
“B is a Boolean algebra”. It is easy to verify that BE, with the ordering b 6 c iff
M |= b 6 c, is a Boolean algebra (note the external 6 is actually rel(6)). We say
that B is M-complete if, for each X ∈ M, if M |= X ⊆ B, then there is b ∈ BE
such that b =

∧
XE (where the meet is taken in BE).

The next proposition says that the extension of a complete Boolean algebra
in M is always an M-complete Boolean algebra under the natural ordering.

 3 Suppose M = 〈M,E〉 is a model of ZFC and in M B is a complete
Boolean algebra. Then 〈BE,6〉 is anM-complete Boolean algebra.

Proof. Suppose X ∈ M and M |= X ⊆ B. Let b ∈ BE be unique such that
M |= b =

∧
X. Clearly, for each x ∈ XE, M |= b 6 x, and so b 6 x; thus b

is a lower bound of X. Suppose c ∈ BE and, for each x ∈ XE, c 6 x. Then
M |= ∀x ∈ X (c 6 x), whence M |= c 6 b. Hence c 6 b, and we have shown
that b =

∧
X. �

Likewise, one can show that each of the XE as in Proposition 3 has a join in
BE. For each X ⊆ BE let X∗ = {x∗ : x ∈ X}. It is easy to show that if Y ⊆ BE has
a join and a meet, so does Y∗.

The obvious similarity between the structures (BE,6) and (B,6)M derives
from the fact that these structures actually have the same first-order proper-
ties. This in turn follows from a more general observation that will be useful:
Suppose n, k ∈ ω and

M |= “X = 〈X, R, f〉 is a first-order structure,
R is an n-ary relation, and f is a k-ary function”.

Let X′ = 〈XE, rel(R), graph(f)〉. Let φ(x1, . . . , xm) be a first-order formula in
the language of X

′ . Then for all b ∈M for which

M |= “b : rank( dφ e)→ X is a function”,

we have
X′ |= φ[b0, . . . , bm−1] ⇐⇒ M |= Sat( dφ e, X, b), (1.4)

where, for each i, M |= bi = b(i). The proof is by a straightforward induction
on the complexity of φ and makes use of the fact that M end-extends the real
Vω. (This convenient observation was pointed out to me by D. Hatch.)

Some easily proven consequences of (1.4) are listed in the next proposition:

 4

(1) Suppose M |= “P is a partial order”. Then M |= “P is separative” if and only if PE is
separative.
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(2) Suppose M |= “P is a partial order”. Then for allD ∈M, M |= “D is a dense subset
of P” if and only ifDE is a dense subset of PE. The same holds if “dense subset of ”
is replaced by “(maximal) antichain in”.

(3) Suppose M |= “B is a Boolean algebra and b, c EB”. Then M |= b = c∗ if and only
if, in BE, b = c∗. Analogous statements hold for the operations ∧,∨ and for the
constants 0, 1.

(4) Suppose M |= “B is a Boolean algebra and X, Y are subsets of B”. Then M |= Y =

X∗ if and only if YE = X∗E.

(5) Suppose that in M, P is a partial order, B = ro(P), and e : P → B is a function.
Then M |= “e is a dense embedding” if and only if graph(e) : PE → BE is a dense
embedding.

Proof. We outline the proof of (5): Consider in M the first-order structure
〈B,∧,∨, ∗, 0, 1, P, B, e〉, where e is treated as a binary relation. Clearly, the
property of being a dense embedding is first-order relative to this structure,
and so (1.4) applies. �

2 - 
Given a model M = 〈M,E〉 of ZFC and a B ∈M such that M |= “B is a complete
Boolean algebra”, we build the Boolean valued model MB in M in the usual way:
MB =

⋃
α∈ON MB

α, where MB
0 = ∅, MB

α+1 is the set of all functions f ∈M such
that dom f ⊆MB

α and ran f ⊆ B; and MB
λ =

⋃
α<λMB

α, when λ is a limit. In M,
we also define sets MB,γ, γ an ordinal in M, as follows:

M |= MB,γ = MB ∩ Vγ. (2.1)

As usual, define a first-order language LB = LM,B consisting of ∈ together
with a constant for each member of (MB)E. Formulas of LB are coded in M

so that the formulas form a definable class in M. We refer to the formulas of
LB as B-formulas. As usual, there is a Boolean truth value map [[·]] = [[·]]MB ,
depending on B and M and defined within M by recursion on a well-founded
relation, that assigns a value in B to each B-formula. For completeness, we give
this definition here.

[[σ ∈ τ]]B =
∨
tEdom (τ)

(
τ(t) ∧ [[σ = t]]B

)
[[σ = τ]]B =

∧
sEdom (σ)

(
σ(s)→ [[s ∈ τ]]B

)
∧
∧
tEdom (τ)

(
τ(t)→ [[t ∈ σ]]B

)
[[ψ∧ φ]]B = [[ψ]]B ∧ [[φ]]B
[[¬ψ]]B =

(
[[ψ]]B

)∗
[[∃xψ(x)]]B =

∨
tEMB [[ψ(t)]]B.

In the definition, σ and τ are B-names and ψ,φ are B-sentences. Formally,
[[ψ]]B is defined for atomic ψ within M by recursion on pairs of name-ranks
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(see [15]). Then the definition proceeds, by induction in V , on the complexity
of formulas. The definition up to any finite stage is formalizable in M, but, by
Tarski’s result on undefinability of truth, there is no class function F defined
in M such that F( dψ e) = [[ψ]]MB for every B-sentence ψ.

For b ∈ BE, we express the fact that a formula φ(x) at τ has Boolean value b
in M with the notation M |= [[φ(τ)]]B = b or [[φ(τ)]]MB = b; when the underlying
Boolean algebra is clear from the context, we shall suppress the subscript “B”
in this notation. In M, we say MB |= φ if [[φ]]B = 1. Still in M, for each x ∈M,
we let x̌ = {(y̌, 1) : y ∈ x} ∈ MB; x̌ is called the canonical name for x. Let
u = uB ∈

(
MB

)
E

be defined by letting dom u = {b̌ : b ∈ B} and defining
u(b̌) = b for all b ∈ B. u is called the canonical name for a generic ultrafilter
in B. (We will define generic ultrafilter for the present context in the next
subsection where we deal with two-valued models.) The usual forcing relation
 is defined in M by

b  φ iff b 6 [[φ]]B.

Next we state two theorems that outline useful properties of MB. The first of
these is a result about B-names; proofs of parts (1)–(4), (6) can be found in [2].
We will sketch a proof of part (5) using Theorem 10 in the next subsection.

 5 Suppose M = 〈M,E〉 |= ZFC and, in M,B is a complete Boolean algebra.

(1) (Names of Unions) In M: Suppose σEMB. Define τEMB by

dom τ =
⋃

{dom ν : νEdom σ}

and
τ(t) = [[∃x ∈ σ (t ∈ x)]].

Then [[τ =
⋃
σ]]B = 1.

(2) (Names of Subsets) In M: Suppose σEMB. Then for every τ1 EMB there is
τ2 EM

B such that dom τ2 = dom σ and [[τ1 ⊆ σ→ τ1 = τ2]]B = 1.

(3) (Names Of Power Sets) In M: Suppose σEMB. Let pB(σ) be the B-name de-
fined as follows: dom pB(σ) = dom (σ)B and for all t Edom pB(σ),pB(σ)(t) =

[[t ⊆ σ]]. Then [[pB(σ) = P(σ)]]B = 1.

(4) (Mixing Lemma) In M: Suppose A ⊆ B is an antichain, and we have B-names
{σa : aEA}. Then there is σEMB such that for all aEA, a 6 [[σ = σa]]B.

(5) (Unmixing Lemma) In M: Suppose σ, πEMB. Then there is an antichain A of
elements of B below [[σ ∈ π]]B such that

∨
A = [[σ ∈ π]]B and for each aEA

there is σa Edom π such that a 6 [[σ = σa]]B.

(6) In M,MB is full; that is, for eachB-formulaφ(x, x1, . . . , xn) and all τ1, . . . , τn ∈(
MB

)
E

, there is τ ∈
(
MB

)
E

such that

M |= [[φ(τ, τ1, . . . , τn)]] = [[∃xφ(x, τ1, . . . , τn)]].
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The name pB(σ) in part (3) will be called the canonical B-name for the
power set of σ. Part (5) asserts that every Boolean-valued element σ of a B-
name π is a mixture, in the sense of (4), of the elements of the domain of π by
a maximal antichain below [[σ ∈ π]]B.

In working with names, it is handy to have a canonical subcollection of
names that are relatively small in size and low in rank. For this purpose, we
define canonical names for ranks Vα, give bounds on the sizes and ranks of
these names, and use these tools to describe a relationship, definable in M,
between the rank of a set in a forcing extension and the rank of one of its well-
chosen names. The bounds we describe below are convenient for this paper
but are not optimal; see [20] and [13] for sharper results in the case of partial-
order-based names.

We begin by recursively defining in M a class sequence 〈ṙα : α ∈ ON〉 of
names for the ranks Vα: Let ṙ0 = 0̌. For the inductive step, given ṙα,

dom ṙα+1 = Bdom (ṙα);
ṙα+1(t) = [[t ⊆ ṙα]]B.

For λ a limit:
dom ṙλ =

⋃
{dom ṙα : α < λ};

ṙλ(t) =
∨
α<λ[[t ∈ ṙα]]B.

Recall that for an infinite cardinal κ, iα(κ) is defined recursively as follows:
i0(κ) = κ; iα+1(κ) = 2iα(κ); iλ(κ) =

⋃
α<λ iα(κ) for limit λ. Also, for any

ordinals α,β, we define reg(β,α) to be the least regular cardinal > max{α,β}.

 6 Suppose M = 〈M,E〉 is a model of ZFC and, in M, B is a complete
Boolean algebra.

(1) M |= ∀α ∈ ON [[ṙα = Vα]]B = 1.

(2) M |= ∀α ∈ ON |ṙα| 6 iα(|B|).

