On the Radio k-chromatic Number of Paths

Niranjan P. K.
Department of Mathematics, RV College of Engineering, Mysuru Road, Bengaluru-560059, India.
niranjanpk704@rvce.edu.in
\section*{Srinivasa Rao Kola}
Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025, India.
srinukola@nitk.edu.in

Received: 7.9.2021; accepted: 1.5.2022.

Abstract

A radio k-coloring of a graph G is an assignment f of positive integers (colors) to the vertices of G such that for any two vertices u and v of G, the difference between their colors is at least $1+k-d(u, v)$. The span $r c_{k}(f)$ of f is $\max \{f(v): v \in V(G)\}$. The radio k-chromatic number $r c_{k}(G)$ of G is $\min \left\{r c_{k}(f): f\right.$ is a radio k-coloring of $\left.G\right\}$. In this paper, in an attempt to prove a conjecture on the radio k-chromatic number of path, we determine the radio k-chromatic number of paths P_{n} for $k+5 \leq n \leq \frac{7 k-1}{2}$ if k is odd and $k+4 \leq n \leq \frac{5 k+4}{2}$ if k is even.

Keywords: radio k-coloring, radio k-chromatic number, radio coloring, radio number
MSC 2020 classification: $05 \mathrm{C} 15,05 \mathrm{C} 78,05 \mathrm{C} 12$

1 Introduction

All graphs considered in this paper are simple connected graphs. We use standard graph theory terminology according to [10]. The channel assignment problem is the problem of assigning frequencies to transmitters in some optimal manner. Chartrand et al. [1] have introduced radio k-coloring of graphs as a variation of channel assignment problem. A radio k-coloring of a graph G is an assignment f of positive integers to the vertices of G such that $|f(u)-f(v)| \geq$ $1+k-d(u, v)$ for every pair u and v of vertices in G. The span of f is the largest integer assigned by f and is denoted by $r c_{k}(f)$. The radio k-chromatic number $r c_{k}(G)$ of G is the minimum among the spans of all radio k-colorings of G. A radio k-coloring having span $r c_{k}(G)$ is called a minimal radio k-coloring of G. If k is the diameter d of G, then f is called a radio coloring of G and the radio d-chromatic number is called the radio number of G, denoted by $r n(G)$. A radio ($d-1$)-coloring and the corresponding chromatic number are said to be an antipodal coloring and the antipodal number $a c(G)$ of G, respectively. A radio

[^0]$(d-2)$-coloring and the radio $(d-2)$-chromatic number are referred as a nearly antipodal coloring and the nearly antipodal number $a c^{\prime}(G)$ of G, respectively.

For any path $P_{k+1}(k \geq 1)$, Liu and Zhu [9] have determined the radio number as $\frac{k^{2}+3}{2}$ if k is odd and $\frac{k^{2}+6}{2}$ if k is even. Khennoufa and Togni [5] have shown that $a c\left(P_{k+2}\right)$ is $\frac{k^{2}+5}{2}$ for an odd $k>2$ and $\frac{k^{2}+6}{2}$ for an even $k>3$. Kola and Panigrahi [6] have determined the nearly antipodal number of P_{k+3} as $\frac{k^{2}+7}{2}$ for an odd $k>4$ and $\frac{k^{2}+8}{2}$ for an even $k>5$. Also, in [7], they have found the radio k-chromatic number of P_{k+4} as $\frac{k^{2}+9}{2}$ for an odd $k>6$ and given an upper bound for the same as $\frac{k^{2}+10}{2}$ for an even $k>7$. Even though radio k-coloring of a graph G is defined for $k \leq \operatorname{diam}(G)$, it is studied for $k>\operatorname{diam}(G)$ as it is useful in determining the radio k-chromatic number of larger graphs. For any $k \geq n$, Kchikech et al. [4] have proved that $r c_{k}\left(P_{n}\right)=(n-1) k-\frac{1}{2} n(n-2)+1$ if n is even and $r c_{k}\left(P_{n}\right)=(n-1) k-\frac{1}{2}(n-1)^{2}+2$ if n is odd.

For any path P_{n} and an integer $k, 0<k<n$, Chartrand et al. [2] have given an upper bound for $r c_{k}\left(P_{n}\right)$ as below.

