Some consequences of restrictions on digitally continuous functions

Laurence Boxer

Department of Computer and Information Sciences, Niagara University, New York, 14109, USA; and Department of Computer Science and Engineering, State University of New York at Buffalo

boxer@niagara.edu

Received: 14.2.2022; accepted: 25.5.2022.

Abstract. We study the consequences of some restrictions on digitally continuous functions. One of our results modifies easily to yield an analogous result for topological spaces.

Keywords: digital topology, digital image, freezing set

MSC 2020 classification: 54H30, 54H25

1 Introduction

If $f: X \to Y$ is a continuous function between topological spaces, and $\emptyset \neq A \subset X$, it is often true that knowledge of $f|_A$ tells us little about $f|_{X\backslash A}$. A digital image is often a model of an object in Euclidean space, and the concept of a digitally continuous function is modeled on the "preservation of nearness" notion of a Euclidean continuous function; however, when we consider a continuous function $f:(X,\kappa)\to (Y,\lambda)$ between digital images, we often find that knowledge of $f|_A$ tells us much about $f|_{X\backslash A}$. In this paper, we continue the work of fixed point theory for digital images (see [24, 15, 18, 11, 12, 13, 14]) and coincidence theory for digital images (see [1]) by examining how restrictions placed on $f|_A$ limit $f|_{X\backslash A}$.

2 Preliminaries

Let \mathbb{N} denote the set of natural numbers; $\mathbb{N}^* = \{0\} \cup \mathbb{N}$, the set of nonnegative integers; \mathbb{Z} , the set of integers; and \mathbb{R} , the set of real numbers. #X will be used for the number of members of a set X.

2.1 Adjacencies

Material in this section is largely quoted or paraphrased from [18].

http://siba-ese.unisalento.it/ © 2022 Università del Salento

A digital image is a pair (X, κ) where $X \subset \mathbb{Z}^n$ for some n and κ is an adjacency on X. Thus, (X, κ) is a graph for which X is the vertex set and κ determines the edge set. Usually, X is finite, although there are papers that consider infinite X. Usually, adjacency reflects some type of "closeness" in \mathbb{Z}^n of the adjacent points. When these "usual" conditions are satisfied, one may consider a subset Y of \mathbb{Z}^n (typically, an n-dimensional cube) containing X as a model of a black-and-white "real world" image in which the black points (foreground) are represented by the members of X and the white points (background) by members of $Y \setminus X$.

We write $x \leftrightarrow_{\kappa} y$, or $x \leftrightarrow y$ when κ is understood or when it is unnecessary to mention κ , to indicate that x and y are κ -adjacent. Notations $x \nleftrightarrow_{\kappa} y$, or $x \nleftrightarrow y$ when κ is understood, indicate that x and y are κ -adjacent or are equal.

The most commonly used adjacencies are the c_u adjacencies, defined as follows. Let $X \subset \mathbb{Z}^n$ and let $u \in \mathbb{Z}$, $1 \le u \le n$. Then for points

$$x = (x_1, \dots, x_n) \neq (y_1, \dots, y_n) = y$$

we have $x \leftrightarrow_{c_u} y$ if and only if

- for at most u indices i we have $|x_i y_i| = 1$, and
- for all indices j, $|x_j y_j| \neq 1$ implies $x_j = y_j$.

The c_u -adjacencies are often denoted by the number of adjacent points a point can have in the adjacency. E.g.,

- in \mathbb{Z} , c_1 -adjacency is 2-adjacency;
- in \mathbb{Z}^2 , c_1 -adjacency is 4-adjacency and c_2 -adjacency is 8-adjacency;
- in \mathbb{Z}^3 , c_1 -adjacency is 6-adjacency, c_2 -adjacency is 18-adjacency, and c_3 -adjacency is 26-adjacency.

In this paper, we mostly use the c_1 and c_2 adjacencies in \mathbb{Z}^2 .

Let $x \in (X, \kappa)$. We use the notations

$$N(X, x, \kappa) = \{ y \in X \mid y \leftrightarrow_{\kappa} x \}$$

and

$$N^*(X, x, \kappa) = \{ y \in X \mid y \leq_{\kappa} x \} = N(X, x, \kappa) \cup \{ x \}.$$

We say $\{x_n\}_{n=0}^k \subset (X,\kappa)$ is a κ -path (or a path if κ is understood) from x_0 to x_k if $x_i \stackrel{\triangle}{\hookrightarrow}_{\kappa} x_{i+1}$ for $i \in \{0, \dots, k-1\}$, and k is the *length* of the path.

A subset Y of a digital image (X, κ) is κ -connected [24], or connected when κ is understood, if for every pair of points $a, b \in Y$ there exists a κ -path in Y from a to b.

2.2 Digitally continuous functions

Material in this section is largely quoted or paraphrased from [18]. We denote by id or id_X the identity map id(x) = x for all $x \in X$.

Definition 1. [24, 4] Let (X, κ) and (Y, λ) be digital images. A function $f: X \to Y$ is (κ, λ) -continuous, or digitally continuous when κ and λ are understood, if for every κ -connected subset X' of X, f(X') is a λ -connected subset of Y. If $(X, \kappa) = (Y, \lambda)$, we say a function is κ -continuous to abbreviate " (κ, κ) -continuous."

Theorem 1. [4] A function $f: X \to Y$ between digital images (X, κ) and (Y, λ) is (κ, λ) -continuous if and only if for every $x, y \in X$, if $x \leftrightarrow_{\kappa} y$ then $f(x) \hookrightarrow_{\lambda} f(y)$.

Theorem 2. [4] Let $f:(X,\kappa) \to (Y,\lambda)$ and $g:(Y,\lambda) \to (Z,\mu)$ be continuous functions between digital images. Then $g \circ f:(X,\kappa) \to (Z,\mu)$ is continuous.

Definition 2. Let $A \subset X$. A κ -continuous function $r: X \to A$ is a retraction, and A is a retract of X, if r(a) = a for all $a \in A$.

A function $f:(X,\kappa)\to (Y,\lambda)$ is an isomorphism (called a homeomorphism in [3]) if f is a continuous bijection such that f^{-1} is continuous.

We use the following notation. For a digital image (X, κ) ,

$$C(X, \kappa) = \{ f : X \to X \mid f \text{ is } \kappa\text{-continuous} \}.$$

Given $f \in C(X, \kappa)$, a point $x \in X$ is a fixed point of f if f(x) = x. We denote by Fix(f) the set $\{x \in X \mid x \text{ is a fixed point of } f\}$. A point $x \in X$ is an almost fixed point [24, 26] or an approximate fixed point [15] of f if $x \cong_{\kappa} f(x)$.

We use the projection functions $p_1, p_2 : \mathbb{Z}^2 \to \mathbb{Z}$ defined for $(x, y) \in \mathbb{Z}^2$ by $p_1(x, y) = x$, $p_2(x, y) = y$. These functions are (c_1, c_1) -continuous and (c_2, c_1) -continuous [22].

2.3 Freezing and cold sets

Material in this section is largely quoted or paraphrased from [11].

Knowledge of Fix(f) for $f \in C(X, \kappa)$ can tell us much about $f|_{X \setminus \text{Fix}(f)}$. This motivates the study of freezing and cold sets.

Definition 3. [11] Let (X, κ) be a digital image. We say $A \subset X$ is a freezing set for X if given $g \in C(X, \kappa)$, $A \subset Fix(g)$ implies $g = id_X$. If no proper subset of a freezing set A is a freezing set for (X, κ) , then A is a minimal freezing set

Definition 4. [11] $A \subset X$ is a *cold set* for the connected digital image (X, κ) if given $g \in C(X, \kappa)$ such that $g|_A = \mathrm{id}_A$, then for all $x \in X$, $g(x) \in N^*(X, x, \kappa)$.

Remark 1. [11] A freezing set is a cold set.

Definition 5. [12] Let $X \subset \mathbb{Z}^n$.

• The boundary of X with respect to the c_i adjacency, $i \in \{1, 2\}$, is

$$Bd_i(X) = \{ x \in X \mid \text{ there exists } y \in \mathbb{Z}^n \setminus X \text{ such that } y \leftrightarrow_{c_i} x \}.$$

 $Bd_1(X)$ is what is called the boundary of X in [23]. This paper uses both $Bd_1(X)$ and $Bd_2(X)$.

• The interior of X with respect to the c_i adjacency is

$$Int_i(X) = X \setminus Bd_i(X).$$

Theorem 3. [11] Let $X \subset \mathbb{Z}^n$ be finite. Then for $1 \leq u \leq n$, $Bd_1(X)$ is a freezing set for (X, c_u) .

Theorem 4. [11] Let $X = \prod_{i=1}^{n} [0, m_i]_{\mathbb{Z}}$. Let $A = \prod_{i=1}^{n} \{0, m_i\}$.

- Let $Y = \prod_{i=1}^n [a_i, b_i]_{\mathbb{Z}}$ be such that $X \subset Y$. Let $f : X \to Y$ be c_1 -continuous. If $A \subset \text{Fix}(f)$, then $X \subset \text{Fix}(f)$.
- A is a freezing set for (X, c_1) ; minimal for $n \in \{1, 2\}$.

Theorem 5. [11] Let $X = \prod_{i=1}^n [0, m_i]_{\mathbb{Z}} \subset \mathbb{Z}^n$, where $m_i > 1$ for all i. Then $Bd_1(X)$ is a minimal freezing set for (X, c_n) .

2.4 Digital disks and bounding curves

Material in this section is largely quoted or paraphrased from [12].

We say a finite c_2 -connected set $S = \{x_i\}_{i=1}^n \subset \mathbb{Z}^2$ is a (digital) line segment if the members of S are collinear.