(3) In M: Whenever σ is a B-name with domain dom ṙα, then σ ∈ Vρ where ρ =

reg(rank(B), α).

(4) M |= ∀α < λEON
[(
λ a strong limit and BEVλ

)
=⇒ ṙα EVλ

]
.

(5) In M: If λ is a strong limit, BEVλ, and σEMB, then there is τEMB,λ such that
[[σ ∈ Vλ −→ σ = τ]]B = 1.

(6) There is an M-class function T = TB with M |= T : ON → ON having the
following property in M:

∀αEON∀σEMB
(
[[σ ∈ Vα]]B = 1 =⇒
∃τEMB,T(α) [[σ = τ]]B = 1

)
.

(2.2)

In particular, if T is defined in M by M |= T(α) = reg(rankB,α), then T satisfies
(2.2).
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Proof. The proof of (1) is by induction in M on the ordinals and uses Theo-
rem 5(3) at successor stages. For the limit stage, working in M, notice that if λ
is a limit, we can let σ be the name having domain {ṙα : α < λ} and constant
value 1. Then for all t Eσ,

ṙλ(t) =
∨
α<λ[[t ∈ ṙα]]B

= [[∃x ∈ σ t ∈ x]]B.

It follows from Theorem 5(1) and the induction hypothesis that

[[ṙλ =
⋃

{ṙα : α < λ} =
⋃

{Vα : α < λ} = Vλ]]B = 1.

The proofs of (2) and (4) are also straightforward inductions (in M). To
prove (3), we proceed by induction, in M, on the ordinals. The basis step is
trivial. For the successor step, suppose dom σ = dom ṙα+1. Then dom σ =

Bdom (ṙα). Let ρ = reg(rank(B), α). Clearly ρ = reg(rank(B), α + 1). By in-
duction hypothesis, we have easily that {B,dom ṙα, ṙα} ∈ Vρ. It follows easily
that σ ∈ Vρ, as required. For the limit step, suppose λ is a limit ordinal and
dom σ = dom ṙλ =

⋃
{dom ṙα : α < λ}. For each α < λ, let βα = rank(ṙα). By

the induction hypothesis, βα < reg(rankB,α). Let β = sup{βα : α < λ}. Then⋃
α<λ dom ṙα ⊆ Vβ. Let ρ = reg(rankB, λ). Since λ < ρ and each βα < ρ, by

regularity of ρ we have β < ρ. Thus dom ṙλ ∈ Vρ. Since B ∈ Vρ, it follows that
σ ∈ Vρ.

To prove (5), suppose M |= λ is a strong limit, BEVλ, and σEMB. Arguing
in M, since sat(B) < λ, there is α < λ such that [[σ ∈ Vλ]]B 6 [[σ ⊆ Vα]]B. Now
by Theorem 5(2), we obtain a B-name τ such that

dom τ = dom ṙα and [[σ ⊆ Vα]]B 6 [[σ = τ]]B.

The result follows.
For (6), we define T by M |= T(α) = reg(rankB,α). Suppose α and σ are

such that [[σ ∈ Vα]]MB = 1. Using Theorem 5(2), we obtain in M a τ having
domain dom ṙα such that [[σ = τ]]MB = 1. By (3), M |= τEVT(α). �

The next theorem is a list of results about Boolean-valued set theory that
we will need in our exposition; again, proofs can be found in [Be].

 7 Suppose M = 〈M,E〉 |= ZFC and, in M,B is a complete Boolean algebra.

(1) For each axiomψ of ZFC, [[ψ]]MB = 1.

(2) For each τ ∈
(
MB

)
E

,

[[τ ∈ u]]MB =
[ ∨
cEB

(
c ∧ [[τ = č]]

)]M
B

=
∨
c∈BE

(
c ∧ [[τ = č]]MB

)
.

For each b ∈ B,
M |= [[b̌ ∈ u]]B = b.
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(3) For each x ∈M and τ ∈
(
MB

)
E

,

[[τ ∈ x̌]]MB =
( ∨
yEx

[[τ = y̌]]B

)M
=
∨
y∈xE

[[τ = y̌]]MB .

(4) For each x, y ∈M
xEy ⇐⇒

(
MB |= x̌ ∈ y̌

)M
x = y ⇐⇒

(
MB |= x̌ = y̌

)M
(5) For any Σ0 formulaφ(x1, . . . , xn) and any y1, . . . , yn ∈M

M |= φ(y1, . . . , yn) ⇐⇒
(
MB |= φ(y̌1, . . . , y̌n)

)M
.

(6) For all τ ∈
(
MB

)
E

,

[[τ is an ordinal]]MB =
( ∨
αEON

[[τ = α̌]]
)M

=
∨

α∈ONM
E

[[τ = α̌]]MB .

(7) Suppose that in M, C is a complete Boolean algebra and B is a complete subalgebra
of C. Then for any Σ0 formulaφ(x1, . . . , xn) and any τ1, . . . , τn ∈

(
MB

)
E

,

[[φ(τ1, . . . , τn)]]MB = [[φ(τ1, . . . , τn)]]MC .

We remark here that the basic results concerning λ-cc forcing and λ-closed
forcing hold in the present context of non-wellfounded ground models because
they hold in the Boolean-valued model — namely, λ-cc forcing preserves car-
dinals and cofinalities > λ and λ-closed forcing adds no new functions on sets
of size < λ. After stating relevant definitions, we record these results below in
the language of Boolean-valued models; see [2] and [15] for proofs.

Still working in a model 〈M,E〉 of ZFC, suppose λ is an infinite cardi-
nal. Recall that a partially ordered set P is < λ-Baire if the intersection of
less than λ open dense subsets of P is dense. If P is < λ-Baire, so is ro(P) \

{0}. Moreover, we say that a complete Boolean algebra B is < λ-Baire iff
B \ {0} is < λ-Baire in the sense of partial orders. If x, y ∈ M and M |=
“B is < λ-Baire and |x| < λ and F = yx”, then [[y̌x̌ = F̌]]MB = 1.

Still in M recall that if P has the λ-cc then B = ro(P) does too, and in either
case, whenever θ > λ is a cardinal of cofinality γ, then [[θ̌ is a cardinal and
cf(θ̌) = γ̌]]B = 1. We record these facts:

 8 Suppose M = 〈M,E〉 is a model of ZFC and, in M, P is a partial
order and B = ro(P), and λ is an infinite cardinal.
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(1) If, in M, P is λ-closed (or even< λ-Baire), then for all x, y, F ∈Mwith

M |= |x| < λ and F = yx,

we have
[[y̌x̌ = F̌]]MB = 1.

(2) Suppose in M P is λ-cc, θ > λ is a cardinal, and cf(θ) = γ. Then

[[θ̌ is a cardinal and cf(θ̌) = γ̌]]MB = 1. �

We shall write sat(P) (or sat(B)) for the least κ such that P (or B) has the κ-cc.
We conclude this subsection with some facts about the canonical name for

generic filters in the context of Boolean-valued models. (Again, we postpone
the actual definition of a generic filter to the next subsection.) In M, suppose
P is a partial order, B = ro(P), and e : P → B is a dense embedding. We define
g = gP,e ∈

(
MB

)
E

as follows: Let dom g = {p̌ : p ∈ P} and define g(p̌) = e(p).
The name g is called the canonical name for a generic filter in P with respect
to e. The following theorem is an easy corollary to Theorem 7:

 9 Suppose M = 〈M,E〉 |= ZFC and, in M, P is a partial order,B = ro(P),
and e : P → B is a dense embedding.

(1) For each τ ∈MB,

[[τ ∈ g]]M =
[ ∨
pEP

(
e(p) ∧ [[τ = p̌]]B

)]M
=
∨
p∈PE

(
e(p)M ∧ [[τ = p̌]]MB

)
.

(2) For each p ∈ P,
[[p̌ ∈ g]]MB =

(
e(p)

)M
.

(3) For each p ∈ P,
[[p̌ ∈ g←→ ě(p̌) ∈ u]]MB = 1.

3    
The properties given in the Theorem 7 are internal to M; consistency results
in the context of Boolean-valued models take the form

M |= S⇒MB |= S+ σ,

where S is an extension of ZFC. Here, however, we are interested in casting
our results in terms of two-valued models. To obtain such a model from MB,
we collapse MB with an ultrafilter U that is “contained in” B. When M is tran-
sitive, we can use an ultrafilter U ⊆ B, but whenM is arbitrary, we need to take
U ⊆ BE. Even in the transitive case, MB/U is a poor substitute for the usual
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generic extension M[G], unless U is endowed with genericity. In the transitive
case, we can define U to be generic if

∧
X ∈ U whenever X ∈M and X ⊆ U, but

this definition has to be modified for arbitrary M. In the transitive case, using
a generic U gives us that MB/U is well-founded with transitive collapse pre-
cisely equal to M[U]. For arbitrary M, using a generic U gives us a new model
MU that closely resembles its transitive analogue; Lemma 14 and Theorems 15
and 16 list the relevant properties. Before proving these results, we establish a
few additional preliminaries:

 1 Suppose M = 〈M,E〉 is a model of ZFC and, in M, B is a com-
plete Boolean algebra.

(1) (S-Genericity) Suppose M |= S ⊆ P(B). We will call an ultrafilter U ⊆ BE
S-generic over M if, whenever X ∈ M, X ∈ SE, and XE ⊆ U, we have∧
XE ∈ U.

(2) (Genericity) An ultrafilter U ⊆ BE is B-generic over M if U is
(
P(B)

)M-
generic over M.

(3) (Internal Genericity) Suppose Γ, S ∈M and

M |= “Γ ⊆ B is an ultrafilter and S ⊆ P(B)”.

Then Γ is internally S-generic (for B) in M if

M |= ∀X ∈ S
(
X ⊆ Γ =⇒

∧
XE Γ

)
. (3.1)

(4) (Genericity in a Model) Suppose Γ, S ∈ M. Then we say M |= “Γ is S-
generic in B” if M |= “Γ ⊆ B is an ultrafilter and S ⊆ P(B)” and (3.1) holds.