Theorem 1. [2] For $0<k<n-1$,

$$
r c_{k}\left(P_{n}\right) \leq \begin{cases}\frac{k^{2}+2 k+1}{2} & \text { if } k \text { is odd } \\ \frac{k^{2}+2 k+2}{2} & \text { if } k \text { is even } .\end{cases}
$$

Kchikech et al. [4] have proposed the following conjecture.
Conjecture 1. [4] For $k \geq 5$,

$$
\lim _{n \rightarrow \infty} r c_{k}\left(P_{n}\right)= \begin{cases}\frac{k^{2}+2 k+1}{2} & \text { if } k \text { is odd } \\ \frac{k^{2}+2 k+2}{2} & \text { if } k \text { is even }\end{cases}
$$

In an attempt to prove Conjecture 1, Kola and Panigrahi [8] have given upper bounds of $r c_{k}\left(P_{n}\right)$ for different intervals of n as below.

Theorem 2. [8] For $k \geq 7$ and $4 \leq s \leq\left\lfloor\frac{k+1}{2}\right\rfloor$

$$
r c_{k}\left(P_{k+s}\right) \leq \begin{cases}\frac{k^{2}+2 s+1}{2} & \text { if } k \text { is odd } \\ \frac{k^{2}+2 s+2}{2} & \text { if } k \text { is even }\end{cases}
$$

Theorem 3. [8] For any even $k \geq 6$,

$$
r c_{k}\left(P_{n}\right) \leq \begin{cases}\frac{k^{2}+k+2}{2} & \text { if } n=\frac{3 k+2}{2}, \\ \frac{k^{2}+k+2 s+4}{2} & \text { if } \frac{(3+2 s) k+2 s+4}{2} \leq n \leq \frac{(5+2 s) k+2 s+4}{2}\end{cases}
$$

where $s=0,1,2, \ldots, \frac{k-4}{2}$.

Theorem 4. [8] For any odd $k \geq 5$,

$$
r c_{k}\left(P_{n}\right) \leq \begin{cases}\frac{k^{2}+k+2}{2} & \text { if } \frac{3 k+1}{2}<n \leq \frac{5 k-1}{2}, \\ \frac{k^{2}+k+2 s+4}{2} & \text { if } \frac{(5+2 s) k+1}{2} \leq n \leq \frac{(7+2 s) k-1}{2}, s=0,1,2, \ldots, \frac{k-5}{2} .\end{cases}
$$

Further, Kola and Panigrahi [8] have re-conjectured Conjecture 1 as below.
Conjecture 2. [8] For any integer $k \geq 5$ and $n \geq n_{0}, r c_{k}\left(P_{n}\right)=n_{0}$, where $n_{0}=\frac{k^{2}+2 k+2}{2}$ if k is even and $n_{0}=\frac{k^{2}+2 k+1}{2}$ if k is odd.

In this article, we prove that the upper bounds given in Theorem 2 are exact. Also, we show that the bounds in Theorem 3 when $\frac{3 k+2}{2} \leq n \leq \frac{5 k+4}{2}$ and the bounds in Theorem 4 when $\frac{3 k+1}{2} \leq n \leq \frac{7 k-1}{2}$, are exact.

2 Preliminaries

To obtain lower bounds for the radio k-chromatic number of the paths, we use the lower bound technique for radio k-coloring given by Das et al. [3]. For a subset S of the vertex set of a graph G, let $N(S)$ be the set of all vertices of G adjacent to at least one vertex of S.

Theorem 5. [3] If f is a radio k-coloring of a graph G, then

$$
\begin{equation*}
r c_{k}(f) \geq\left|D_{k}\right|-2 p+2 \sum_{i=0}^{p-1}\left|L_{i}\right|(p-i)+\alpha+\beta, \tag{2.1}
\end{equation*}
$$

where D_{k} and L_{i} 's are defined as follows. If $k=2 p+1$, then $L_{0}=V(C)$, where C is a maximal clique in G. If $k=2 p$, then $L_{0}=\{v\}$, where v is a vertex of G. Recursively define $L_{i+1}=N\left(L_{i}\right) \backslash\left(L_{0} \cup L_{1} \cup \cdots \cup L_{i}\right)$ for $i=0,1,2, \ldots, p-1$. Let $D_{k}=L_{0} \cup L_{1} \cup \cdots \cup L_{p}$. The minimum and the maximum colored vertices among the vertices of D_{k} are in L_{α} and L_{β}, respectively.

From the proof of Theorem 5 in [3], it is easy to see that the right hand side of (2.1) is actually counts the number of colors between minimum and maximum colors (both inclusive) among the vertices of D_{k} and hence we have the following theorem.