We say a segment with slope of ± 1 is slanted. An axis-parallel segment is horizontal or vertical.

Remark 2. [12] A digital line segment must be axis-parallel or slanted.

A closed curve is a path $S = \{s_i\}_{i=0}^m$ such that $s_0 = s_m$, and 0 < |i-j| < m implies $s_i \neq s_j$. If

$$N(S, x_0, \kappa) = N(S, x_m, \kappa) = \{x_1, x_{m-1}\}$$
 and

$$1 \le i < m \text{ implies } N(S, x_i, \kappa) = \{x_{i-1}, x_{i+1}\},\$$

S is a cycle. We may also refer to a cycle as a (digital) κ -simple closed curve. For a simple closed curve $S \subset \mathbb{Z}^2$ we generally assume

• $m \geq 8$ if $\kappa = c_1$, and

• $m \ge 4$ if $\kappa = c_2$.

These requirements are necessary for the Jordan Curve Theorem of digital topology, below, as a c_1 -simple closed curve in \mathbb{Z}^2 must have at least 8 points to have a nonempty finite complementary c_2 -component, and a c_2 -simple closed curve in \mathbb{Z}^2 must have at least 4 points to have a nonempty finite complementary c_1 -component. Examples in [23] show why it is desirable to consider S and $\mathbb{Z}^2 \setminus S$ with different adjacencies.

Theorem 6. [23] (Jordan Curve Theorem for digital topology) Let $\{\kappa, \kappa'\} = \{c_1, c_2\}$. Let $S \subset \mathbb{Z}^2$ be a simple closed κ -curve such that S has at least 8 points if $\kappa = c_1$ and such that S has at least 4 points if $\kappa = c_2$. Then $\mathbb{Z}^2 \setminus S$ has exactly 2 κ' -connected components.

One of the κ' -components of $\mathbb{Z}^2 \setminus S$ is finite and the other is infinite. This suggests the following.

Definition 6. [12] Let $S \subset \mathbb{Z}^2$ be a c_2 -closed curve such that $\mathbb{Z}^2 \setminus S$ has two c_1 -components, one finite and the other infinite. The union D of S and the finite c_1 -component of $\mathbb{Z}^2 \setminus S$ is a *(digital) disk.* S is a *bounding curve* of D. The finite c_1 -component of $\mathbb{Z}^2 \setminus S$ is the *interior of* S, denoted Int(S), and the infinite c_1 -component of $\mathbb{Z}^2 \setminus S$ is the *exterior of* S, denoted Ext(S).

Notes [12]:

- If D is a digital disk determined as above by a bounding c_2 -closed curve S, then (S, c_1) can be disconnected. See Figure 1.
- There may be more than one closed curve S bounding a given disk D. See Figure 2. When S is understood as a bounding curve of a disk D, we use the notations Int(S) and Int(D) interchangeably.
- Since we are interested in finding minimal freezing or cold sets and since it turns out we often compute these from bounding curves, we may prefer those of minimal size. A bounding curve S for a disk D is minimal if there is no bounding curve S' for D such that #S' < #S.
- In particular, a bounding curve need not be contained in $Bd_1(D)$. E.g., in the disk D shown in Figure 2(i), (2,2) is a point of the bounding curve; however, all of the points c_1 -adjacent to (2,2) are members of D, so by Definition 5, $(2,2) \notin Bd_1(D)$. However, a bounding curve for D must be contained in $Bd_2(D)$.
- In Definition 6, we use c_2 adjacency for S and we do not require S to be simple. Figure 2 shows why these seem appropriate.

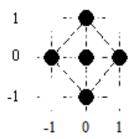


Figure 1. [12] The c_1 -disk $D = \{(x, y) \in \mathbb{Z}^2 \mid |x| + |y| < 2\}$. The bounding curve $S = \{(x, y) \in \mathbb{Z}^2 \mid |x| + |y| = 1\} = D \setminus \{(0, 0)\}$ is not c_1 -connected.

- The c_2 adjacency allows slanted segments in bounding curves and makes possible a bounding curve in subfigure (ii) with fewer points than the bounding curve in subfigure (i) in which adjacent pairs of the bounding curve are restricted to c_1 adjacency.
- Neither of the bounding curves shown in Figure 2 is a c_2 -simple closed curve. E.g., non-consecutive points of each of the bounding curves, (0,1) and (1,0), are c_2 -adjacent. The bounding curve shown in Figure 2(ii) is clearly also not a c_1 -simple closed curve.
- A closed curve that is not simple may be the boundary Bd_2 of a digital image that is not a disk. This is illustrated in Figure 3.

More generally, we have the following.

Definition 7. [12] Let $X \subset \mathbb{Z}^2$ be a finite, c_i -connected set, $i \in \{1, 2\}$. Suppose there are pairwise disjoint c_2 -closed curves $S_j \subset X$, $1 \leq j \leq n$, such that

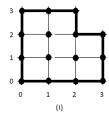
- $X \subset S_1 \cup Int(S_1)$;
- for j > 1, $D_j = S_j \cup Int(S_j)$ is a digital disk;
- no two of

$$S_1 \cup Ext(S_1), D_2, \ldots, D_n$$

are c_1 -adjacent or c_2 -adjacent; and

• we have

$$\mathbb{Z}^2 \setminus X = Ext(S_1) \cup \bigcup_{j=2}^n Int(S_j).$$



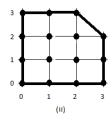


Figure 2. [12] Two views of $D = [0,3]_{\mathbb{Z}}^2 \setminus \{(3,3)\}$, which can be regarded as a c_1 -disk with either of the closed curves shown in dark as a bounding curve.

- (i) The dark line segments show a c_1 -simple closed curve S that is a bounding curve for D. Note the point (2,2) in the bounding curve shown. By Definition 5, $(2,2) \notin Bd_1(D)$; however, $(2,2) \in Bd_2(D)$.
- (ii) The dark line segments show a c_2 -closed curve S that is a minimal bounding curve for D.

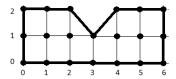


Figure 3. [12] $D = [0, 6]_{\mathbb{Z}} \times [0, 2]_{\mathbb{Z}} \setminus \{ (3, 2) \}$ shown with a bounding curve S in dark segments. D is not a disk with either the c_1 or the c_2 adjacency, since with either of these adjacencies, $\mathbb{Z}^2 \setminus S$ has two bounded components, $\{ (1, 1), (2, 1) \}$ and $\{ (4, 1), (5, 1) \}$.

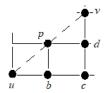


Figure 4. [12] $p \in \overline{uv}$ in a bounding curve, with \overline{uv} slanted. Note $u \not\leftrightarrow_{c_1} p \not\leftrightarrow_{c_1} v$, $p \leftrightarrow_{c_2} c \not\leftrightarrow_{c_1} p$, $\{p, c\} \subset N(\mathbb{Z}^2, c_1, b) \cap N(\mathbb{Z}^2, c_1, d)$. If X is slant-thick at p then $c \in X$. (Not meant to be understood as showing all of X.)

Then $\{S_j\}_{j=1}^n$ is a set of bounding curves of X.

Note: As above, a digital image $X \subset \mathbb{Z}^2$ may have more than one set of bounding curves.

2.5 Thickness

A notion of "thickness" in a digital image X, introduced in [12], means, roughly speaking, X is "locally" like a disk.

Our definition of thickness depends on a notion of an "interior angle" of a disk. We have the following.

Definition 8. [12] Let s_1 and s_2 be sides of a digital disk $X \subset \mathbb{Z}^2$, i.e., maximal digital line segments in a bounding curve S of X, such that $s_1 \cap s_2 = \{p\} \subset X$. The *interior angle of* X *at* p is the angle formed by s_1 , s_2 , and Int(S).

Definition 9. [12] Let $X \subset \mathbb{Z}^2$ be a digital disk. Let S be a bounding curve of X and $p \in S$.

• Suppose p is in a maximal slanted segment σ of S such that p is not an endpoint of σ . Then X is slant-thick at p if there exists $c \in X$ such that (see Figure 4)

$$c \leftrightarrow_{c_2} p \not\leftrightarrow_{c_1} c,$$
 (2.1)

- Suppose p is the vertex of a 90° ($\pi/2$ radians) interior angle θ of S. Then X is 90°-thick at p if there exists $q \in Int(X)$ such that
 - if θ has axis-parallel sides then $q \leftrightarrow_{c_2} p \not\leftrightarrow_{c_1} q$ (see Figure 5(1));
 - if θ has slanted sides then $q \leftrightarrow_{c_1} p$ (see Figure 5(2)).
- Suppose p is the vertex of a 135° ($3\pi/4$ radians) interior angle θ of S. Then X is 135°-thick at p if there exist $b, b' \in X$ such that b and b' are in

Figure 5. [12] (1) $\angle apb$ is a 90° ($\pi/2$ radians) angle of a bounding curve of X at $p \in A_1$, with horizontal and vertical sides. If X is 90°-thick at p then $q \in Int(X)$. (Not meant to be understood as showing all of X.)

(2) $\angle apb$ is a 90° ($\pi/2$ radians) angle between slanted segments of a bounding curve. If X is 90°-thick at p then $q \in Int(X)$. (Not meant to be understood as showing all of X).

Figure 6. [12] $\angle apq$ is an angle of 135° degrees $(3\pi/4 \text{ radians})$ of a bounding curve of X at p, with $\overline{ap} \cup \overline{pq}$ a subset of the bounding curve. If X is 135°-thick at p then $b, b' \in X$. (Not meant to be understood as showing all of X.)

the interior of θ and (see Figure 6)

$$b \leftrightarrow_{c_2} p \not\leftrightarrow_{c_1} b$$
 and $b' \leftrightarrow_{c_1} p$.