Parts (3) and (4) are different ways of saying the same thing; indeed, Γ is
internally S-generic in M if and only if M |= “Γ is S-generic in B”. Parts (3) and
(4) are different from part (1) because we may be dealing with non-wellfounded
models. An example of internal genericity is uU: In M let P = P(B). Then uU
is internally P-generic in MU. The next theorem is the analogue of the usual
result that generics over countable transitive models always exist:

 10 Suppose M = 〈M,E〉 is a countable model of ZFC and M |= “B is
a complete Boolean algebra”. Then, for each nonzero b ∈ BE, there is an ultrafilter
Ub ⊆ BE such that b ∈ Ub andUb is B-generic over M.

Proof. Let PM = {X ∈ M : M |= X ⊆ B} and let b ∈ BE. Since M is countable,
so is P = {XE : X ∈ PM} and we can write P = {X

(0)
E , X

(1)
E , . . . , X

(n)
E , . . .}. Since B

isM-complete, each X(n)
E has a join and a meet in BE. By the Rasiowa-Sikorski

Theorem applied to BE and the family P, we obtain an ultrafilter Ub ⊆ BE

such that b ∈ Ub and (1.3) holds. Assume that for some n, X(n)
E ⊆ Ub but
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∧
X

(n)
E 6∈ Ub. Then

∨(
X

(n)
E

)∗ ∈ Ub. By (1.3), some x∗ ∈
(
X

(n)
E

)∗ must be in
Ub. But this is impossible since x is also in Ub. The result follows. �

As promised in the last subsection, we can use Theorem 10 to prove The-
orem 5(5): Work in M: Let b = [[σ ∈ π]]B and let Bb = {c ∈ B : c 6 b}. Let
K = {(τ, c)Edom π×Bb : c 6 [[τ = σ]]}. Let K0 be a subset of K that is maximal
with respect to the property that for all (τ1, c1), (τ2, c2)EK0, c1 ∧ c2 = 0. Let
A = {c EBb : ∃τEdom π(c, τ)EK0}. Clearly, A is an antichain below b. We
prove that

∨
A = b; it suffices to show that A is a maximal antichain below b.

Suppose dEBb is such that d ∧ c = 0 for all c EA. Let U be B-generic over
M with c ∈ U. Since, in M, c 6 [[σ ∈ π]]B, there must be, by the definition
of Boolean-valued membership and genericity, a τ′ ∈ M with M |= τ′ Edom π

and [[σ = τ′]]M EU. Thus, in M, we can find d′ below both d and [[σ = τ′]]M.
Now (τ′, d′)EK satisfies the property that for any (τ, c)EK0, d′ ∧ c = 0, con-
tradicting the maximality property of K0. Therefore, as claimed,

∨
A = b.

To complete the proof, arguing in M, for each aEA, we let σa be such that
(σa, a)EK0; these σa have the required property.

A familiar equivalent form of genericity is given in the next proposition.
The proof is an easy variant of the usual one in the context of transitive models
(see, for instance, [15, 17.4]).

 11 Suppose M = 〈M,E〉 is a model of ZFC, B is, in M, a complete
Boolean algebra, andU ⊆ BE is an ultrafilter. ThenU is B-generic over M if and only if,
for eachD ∈M,DE ∩U 6= ∅whenever M |= “D is dense in B \ {0}”. �

We proceed to a description of the model MU =
(
MB

)
E
/U, where U is

some B-generic ultrafilter1 over M. Given such a U, define an equivalence rela-
tion ∼U on

(
MB

)
E

by

τ1 ∼U τ2 iff [[τ1 = τ2]]
M
B ∈ U.

We denote by τU = τM
U the ∼U-equivalence class containing τ. We let MU =

{τU : τ ∈
(
MB

)
E
}. Define a membership relation EU on MU by

σU EU τU iff [[σ ∈ τ]]MB ∈ U.

As usual, EU respects equivalence classes. We have the following:

 12 Supposeφ(x1, . . . , xn) is a formula and τ1, . . . , τn ∈MB. Then

MU |= φ
(
(τ1)U, . . . , (τn)U

)
iff [[φ(τ1, . . . , τn)]]MB ∈ U.

In particular, MU |= ZFC.
1Though we do not pursue this direction here, interesting things can be said about MU for

an arbitrary (not necessarily generic) ultrafilter. See for example [11].
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Proof. The last part follows from the first. The proof of the first part is by
induction on the complexity of φ. The only nontrivial case is the existen-
tial quantifier case where fullness of MB is used. Suppose φ(x1, . . . , xn) ≡
∃xψ(x, x1, . . . , xn). Then for any τ1, . . . , τn ∈MB,

MU |= φ
(
(τ1)U, . . . , (τn)U

)
⇐⇒ ∃τ ∈MB MU |= ψ

(
τU, (τ1)U, . . . , (τn)U

)
⇐⇒ ∃τ ∈MB [[ψ(τ, τ1, . . . , τn)]]M ∈ U
⇐⇒ [[∃xψ(x, τ1, . . . , τn)]]M ∈ U
⇐⇒ [[φ

(
τ1, . . . , τn)]]M ∈ U. �

The analogues to the usual Forcing Theorems now follow as a corollary:

 13 (F T) Letψ be a sentence of the B-language for M.

(1) Suppose b ∈ BE. Then M |= b  ψ if and only if, for everyU that contains b and is
B-generic over M, we have MU |= ψ.
(2) MU |= ψ if and only if there is b ∈ U such that M |= b  ψ.

Proof. For (2), both directions follow immediately from Theorem 12. For (1),
if M |= b  ψ and b ∈ U, where U is B-generic over M, then MU |= ψ by
Theorem 12. For the converse, if M 6|= b  ψ, there is c ∈ BE, c 6 b such that
c 6= 0 and c ∧ [[ψ]] = 0. Then M |= c 6 [[¬ψ]]B. Let U be B-generic over M

such that c ∈ U. But now b ∈ U and, by Theorem 12 again, MU |= ¬ψ, and this
suffices to complete the proof. �

Next, we describe properties of the natural embedding of M into MU.
Since we are working with possibly non-wellfounded models, it will be help-
ful to review the usual mappings that are used when M is transitive, and then
indicate the difference in the present context. When forcing over a countable
transitive ground model M with a generic ultrafilter U in B, one has:

M
ˇ−→ MB η

U−→ MB/U
m−→ M[U],

and m ◦ η
U

is often denoted iU. In the present context, the map m, which
is the Mostowski collapsing function, is not generally an isomorphism since
EU is typically non-wellfounded, but all the other maps are defined and used
in the usual way. (Technically, the definition of ηU must be changed to ηU :(
MB

)
E
→
(
MB

)
E
/U, and the check function is to be thought of as defined

within M.) Without the transitive collapsing function, it will not generally
be true that M is a subset of the forcing extension. We therefore define the
insertion map that gives the canonical isomorphism: sU = η

U
◦ ˇ ; in other

words, for all x ∈M,
sU(x) = x̌U.

The next theorem lists the properties of sU. We need some definitions.
We follow [2] in defining an element y ∈ MU to be a standard ordinal of MU
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if MU |= “y is an ordinal” and for some α ∈M for which M |= “α is an ordinal”
we haveMU |= y = α̌U. Also, given models 〈A,E〉 and 〈B, F〉 of {∈} with A ⊆ B,
we shall say that A is transitive in B if for all x ∈ A, y ∈ B, if y F x, then we have
y ∈ A and yEx. Given models C = 〈C, E〉 and D = 〈D, F〉 of {∈} and a function
f : C→ D, we will say that f is a transitive embedding, and that C is transitively
embedded in D by f, if f : C → 〈f ′′C, F〉 is an (E, F)-isomorphism and f ′′C is
transitive in D. (A warning is in order here. Typically, in this paper, when we
speak of a model A being a transitive subset of another model B, the intended
meaning will be as in the above definition, and not in the more familiar sense
that A is in fact a transitive set that is a subset of B.)

 14 Suppose M = 〈M,E〉 is a model of ZFC. Suppose that, in M, B is a com-
plete Boolean algebra, and thatU is an ultrafilter in BE, which is B-generic over M.

(1) The map sU : M→MU is a transitive embedding; that is,

(a) sU : M→ s ′′UM is an (E, EU)-isomorphism
(b) s ′′UM ⊆MU is transitive in MU.

(2)M and MU have the “same” ordinals. That is, for every α ∈ M, if α is an ordinal
in M, then α̌U is a standard ordinal of MU, and every ordinal of MU is standard.

(3) Suppose M |= “C is a complete Boolean algebra” andW is C-generic over M. Then
the map ` : s ′′UM → s ′′WM defined by `(x̌U) = x̌W is an isomorphism satisfying
sW = ` ◦ sU.

M

�
�
�

	

sU @
@
@R

sW

s ′′UM ` - s ′′WM

Proof of (1). If x 6= y are elements of M, then by Theorem 7(4), [[x̌ 6= y̌]]M = 1 ∈
U. By Theorem 12, MU |= x̌U 6= y̌U. Thus, sU is one-one. Replacing = with
appropriate forms of the membership relation in the above argument leads to
the conclusion that sU is in fact an isomorphism.

To see that M ′ = s ′′M is transitive in MU, suppose w̌U ∈ M ′ and MU |=
zU EU w̌U; we show that zU ∈ M ′ by showing that, for some y ∈ M, [[z =

y̌]]M ∈ U. Now MU |= zU EU w̌U implies [[z ∈ w̌]]M ∈ U. By Theorem 7(3),

[[z ∈ w̌]]M =
∨
y∈wE

[[z = y̌]]M.