Theorem 6. Let G be a graph, and L_{i} and D_{k} be as in Theorem 5. If f is a radio k-coloring of G, and $\lambda_{\text {min }} \in L_{\alpha}$ and $\lambda_{\max } \in L_{\beta}$ are the minimum and the maximum colors respectively, assigned by f to the vertices of D_{k}, then

$$
\lambda_{\max }-\lambda_{\min }+1 \geq\left|D_{k}\right|-2 p+2 \sum_{i=0}^{p-1}\left|L_{i}\right|(p-i)+\alpha+\beta
$$

For a path P_{n}, if k is odd, we choose L_{0} as two adjacent vertices which are at distance at least $\frac{k-1}{2}$ from the pendant vertices of P_{n}, and if k is even, we choose L_{0} as one vertex which is at distance at least $\frac{k}{2}$ from the pendant vertices of P_{n}. For $k=2 p+1$, we get $\left|L_{i}\right|=2$ for all $i=0,1,2, \ldots, p$, and for $k=2 p$, we get $\left|L_{0}\right|=1$ and $\left|L_{i}\right|=2$ for all $i=1,2,3, \ldots, p$. In any case, D_{k} induces P_{k+1} for which L_{0} is the center. Then Theorem 6 gives the theorem below.

Theorem 7. If f is a radio k-coloring of P_{n}, then

$$
r c_{k}(f) \geq \lambda_{\max } \geq \begin{cases}\frac{k^{2}+3}{2}+\alpha+\beta+\lambda_{\text {min }}-1 & \text { if } k \text { is odd }, \\ \frac{k^{2}+2}{2}+\alpha+\beta+\lambda_{\text {min }}-1 & \text { if } k \text { is even } .\end{cases}
$$

3 Results

In this section, we determine the radio k-chromatic number of paths P_{n} where $k+4 \leq n \leq \frac{5 k+4}{2}$ if k is even and $k+5 \leq n \leq \frac{7 k-1}{2}$ if k is odd. We use Theorem 6 and Theorem 7 to get the lower bounds match those with the upper bounds in Theorems 2, 3 and 4 . We use the following lemmas in the sequel.

Lemma 1. If f is a radio k-coloring of a graph G with span λ, then there exists a radio k-coloring g of G with span λ such that the vertices of G receiving 1 and λ by f receive λ and 1 , respectively by g.

Proof. The radio k-coloring g of G defined as $g(v)=\lambda+1-f(v)$ for every vertex v of G is one of such colorings.

QED
Lemma 2. If n_{1} and n_{2} are positive integers such that $n_{1}<n_{2}$, then $r c_{k}\left(P_{n_{1}}\right) \leq r c_{k}\left(P_{n_{2}}\right)$.

Theorem 8. If $k \geq 7$ and $4 \leq s \leq\left\lfloor\frac{k+1}{2}\right\rfloor$, then

$$
r c_{k}\left(P_{k+s}\right)=\left\{\begin{array}{lll}
\frac{k^{2}+2 s+1}{2} & \text { if } k & \text { is odd } \\
\frac{k^{2}+2 s+2}{2} & \text { if } k & \text { is even }
\end{array}\right.
$$

Proof. Let f be a minimal radio k-coloring of path $P_{k+s}: v_{1} v_{2} v_{3} \ldots v_{k+s}$ with $\operatorname{span} \lambda$. Let i and j be the least positive integers such that $f\left(v_{i}\right)=1$ and $f\left(v_{j}\right)=\lambda$. Without loss of generality, we assume that $i<j$.