Definition 10. [12, 14] Let $X \subset \mathbb{Z}^2$ be a digital disk. We say X is *thick* if the following are satisfied. For some bounding curve S of X,

- for every maximal slanted segment of S, if $p \in S$ is not an endpoint of S, then X is slant-thick at p, and
- for every p that is the vertex of a 90° ($\pi/2$ radians) interior angle θ of S, X is 90°-thick at p, and
- for every p that is the vertex of a 135° ($3\pi/4$ radians) interior angle θ of S, X is 135°-thick at p.

2.6 Convexity

A set X in a Euclidean space \mathbb{R}^n is *convex* if for every pair of distinct points $x,y\in X$, the line segment \overline{xy} from x to y is contained in X. The *convex hull of* $Y\subset \mathbb{R}^n$, denoted hull(Y), is the smallest convex subset of \mathbb{R}^n that contains Y. If $Y\subset \mathbb{R}^2$ is a finite set, then hull(Y) is a single point if Y is a singleton; a line segment if Y has at least 2 members and all are collinear; otherwise, hull(Y) is a polygonal disk, and the endpoints of the edges of hull(Y) are its vertices.

A digital version of convexity can be stated for subsets of the digital plane \mathbb{Z}^2 as follows. A finite set $Y \subset \mathbb{Z}^2$ is (digitally) convex [12] if either

- Y is a single point, or
- Y is a digital line segment, or
- Y is a digital disk with a bounding curve S such that the endpoints of the maximal line segments of S are the vertices of $hull(Y) \subset \mathbb{R}^2$.

3 Tools for determining fixed point sets

The following assertions will be useful in determining fixed point and freezing sets.

Proposition 1. (Corollary 8.4 of [18]) Let (X, κ) be a digital image and $f \in C(X, \kappa)$. Suppose $x, x' \in Fix(f)$ are such that there is a unique shortest κ -path P in X from x to x'. Then $P \subseteq Fix(f)$.

Lemma 1, below,

... can be interpreted to say that in a c_u -adjacency, a continuous function that moves a point p also moves a point that is "behind" p. E.g., in \mathbb{Z}^2 , if q and q' are c_1 - or c_2 -adjacent with q left, right, above, or below q', and a continuous function f moves q to the left, right, higher, or lower, respectively, then f also moves q' to the left, right, higher, or lower, respectively [11].

Lemma 1. [11] Let $(X, c_u) \subset \mathbb{Z}^n$ be a digital image, $1 \leq u \leq n$. Let $q, q' \in X$ be such that $q \leftrightarrow_{c_u} q'$. Let $f \in C(X, c_u)$.

- (1) If $p_i(f(q)) > p_i(q) > p_i(q')$ then $p_i(f(q')) > p_i(q')$.
- (2) If $p_i(f(q)) < p_i(q) < p_i(q')$ then $p_i(f(q')) < p_i(q')$.

Remark 3. [11] If $X \subset \mathbb{Z}^2$ is finite, then a set of bounding curves for X is a freezing set for (X, c_i) , $i \in \{1, 2\}$.

In particular, we have:

Theorem 7. Let D be a digital disk in \mathbb{Z}^2 . Let S be a bounding curve for D. Then S is a freezing set for (D, c_1) and for (D, c_2) .

The next two results form a dual pair.

Theorem 8. [12] Let X be a thick convex disk with a bounding curve S. Let A_1 be the set of points $x \in S$ such that x is an endpoint of a maximal axis-parallel edge of S. Let A_2 be the union of slanted line segments in S. Then $A = A_1 \cup A_2$ is a minimal freezing set for (X, c_1) .

Theorem 9. [12] Let X be a thick convex disk with a minimal bounding curve S. Let B_1 be the set of points $x \in S$ such that x is an endpoint of a maximal slanted edge in S. Let B_2 be the union of maximal axis-parallel line segments in S. Let $B = B_1 \cup B_2$. Then B is a minimal freezing set for (X, c_2) .

The next two results form another dual pair, generalizing the previous pair.

Theorem 10. [13] Let $V_i \subset X \subset \mathbb{Z}^2$, $i \in \{1, ..., n\}$ where each V_i is a thick convex disk. Let $X' = \bigcup_{i=1}^n V_i$. Let C_i be a bounding curve of V_i . Let $A_{1,i}$ be the set of endpoints of maximal horizontal or vertical segments of C_i . Let $A_{2,i}$ be the union of maximal slanted segments of C_i . Then $A = (X \setminus X') \cup \bigcup_{i=1}^n (A_{1,i} \cup A_{2,i})$ is a freezing set for (X, c_1) .

Theorem 11. [13] Let $V_i \subset X \subset \mathbb{Z}^2$, $i \in \{1, ..., n\}$ where each V_i is a thick convex disk. Let $X' = \bigcup_{i=1}^n V_i$. Let C_i be a bounding curve of V_i . Let $B_{1,i}$ be the union of maximal horizontal and maximal vertical segments of C_i . Let $B_{2,i}$ be the set of endpoints of maximal slanted segments of C_i . Then $B = (X \setminus X') \cup \bigcup_{i=1}^n (B_{1,i} \cup B_{2,i})$ is a freezing set for (X, c_2) (the adjacency is misprinted as c_1 in [13]).

4 Unifying sets

4.1 Definition and general properties

Definition 11. Let (X, κ) be a digital image. Let $A \subset X$. Suppose whenever $f, g \in C(X, \kappa)$ are such that f(A) = g(A) = A and $f|_A = g|_A$, we have f = g. Then we say A is a unifying set for (X, κ) . A is a unifying set if A is a unifying set and no proper subset of A is a unifying set for (X, κ) .

Remark 4. Observe:

• By taking g to be the identity function id_X in Definition 11, we see that a unifying set is a freezing set. We have not determined whether the converse is true.

• It is trivial that X is a unifying set for (X, κ) . We are therefore interested in finding minimal unifying sets. In light of the above, a minimal freezing set is a "good candidate" for a minimal unifying set.

In the following, we study conditions for which a freezing set must be unifying.

The desirability of the requirement that f(A) = g(A) = A in Definition 11 is illustrated in the following, in which this requirement is not met.

Example 1. Let $X = [0, m]_{\mathbb{Z}} \times [0, n]_{\mathbb{Z}}$ for $m \geq 2, n > 0$. Let $f, g : X \to X$ be the functions

$$f(x,y) = (0,y), \qquad g(x,y) = \left\{ \begin{array}{ll} (0,y) & \text{if } x \in \{\,0,m\,\}; \\ (1,y) & \text{if } 1 \leq x \leq m-1, \end{array} \right.$$

We take

$$A = \{ (0,0), (0,n), (m,0), (m,n) \}.$$

Note by Theorem 4, A is a minimal freezing set for (X, c_1) . We see easily that $f, g \in C(X, c_1), f|_A = g|_A, f(A) = g(A)$ is a proper subset of A, and $f \neq g$.

The following shows that unifying sets are preserved by isomorphism.

Theorem 12. Let (X, κ) and (Y, λ) be digital images such that there exists an isomorphism $F: (X, \kappa) \to (Y, \lambda)$. If A is a unifying set for (X, κ) then F(A) is a unifying set for (Y, λ) .

Proof. Let $f, g \in C(Y, \lambda)$ such that f(F(A)) = g(F(A)) = F(A) and $f|_{F(A)} = g|_{F(A)}$.

We have, by Theorem 2, $f' = F^{-1} \circ f \circ F$, $g' = F^{-1} \circ g \circ F \in C(X, \kappa)$, and for $a \in A$ we have $f \circ F(a) = g \circ F(a)$, so

$$f'(a) = F^{-1} \circ f \circ F(a) = F^{-1} \circ g \circ F(a), = g'(a).$$

Also, given b = F(a) for $a \in A$, by assumption we have f(b) = g(b), hence

$$f'(a) = F^{-1}(f(b)) = F^{-1}(g(b)) = g'(a).$$

Since A is unifying, f' = g'. Therefore,

$$f = F \circ f' \circ F^{-1} = F \circ g' \circ F^{-1} = g$$

QED

so F(A) is unifying for (Y, λ) .

We have the following generalization of Proposition 1.

Proposition 2. Let $f, g: X \to Y$ such that f and g are both (κ, λ) continuous. Suppose $x_0, x_1 \in X$ and there is a κ -path P of length n in X from x_0 to x_1 . Suppose $y_0 = f(x_0) = g(x_0)$, $y_1 = f(x_1) = g(x_1)$, and there is a unique
shortest path Q of length n in Y from y_0 to y_1 . Then f(P) = g(P) = Q and $f|_P = g|_P$.

Proof. Since f(P) and g(P) must be λ -paths from y_0 to y_1 , our uniqueness and length restrictions imply f(P) = g(P) = Q. Continuity implies $f|_{P} = g|_{P}$.

4.2 Cycles

Theorem 13. [11] Let n > 4. Consider a digital cycle $C_n = \{x_m\}_{m=0}^{n-1} \subset \mathbb{Z}^2$, where the members of C_n are indexed circularly. Let $A = \{x_i, x_j, x_k\}$ be a set of distinct members of C_n such that C_n is a union of unique shorter paths determined by these points. Then A is a minimal freezing set for C_n .

Theorem 14. The set A of Theorem 13 is a unifying set for (C_n, κ) , and any $f \in C(X, \kappa)$ such that f(A) = A must be an isomorphism of (X, κ) .