By genericity of U, there is y ∈ wE such that [[z = y̌]]M ∈ U, as required. This
completes the proof of (1). �

Proof of (2). To see that each ordinal in M is mapped to a standard ordinal,
suppose M |= “α is an ordinal”. By Theorem 7(5), [[“α̌ is an ordinal”]]M = 1 ∈ U.
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By Theorem 12, MU |= “α̌U is an ordinal”. Therefore α is mapped to a standard
ordinal. Conversely, to see that every ordinal of MU is standard, we show that
each ordinal τU in MU is equivalent to a standard ordinal α̌U:

MU |= “τU is an ordinal” ⇐⇒ [[“τ is an ordinal”]]M ∈ U
⇐⇒

∨
α∈ONM

E
[[τ = α̌]]M (by Theorem 7(6))

⇐⇒ ∃α ∈ ONM
E [[τ = α̌]]M ∈ U (by genericity)

⇐⇒ ∃α ∈ ONM
E τU = α̌U (by Theorem 12)

as required. �

Proof of (3). Immediate. �

Notice that by transitivity, as in (1), for any x ∈ M, the members of sU(x)

are of the form sU(y) for y ∈M. Intuitively, this says that sU(x) = s
′′
U(x), but

this notation is incorrect. The intuition can be made precise with the formula:

[sU(x)]EU = s
′′
U(xE). (3.2)

By (2), the ordinals of MU must be standard. Therefore, we will use the
same notation — Greek letters α,β, etc. — to denote the ordinals in both M

and MU. This identification makes sU the identity on ONM; that is, for all
α ∈ ONE,

sU(α) = α.

Let ωV denote the set of standard integers and (Vω)V the set of standard
hereditarily finite sets. Our convention of identifying the standard elements of
ωM with the elements of ωV , and the standard elements of (Vω)M with the
elements of (Vω)V leads to the following further identification:

∀x ∈ (Vω)M sU(x) = x.

We also wish to identify B with its image under sU. It is easy to see that sU
induces the isomorphism

〈BE,6〉 ∼= 〈[sU(B)]EU , relMU
(sU(6))〉;

in other words, B and its image are isomorphic under sU. We therefore make
the identification:

for all b ∈ BE, s(b) = b.

This identification implies that

s
′′
UU = U.

It is important for later work not to identifyM with s ′′UM, though in some
circumstances the identification is warranted. The problem is that there will
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be times when we need to know whether one forcing extension is truly a sub-
set of another; to make use of this identification in such circumstances would
be incorrect. However, for arguments that are strictly “up to isomorphism”
(and so do not, for example, make claims about one model being a subset of
another), the identification is justified and will be used sometimes for the sake
of readability.

 15 Suppose M = 〈M,E〉 is a model of ZFC. Suppose M |= “B is a complete
Boolean algebra” andU is an ultrafilter in BE that is B-generic over M. Then the model
MU = 〈MU, EU〉 has the following properties:

(1) IfM is countable, thenMU is also countable.

(2) (uU)EU = U (where uU is theU-equivalence class containing u and (uU)EU is its
extension).

(3) Suppose N = 〈N, F〉 is another model of ZFC andM is transitive subset of N that
is definable with parameters in N. Suppose that for some Γ ∈ N, ΓF = U. Then
there is a one-one map f : MU → N satisfying, for all x, y ∈MU,

xEU y ⇐⇒ f(x) F f(y).

Proof of (1). Assume M is countable. Note that
(
MB

)
E

is a subset of M, so(
MB

)
E

is countable. The map ηU :
(
MB

)
E
→MU : τ 7→ τU is onto; therefore

MU is also countable. �

Proof of (2). We first observe that, by genericity and Theorem 7(2), for all τ ∈
MB,

[[τ ∈ u]]M ∈ U ⇐⇒ ∃b ∈ BE
(
b∧ [[τ = b̌]]M

)
∈ U

⇐⇒ ∃b ∈ U [[τ = b̌]]M ∈ U.

Thus (making use of the identification sU � BE : b 7→ b),

(uU)EU = {τU ∈MU : MU |= τU EU uU}

= {τU ∈MU : [[τ ∈ u]]M ∈ U}

= {τU ∈MU : ∃b ∈ U [[τ = b̌]]M ∈ U}

= {b̌U : b ∈ U}

= s ′′UU

= U.

Proof of (3). The Boolean-valued model MB is definable in N; we claim that

N |= “Γ is B-generic over M” :

Suppose D ∈ M and M |= “D is dense in B \ {0}”. By transitivity of M in N,
DE = DF. Thus, there is d ∈ M such that d ∈ DE ∩ U = DF ∩ ΓF. It follows
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that N |= d FD ∩ Γ , as required. Thus, we can define in N the class MΓ = {σΓ :

σ FMB}. (To do this properly, we must use Scott’s trick in the definition of the
equivalence classes since, without this restriction, each equivalence class τΓ
would be a proper class in M.) Now if we define f : MU → N by f(τU) = (τΓ )

N,
f is easily seen to have the required properties. �

The result described in (3) above is not optimal since we have required that
M be a class in N. The reason that the usual proof—which does not rely on this
assumption—fails here is that it relies on the existence of the usual collapsing
map from MB to the forcing extension, defined recursively by iU(τ) = {iU(σ) :

τ(σ) ∈ U}; when such a map exists (and the models involved are transitive), one
can argue that the range of the restriction of this map to each MB

α is included
in N, whence the entire forcing extension lies in N. In the present context,
although we do not have such a collapsing map, once MU has been built, MU

believes that it is the range of such a collapsing map, or at least of a coherent
collection of set maps that collapse names in the same way. This is true because
if one builds the forcing extension entirely withinMB using the canonical name
for a generic ultrafilter, a collapsing map is definable. In the next paragraph,
we develop these ideas, and use them to improve Theorem 15(3). We shall call
a collection F of functions coherent if its elements are pairwise compatible
(relative to the usual inclusion relation).

We begin with some facts that are provable inMB. Recall that we may add
a constant symbol V̌ to our forcing language LB that represents the ground
model in the sense that, in M

[[τ ∈ V̌]]B =
∨
xEV

[[τ = x̌]]B.

One shows (see [2]) that, in M, the following statements have B-value 1:

•“V̌ is a transitive model of ZFC containing all the ordinals”;

•
(
“B̌ is a complete Boolean algebra”

)V̌ ;

•“u is B̌-generic over V̌”.

Defining B-names and the collapsing map within MB, one also proves that

[[V̌[u] is a transitive model of dZFC e, V̌ ⊆ V̌[u], and u ∈ V̌[u]]]B = 1.

Finally, one can show in M that

[[∀x (x ∈ V̌[u])]]B = 1. (3.3)

Formula (3.3) says that, when the forcing machinery is developed inside MB,
every element of the real forcing extension is realized by a B-valued term de-
fined in MB.
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We can restate Theorem 6(5) in MB as follows:

[[∀α,X, σ∃z
[(

(α a strong limit)V̌ ∧ B ∈ V̌α ∧ σ ∈ Vα∧

z ∈ M̌B,α

)
−→ σ = z

]
]]B = 1.

In other words, if α is a strong limit in the ground model and σ is forced to
be an element of Vα, there is a name τ in the Vα of the ground model that is
forced to equal σ. It follows that

[[∀α
(
(α a strong limit)V̌ −→ Vα = V̌α[u]

)
]]MB = 1. (3.4)

Putting together (3.3) and (3.4), we obtain

[[∀x∃α (x ∈ V̌α[u])]]MB = 1. (3.5)

The consequence of (3.5) and (3.4) after collapsing by U is that we have

MU |= ∀x∃α (x ∈ sU(VM
α )[uU]), (3.6)

and
M |= “α is a strong limit” =⇒MU |= Vα = sU(VM

α )[uU]. (3.7)

Now we can define our coherent collection of collapsing maps inside MU:
For each γ, recursively define iγ,uU = iγ on sU(MB,γ) by

iγ(sU(τ)) = {iγ(sU(σ)) : sU(σ)EU dom sU(τ) ∧ sU(τ)(sU(σ)) ∈ uU}. (3.8)

To verify coherence, one shows that

MU |= ∀α,β
(
α < β =⇒ iα = iβ � sU(MB,α)

)
. (3.9)

To do this, fix an ordinal β and prove by ∈-induction in MU that whenever
sU(τ)EU sU(MB,β) then iβ(sU(τ)) = iα(sU(τ)) for all α for which
sU(τ)EU sU(MB,α).

The fact that every element of MU is in the range of some iα follows
from (3.6) since, for each α ∈ ONE there is a γ ∈ ONE and a name µγ for
iγ such that

[[Vα ⊆ V̌γ[u] = {µγ(σ̌) : σ̌ ∈ V̌γ}]]B = 1.

(In fact γ = T(α) works, where T is defined in M as in Theorem 6(6).)
Note that the iα’s need not form a class sequence in MU sinceM (andMB)

need not be definable in MU. Moreover, though it would seem reasonable that
for each τ ∈ (MB,α)E, we should have iα(sU(τ)) equal to τU, the recursion
one might hope to perform in order to prove this inside MU cannot be carried
out since MU does not know how τU is constructed from τ. Nonetheless, the
result can be proven by resorting again to the model MB. Assuming that in
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M, γEON is such that τEMB,γ, and letting µγ be as above, we can reason by
recursion in MB to obtain:

[[µγ(τ̌) = {µγ(σ̌) : σ̌ ∈ dom τ̌} = {σ : σ ∈ τ} = τ]]B = 1.

Collapsing to MU gives us that

MU |= iγ(sU(τ)) = τU. (3.10)

We can now provide an improved version of Theorem 15(3):

 16 (Minimality Theorem) Suppose M = 〈M,E〉 and N = 〈N, F〉 are
models of ZFC. Suppose, in M, B is a complete Boolean algebra. Suppose that U is B-
generic over M. Suppose also that:

(A) There is a transitive embedding f : M→ N.

(B) There is Γ ∈ N such that ΓF = U.

Then there is a transitive embedding g : MU → N for which g ◦ sU = sU ◦ f.

Proof. For the proof, since results are correct only “up to isomorphism,” we
identify both sU and the embedding f mentioned in part (A) with the corre-
sponding identity maps. This means that we are assuming M is a transitive
subset of bothMU andN, and that we must prove that g is a transitive embed-
ding which is the identity on M.