Case I: $k=2 p+1$

To prove the result, depending on the positions of the maximum and the minimum colored vertices, we choose a P_{k+1} subpath (L_{0} is the center of it) of P_{n} such that $\alpha+\beta \geq s-1$. If $\alpha+\beta \geq s-1$, we get the required lower bound
and if $\alpha+\beta>s-1$, we get a contradiction to Theorem 2 (using Theorem 7). If $i \leq s$, then by considering the path $v_{i} v_{i+1} v_{i+2} \ldots v_{i+p} v_{i+p+1} \ldots v_{i+k}$, we get $\alpha=\frac{k-1}{2}$. Now, by using Theorem 7, we get $r c_{k}(f) \geq \frac{k^{2}+k+2}{2}$ which is a contradiction to Theorem 2 if $s \neq \frac{k+1}{2}$. If $s<i<p+1$, then by considering the path $v_{s} v_{s+1} v_{s+2} \ldots v_{s+p} v_{s+p+1} \ldots v_{s+k}$, we get $\alpha \geq s$. If $j \geq k+1$, then by considering the path $v_{j-k} v_{j-k+1} v_{j-k+2} \ldots v_{j-p-1} v_{j-p} \ldots v_{j}$, we get $\beta \geq \frac{k-1}{2}$ which is strictly greater than $s-1$ if $s \neq \frac{k+1}{2}$. If $p+s<j<k+1$, then by considering the path $v_{1} v_{2} v_{3} \ldots v_{p+1} v_{p+2} \ldots v_{k+1}$, we get $\beta \geq s-1$. Suppose $p+1 \leq i<j \leq p+s$.
Subcase (i): $s=\mathbf{2 l}$
If $i \geq p+l+1$, then by choosing the path $v_{1} v_{2} v_{3} \ldots v_{p+1} v_{p+2} \ldots v_{k+1}$, we get $\alpha \geq l-1$ and $\beta \geq l$. By Theorem 7, we get $r c_{k}(f) \geq \frac{k^{2}+3}{2}+l-1+l=\frac{k^{2}+2 s+1}{2}$. If $j \leq p+l+1$, then by choosing $v_{s} v_{s+1} v_{s+2} \ldots v_{s+p} v_{s+p+1} \ldots v_{k+s}$ subpath, we get $\beta \geq l-1$ and $\alpha \geq l$. So, $\alpha+\beta \geq s-1$. Suppose $p+1 \leq i<p+$ $l+1<j \leq p+s$. Let $i=p+l+1-l_{1}$ and $j=p+l+1+l_{2}$ where $1 \leq l_{1} \leq l$ and $1 \leq l_{2} \leq l-1$. Suppose that $l_{1}<l_{2}$. Then by considering the path $v_{1} v_{2} v_{3} \ldots v_{p+1} v_{p+2} \ldots v_{k+1}$, we get $\alpha=\left(p+l+1-l_{1}\right)-(p+2)=l-l_{1}-1$ and $\beta=\left(p+l+1+l_{2}\right)-(p+2)=l+l_{2}-1$. Now, by Theorem $7, r c_{k}(f) \geq$ $\frac{k^{2}+3}{2}+l-l_{1}-1+l+l_{2}-1=\frac{k^{2}+3}{2}+2 l+\left(l_{2}-l_{1}\right)-2 \geq \frac{k^{2}+2 s+1}{2}$. Suppose that $l_{1}>l_{2}$. Then by considering the path $v_{s} v_{s+1} v_{s+2} \ldots v_{s+p} v_{s+p+1} \ldots v_{k+s}$, we get $\alpha=(p+2 l)-\left(p+l+1-l_{1}\right)=l+l_{1}-1$ and $\beta=(p+2 l)-\left(p+l+1+l_{2}\right)=l-l_{2}-1$. So, $\alpha+\beta \geq s-1$. If $l_{1}=l_{2}$, then we choose $L_{0}=\left\{v_{p}, v_{p+1}\right\}$ (we get the path $v_{1} v_{2} v_{3} \ldots v_{k}$. So, we get $\left|L_{p}\right|=1$ and $\left|L_{t}\right|=2, t=0,1, \ldots, p-1$. Also, $\alpha+\beta=p+l+1-l_{1}-p+1+p+l+1+l_{2}-(p+1)=2 l=s$. Now, by Theorem $6, r c_{k}(f) \geq 2 p+1-2 p+2 \sum_{t=0}^{p-1} 2(p-t)+1=\frac{k^{2}+2 s+1}{2}$.
Subcase (ii): $s=2 l+1$
If $i \geq p+l+1$ or $j \leq p+l+2$, then as in Subcase (i), we get $r c_{k}(f) \geq \frac{k^{2}+2 s+1}{2}$. So, we assume $p+1 \leq i<p+l+1<p+l+2<j \leq p+s$. Let $i=p+l+1-l_{1}$ and $j=p+l+2+l_{2}$ where $1 \leq l_{1} \leq l$ and $1 \leq l_{2} \leq l-1$. Rest of the proof is similar to that of Subcase (i).