Proof. Let $\widehat{x_ix_j}$, $\widehat{x_ix_k}$, and $\widehat{x_jx_k}$ be the unique shorter paths in C_n from x_i to x_j , from x_i to x_k , and from x_j to x_k , respectively. Let $B = \{\widehat{x_ix_j}, \widehat{x_ix_k}, \widehat{x_jx_k}\}$. Let $f, g \in C(C_n, \kappa)$ such that

$$f(A) = q(A) = A \text{ and } f|_A = q|_A.$$
 (4.1)

Suppose $f \neq g$. Consider the following cases.

• The members of B have distinct lengths. Without loss of generality,

$$length(\widehat{x_i x_j}) < length(\widehat{x_i x_k}) < length(\widehat{x_j x_k}).$$
 (4.2)

Since we have that both $f(\widehat{x_ix_j})$ and $g(\widehat{x_ix_j})$ are paths of length at most $length(\widehat{x_ix_j})$ from $f(x_i) = g(x_i)$ to $f(x_j) = g(x_j)$, from (4.2) and Proposition 2, $f(\widehat{x_ix_j}) = g(\widehat{x_ix_j})$ and $f|_{\widehat{x_ix_j}} = g|_{\widehat{x_ix_j}}$ is a bijection of $\widehat{x_ix_j}$. Indeed, we must have that f and g coincide with id_X on $\widehat{x_ix_j}$, for otherwise we would have $f(x_i) = g(x_i) = x_j$, $f(x_j) = g(x_j) = x_i$, $f(x_k) = g(x_k) = x_k$, so $f(\widehat{x_ix_k})$ is a κ -path from x_j to x_k , contrary to (4.2). Then by (4.1) we have $f|_A = g|_A = \mathrm{id}_A$, and from Proposition 2 it follows that $f = g = \mathrm{id}_X$.

• Suppose two members, but not all three, of B have the same length; without loss of generality, $length(\widehat{x_ix_j}) = length(\widehat{x_ix_k})$. Then either $f|_A = g|_A = \mathrm{id}_A$ or $f(x_i) = g(x_i) = x_i$, $f(x_j) = g(x_j) = x_k$, and $f(x_k) = g(x_k) = x_i$. Then much as above, f = g is an isomorphism of (X, κ) .

• Suppose all three members of B have the same length. Then $f|_A = g|_A$ is a permutation of A. Much as above, it follows that f = g is an isomorphism of (X, κ) .

In all cases, we concluded that f = g is an isomorphism of (X, κ) . Thus A is a unifying set for (X, κ) .

4.3 Trees

A tree is a connected acyclic graph (X, κ) . By acyclic we mean lacking any closed curve of more than 2 points. The degree of a vertex x in X is the number of distinct vertices $y \in X$ such that $x \leftrightarrow y$.

Theorem 15. [11] Let (X, κ) be a digital image such that the graph $G = (X, \kappa)$ is a finite tree with #X > 1. Let A be the set of vertices of G that have degree 1. Then A is a minimal freezing set for G.

Theorem 16. Let (X, κ) be a digital image such that the graph $G = (X, \kappa)$ is a finite tree with #X > 1. Let A be the set of vertices of G that have degree 1. Then A is a minimal unifying set for G. Also, if $f \in C(X, \kappa)$ such that f(A) = A, then f is an isomorphism of (X, κ) .

Proof. Let $a_0 \in A$. Since X is finite, we have that A is also finite - say, $A = \{a_i\}_{i=0}^n$. Since G is a tree, for $0 < i \le n$ there is a unique shortest κ -path P_i in X from a_0 to a_i . Let $L = \{\ell_j\}_{j=1}^m$ be the set of distinct lengths of the members of $\{P_i\}_{i=1}^n$, with

$$\ell_1 < \ell_2 < \ldots < \ell_m$$
.

Let $L_j = \{ P_i \mid length(P_i) = \ell_j \}$. Let $f, g \in C(X, \kappa)$ be such that f(A) = g(A) = A and $f|_A = g|_A$. Since A is finite,

$$f|_A = g|_A : A \to A \text{ is a bijection.}$$
 (4.3)

Every P_k of length ℓ_1 is the unique shortest κ -path in X from a_0 to some $a_k \in A \setminus \{a_0\}$. Since $f(P_k)$ is a path from $f(a_0) = g(a_0)$ to $f(a_k) = g(a_k)$, our choice of ℓ_1 and Proposition 2 imply $f|_{P_k} = g|_{P_k}$, $f(P_k) = g(P_k)$ has length ℓ_1 , and from (4.3) that $f|_{L_1} = g|_{L_1}$ is a bijection of L_1 . It follows easily that $f|_{L_1} = g|_{L_1}$ is an isomorphism. This provides the base case of an induction argument.

Suppose $u \in \mathbb{Z}$, $0 \le u < m$; $f|_{P_k} = g|_{P_k}$ for every $P_k \in \bigcup_{j=1}^u L_j$; and

$$f|_{\bigcup_{j=1}^{u} L_j} = g|_{\bigcup_{j=1}^{u} L_j}$$
 is a bijection of $\bigcup_{j=1}^{u} L_j$. (4.4)

Now consider $P_k \in L_{u+1}$. $f(P_k)$ and $g(P_k)$ are κ -paths in X from $f(a_0) = g(a_0)$ to $f(a_k) = g(a_k)$ of length at most ℓ_{u+1} . By (4.3) and (4.4), $f(P_k)$ and $g(P_k)$ cannot have length less than ℓ_{u+1} . Therefore, each of $f(P_k)$ and $g(P_k)$ belongs to L_{u+1} . By the uniqueness condition that defines L_{u+1} it follows that $f|_{P_k} = g|_{P_k}$. By (4.3), $f|_{L_{u+1}} = g|_{L_{u+1}}$ is a bijection. It follows from the above that $f|_{\bigcup_{i=1}^{u+1} L_j} = g|_{\bigcup_{i=1}^{u+1} L_j}$ is a bijection of $\bigcup_{j=1}^{u+1} L_j$, and, further, an isomorphism.

This completes the induction. Since $X = \bigcup_{j=1}^{m} L_j$, we have f = g. Since f was chosen arbitrarily, A is a unifying set. Also, f is an isomorphism.

To show the minimality of A, we see easily that for any $a \in A$ there is a κ -retraction $r: X \to X \setminus \{a\}$, so r and id_X are members of $C(X, \kappa)$ that coincide on $A \setminus \{a\}$, $r(A \setminus \{a\}) = \mathrm{id}_X(A \setminus \{a\}) = (A \setminus \{a\})$, but $r \neq \mathrm{id}_X$.

4.4 Complete graphs

Theorem 17. Let (X, κ) be a digital image that is a complete graph, where #X > 1. Let $A \subset X$. Then the following are equivalent.

- (1) A = X.
- (2) A is a unifying set for (X, κ) .
- (3) A is a freezing set for (X, κ) .

Proof. 1) \Rightarrow 2) \Rightarrow 3): These implications are noted in Remark 4.

3) \Rightarrow 1): Suppose otherwise. Then there exists $x_0 \in X \setminus A$. Let $x_1 \in X \setminus \{x_0\}$. Let $g: X \to X$ be defined by

$$g(x) = \begin{cases} x & \text{for } x \neq x_0; \\ x_1 & \text{for } x = x_0. \end{cases}$$

Since (X, κ) is a complete graph, $g \in C(X, \kappa)$. Note $g|_A = \mathrm{id}_A$. But since $g(x_0) \neq x_0$, we have a contradiction of the assumption that A is freezing. The contradiction gives us the desired conclusion.

4.5 Rectangles in \mathbb{Z}^2 with axis-parallel sides and c_1

In this section, we study unifying sets for digital rectangles with axis-parallel edges in \mathbb{Z}^2 , using the c_1 adjacency.

Proposition 3. [14] Let $X \subset \mathbb{Z}^2$. Let S be a minimal bounding curve for X. Let p_0 be the vertex of an interior angle of S, formed by axis-parallel edges E_1 and E_2 of S, of measure 90° ($\pi/2$ radians). Let A be any of a freezing set for (X, c_1) , a cold set for (X, c_1) , a freezing set for (X, c_2) , or a cold set for (X, c_2) . Let X be 90° -thick at p_0 . Then $p_0 \in A$.

Proposition 4. Let m > 1, n > 1, and $X = [0, m]_{\mathbb{Z}} \times [0, n]_{\mathbb{Z}}$. Let $A \subset X$. Then A is a freezing set for (X, c_1) if and only if

$$A' = \{ (0,0), (m,0), (0,n), (m,n) \} \subset A.$$

Therefore, A' is the only minimal freezing set for (X, c_1) .

Proof. If A is a freezing set, then by Proposition 3, $A' \subset A$. Since A' is a freezing set by Theorem 10, it follows that A' is unique as a minimal freezing set.

If $A' \subset A$ then, since A' is a freezing set, A is a freezing set [11].

Theorem 18. Let $X = [-m, m]_{\mathbb{Z}} \times [-n, n]_{\mathbb{Z}}$. Let

$$A = \{ (-m, -n), (-m, n), (m, -n), (m, n) \}.$$

Then A is a unifying set for (X, c_1) . Further, every $f \in C(X, c_1)$ such that f(A) = A is an isomorphism.

Proof. Let $f, g \in C(X, c_1)$ be such that f(A) = g(A) = A and $f|_A = g|_A$. Let B, T, L, R be the bottom, top, left, and right edges, respectively:

$$B = [-m,m]_{\mathbb{Z}} \times \{\,-n\,\}, \qquad T = [-m,m]_{\mathbb{Z}} \times \{\,n\,\},$$

$$L = \{-m\} \times [-n, n]_{\mathbb{Z}}, \qquad R = \{m\} \times [-n, n]_{\mathbb{Z}}.$$

Consider the following cases.