Since for each γ ∈ ONM, MB,γ ∈ N, we can define define the maps iγ,Γ
in N in the same way we defined the iγ,uU in MU. Before defining g, we make
several observations. Let γ ∈ ONM.

(1) For all x ∈M for which M |= x̌ ∈MB,γ,

N |= iγ,Γ (x̌) = x.

(2) N |= iγ,Γ (u) = Γ .

(3) For all τ ∈
(
MB

)
E

:

N |= ∀t Fdom τ
[
iγ,Γ (t) F iγ,Γ (τ) ⇐⇒ τ(t) F Γ

]
(4) If M |= σ, τ EMB,γ,

MU |= iγ,uU(σ)EU iγ,uU(τ) ⇐⇒ [[σ ∈ τ]]MB ∈ U
⇐⇒ N |= iγ,Γ (σ) F iγ,Γ (τ).

Likewise,

MU |= iγ,uU(σ) = iγ,uU(τ) ⇐⇒ [[σ = τ]]MB ∈ U
⇐⇒ N |= iγ,Γ (σ) = iγ,Γ (τ).
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The analogues of (1)–(3) for MU, as well as the first parts of (4), follow
from (3.10). For (1), proceed by ∈-induction inside N as follows: Assuming the
result holds for all σ for which N |= σ Fdom x̌, we have in N:

iγ,Γ (x̌) = {iγ,Γ (y̌) : y̌ F x̌ and x̌(y̌) F Γ }
= {y : y F x} = x.

We have used here the fact that M is a transitive subset of N.
For (2), we have in N:

iγ,Γ (u) = {iγ,Γ (b̌) : b FB and u(b̌) F Γ }

= {b FB : b F Γ } = Γ.

Observation (3) follows immediately from the definition of iγ,Γ . For (4), it
suffices to prove the result for each infinite cardinal γ. In order to perform an
induction involving pairs of names, we define in M a class function ρ onMB by

ρ(σ) = least α such that σEMB,α+1.

In M, let ργ = ρ �MB,γ. Clearly, ργ ∈ N. We prove both parts of (4) simulta-
neously by induction in N on pairs (ργ(σ), ργ(τ)), well-ordered in the canonical
way. We have

[[σ ∈ τ]]MB ∈ U
⇐⇒

(∨
tEdom τ τ(t) ∧ [[σ = t]]B

)M ∈ U
⇐⇒ for some t ∈

(
dom τ

)M
E
,
[
τ(t)M ∈ U and [[σ = τ]]MB ∈ U

]
⇐⇒ for some t ∈

(
dom τ

)M
E
,
[
τ(t)M ∈ U and N |= iγ,Γ (σ) = iγ,Γ (t)

]
⇐⇒ N |= ∃t Fdom τ

[
τ(t) F Γ and iγ,Γ (σ) = iγ,Γ (τ)

]
⇐⇒ N |= ∃t Fdom τ

[
iγ,Γ (t) F iγ,Γ (τ) and iγ,Γ (σ) = iγ,Γ (τ)

]
⇐⇒ N |= iγ,Γ (σ) F iγ,Γ (τ).

For the equality case, it suffices to prove the following:

N |= iγ,Γ (σ) ⊆ iγ,Γ (τ) ⇐⇒ [[σ ⊆ τ]]MB ∈ U. (3.11)

We have:

[[σ ⊆ τ]]MB ∈ U ⇐⇒
(∧
sEdom σ σ(s)→ [[s ∈ τ]]B

)M ∈ U
⇐⇒ ∀s ∈ (dom σ)M

E

(
σ(s)M ∈ U =⇒ [[s ∈ τ]]MB ∈ U

)
⇐⇒ N |= ∀s Fdom σ

(
σ(s) F Γ =⇒ iγ,Γ (s) F iγ,Γ (τ)

)
⇐⇒ N |= ∀s

(
[s Fdom σ ∧ σ(s) F Γ ] =⇒ iγ,Γ (s) F iγ,Γ (τ)

)
⇐⇒ N |= ∀s

(
[iγ,Γ (s) F iγ,Γ (σ)] =⇒ iγ,Γ (s) F iγ,Γ (τ)

)
⇐⇒ N |= iγ,Γ (σ) ⊆ iγ,Γ (τ).

This completes the proof of Observations (1)-(4). We now define g by

g
(
(iγ,uU(σ))MU

)
=
(
iγ,Γ (σ)

)N
.
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By (3.9), g does not depend upon the choice of γ. Moreover, g is well-defined
and one-one because

g
(
(iγ,uU(σ))MU

)
= g

(
(iγ,uU(τ))MU

)
⇐⇒ iγ,Γ (σ)N = iγ,Γ (τ)

N

⇐⇒ [[σ = τ]]MB ∈ U
⇐⇒ (iγ,uU(σ))MU = (iγ,uU(τ))MU .

We can establish the isomorphism property of g by replacing equality with
the appropriate membership relations in the above argument. The proof that
g ′′MU is a transitive subset of N follows immediately from the definition of g
and of the iγ’s. The proof that g is the identity onM follows from Observation
(1) and its analogue for MU. �

Typically, if U is B-generic over M, then U 6∈ M; unfortunately, U 6∈ MU

either, typically. The correct formulation is a minor variation of the the usual
result.

 17 Suppose M = 〈M,E〉 is a model of ZFC. Suppose M |= “B is an
atomless complete Boolean algebra”.

(1) IfU is B-generic over M andU has a meet in BE, then
∧
U 6∈ U.

(2) For anyU that is B-generic over M, uU 6∈ s ′′UM.

(3) Suppose M |= “Γ ⊆ B and P = P(B)”. Then Γ is not internally P-generic in M.

Proof of (1). Suppose U has a meet in BE and
∧
U ∈ U. First we show that

∧
U

is an atom of BE: Suppose there exists b ∈ BE for which 0 < b <
∧
U. Let

D = {c ∈ BE : 0 < c <
∧
U}. By considering the dense set {d ∈ BE : d <∧

U or d ∧
∧
U = 0}, one shows that there is d ∈ U ∩ D. But now d is an

element of U below the meet of U; since this is impossible,
∧
U must be an

atom of BE.
To complete the proof, let b =

∧
U. By (1.4), M |= “b is an atom of B.” �

Proof of (2). Suppose U is B-generic over M and uU ∈ s ′′UM. Let Γ ∈M be such
that uU = sU(Γ). We show thatU has a meet in BE and

∧
U ∈ U, contradicting

(1). Using (3.2) and Proposition 15, we have

s ′′U(ΓE) = sU(Γ)EU = (uU)EU = U = s ′′UU,

and it follows that ΓE = U. Thus Γ is a set X ∈ M for which XE ⊆ U; thus
ΓE = U has a meet in U. �

Proof of (3). Suppose Γ is internally P-generic in M (recall Definition 1(2)). Let
U = ΓE. By (1.4), U is an ultrafilter in BE; we show it is B-generic over M:
Suppose M |= X ⊆ B and XE ⊆ U. By (1.4) again, M |= X ⊆ Γ . By genericity of
Γ in M, M |= b =

∧
X ∈ Γ . By (1.4), b ∈ U and b is the meet of XE in BE. We
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have shown
∧

(XE) ∈ U, and hence that U is B-generic over M. But now again
notice that Γ itself is an X ∈ M for which XE ⊆ U, and so

∧
U =

∧
ΓE ∈ U,

contradicting (1). �

If b is an atom of B in M, the usual proof shows that the filter Γ generated
by b is an ultrafilter that is internally P(B)-generic in M. Letting U = ΓE, we
have that

[sU(Γ)]EU = s
′′
U(ΓE) = s

′′
UU = (uU)EU ,

from which it follows that uU ∈ s
′′
UM.

In the present context of possibly non-wellfounded models, since isomor-
phism is not the same as equality (as it is in the transitive case), it might seem
possible that forcing over M with an atomless complete Boolean algebra always
produces a model MU that is not isomorphic to M. This is not true, though.
If, for example, M is itself a forcing extension

(
M0

)
U0

obtained by adding a
single Cohen real, and MU is obtained from M again by adding a single Cohen
real, then it is well-known that M ∼= MU. (To work out the proof of this in the
present context, use Proposition 18(1) and Theorem 21.)

Next we show that forcing with isomorphic complete Boolean algebras pro-
duces isomorphic forcing extensions.

 18 . Suppose M = 〈M,E〉 is a model of ZFC.

(1) Suppose that, in M, B and C are complete Boolean algebras and i : B → C is an
isomorphism. Then for any ultrafilter U that is B-generic over M, graph(i) ′′U

is C-generic over M and i induces an isomorphism iU : MU → MU′ , where
U′ = graph(i) ′′U. Moreover iU ◦ sU = sU′ .

(2) In M, suppose B is a complete Boolean algebra. Suppose that A and B are both B-
valued models of ZFC and that there is an isomorphism (a structure-preserving
bijection) j : A → B, all defined in M. Suppose U is B-generic over M. Let
MA,U,MB,U denote the respective collapses of A,B byU. Then MA,U

∼= MB,U

Proof of (1). Using the fact that i induces an isomorphism j : BE → CE, it is easy
to verify that U′ = graph(i) ′′U is C-generic over M. The usual argument [2,
3.12], shows that, in M, i induces a Boolean-valued isomorphism i : MB →MC;
in particular, for all σ, τ EMB and bEB,

[[σ = τ]]B = b ⇐⇒ [[i(σ) = i(τ)]]C = i(b)

[[σ ∈ τ]]B = b ⇐⇒ [[i(σ) ∈ i(τ)]]C = i(b).

Define (in V) iU : MU →MU′ by

iU(τU) = unique σU′ ∈MU′ such that M |= i(τ) = σ.

Verification that iU is a well-defined isomorphism makes use of the properties
of i; the proofs are routine so we omit them. To see that iU ◦ sU = sU′ , use the
fact that, in M i(x̌) = x̌ for all x. �
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Proof of (2). Define f : MA,U →MB,U by

f(σA
U) =

(
j(σ)

)B
U
.