Case II: $k=2 p$

Analogous to Case I, depending on the positions of maximum and minimum colored vertices, here also we choose a P_{k+1} subpath such that $\alpha+\beta \geq s$. If $i \leq s$, then we choose the path $v_{i} v_{i+1} v_{i+2} \ldots v_{i+p} \ldots v_{i+k}$. So, we get $\alpha=\frac{k}{2}$ and by Theorem $7, r c_{k}(f) \geq \frac{k^{2}+k+2}{2}$, which is a contradiction to Theorem 2 if $s \neq \frac{k}{2}$. If $s<i \leq p$, then by choosing $v_{s} v_{s+1} v_{s+2} \ldots v_{s+p} \ldots v_{s+k}$ subpath, we get $\alpha \geq s$. If $j \geq k+1$, then as in the Case I, we get contradiction only if $s \neq \frac{k}{2}$. Also, if $j>p+s$, then similar to Case I, we get $\beta \geq s$. Suppose that
$p+1 \leq i<j \leq p+s$.
Subcase (i): $s=\mathbf{2 l}$
If $i>p+l$, then by choosing the path $v_{1} v_{2} v_{3} \ldots v_{p+1} \ldots v_{k+1}$, we get $\alpha \geq l$ and $\beta \geq l+1$. If $j \leq p+l$, then by considering the subpath $v_{s} v_{s+1} v_{s+2} \ldots v_{s+p}$ $\ldots v_{s+k}$, we get $\beta \geq l$ and $\alpha \geq l+1$. Suppose $p+1 \leq i \leq p+l<j \leq p+s$. Let $i=p+l+1-l_{1}$ and $j=p+l+l_{2}$, where $1 \leq l_{1} \leq l$ and $1 \leq l_{2} \leq l$. The cases $l_{1}<l_{2}$ and $l_{1}>l_{2}$ are similar to Subcase (i) of Case I. If $l_{1}=l_{2}$, we choose $L_{0}=\left\{v_{p}\right\}$. So, we get $\left|L_{0}\right|=\left|L_{p}\right|=1$ and $\left|L_{t}\right|=2, t=1,2,3, \ldots, p-1$. Also, $\alpha+\beta=p+l+1-l_{1}-p+p+l+l_{2}-p=2 l+1=s+1$. Now by Theorem 6, $r c_{k}(f) \geq 2 p-2 p+2 p+2 \sum_{t=1}^{p-1} 2(p-t)+s+1=\frac{k^{2}+2 s+2}{2}$.
Subcase (ii): $s=2 l+1$
If $i>p+l+1$ or $j \leq p+l$, then as in Subcase (i), we get $r c_{k}(f) \geq \frac{k^{2}+2 s+1}{2}$. So, we assume that $p+1 \leq i<p+l+1<p+l+2<j \leq p+s$. Let $i=p+l+1-l_{1}$ and $j=p+l+1+l_{2}$ where $1 \leq l_{1} \leq l$ and $0 \leq l_{2} \leq l-1$. Rest of the proof is similar to that of Subcase (i).

Theorem 9. If $k>7$ is even and $n=\frac{3 k+2}{2}$, then $r c_{k}\left(P_{n}\right)=\frac{k^{2}+k+2}{2}$.
Proof. From Theorem 8, we have $r c_{k}\left(P_{\frac{3 k}{2}}\right)=\frac{k^{2}+k+2}{2}$. By Lemma 2 and Theorem 3 , we get the result.

QED
Theorem 10. If $k \geq 7$ is odd and $\frac{3 k+1}{2} \leq n \leq \frac{5 k-1}{2}$, then $r c_{k}\left(P_{n}\right)=\frac{k^{2}+k+2}{2}$.
Proof. From Theorem 8, we have $r c_{k}\left(P_{\frac{3 k+1}{2}}\right)=\frac{k^{2}+k+2}{2}$. By Lemma 2 and Theorem 4, we get the result.

QED
Lemma 3. Let $k \geq 7$ be odd and f be a minimal radio k-coloring of P_{n} : $v_{1} v_{2} \ldots v_{n}$ where $n=\frac{5 k-1}{2}$. If $f\left(v_{i}\right)=1$ and $f\left(v_{j}\right)=\frac{k^{2}+k+2}{2}$, then $\{i, j\}=$ $\{k, n-k+1\}$.