• m < n. Since f(A) = g(A) = A, we have that f(B), g(B), f(T), and g(T) are c_1 -paths of length at most 2m between distinct members of A, and since the closest distinct members of A are joined by paths of length 2m, f(B), g(B), f(T), and g(T) are paths of length 2m. Therefore, $f(B \cup T) = g(B \cup T) = B \cup T$. Continuity implies that for all $(x, y) \in B \cup T$, one of the following holds:

$$- f(x,y) = g(x,y) = (x,y), \text{ or }$$

$$- f(x,y) = q(x,y) = (-x,y)$$
, or

$$- f(x,y) = g(x,y) = (x,-y), \text{ or }$$

$$- f(x,y) = g(x,y) = (-x,-y).$$

Suppose the first case, f(x,y) = g(x,y) = (x,y) for $(x,y) \in B \cup T$. Each $(x,y) \in X$ lies on the unique shortest c_1 -path between b = (x,-n) and t = (x,n). Since f(b) = g(b) = b and f(t) = g(t) = t, we must have f(x,y) = g(x,y) = (x,y) by Proposition 2. Thus $f = g = \mathrm{id}_X$. Similarly, f = g is an isomorphism of (X,c_1) in the other cases.

- m > n. This case is similar to the case m < n, yielding the conclusion that f = g is an isomorphism of (X, c_1) .
- m = n. In this case we have either $f(B \cup T) = g(B \cup T) = B \cup T$ or $f(B \cup T) = g(B \cup T) = L \cup R$. In the former case, $f|_{B \cup T}$ and $g|_{B \cup T}$ are given by one of the four possibilities listed above; in the latter case, one of the following holds. For $(x, y) \in B \cup T$,

$$- f(x,y) = g(x,y) = (y,x), \text{ or }$$

$$- f(x,y) = g(x,y) = (y,-x), \text{ or }$$

$$- f(x,y) = g(x,y) = (-y,x), \text{ or }$$

$$- f(x,y) = g(x,y) = (-y,-x).$$

An argument like that used above shows that in each of these cases, f = g is an isomorphism of (X, c_1) .

Thus all cases lead to the conclusion that that f = g, hence A is unifying; and that $f \in C(X, c_1)$ such that f(A) = A implies f is an isomorphism of (X, c_1) .

4.6 Rectangles in \mathbb{Z}^2 with slanted sides and c_2

In this section, we study unifying sets for digital rectangles with slanted edges in \mathbb{Z}^2 , using the c_2 adjacency. Our assertions are dual to those of section 4.5 and have proofs with common elements.

Proposition 5. Let X be a digital rectangle in \mathbb{Z}^2 with slanted edges. Let $B \subset X$. Let B' be the set of endpoints of edges of X. Then B is a freezing set for (X, c_2) if and only if $B' \subset B$. Therefore, B' is the only minimal freezing set for (X, c_2) .

Proof. By Theorem 12, there is no loss of generality in assuming

$$B' = \{ (0,0), (m,m), (n,-n), (m+n,m-n) \}$$
 for some $m, n \in \mathbb{N}$.

If B is a freezing set, then by Proposition 3, $B' \subset B$. Since B' is a freezing set by Theorem 11, it follows that B' is unique as a minimal freezing set.

Theorem 19. Let X be the digital rectangle with endpoints of edges in the set

$$B = \{ (0,0), (m,m), (n,-n), (m+n,m-n) \}.$$

Then B is a unifying set for (X, c_2) . Further, every $f \in C(X, c_2)$ such that f(B) = B is an isomorphism.

Proof. Let LR (lower right) be the edge of X from (n, -n) to (m + n, m - n). Let UL (upper left) be the edge of X from (0,0) to (m,m). Let LL (lower left) be the edge of X from (0,0) to (n, -n). Let UR (upper right) be the edge of X from (m,m) to (m+n,m-n). For m < n, there are distinct isomorphisms $F_1, F_2, F_3, F_4: S \to S$, where

$$S = LR \cup UL \cup LL \cup UR$$

is the bounding curve of X, where $F_1 = \mathrm{id}_S$, F_2 reverses the orientations of UL and LR, F_3 interchanges UL and LR while preserving their orientations, and F_4 interchanges UL and LR and reverses their orientations.

Consider the following cases.

• m < n. Since f(B) = g(B) = B, we have that f(UL), g(UL), f(LR), and g(LR) are c_2 -paths of length at most m between distinct members of B, and since the closest distinct members of B are joined by paths of length m, f(UL), g(UL), f(LR), and g(LR) are paths of length m. Therefore, $f(UL \cup LR) = g(UL \cup LR) = UL \cup LR$. Proposition 2 implies that for all $(x,y) \in UL \cup LR$, $f(x,y) = g(x,y) = F_i(x,y)$ for some index i.

Suppose the first case,

$$f(x,y) = g(x,y) = F_1(x,y) = (x,y)$$
 for $(x,y) \in UL \cup LR$.

Consider the following cases.

- Suppose $(x,y) \in X$ lies on the unique shortest c_2 -path (a slanted path) between some $d_1 \in UL$ and some $d_2 \in LR$. Since $f(d_j) = g(d_j) = d_j$ for $j \in \{1, 2\}$, we must have f(x,y) = g(x,y) = (x,y) by Proposition 2.
- Otherwise, each of the points in

$$W = \{(x-1, y), (x+1, y), (x, y-1), (x, y+1)\}$$

is adjacent to (x,y) and lies on a slanted unique shortest c_2 -path between a point in UL and a point in LR (see Figure 8). By continuity and the previous case, $W \subset \operatorname{Fix}(f) \cap \operatorname{Fix}(g)$. By Lemma 1, it follows that $(x,y) \in \operatorname{Fix}(f) \cap \operatorname{Fix}(g)$

Thus $f = g = \mathrm{id}_X$. Similarly, f = g is an isomorphism of (X, c_2) if $f(x,y) = g(x,y) = F_2(x,y) \text{ for } (x,y) \in UL \cup LR,$ $f(x,y) = g(x,y) = F_3(x,y) \text{ for } (x,y) \in UL \cup LR, \text{ or }$ $f(x,y) = g(x,y) = F_4(x,y) \text{ for } (x,y) \in UL \cup LR.$

- m > n. This case is similar to the case m < n, and we similarly conclude that f = g is an isomorphism of (X, c_2) .
- m=n. Here, in addition to the isomorphisms F_1, F_2, F_3, F_4 discussed above, we also have isomorphisms R_1, R_2, R_3, R_4 of (X, c_2) that rotate the edges of X by 90° $(\pi/2 \text{ radians})$ either clockwise or counterclockwise, either preserving or reversing the orientations of both UL and LR. An argument like that used above shows that in each of these cases, f=g is an isomorphism of (X, c_2) .

Thus all cases lead to the conclusion that f = g, hence B is unifying; and that $f \in C(X, c_2)$ such that f(B) = B implies f is an isomorphism of (X, c_2) .

4.7 Generalized normal product

In this section, we consider unifying sets for Cartesian products of digital images using the normal product adjacency.

We have the following generalization of the normal product adjacency [2] for the Cartesian product of two graphs.

Definition 12. [25, 8] Let $u, v \in \mathbb{N}$, $1 \leq u \leq v$. Let (X_i, κ_i) be digital images, $i \in \{1, \ldots, v\}$. Let $x_i, y_i \in X_i$, $x = (x_1, \ldots, x_v)$, $y = (y_1, \ldots, y_v)$. Then $x \leftrightarrow y$ in the generalized normal product adjacency $NP_u(\kappa_1, \ldots, \kappa_v)$ if for at least 1 and at most u indices $i, x_i \leftrightarrow_{\kappa_i} y_i$ and for all other indices $j, x_j = y_j$.

Remark 5. For u = v = 2, the generalized normal product adjacency coincides with the *normal product adjacency*. Sabidussi [25] uses *strong* for what we call the generalized normal product adjacency; we prefer the latter name, as "strong" also appears in the literature for what we call the normal product adjacency.

The following generalizes a result in [16, 7].

Theorem 20. [8] Let $f_i:(X_i,\kappa_i)\to (Y_i,\lambda_i),\ 1\leq i\leq v.$ Then the product map

$$f = \prod_{i=1}^{v} f_i : (\prod_{i=1}^{v} X_i, NP_v(\kappa_1, \dots, \kappa_v)) \to (\prod_{i=1}^{v} Y_i, NP_v(\lambda_1, \dots, \lambda_v))$$

given by $f(x_1, \ldots, x_v) = (f_1(x_1), \ldots, f_v(x_v))$ is continuous if and only if each f_i is continuous.

Theorem 21. Let $\emptyset \neq A_i \subset X_i$, where (X_i, κ_i) is a digital image, $1 \leq i \leq v \in \mathbb{N}$. Let $A = \prod_{i=1}^{v} A_i$, $X = \prod_{i=1}^{v} X_i$. If A is a unifying set for $(X, NP_v(\kappa_1, \ldots, \kappa_v))$ then for each i, A_i is a unifying set for (X_i, κ_i) .

Proof. Suppose A is a unifying set for $(X, NP_v(\kappa_1, \ldots, \kappa_v))$. For all i, let $f_i, g_i \in C(X_i, \kappa_i)$ be such that $f_i(A_i) = g_i(A_i) = A_i$ and $f_i|_{A_i} = g_i|_{A_i}$. Then by Theorem 20, $f = f_1 \times \cdots \times f_v$ and $g = g_1 \times \cdots \times g_v$ are members of $C(X, NP_v(\kappa_1, \ldots, \kappa_v))$. Further, given $a = (a_1, \ldots, a_v) \in A$, there exist $a_i' \in A_i$ such that $f_i(a_i') = g_i(a_i') = a_i$, and therefore we have f(A) = g(A) = A and $f|_A = g|_A$. Since A is unifying, we have f = g, and therefore $f_i = g_i$ for all i. Thus A_i is unifying.