Now the fact that f is a well-defined isomorphism follows from onto-ness of j
and the following two equations (which hold for all σ, τ ∈ A):

[[σ = τ]]A = [[j(σ) = j(τ)]]B
[[σ ∈ τ]]A = [[j(σ) ∈ j(τ)]]B.

�
Suppose i : B → C in M is an isomorphism and U is a B-generic ultrafil-

ter over M. Let U′ = i ′′U. Then we will say that U and U′ are canonically
isomorphic generic ultrafilters.

To conclude this subsection, we develop some of the ideas needed for doing
forcing with partial orders in M. We let M, P, B be defined as above. Let e :

P → B be a dense embedding. Let G be a filter in PE. We will say that G is P
generic over M if, for every D ∈ M for which M |= “D is dense in P” we have
G ∩DE 6= ∅.

 19 Let M = 〈M,E〉 be a model of ZFC such that, in M, P is a partial
order, B is a complete Boolean algebra, and e : P → B is a dense embedding.

(1) SupposeU is B-generic over M. DefineG by

G = {p ∈ PE : e(p)M ∈ U}. (3.12)

ThenG is P-generic over M.

(2) SupposeG is P-generic over M. DefineU by

U = {b ∈ BE : ∃p ∈ GM |= e(p) 6 b}. (3.13)

ThenU is B-generic over M.

Proof. The proof is very much like the usual one (see [15, Lemma 17.4]), using
Proposition 4 to weave in and out of M as needed. We prove the genericity
part of (1) and leave the rest to the reader.

Suppose M |= “D is dense in P”. Then, in M, De = e ′′D is dense in B \ {0}.
So (De)E = graph(e) ′′(DE) is dense in BE \ {0}, and we can find p ∈ DE such
that e(p) ∈ (De)E ∩U. It follows that p ∈ DE ∩G. �

Whenever we are given G as above, we will call U, as defined in (3.13), the
B-generic ultrafilter over M derived from G and e. Likewise, if we are given U,
we call G, as defined in (3.12), the P-generic filter over M derived from U and
e. We suppress mention of e if it is clear from the context. It is easy to verify
that

U is the B-generic ultrafilter derived from G, e ⇐⇒
G is the P-generic filter derived from U, e.

(3.14)
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Whenever we are given M, P, B, e as above, and G is P-generic over M, we
evaluate terms σ ∈ (MB)E by putting σG = σU and we let MG be simply MU,
where U is the B-generic ultrafilter over M derived from G.

Whenever P and Q are partial orders (in M) having isomorphic comple-
tions, we say that P and Q are forcing equivalent and write P ∼ Q. Clearly,
forcing with forcing equivalent partial orders produces isomorphic extensions.
We also make the following definition:

Suppose in M, i : ro(P) → ro(Q) is an isomorphism, eP : P → ro(P) and
eQ : Q → ro(Q) are dense embeddings, G is P-generic over M, H is Q-generic
over M, and graph(i) ′′[graph(eP) ′′G] = graph(eQ) ′′H. Then G and H are said
to be canonically equivalent generic filters.

The next corollary gives more information about the canonical name for a
generic filter in P:

 20 Suppose M = 〈M,E〉 is a model of ZFC and, in M, P is a partial
order, B = ro(P), and e : P → B is a dense embedding.

(1) [[g is the generic filter in P̌ derived from u and ě]]MB = 1.

(2) [[u is the generic ultrafilter in B̌ derived from g and ě]]MB = 1.

(3) SupposeG is P-generic over M and letU be the B-generic ultrafilter derived
from G. Then G =

(
gU
)
EU

(where
(
gU
)
EU

denotes the extension of
gU ∈MU).

Proof. Parts (1) and (2) follow easily from Theorem 9(3). For (3), we have the
following chain of equivalences for a given p ∈ P:

p ∈ G ⇐⇒
(
e(p)

)M ∈ U
⇐⇒

(
e(p)

)M ∈ (uU)EU
⇐⇒ MU |= e(p)EU uU
⇐⇒ MU |= pEU gU
⇐⇒ p ∈

(
gU
)
EU
.

4 - 
Our objective in this section is to show that if, in M, B is a complete Boolean
algebra and, still in M, [[χ is a complete Boolean algebra ]] = 1, then there is a
complete Boolean algebra C = B ∗ χ defined in M such that forcing with C is
“the same as” forcing with B and then with χ. The proof requires maneuvers
among the internal worlds of several (possibly) non-wellfounded models, and
these steps require some care. The usual proof for transitive models makes
substantial use of the transitive collapsing function η

U
: MB →M[U]; our proof

requires that we work with the equivalence classes by U directly. This leads
only to an isomorphism (rather than equality) between the model obtained via
a two-step iteration and that obtained via its canonical one-step analogue.
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We begin by fixing the following notation: M = 〈M,E〉 is a model of ZFC,
and P, B, π, χ ∈M are such that, in M P is a partial order and B = ro(P), and(

[[π is a partial order and χ = ro(π)]]B = 1
)M
.

In M we define an equivalence relation ∼ on the M-class

{σ : σEMB and [[σ ∈ χ]]B = 1}

by putting σ ∼ τ if and only if [[σ = τ]]B = 1. In M, let B ∗ χ denote a set of
representatives from the ∼-equivalence classes and let C = B ∗ χ. (C is a set by
Theorem 5(5) since each member of B ∗χ is determined by a pair (A,W) where
A is a maximal antichain in B and W ⊆ dom χ.) In M, define a meet operation
∧ = ∧C on C by

σ∧ τ = µ iff [[σ∧ τ = µ]]B = 1.

In a similar fashion, define the operations ∨C, ∗C. Still in M, define a map
u = uB,χ : B → B ∗ χ as follows: For each b ∈ B, let σb be the unique element
of C such that [[σb = 1C]]B = b and [[σb = 0C]] = b∗. The map is well-defined
by Theorem 5(4).

In M, let eP and ėπ witness that the completions of P and π are B and χ,
respectively; that is, eP : P → B is a dense embedding and [[ėπ : π → χ is a
dense embedding ]]B = 1. Let Pe = e ′′PP and let πe be a B-name such that
[[e ′′π = πe]]B = 1.

Define Pe ∗ πe to be the following suborder of C: Put σ ∈ Pe ∗ πe if and
only if there exist p ∈ Pe and µ ∈ C such that

[[µ ∈ πe]]B = 1 and σ = u(p) ∧C µ.

An alternative definition of two-step iteration for partial orders is useful.
In M, we define P⊗π as follows: Let π be a set of representatives of equivalence
classes determined by the equivalence relation [[σ = τ]]B = 1, defined on the
M-class {σ : [[σ ∈ π]]B = 1}. (Theorem 5(5) can be used to show that π is a
set.) Then the underlying set for P ⊗ π is P × π. (This is a way of ensuring that
“full names” are used in iterations, in the sense of [19, Chapter VIII].) Identify
elements (p, σ), (q, τ) ∈ P ⊗ π whenever p = q and p  σ = τ. Define an order
relation on P ⊗ π by putting (p, σ) 6 (q, τ) if and only if p 6 q and p  σ 6 τ.

Given a B-generic ultrafilter U1 over M and a χU1-generic ultrafilter U2
over MU1 , we define

U1 ∗U2 = {σ ∈ (B ∗ χ)E : σU1 ∈ U2}.

If G1 is P-generic over M and G2 is πG1-generic over MG1 , we define

G1 ⊗G2 = {opM(p, σ) ∈ (P ⊗ π)E : p ∈ G1 and σG1 ∈ G2}.
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 21 Suppose M = 〈M,E〉 is a model of ZFC and suppose B, χ,C, P, π, eP,
ėπ, Pe, πe, uB,χ are defined as above.

(1) M |= “C is a complete Boolean algebra under the operations ∧C,∨C, ∗C”.

(2) In M : The order relation6C induced by the Boolean operations ∧C,∨C, ∗C satis-
fies:

σ 6C τ iff [[σ 6χ τ]]B = 1.

(3) In M, the map uB,χ is a one-one complete homomorphism.

(4) In M, ro(Pe ∗ πe) ∼= B ∗ χ.

(5) In M, Pe ⊗ πe ∼= Pe ∗ πe.

(6) In M, ro(P ⊗ π) ∼= B ∗ χ. Indeed, the function f : P ⊗ π→ B ∗ χ defined in M by
f(p, σ) = eP(p) ∧C σe (where σe is a B-name for eπ(σ)) is a dense embedding
with the following property: Suppose that U1, U2 are as above, and G1, G2 are
the corresponding derived generic filters, or, equivalently, thatG1, G2 are as above
andU1, U2 are the corresponding derived generic ultrafilters. Then

G1 ⊗G2 = {opM(p, σ) ∈
(
P ⊗ π

)
E

: f(p, σ)M ∈ U1 ∗U2}.

(7) SupposeU1, U2, G1, G2 are defined as above.

(a)U1 ∗U2 is B ∗ χ-generic over M.

(b) If f is defined as in (6), G1 ⊗ G2 is the P ⊗ π-generic filter over M that is
derived fromU1 ∗U2 and f.

(c) There is an isomorphism g : (MU1)U2 → MU1∗U2 with the following
property: if sU1 , sU1U2 , sU1∗U2 represent the usual insertion maps, then

g ◦ sU1U2 ◦ sU1 = sU1∗U2 ,

and g ◦ sU1U2 is a transitive embedding. Moreover, treating a B-name σ as
a B ∗ χ name, we have

g(sU1U2(σU1)) = σU1∗U2 . (4.1)

M
sU1- MU1

sU1U2-
(
MU1

)
U2XXXXXXXXXXz

sU1∗U2 ?
g

MU1∗U2
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(1) Among the standard proofs that show that two-step iterations are equiv-
alent to canonical one-step iterations, the one that seems most easily
adapted to the context of non-wellfounded models is the Boolean-valued
model approach. Part (7) of the theorem, along with Theorem 23 below,
provides the details of this adaptation. However, many theorems about
iterated forcing are most easily stated in terms of the partial order ap-
proach. Part (6) of the theorem shows that, as is the case for transitive
ground models, the partial order approach can be used in combination
with the Boolean algebra approach.