Proof. Let $f\left(v_{i}\right)=1$ and $f\left(v_{j}\right)=\lambda$ where $\lambda=\frac{k^{2}+k+2}{2}$. Without loss of generality, we assume that $i<j$. Let $k=2 p+1$. To prove $i=k$ and $j=n-k+1$, we first show that $j-i=p$ or $j-i=p+1$. If $j-i<p$ or $p+1<j-i \leq k$, then we choose the path $v_{j-k} v_{j-k+1} v_{j-k+2} \ldots v_{j-p-1} v_{j-p} \ldots v_{j}$ if $j>k$, else we choose the path $v_{i} v_{i+1} v_{i+2} \ldots v_{i+p} v_{i+p+1} \ldots v_{i+k}$. In any case, we get one of α and β is $\frac{k-1}{2}$ and the other is at least 1 . Now, by Theo$\operatorname{rem} 7, r c_{k}(f) \geq \frac{k^{2}+k+4}{2}$, which is a contradiction. Suppose that $j-i>k$. If the color λ is not used in the path $v_{i} v_{i+1} v_{i+2} \ldots v_{i+p} v_{i+p+1} \ldots v_{i+k}$, using Theorem 7, we get a contradiction. Suppose the color λ is used in the path $v_{i} v_{i+1} v_{i+2} \ldots v_{i+p} v_{i+p+1} \ldots v_{i+k}$, say $f\left(v_{t}\right)=\lambda$. Since $t-i \leq k, t-i=p$ or
$t-i=p+1$. Since $f\left(v_{t}\right)=f\left(v_{j}\right)=\lambda, t+k<j \leq n$. If the color 1 is not used in the path $v_{t} v_{t+1} v_{t+2} \ldots v_{t+p} v_{t+p+1} \ldots v_{t+k}$, using Theorem 7 , we get a contradiction. Suppose the color 1 is used in the path $v_{t} v_{t+1} v_{t+2} \ldots v_{t+p} v_{t+p+1} \ldots v_{t+k}$, say $f\left(v_{l}\right)=1$. Since $l-t \leq k, l-t$ is p or $p+1$. Since $f\left(v_{i}\right)=f\left(v_{l}\right)=1$, $l-i \geq k+1$. Therefore $l-i=k+1$. Now, the minimum color used in the path $v_{i+1} v_{i+2} v_{i+3} \ldots v_{l-1}$ (path on k vertices) is not less than $p+2$. So, the colors available to color the path $v_{i+1} v_{i+2} v_{i+3} \ldots v_{l-1}$ is from $p+2=\frac{k+3}{2}$ to $\frac{k^{2}+k+2}{2}$. Since $r c_{k}\left(P_{k}\right)=\frac{k^{2}+3}{2}$ and $\frac{k^{2}+k+2}{2}-\frac{k+3}{3}+1=\frac{k^{2}+1}{2}$, the path $v_{i+1} v_{i+2} v_{i+3} \ldots v_{l-1}$ cannot be colored. Therefore in any case, $j-i \ngtr k$ and hence $j-i=p$ or $p+1$.

Next, we show that $k \leq i<j \leq n-k+1$ and $j-i \neq p$. For that, we first prove that the colors 1 and λ are used only once by f. Suppose $f\left(v_{l}\right)=1$ for some $l \neq i$. Since $f\left(v_{i}\right)=1, l \geq i+k+1$ and hence $l>j$. So, $l-j$ is p or $p+1$. Therefore $l-i=l-j+j-i \leq k+1$ and hence $l-i=k+1$. Now, the minimum color used in the path $v_{i+1} v_{i+2} v_{i+3} \ldots v_{l-1}$ (path on k vertices) is not less than $p+2$. So, the colors available to color the path $v_{i+1} v_{i+2} v_{i+3} \ldots v_{l-1}$ is from $p+2=\frac{k+3}{2}$ to $\frac{k^{2}+k+2}{2}$. Since $r c_{k}\left(P_{k}\right)=\frac{k^{2}+3}{2}$ and $\frac{k^{2}+k+2}{2}-\frac{k+3}{3}+1=$ $\frac{k^{2}+1}{2}$, the path $v_{i+1} v_{i+2} v_{i+3} \ldots v_{l-1}$ cannot be colored. Hence the color 1 is assigned to only v_{i} and by Lemma 1 , the color λ is assigned only to v_{j}. If $i<k$, then $v_{i+1}, v_{i+2} v_{i+3} \ldots v_{n}$ is a path of at least $\frac{3 k+1}{2}$ vertices. Since $r c_{k}\left(P_{\frac{3 k+1}{2}}\right)=$ $\frac{k^{2}+k+2}{2}=\lambda$ and the color 1 is not used in the path $v_{i+1}, v_{i+2} v_{i+3} \ldots v_{n}$, we get a contradiction. Hence $i \geq k$. Suppose that $j>n-k+1$. Then $v_{1} v_{2} v_{3} \ldots v_{j-1}$ is a path of at least $\frac{3 k+1}{2}$ vertices and $r c_{k}\left(P_{\frac{3 k+1}{2}}\right)=\frac{k^{2}+k+2}{2}=\lambda$. But maximum color used for a vertex of $v_{1} v_{2} v_{3} \ldots v_{j-1}$ is at most $\lambda-1$, which is a contradiction. Therefore $k \leq i<j \leq n-k+1$. If $j-i=p$, then $i=k, j=k+p$ or $i=k+1, j=k+p+1$. If $i=k$ and $j=k+p$, then by considering the path $v_{k+p} v_{k+p+1} v_{k+p+2} \ldots v_{k+2 p} v_{k+2 p+1} \ldots v_{n}$, we get $\beta=\frac{k-1}{2}$ and the color 1 is not used for $v_{k+p} v_{k+p+1} v_{k+p+2} \ldots v_{n}$. Now, by using Theorem 7 , we get $r c_{k}(f) \geq \frac{k^{2}+k+4}{2}$, which is a contradiction. If $i=k+1$ and $j=k+p+1$, then for the path $v_{1} v_{2} v_{3} \ldots v_{p+1} v_{p+2} \ldots v_{k+1}$, the color $\frac{k^{2}+k+2}{2}$ is not used and $\alpha=\frac{k-1}{2}$. Now, by Theorem 7, we get $r c_{k}(f) \geq \frac{k^{2}+k+4}{2}$, which is a contradiction. Therefore, $j-i=p+1$, that is, $i=k$ and $j=n-k+1$.