5 Shy maps that are retractions

Shy maps in digital topology were introduced in [5] and studied further in [6, 17, 7, 8, 9]. A version of shy maps for topological spaces was introduced in [10].

Definition 13. [5] Let $f:(X,\kappa)\to (Y,\lambda)$ be a continuous function of digital images. We say f is shy if

- for each $y \in f(X)$, $f^{-1}(y)$ is connected, and
- for every $y_0, y_1 \in f(X)$ such that y_0 and y_1 are adjacent, $f^{-1}(\{y_0, y_1\})$ is connected.

We say a point p of a connected graph $G = (X, \kappa)$ is an articulation point of G if $(X \setminus \{p\}, \kappa)$ is not connected.

Theorem 22. Let (X, κ) be a connected digital image. Let $\emptyset \neq R \subset X$. Let

$$A = \left\{ \begin{array}{c|c} p \in R & | p \text{ is an articulation point of } K \cup R \\ & \text{for some } \kappa\text{-component } K \text{ of } X \setminus R \end{array} \right\}. \tag{5.1}$$

Then there is a unique function $r: X \to R$ that is a shy κ -retraction.

Proof. For $x \in X \setminus R$, let $p_x \in A$ be the articulation point for the union of R and the κ -component K_x of $X \setminus R$ containing x. Let $r: X \to X$ be the function

$$r(x) = \left\{ \begin{array}{ll} x & \text{if } x \in R; \\ p_x & \text{if } x \in X \setminus R. \end{array} \right.$$

Clearly, r(X) = R and $r|_R = \mathrm{id}_R$. It is easily seen that $r^{-1}(p_x) \setminus \{p_x\} = K_x$ is a union of κ -component of $X \setminus R$ separated by p_x , and $r^{-1}(y) = \{y\}$ for $y \in R \setminus A$. It follows that $r \in C(X, \kappa)$ and r is a retraction of X to R. By 5.1, $r^{-1}(p_x) = \{p_x\} \cup K_x$ is connected. It follows easily that r is shy.

Suppose $f \in C(X, \kappa)$ is a shy retraction of X to R. If there exists $x_0 \in X \setminus R$ such that $x_1 = f(x_0) \neq p_{x_0}$, then p_{x_0} separates the points $x_0, x_1 \in f^{-1}(x_1)$, contrary to the assumption that f is shy. The uniqueness of r as a shy retraction follows.

Corollary 1. Let (X, κ) be a digital image that is a tree. Let (R, κ) be a nonempty subtree of (X, κ) . Then there is a unique function $r: X \to R$ that is a shy κ -retraction.

Proof. It is trivial that if R = X, we can take $r = id_X$. Otherwise, we take A as in (5.1). The assertion follows from Theorem 22.

For topological spaces, we have the following.

Definition 14. [10] Let X and Y be topological spaces and let $f: X \to Y$. Then f is *shy* if f is continuous and for every path-connected $Y' \subset f(X)$, $f^{-1}(Y')$ is a path-connected subset of X. \square

By using an argument similar to the proof of Theorem 22, we get the following.

Theorem 23. Let X be a connected topological space. Let $\emptyset \neq A \subset R \subset X$ such that each $p \in A$ separates R and a component of $X \setminus R$. Then there is a unique continuous function $r: X \to R$ that is a shy retraction.

6 Approximate fixed points

Suppose $A \subset X$ and A is a κ -freezing set for X. By definition, if $f \in C(X, \kappa)$ and $A \subset Fix(f)$, then $f = id_X$, i.e., X = Fix(f). If we weaken the hypothesis so that instead of assuming $A \subset Fix(f)$ we assume every point of A is an approximate fixed point of f, might we reach the weaker conclusion that every point of X is an approximate fixed point of f? The answer is not generally affirmative; we give a counterexample below. We also examine basic examples for which an affirmative answer is shown.

6.1 Wedge of cycles

In this section, we show that a wedge of cycles X can support a freezing set A and a continuous self-map f such that every point of A is an approximate fixed point of f, but not every point of X is an approximate fixed point of f.

Theorem 24. [11] Let C_m and C_n be cycles, with m > 4, n > 4, where $C_m = \{x_i\}_{i=0}^{m-1}$, $C_n = \{x_i'\}_{i=0}^{n-1}$, with the members of C_m and C_n indexed circularly. Let $x_0 = x_0'$ be the wedge point of $X = C_m \vee C_n$. Let $x_i, x_j \in C_m$ and $x_k', x_p' \in C_n$ be such that C_m is the union of unique shorter paths determined by x_i, x_j, x_0 and C_n is the union of unique shorter paths determined by x_k', x_p', x_0' . Then $A = \{x_i, x_j, x_k', x_n'\}$ is a freezing set for X.

Example 2. Let $X = C_6 \vee C_m$, where $C_6 = \{x_i\}_{i=0}^5$ and $C_n = \{x_i'\}_{i=0}^{n-1}$ are c_2 -simple closed curves in \mathbb{Z}^2 , with the members of C_6 and C_n indexed circularly.

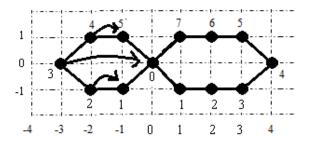


Figure 7. [12] The map f of Example 2. Points are labeled by their indices as in the Example. The cycle with points p = (x, y) for $x \leq 0$ represents C_6 , for which $\{x_0, x_2, x_4\}$ is a c_2 -freezing set; the cycle with points p = (x, y) for $x \geq 0$ represents C_m (here, m = 8, and $\{x'_0, x'_3, x'_6\}$ is a c_2 -freezing set for C_8 , so $A = \{x_2, x_4, x'_3, x'_6\}$ is a c_2 -freezing set for $C_6 \vee C_8$). Arrows connect p and p for points $p \notin \text{Fix}(f)$. Each point of p is a p-approximate fixed point of p.

By Theorems 13 and 24, if k and p are chosen so that $\{x'_0, x'_k, x'_p\}$ is a freezing set for C_n , then we can take $A = \{x_2, x_4, x'_k, x'_p\}$ to be a freezing set for (X, c_2) . Now take $f: X \to X$ to be the function

$$f(x) = \begin{cases} x_0 & \text{if } x = x_3; \\ x_1 & \text{if } x = x_2; \\ x_5 & \text{if } x = x_4; \\ x & \text{otherwise.} \end{cases}$$

See Figure 7. One sees easily that $f \in C(X, c_2)$, that every member of A is a c_2 -approximate fixed point of f, but x_3 is not a c_2 -approximate fixed point of f.

6.2 Disks in (\mathbb{Z}^2, c_1)

Lemma 2. Let $q_0, q_1 \in X \subset \mathbb{Z}^2$. Suppose there is a horizontal or vertical c_1 -path P in X from q_0 to q_1 . Let $f: P \to X$ be c_1 -continuous, such that q_0 and q_1 are c_1 -approximate fixed points of f. Then every member of P is a c_1 -approximate fixed point of f.

Proof. Without loss of generality, P is horizontal, $q_0 = (0,0)$, and $q_1 = (n,0)$ for some $n \in \mathbb{N}$. Suppose there exists $q = (x,0) \in P$ such that q is not a c_1 -approximate fixed point of f. Then $|x - p_1(f(q))| > 1$; or $|p_2(f(q))| > 1$; or $|x - p_1(f(q))| = 1$ and $|x - p_1(f(q))| = 1$.

If
$$|x - p_1(f(q))| > 1$$
 then either $p_1(f(q)) > x + 1$ or $p_1(f(q)) < x - 1$.

- Suppose $p_1(f(q)) > x+1$. Then by Lemma 1 we would have $p_1(f(q_0)) > 1$, contrary to the assumption that $q_0 = (0,0)$ is an approximate fixed point.
- If $p_1(f(q)) < x 1$, then by Lemma 1 we would have $p_1(f(q_1)) < n 1$, contrary to the assumption that $q_1 = (n, 0)$ is an approximate fixed point.

Suppose $|p_2(f(q))| > 1$. Without loss of generality, $p_2(f(q)) > 1$, as the case $p_2(f(q)) < 1$ can be handled similarly. Since c_1 -adjacent points differ in only one coordinate and the q_i as approximate fixed points implies $|p_2(f(q_i))| \le 1$, $i \in \{0,1\}$, there are at least 4 indices j for which $p_2(f(x_j)) \ne p_2(f(x_{j+1}))$ and therefore at most n-4 indices j for which $p_1(f(x_j)) \ne p_1(f(x_{j+1}))$. This is a contradiction, since x_0 and x_1 being approximate fixed points implies $p_1(f(x_0)) \le 1$ and $p_1(f(x_1) \ge n-1$, so at least n-2 indices j would satisfy $p_1(f(x_j)) \ne p_1(f(x_{j+1}))$.

Suppose $|x - p_1(f(q))| = 1$ and $|p_2(f(q))| = 1$. Without loss of generality, $p_1(f(q)) = x + 1$ and $p_2(f(q)) = 1$. By the c_1 -continuity of f and Lemma 1 it follows that $p_1(f(q_0)) \ge 1$. Since q_0 is a c_1 -approximate fixed point of f, $f(q_0) = (1,0)$. Thus, f(P) has length at least x + 1, contrary to P having length x.