(2) In light of (3), we will treat B as a complete subalgebra of B ∗ χ in parts (6)
and (7), and in the sequel.

(3) By (3.14), one may also conclude in (7b) that U1 ∗ U2 is the B ∗ χ-generic
ultrafilter over M that is derived from G1 ⊗G2 and f.

(4) In the case of transitive ground models, one easily proves that M[G1][G2]

= M[G1 ⊗ G2] by invoking the standard Minimality Theorem. In the
present context, the relevant minimality theorem is Theorem 16, but this
only gives us one-one embeddings in either direction between (MU1)U2
and MU1∗U2 — it is not obvious that either embedding is onto; nor is it
obvious that the embeddings are inverses of each other. We have taken
a simpler approach in our proof that these models are isomorphic by
using instead the well-known isomorphism between the Boolean-valued
models (MB)C and MB∗C.

(5) With reference to (7c), it is easy to show that any isomorphism h :
(
MU1

)
U2

→MU1∗U2 has the property that h ◦ sU1U2 is a transitive embedding.

Proof of Theorem. Proofs of (1)–(4) can be found in [15] and [2]. For (5), the map
that works is Pe ⊗ πe → Pe ∗ πe : (p, σ) → p ∧C σ (see [15] for more details).
For (6), because, in M, ro(P) ∼= ro(Pe) and [[ro(π) ∼= ro(πe)]]B = 1, it follows
(see [19, VIII.K1]) that

ro(P ⊗ π) ∼= ro(Pe ⊗ πe) ∼= ro(Pe ∗ πe) ∼= B ∗ χ.

To obtain the specific results for f, we give an outline:
Argue in M. The fact that f ′′P⊗π is dense in C follows from (5). To see that

(p, σ) 6 (q, τ) implies f(p, σ) 6 f(q, τ), note that, by (5) (and the map given in
the proof ), it suffices to show that

(a) eP(p) 6 eP(q) and

(b) eP(p)  ėπ(σ) 6 ėπ(τ).
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Part (a) follows because eP is a dense embedding. For part (b), likewise, since,
in MB, ėπ is a dense embedding, we have

p  σ 6 τ =⇒ eP(p) 6 [[σ 6 τ]]B =⇒ eP(p) 6 [[ėπ(σ) 6 ėπ(τ)]]B.

To see that (p, σ) ⊥ (q, τ) implies f(p, σ) ⊥ f(q, τ), assume f(p, σ) and f(q, τ)
are compatible. Then for some r ∈ P,

eP(r) 6 [[∃x (x 6 eπ(σ) ∧ x 6 eπ(τ))]]B 6 [[∃x (x 6 σ ∧ x 6 τ)]]B.

Let µ be such that eP(r) 6 [[µ 6 σ ∧ µ 6 τ]]. It is easy to check that r must be
compatible with p, and any s below both of these must be compatible with q.
Pick t below such an s and q. Then (t, µ) 6 (p, σ), (q, τ), as required.

To prove the last part of (6), it suffices to prove the following: For each
opM(p, σ) ∈

(
P ⊗ π)E,

opM(p, σ) ∈ G1 ⊗G2 ⇐⇒
(
eP(p) ∧C σe

)M ∈ U1 ∗U2.
The main step in the proof is the following claim:

. eP(p)M ∈ U1 ∗U2 if and only if eP(p)M ∈ U1.

  . For the proof, we set pe = eP(p)M. Recall that pe is implic-
itly embedded in C = B ∗ χ by identifying pe with the unique ce ∈ C for which
[[ce = 1χ]]B = pe and [[ce = 0χ]]B = p∗e. Thus:

pe ∈ U1 ⇐⇒ [[ce = 1χ]]B ∈ U1
⇐⇒ (ce)U1 ∈ U2
⇐⇒ (pe)U1 ∈ U2
⇐⇒ pe ∈ U1 ∗U2,

and this proves the claim.

      . Notice also that

σe ∈ U1 ∗U2 ⇐⇒
(
(ėπ)U1(σU1)

)MU1 ∈ U2. (4.2)

By the Claim and (4.2), we have

opM(p, σ) ∈ G1 ⊗G2 ⇐⇒ p ∈ G1 and σG1 ∈ G2
⇐⇒ eP(p)M ∈ U1 and

(
(ėπ)U1(σU1

)MU1 ∈ U2
⇐⇒ eP(p)M ∈ U1 ∗U2 and σe ∈ U1 ∗U2
⇐⇒

(
eP(p) ∧C σe

)M ∈ U1 ∗U2,
as required.

We turn to the proof of (7). First notice that (7b) follows immediately from
(6) and the genericity of U1 ∗ U2, by Proposition 19. To prove (7a) — that
U1 ∗U2 is B ∗ χ-generic (we leave the proof that it is an ultrafilter in CE to the
reader) — begin by setting C = B ∗ χ in M. Suppose M |= “D is dense in C”.
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. MU1 |= “ĎU1 is dense in χU1”.

  . In MU1 let τU1 EU1 χU1 . Then there is, in M, a σ in C such
that [[σ = τ]]MB ∈ U1. Since M |= “D is dense in C”, there is a δ ∈ M such that
M |= δ ED ∧ δ 6C σ. Thus,

MU1 |= δU1 6χU1 τU1 and δU1 EU1 ĎU1 .

      . Let Q,S ∈ MU1 be such
that

MU1 |= S = ĎU1 and Q = χU1 .

Since U2 is Q-generic over MU1 , it follows that there is τU1 ∈ MU1 such that
τU1 ∈ SEU1 ∩ U2. We can find σ ∈

(
MB

)
E

such that [[σ = τ]]MB ∈ U1 and
M |= σED. Thus, σU1 = τU1 and σU1 ∈ U2. It follows that σ ∈ U1 ∗U2. Thus,
we have shown that (U1 ∗U2) ∩DE 6= ∅, as required.

Next, we prove that MU1∗U2
∼= (MU1)U2 . As in [Be, Chapter 6], we define

in M the following class of names:

Jχ = {σEMB : [[σ is a χ-name]]B = 1}.

Bell [Be, Chapter 6] shows that Jχ can be endowed with a B∗χ-valued structure
with the following definitions:

[[σ = τ]]Jχ = unique c ∈ B ∗ χ such that [[c = [[σ = τ]]χ ]]B = 1

[[σ ∈ τ]]Jχ = unique c ∈ B ∗ χ such that [[c = [[σ ∈ τ]]χ ]]B = 1.

Using this structure, Bell shows that, in M, Jχ is isomorphic (as a B∗χ structure)
to MB∗χ, and it is easy to verify that in his proof, canonical names are matched
in the following way: For any x ∈M,

ˇ̌x 7→ x̌. (4.3)

For the rest of the proof, we identify Jχ with MB∗χ, treating MU1∗U2 as obtain-
able by collapsing either of these B ∗ χ-valued models by U (this identification
is justified by Bell’s result and by Theorem 18(2)). As a notational consequence,
we shall rewrite Boolean values [[φ]]Jχ as [[φ]]B∗χ.

Define g : (MU1)U2 → MU1∗U2 as follows: Let σ ∈ (MB)E be such that
MU1 |= “σU1 is a χ

U1
-name”. Note that every element of (MU1)U2 is of the

form (σU1)U2 for such a σ — we shall call such names U1-good names. Let
σ′ ∈ (MB)E be such that [[σ′ is a χ-name]]MB = 1 and σU1 = σ′U1 . Note that
σ′ ∈ (Jχ)E. We shall call σ′ an auxiliary name associated with σ. Now, using our
identification of Jχ and MB∗χ, we define g at (σU1)U2 by

g
(
(σU1)U2

)
= σ′U1∗U2 .

We verify that g is well-defined and one-one as follows: Given U1-good names
σ, τ with associated names σ′, τ′ ∈ (Jχ)E, let c ∈ (B ∗ χ)E be such that

c = [[σ′ = τ′]]MB∗χ. (4.4)
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By definition of the B ∗ χ structure on Jχ, we have in M:

[[c = [[σ′ = τ′]]χ ]]B = 1. (4.5)

We obtain the following chain of equivalences:

(σU1)U2 = (σU1)U2 ⇐⇒ [[σ′U1 = τ′U1 ]]
MU1
χ
U1
∈ U2

⇐⇒ cU1 ∈ U2 (by (4.5))
⇐⇒ c ∈ U1 ∗U2
⇐⇒ [[σ′ = τ′]]MB∗χ ∈ U1 ∗U2 (by (4.4))
⇐⇒ σ′U1∗U2 = τ′U1∗U2
⇐⇒ g

(
(σU1)U2

)
= g

(
(τU1)U2

)
.

Replacing equality with appropriate forms of the membership relation (EU2 or
EU1∗U2 ) in the above chain of equivalences yields a proof that

(σU1)U2 EU2 (σU1)U2 ⇐⇒ g
(
(σU1)U2

)
EU1∗U2 g

(
(τU1)U2

)
.

To complete the proof, we must show that g is onto. If σ′U1∗U2 ∈MU1∗U2 ,
where σ′ ∈ (Jχ)E, then clearly σ′ is a name associated with itself, and we have
easily that g

(
(σ′U1)U2

)
= σ′U1∗U2 , as required.

To prove (7c), notice that

sU1U2(sU1(x)) =
(
( ˇ̌x)U1

)
U2
.

Thus, by (4.3),

g
(
sU1U2(sU1(x))

)
= g

((
( ˇ̌x)U1

)
U2

)
= x̌U1∗U2 = sU1∗U2(x).