QED
Theorem 11. If $k \geq 7$ is odd, then $r c_{k}\left(P_{n}\right)=\frac{k^{2}+k+4}{2}$, where $\frac{5 k+1}{2} \leq n \leq$ $\frac{7 k-1}{2}$.

Proof. Let $n=\frac{5 k+1}{2}, P_{n}: v_{1} v_{2} v_{3} \ldots v_{n}$ and $\lambda=\frac{k^{2}+k+2}{2}$. Suppose $r c_{k}\left(P_{n}\right)=\lambda$. Let f be a minimal radio k-coloring of P_{n}. Now, f restricted to $v_{1} v_{2} v_{3} \ldots v_{n-1}$ is a minimal radio k-coloring of P_{n-1}. By Lemma 3, we get $\left\{f\left(v_{k}\right), f\left(v_{n-k}\right)\right\}=$ $\{1, \lambda\}$. By restricting f to the path $v_{2} v_{3} \ldots v_{n}$ and using Lemma 3, we get
$\left\{f\left(v_{k+1}\right), f\left(v_{n-k+1}\right)\right\}=\{1, \lambda\}$. Therefore, $r c_{k}\left(P_{n}\right) \geq \frac{k^{2}+k+4}{2}$ and hence by Theorem 4, $r c_{k}\left(P_{n}\right)=\frac{k^{2}+k+4}{2}$.

QED
Lemma 4. Let $k=2 p>7$ and f be a minimal radio k-coloring of P_{n} : $v_{1} v_{2} \ldots v_{n}$ where $n=\frac{3 k+2}{2}$. If $f\left(v_{i}\right)=1$ and $f\left(v_{j}\right)=\frac{k^{2}+k+2}{2}$, then $\{i, j\}=$ $\{p+1, n-p\}$.

Proof. Let $f\left(v_{i}\right)=1$ and $f\left(v_{j}\right)=\lambda$ where $\lambda=\frac{k^{2}+k+2}{2}$. Without loss of generality, we assume that $i<j$. To prove $i=p+1$ and $j=n-p$, we first show that $j-i=p$. Suppose that $j-i<p$. If $j>k$, then by choosing $v_{j-k} v_{j-k+1} v_{j-k+2} \ldots v_{j-p} \ldots v_{j}$ path and if $i \leq p+1$, then by choosing $v_{i} v_{i+1} v_{i+2} \ldots v_{i+p} \ldots v_{i+k}$ path, we get $\alpha+\beta \geq \frac{k}{2}+1$, a contradiction, by Theorem 7, to the fact that $r c_{k}(f)=\frac{k^{2}+k+2}{2}$. If $i \geq\left\lceil\frac{3 p+1}{2}\right\rceil$, then by considering $L_{0}=\left\{v_{p}\right\}$ and using Theorem 6 , we get a contradiction as $\alpha+\beta \geq \frac{k}{2}+2$. If $j \leq\left\lceil\frac{3 p+1}{2}\right\rceil$, then by considering the path $v_{p+1} v_{p+2} v_{p+3} \ldots v_{2 p+1} \ldots v_{n}$ we get a contradiction. So, $p+1<i<\left\lceil\frac{3 p+1}{2}\right\rceil<j \leq k$. Let $i=\left\lceil\frac{3 p+1}{2}\right\rceil-l_{1}$ and $j=\left\lceil\frac{3 p+1}{2}\right\rceil+l_{2}$. By applying Theorem 6 with $L_{0}=\left\{v_{2 p+2}\right\}$ if $l_{1} \geq l_{2}$ and with $L_{0}=\left\{v_{p}\right\}$ if $l_{1}<l_{2}$, we get a contradiction to the fact that $r c_{k}(f)=\frac{k^{2}+k+2}{2}$. Therefore $j-i \nless p$. If $j-i>p$, then by considering an appropriate subpath of $k+1$ vertices (starting with v_{i} or ending with v_{j}), again we get a contradiction. Therefore $j-i=p$.