Thus every case yields a contradiction brought about by assuming there is a point of P that is not an approximate fixed point of f. The assertion follows.

Theorem 25. Let $V_i \subset X \subset \mathbb{Z}^2$, $i \in \{1, ..., n\}$ where each V_i is a thick convex disk. Let $X' = \bigcup_{i=1}^n V_i$. Let C_i be a bounding curve of V_i . Let $A_{1,i}$ be the set of endpoints of maximal axis-parallel segments of C_i . Let $A_{2,i}$ be the union of maximal slanted segments of C_i .

- (1) $A = (X \setminus X') \cup \bigcup_{i=1}^{n} (A_{1,i} \cup A_{2,i})$ is a freezing set for (X, c_1) .
- (2) Suppose $f \in C(X, c_1)$ such that every point of A is a c_1 -approximate fixed point of f. Then every point of X is a c_1 -approximate fixed point of f.

Proof. Assertion 1) is Theorem 10. To prove assertion 2), we argue as follows.

Let S be a maximal digital segment of a bounding curve C_i for V_i . If S is horizontal or vertical, then by Lemma 2, every point of S is a c_1 -approximate fixed point of f. If S is slanted, then $S \subset A$, so every point of S is a c_1 -approximate fixed point of f. Thus each point of C_i , is a c_1 -approximate fixed point of f.

For $x \in X \setminus A$, there is a horizontal segment P containing x such that the endpoints of P belong to $\bigcup_{i=1}^{n} C_i$, and therefore are approximate fixed points of f. By Lemma 2, every point of P is a c_1 -approximate fixed point of f. Thus, every point of X is a c_1 -approximate fixed point of f.

Remark 6. Theorems 10 and 25 simplify when X' = X, in which case $A = \bigcup_{i=1}^{n} (A_{1,i} \cup A_{2,i})$. They might be applied in this case when $i \neq j$ implies $V_i \cap V_j$ is empty, a single point, or a common edge of V_i and V_j .

6.3 Disks in (\mathbb{Z}^2, c_2)

We show in this section that disks in (\mathbb{Z}^2, c_2) yield results similar to those shown in section 6.2 for the c_1 adjacency.

Lemma 3. Let $q_0, q_1 \in X \subset \mathbb{Z}^2$. Suppose there is a slanted c_2 -path P in X from q_0 to q_1 . Let $f: P \to X$ be c_2 -continuous, such that q_0 and q_1 are c_2 -approximate fixed points of f. Then every member of P is a c_2 -approximate fixed point of f.

Proof. Without loss of generality, the slope of P is 1. Without loss of generality, $q_0 = (0,0)$ and $q_1 = (n,n)$ for n = length(P). Suppose there exists $p \in P$ that is not a c_2 -approximate fixed point of f. Then $|p_1(f(p)) - p_1(p)| > 1$ or $|p_2(f(p)) - p_2(p)| > 1$.

- If $|p_1(f(p)) p_1(p)| > 1$ then either $p_1(f(p)) p_1(p) > 1$ or $p_1(p) p_1(f(p)) > 1$.
 - If $p_1(f(p)) p_1(p) > 1$ then by Lemma 1, $1 < p_1(f(q_0)) p_1(q_0) = p_1(f(q_0))$, contrary to the assumption that q_0 is an approximate fixed point.
 - If $p_1(p) p_1(f(p)) > 1$, then by Lemma 1, $1 < p_1(q_1) p_1(f(q_1)) = n p_1(f(q_1))$, or $p_1(f(q_1)) < n 1$, contrary to the assumption that q_1 is an approximate fixed point.
- If $|p_2(f(p)) p_2(p)| > 1$ then, similarly, we obtain contradictions.

Since all cases yield contradictions, the hypothesis of a $p \in P$ that is not a c_2 -approximate fixed point of f must be false. This completes the proof.

The following is a dual to Theorem 25.

Theorem 26. Let $V_i \subset X \subset \mathbb{Z}^2$, $i \in \{1, ..., n\}$ where each V_i is a thick convex disk. Let $X' = \bigcup_{i=1}^n V_i$. Let C_i be a bounding curve of V_i . Let $B_{1,i}$ be the union of maximal horizontal and maximal vertical segments of C_i . Let $B_{2,i}$ be the set of endpoints of maximal slanted segments of C_i .

- (1) $B = (X \setminus X') \cup \bigcup_{i=1}^n (B_{1,i} \cup B_{2,i})$ is a freezing set for (X, c_2) .
- (2) Suppose $f \in C(X, c_2)$ such that every point of B is a c_2 -approximate fixed point of f. Then every point of X is a c_2 -approximate fixed point of f.

Proof. Assertion 1) is Theorem 11. To prove assertion 2), we argue as follows.

By Lemma 3, every slanted segment of C_i is made up entirely of c_2 -approximate fixed points of f. Since B by hypothesis consists of c_2 -approximate fixed points of f, it follows that C_i is made up entirely of c_2 -approximate fixed points of f.

Lemma 3 lets us conclude that if $x \in X$ such that x lies on a slanted segment P that connects two points of B, then x is a c_2 -approximate fixed point of f.

This leaves us to consider points $p = (x_0, y_0) \in X$ such that p does not lie either on an axis-parallel segment of B or on a slanted segment P that connects two points of B. Such a point must be in the interior of X and therefore is c_2 -adjacent to its 4 c_1 -neighbors $q_1 = (x_0 - 1, y_0)$, $q_2 = (x_0 + 1, y_0)$, $q_3 = (x_0, y_0 - 1)$, and $q_4 = (x_0, y_0 + 1)$, each of which lies on a slanted segment joining members of S (see Figure 8). Therefore, by Lemma 3, q_1 , q_2 , q_3 , and q_4 are approximate fixed points of f.

Suppose p is not a c_2 -approximate fixed point of f. Then either

$$|p_1(f(p)) - x_0| > 1$$
 or $|p_2(f(p)) - y_0| > 1$.

• Suppose $|p_1(f(p)) - x_0| > 1$. Then either

$$p_1(f(p)) - x_0 > 1$$
 or $x_0 - p_1(f(p)) > 1$.

- Suppose $p_1(f(p))-x_0 > 1$. Then by the continuity of f and Lemma 1, $p_1(q_1) p_1(f(q_1)) > 1$, contrary to q_1 being an approximate fixed point of f.
- Suppose $x_0 p_1(f(p)) > 1$. Then by the continuity of f and Lemma 1, $p_1(q_2) p_1(f(q_2)) > 1$, contrary to q_2 being an approximate fixed point of f.
- Similarly, we obtain a contradiction if $|p_2(f(p)) y_0| > 1$.

Since all cases yield a contradiction when we assume p is not a c_2 -approximate fixed point of f, this hypothesis must be incorrect. The assertion follows.

Remark 7. Theorems 11 and 26 simplify when X' = X, in which case $B = \bigcup_{i=1}^{n} (B_{1,i} \cup B_{2,i})$. They might be applied in this case when $i \neq j$ implies $V_i \cap V_j$ is empty, a single point, or a common edge of V_i and V_j .

6.4 Trees

In this section, we use a result about freezing sets for trees to obtain a result about approximate fixed points for trees.

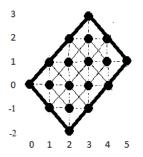


Figure 8. The point (1,0) in the digital image shown above does not lie on a slanted segment that joins 2 points of the boundary curve shown darkly.

Theorem 27. [11] Let (X, κ) be a digital image such that the graph $G = (X, \kappa)$ is a finite tree with #X > 1. Let D_1 be the set of vertices of G that have degree 1. Then D_1 is a minimal freezing set for G.

Lemma 4. Let (X, κ) be a digital image such that the graph $G = (X, \kappa)$ is a finite tree. Let $f \in C(X, \kappa)$. Let $a, b \in X$ be such that a and b are κ -approximate fixed points of f. Let P be the unique shortest path in G from a to b. Then $f(P) \subset P \cup N(X, a, \kappa) \cup N(X, b, \kappa)$ and every point of P is a κ -approximate fixed point of f.

Proof. Whithout loss of generality, $a \neq b$. Let $P = \{x_i\}_{i=0}^n$ such that $x_0 = a$, $x_n = b$, and $x_i \leftrightarrow_{\kappa} x_j$ if and only if |i - j| = 1.

• Suppose f(a) = a. Let us show that

$$f(b) \in \{x_{n-1}, b\} \subset P. \tag{6.1}$$

We know that $f(b) \in N^*(X, b, \kappa)$. If (6.1) is false, then $f(P) = P \cup \{f(b)\}$ is the unique shortest path in G from a = f(a) to f(b). But $P \cup \{f(b)\}$ has length n+1, and #P = n+1 implies $length(f(P)) \leq n$, so we have a contradiction brought about by negating (6.1). Thus (6.1) is established.

It follows that $f(P) \subset P$. Now suppose for some k that x_k is not an approximate fixed point of f. Then $f(x_k) = x_m$ for some m such that |k-m| > 1. Without loss of generality, m-k > 1. Then by continuity and since G is acyclic, $f(x_k)$ must "pull" [21] $f(a) = f(x_0)$ so that $f(a) = x_t$ for some t > 1, contrary to a being an approximate fixed point of f. The contradiction establishes that each point of P must be an approximate fixed point of f, and $f(P) \subset P$.