For the second part of (7c), if x ∈ MU1 and z EU1∗U2 g(sU1U2(x)), there
is a y ∈

(
MU1

)
U2

such that z = g(y) and so yEU2 sU1U2(x). Since sU1U2 is
a transitive embedding, for some w ∈ MU1 , y = sU1U2(w). Therefore z =

g(y) = g(sU1U2(w)) ∈ (g ◦ sU1U2) ′′MU1 , as required.
Finally, we verify equation (4.1). When we view a B-name σ as a B ∗χ name,

we have automatically that [[σ is a χ name]]B = 1. Thus, σ is its own auxiliary
name, and we have

g(sU1U2(σU1)) = g
((

(σU1 )̌
)
U2

)
= σU1∗U2 . �

The following is a useful technical corollary to Theorem 21(7). It says,
roughly, that the canonical isomorphism g : (MU1)U2 → MU1∗U2 respects
internal collapsing maps.
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 22 Suppose M = 〈M,E〉 is a model of ZFC and supposeB, χ,C, P, π, eP,
ėπ, Pe, πe, U1, andU2 are defined as in Theorem 21. Let g : (MU1)U2 →MU1∗U2 be
the canonical isomorphism and let sU1 , sU1U2 , and sU1∗U2 be the insertion maps, again
as in Theorem 21. Let iγ,uU1 and iγ,uU1∗U2 be the γth internal collapsing maps for
MU1 andMU1∗U2 , respectively, as defined in (3.8). Then for all σ ∈MB,γ,

g(sU1U2(iγ,uU1 (sU1(σ)))) = iγ,uU1∗U2 (sU1∗U2(σ)).

Proof. By our remarks preceding Theorem 16,

iγ,uU1 (sU1(σ)) = σU1 and iγ,uU1∗U2 (sU1∗U2(σ)) = σU1∗U2 .

The result now follows from the final clause of Theorem 21(7). �

A version of the standard converse to Theorem 21(7) is also true; the proof
does not differ much from the usual one. We present it as a separate result be-
cause we make slightly different assumptions from those used in Theorem 21.

 23 Suppose M = 〈M,E〉 is a model of ZFC. Suppose that in M, B and
C are complete Boolean algebras and [[χ is a complete Boolean algebra]]B = 1. Suppose
M |= “h : C→ B ∗ χ is an isomorphism”. SupposeU is a C-generic ultrafilter over M.

(1) LetU1 = (graph(h) ′′U) ∩ BE. ThenU1 is B-generic over M.

(2) Define U2 ⊆ χ
U1

as follows: For each τ ∈
(
MB

)
E

for which [[τ ∈ χ]]MB = 1,
let τ′—the name associated with τ—be the unique element of B ∗ χ for which
[[τ′ = τ]]MB = 1. Put τU1 ∈ U2 if and only if graph(h−1)(τ′) ∈ U. ThenU2 is
a χU1 -generic ultrafilter over MU1 .

(3) graph(h) ′′U = U1 ∗U2.

(4) MU
∼= MU1∗U2 .

Proof. For (1), we verify genericity only: Suppose X ∈M and XE ⊆ U1. Suppose
M |= Y = h−1(X). Let c be such that M |= c =

∧
C Y. Let b be such that

M |= b = h
(∧
C Y
)

=
∧
B∗χ X. Since c ∈ U and h is an isomorphism, we have

graph(h)(c) = b ∈ graph(h) ′′U.

Since XE ⊆ BE and M |= “B is a complete subalgebra of B ∗ χ”, it follows that
b =

∧
BE
XE ∈

(
graph(h) ′′U

)
∩ BE = U1.

For (2), suppose MU1 |= “D1 is dense in χU1 \ {0}”. We show that (D1)EU1 ∩
U2 6= ∅, and leave the verification that U2 is an ultrafilter to the reader. Let Ḋ1
be a name for D1 and let b ∈ U1 be such that

M |= b 6 [[Ḋ1 is dense in χ]]B.
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Let D be such that

M |= D = {c E (B ∗ χ) \ {0} : c 6 [[c ∈ Ḋ1]]B}.

The usual argument (see [15, Lemma 23.4]) shows that

M |= “D is dense in (B ∗ χ) \ {0}”.

Now let c, z be such that

z ∈ graph(h−1)(DE) ∩U,

equivalently,
graph(h)(z) = c ∈ DE ∩ graph(h) ′′U. (4.6)

Since graph(h−1)(c) ∈ U, by definition, cU1 ∈ U2. To complete the proof of
(2), it suffices to show MU1 |= cU1 EU1 D1. Since M |= c ED, we have M |= c 6
[[c ∈ Ḋ1]]B ∈ B, and we conclude from (4.6) that

[[c ∈ Ḋ1]]MB ∈ graph(h) ′′U ∩ BE = U1.

Thus, MU1 |= cU1 EU1 D1, and we are done.
For (3), it suffices to prove graph(h) ′′U ⊆ U1 ∗ U2. Suppose c ∈ U and let

graph(h)(c) = d. Now by definition, dU1 ∈ U2; that is, d ∈ U1 ∗U2.
For (4), since we have shown that the graph of the isomorphism h carries

U to U1 ∗U2, we can invoke Theorem 18(1) to conclude that MU
∼= MU1∗U2 .�

As usual, a kind of inverse operation for ∗ can be defined as follows: In
M, suppose D is a complete Boolean algebra and B is a complete subalgebra
of D. Let σ be a B-name satisfying [[σ is the filter in Ď generated by uB]]B=1.
Then D/B is a B-name τ satisfying [[τ = Ď/σ]]B = 1. The proof of the next
proposition can be found in [15] and [2].

 24 Suppose in M we have thatB is a complete subalgebra of a complete
Boolean algebraD. ThenD ∼= B ∗ (D/B). �

5  
Since iteration of partial orders takes place entirely within the ground model,
there are no concerns about iterated forcing that are unique to the setting
of non-wellfounded ground models. A typical application of the usual Factor
Lemma (which is proven entirely within the ground model) involves breaking
up a modelM[Gα] obtained by iterated forcing into a modelM[Gγ][Gα−γ] ob-
tained by two-step forcing. In the context of arbitrary ground models, this sort
of maneuver is addressed by our Two-Step Iteration Theorem (and so, using
the analogous notation of this paper, we would have that MUα

∼=
(
MUγ

)
Uα−γ

).
Therefore, this section on iterated forcing has been included just for the sake
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of completeness. Since we are using the Boolean algebra approach to forcing,
we follow closely the treatment in [15].

We begin by fixing an arbitrary model M = 〈M,E〉 of ZFC. Working in M,
an α-stage iterated forcing is an object

{〈Pξ : ξ 6 α〉, 〈Bξ : ξ 6 α〉, 〈eξ : ξ 6 α〉, 〈πξ : ξ < α〉, 〈iξγ : ξ < γ 6 α〉

satisfying

(1) Each Pξ is a partial order.

(2) Each Bξ is a complete Boolean algebra and eξ : Pξ → Bξ is a dense embed-
ding.

(3) For all ξ 6 α, [[πξ is a partial order]]Bξ = 1.

(4) For all ξ < γ 6 α, iξγ : Bξ → Bγ is a one-one complete homomorphism,
and 〈iξγ : ξ < γ 6 α〉 is a commutative system.

(5) For each ξ < α, Pξ+1
∼= Pξ ⊗ πξ.

(6) If β 6 α is a limit, then Pβ is either the direct or inverse limit of the Pξ,
ξ < β, and iξβ are the corresponding embeddings.

As in [15], elements of Pα can be identified with functions p = 〈pξ : ξ < α〉
satisfying

(A) ∀ξ < α
(
p � ξ ∈ Pξ

)
;

(B) ∀ξ < α
(
[[pξ ∈ πξ]]Bξ = 1

)
;

(C) ∀q, r ∈ Pα
(
q 6α r ⇐⇒ ∀ξ < α

[
q � ξ 6ξ r � ξ and q � ξ ξ qξ 6πξ rξ

])
.

Moreover, Pα consists of all functions that satisfy (A)–(C) if α is a limit and
Pα is an inverse limit. If Pα is a direct limit, then Pα consists of all functions
p = 〈pξ : ξ < α〉 satisfying (A)–(C) and also

∃ξ < α∀β
(
β > ξ =⇒ pξ = 1

)
.

We may also assume that

the embeddings eξγ : Bξ → Bγ satisfy eξγ(p) = p_1_1_ . . .. (5.1)

When Pα is a direct limit, it is sometimes useful to identify its elements with
functions p = 〈pξ : ξ < β〉 for some β < α that includes the support of p; see
[1].

As usual, one can prove the standard Factor Lemma, which says that an
iteration Pα can be factored as Pβ ⊗ τβ, where τβ is, in MBβ , an (α− β)-stage
iteration. See [15, Lemma 36.6].
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Our statement of the Factor Lemma here will make use of simplifications
due to Baumgartner [1]. We write Gα to denote a filter that is Pα-generic over
M. For β < α, we assume Gβ = {p � β | p ∈ Gα}; this assumption is warranted
by the fact — which can be proved using the standard argument [1, Theorem
1.2] (carried out inside M) — that the set {p � β | p ∈ Gα} is in fact Pβ-generic
over M.

As a further simplification, we may specify the tail τγ of the previous para-
graph as a Pβ-name for the set Pβα, which is defined in M as follows:

Pβα = {pβ : p ∈ Pα} where pβ = p � {γ : β 6 γ < α}.

The ordering on Pβα is defined relative to a generic Gβ by setting f 6 g (in
M) if and only if for some p ∈ Gβ, M |= p ∪ f 6 p ∪ g in Pα. (Here, we have
identified Pβα with its image sUβ(Pβα), where sUβ : M→MUβ is the insertion
map and Uβ is the generic ultrafilter derived from Gβ.) The standard proof [1,
Theorem 5.1], carried out in the ground model, then establishes that Pα can be
viewed as a two-step iteration of Pβ and τβ:

 25 ([1]) In M, Pα is isomorphic to a dense subset of Pβ ⊗ τβ. �

Then, the Factor Lemma establishes that τβ itself is a α−β-stage iteration,
as viewed in MGβ :

 26 ([1]) In M,

1 Pβ τβ is isomorphic to an α− β-stage iteration,

where 1 = 1Pβ andPβ is the forcing relation for Pβ, in M.
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