Next, we show that $i=p+1$ and $j=n-p$. For that, we first show that the colors 1 and λ are not repeated. Suppose $f\left(v_{l}\right)=1$ for some $l \neq$ i. Then $l \geq i+k+1$ and $l-j=p$. Therefore $l=j+p=i+2 p=$ $i+k$, which is a contradiction. Hence the color 1 is assigned to only v_{i} and by Lemma 1 , the color λ is assigned only to v_{j}. Suppose that $i \leq p$. Then $v_{i+1} v_{i+2} v_{i+3} \ldots v_{i+p+1} \ldots v_{i+k+1}$ does not contain the color 1 . Let $\lambda_{\text {min }}$ be the minimum color used in $v_{i+1} v_{i+2} v_{i+3} \ldots v_{i+p+1} \ldots v_{i+k+1}$, say $f\left(v_{t}\right)=\lambda_{\text {min }}$. Since $r c_{k}\left(P_{k+1}\right)=\frac{k^{2}+6}{2}$ and the maximum color used is $\frac{k^{2}+k+2}{2}, \lambda_{\text {min }} \leq p-1$. Now, $p-2 \geq \lambda_{\text {min }}-1 \geq 2 p+1-d\left(v_{i}, v_{t}\right)=2 p+1-(t-i)$, that is $t \geq i+p+3$. So, $\alpha=t-(i+p+1)=(t-i)-(p+1) \geq 2 p+1-\lambda_{\text {min }}+1-(p+1)=p+1-\lambda_{\text {min }}$ and $\beta=1$. Now, by Theorem 7 , we get $r c_{k}(f) \geq \frac{k^{2}+2}{2}+p+1-\lambda_{\text {min }}+1+$ $\lambda_{\text {min }}-1=\frac{k^{2}+k+4}{2}$ which is a contradiction. Similarly, by considering the path $v_{j-k-1} v_{j-k} v_{j-k+1} \ldots v_{j-p-1} \ldots v_{j-1}$, we get a contradiction if $j>n-p$. Therefore $j=n-p$ and $i=p+1$.

Theorem 12. If $k>7$ is even, then $r c_{k}\left(P_{n}\right)=\frac{k^{2}+k+4}{2}$, where $\frac{3 k+4}{2} \leq n \leq$ $\frac{5 k+4}{2}$.

Proof. Similar to the proof of Theorem 11, using Lemma 4.

4 Conclusion

For any non-trivial class of graphs, the radio k-chromatic number is not known for arbitrary k, in fact, little has been done when $k \leq \operatorname{diam}(G)-2$. One of the possible reasons could be that finding $r c_{k}(G)$ is difficult for smaller values of k, in general. As far as we know, $r c_{k}(G)$ has been studied for $k \leq \operatorname{diam}(G)-3$ only when $G=P_{n}$. In this article, we have determined $r c_{k}\left(P_{n}\right)$ for $k \geq \frac{2 n+1}{7}$ if k is odd and for $k \geq \frac{2 n-4}{5}$ if k is even. From Theorem 11 and Theorem 12, for the infinite path $P_{\infty}, r c_{k}\left(P_{\infty}\right) \geq \frac{k^{2}+k+4}{2}$ which improves the lower bound given by Das et al. [3] by one, a step towards Conjecture 1.

References

[1] G. Chartrand, D. Erwin, F. Harary, and P. Zhang, Radio labelings of graphs, Bull. Inst. Combin. Appl., 33 (2001),77-85.
[2] G. Chartrand, L. Nebeskỳ, and P. Zhang, Radio k-colorings of paths, Discuss. Math. Graph Theory, 24(1) (2004), 5-21.
[3] S. Das, S. C. Ghosh, S. Nandi, and S. Sen, A lower bound technique for radio k-coloring, Discrete Math., 340(5) (2017), 855-861.
[4] M. Kchikech, R. Khennoufa, and O. Togni, Linear and cyclic radio k-labelings of trees, Discuss. Math. Graph Theory, 27(1) (2007), 105-123.
[5] R. Khennoufa and O. Togni, A note on radio antipodal colourings of paths, Math. Bohem., 130(3) (2005), 277-282.
[6] S. R. Kola and P. Panigrahi, Nearly antipodal chromatic number ac ${ }^{\prime}\left(P_{n}\right)$ of the path P_{n}, Math. Bohem., 134(1) (2009), 77-86.
[7] S. R. Kola and P. Panigrahi, On radio $(n-4)$-chromatic number of the path P_{n}, AKCE Int. J. Graphs Comb, 6(1) (2009), 209-217.
[8] S. R. Kola and P. Panigrahi, On a conjecture for radio k-chromatic number of paths, Proceedings of the International Conference on Applied Mathematics and Theoretical Computer Science, (2013), 99-103.
[9] D. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math., 19(3) (2005), 610-621.
[10] D. B. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ, (1996).

[^0]: http://siba-ese.unisalento.it/ © 2022 Università del Salento