- Suppose $f(a) \notin P$. Recall we are assuming $f(b) \in N^*(X, b, \kappa)$, so $f(b) \in \{x_{n-1}, b\}$ or $f(b) \notin P$. We claim $f(b) = x_{n-1}$. For otherwise, $f(P) = \{f(a) \neq x_0, a = x_0, x_1, \ldots, x_n = b, f(b)\}$ where f(b) may be equal to b, so $\#f(P) \in \{n+2, n+3\}$ while #P = n+1, a contradiction. Therefore, $f(b) = x_{n-1}$. By the acyclicity of G, it follows that $f(P) = \{f(a)\} \cup \{x_i\}_{i=0}^m$, where $m \in \{n-1, n\}$. As in the case f(a) = a, it follows that every point of P is an approximate fixed point of f, and $f(P) \subset P \cup N(X, a, \kappa)$.
- Suppose $f(a) \in P \setminus \{a\}$. Since a is an approximate fixed point of f, it follows that $f(a) = x_1$. Since $f(b) \in N(X, b, \kappa)$, it follows as in the previous cases that every point of P is an approximate fixed point of f, and $f(P) \subset P \cup N(X, b, \kappa)$.

This establishes the assertion.

QED

Theorem 28. Let (X, κ) be a digital image such that the graph $G = (X, \kappa)$ is a finite tree with #X > 1. Let D_1 be the set of vertices of G that have degree 1. Then D_1 is a minimal freezing set for (X, κ) , and given a freezing set A for G, we have $D_1 \subset A$.

Proof. That D_1 is a freezing set comes from Theorem 27. The assertion is trivial for $\#X \in \{1,2\}$, so let us assume $\#X \geq 3$. Then $D_1 \neq \emptyset \neq X \setminus D_1$. Let $a \in D_1$ and let $x_0 \in D_1 \setminus \{a\}$. Consider x_0 as the root vertex of X. Then the function $f: X \to X$ given by

$$f(x) = \begin{cases} x & \text{for } x \neq a; \\ parent(a) & \text{for } x = a, \end{cases}$$

is easily seen to be a member of $C(X, \kappa)$. Further, if A is any freezing set for (X, κ) , then $f|_{A\setminus\{a\}} = \mathrm{id}_{A\setminus\{a\}}$, so $A\setminus\{a\}$ is not a freezing set. Thus, D_1 is a minimal freezing set that is contained in every freezing set for (X, κ) .

Theorem 29. Let (X, κ) be a digital image such that the graph $G = (X, \kappa)$ is a finite tree. Let A be a freezing set for G. Suppose $f \in C(X, \kappa)$ is such that for each $a \in A$, a is an approximate fixed point of f. Then for all $x \in X$, x is an approximate fixed point of f.

Proof. The assertion is trivial for $\#X \in \{1,2\}$, so assume $\#X \ge 3$. Let D_1 be the set of vertices of G that have degree 1. By Theorem 28, D_1 is a freezing set contained in A. Therefore, there is no loss of generality in assuming $A = D_1$.

Let $f \in C(X, \kappa)$ such that for each $d \in D_1$, d is an approximate fixed point of f. We can choose $x_0 \in D_1$ as a root of X. Since $x \in X$ implies x is on the

unique shortest path in G from x_0 to some $d \in D_1$, it follows from Lemma 4 that x is an approximate fixed point of f.

6.5 Cycles

Theorem 30. Let (C_n, κ) be a digital cycle of n distinct points, $n \in \mathbb{N}$, n > 4, with $C_n = \{x_i\}_{i=0}^{n-1}$, such that $x_i \leftrightarrow_{\kappa} x_j$ if and only if $j = (i \pm 1) \mod n$. Let $A = \{x_u, x_v, x_w\}$ be a set of distinct members of C_n such that C_n is a union of unique shorter paths determined by these points. Let $f \in C(C_n, \kappa)$ be such that every member of A is an approximate fixed point of f. Then every member of C_n is an approximate fixed point of f, and f is an isomorphism.

Proof. Note by Theorem 13, A is a minimal freezing set for (C_n, κ) .

First, we show that f must be a surjection. Without loss of generality, $0 \le u < v < w < n$. Suppose B is the unique shorter path in C_n from x_u to x_v . Since we must have $\#f(B) \le \#B$ and x_u and x_v are approximate fixed points, we must have $f(x_u) \in \{x_{u-1}, x_u, x_{u+1}\}$ and $f(x_v) \in \{x_{v-1}, x_v, x_{v+1}\}$ (indices reduces mod n).

Suppose $f(x_u) = x_u$. We must have

$$\#f(B) \le \#B = v - u + 1 \le n/2,$$

so $f(x_v) \in \{x_{v-1}, x_v\}$. If $f(x_v) = x_{v-1}$, then we must have $f(x_w) = x_{w-1}$, hence (proceeding with increasing indices, mod n,) $f(x_{u-1}) = x_{u-2}$, so f would be discontinuous at the adjacent pair x_{u-1} and x_u . Thus we would have $f(x_v) = x_v$ and $f(x_w) = x_w$. Thus $f|_A = \mathrm{id}_A$. Since A is freezing, it follows that $f = \mathrm{id}_X$.

If $f(x_u) = x_{u-1}$ or $f(x_u) = x_{u+1}$, we can apply a rotation $r(x_i) = x_{(i-1) \mod n}$ (respectively, $r(x_i) = x_{(i+1) \mod n}$), which is an isomorphism. Then by the above, $r \circ f = \mathrm{id}_X$ is an isomorphism, so

$$f = r^{-1} \circ r \circ f = r^{-1} \circ \mathrm{id}_X = r^{-1}$$

is an isomorphism, with each member of A an approximate fixed point.

Thus, in all cases, each member of A is an approximate fixed point of f, which must be an isomorphism.

7 Further remarks

When a member of $C(X, \kappa)$ has restricted behavior on a subset A of X, the restriction may have a powerful effect on the behavior of $f|_{X\setminus A}$. We have examined instances of this phenomenon with respect to freezing and cold sets, retractions, and shy maps, on a variety of basic digital images.

Acknowledgements. The notes of an anonymous reviewer are gratefully acknowledged.

References

- M.S. ABDULLAHI, P. KUMAM, J. ABUBAKAR, AND I.A. GARBA: Coincidence and selfcoincidence of maps between digital images, Topol. Methods Nonlinear Anal. 56, n. 2, 607–628, 2020.
- [2] C. Berge: Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.
- [3] L. BOXER: Digitally continuous functions, Pattern Recogn. Lett. 15, 833–839, 1994.
- [4] L. BOXER: A classical construction for the digital fundamental group, J. Math. Imaging Vis. 10, 51–62, 1999.
- [5] L. Boxer: Properties of digital homotopy, J. Math. Imaging Vis. 22, 19–26, 2005.
- [6] L. BOXER: Remarks on digitally continuous multivalued functions, J. Advances in Math. 9, n. 1, 1755–1762, 2014.
- [7] L. BOXER: Digital shy maps, Appl. Gen. Topol. 18 n. 1, 143-152, 2017.
- [8] L. BOXER: Generalized normal product adjacency in digital topology, Appl. Gen. Topol. 18 n. 2, 401–427, 2017.
- [9] L. BOXER: Alternate product adjacencies in digital topology, Appl. Gen. Topol. 19 n. 1, 21-53, 2018.
- [10] L. Boxer: Shy maps in topology, Topology Appl. 242, 59–65, 2018.
- [11] L. BOXER: Fixed point sets in digital topology, 2, Appl. Gen. Topol. 21 n. 1, 111-133, 2020.
- [12] L. BOXER: Convexity and freezing sets in digital topology, Appl. Gen. Topol. 22 n.1, 121–137, 2021.
- [13] L. BOXER: Subsets and freezing sets in the digital plane, Hacet. J. Math. Stat. 50, n. 4, 991–1001, 2021.
- [14] L. BOXER: Cold and freezing sets in the digital plane, Topology Proc. 61, 155-182, 2023.
- [15] L. BOXER, O. EGE, I. KARACA, J. LOPEZ, AND J. LOUWSMA: Digital fixed points, approximate fixed points, and universal functions, Appl. Gen. Topol. 17 n. 2, 159–172, 2016.
- [16] L. BOXER AND I. KARACA: Fundamental groups for digital products, Adv. Appl. Math. Sci. 11 n. 4, 161–180, 2012.
- [17] L. BOXER AND P.C. STAECKER: Connectivity preserving multivalued functions in digital topology, J. Math. Imaging Vis. 55, n. 3, 370–377, 2016.
- [18] L. BOXER AND P.C. STAECKER: Fixed point sets in digital topology, 1, Appl. Gen. Topol. 21, n. 1, 87–110, 2020.
- [19] L. Chen: Gradually varied surface and its optimal uniform approximation, SPIE Proc. 2182, 300–307, 1994.
- [20] L. CHEN: Discrete Surfaces and Manifolds, Scientific Practical Computing, Rockville, MD, 2004.

[21] J. Haarmann, M.P. Murphy, C.S. Peters, and P.C. Staecker: *Homotopy equivalence in finite digital images*, J. Math. Imaging Vis. **53**, 288–302, 2015.

- [22] S-E HAN: Non-product property of the digital fundamental group, Inform. Sciences 171, 73–91, 2005.
- [23] A. ROSENFELD: Digital topology, Amer. Math. Monthly 86, n. 8, 621–630, 1979.
- $[24]\,$ A. Rosenfeld: 'Continuous' functions on digital pictures, Pattern Recogn. Lett. 4, 177–184, 1986.
- [25] G. Sabidussi: Graph multiplication, Math. Z. 72, 446–457, 1959.
- [26] R. TSAUR AND M.B. SMYTH: 'Continuous' multifunctions in discrete spaces with applications to fixed point theory, In: G. Bertrand, A. Imiya, R. Klette (eds.), Digital and Image Geometry, Lecture Notes in Computer Science, 2243, 151–162. Springer, Berlin (2001).