Note di Matematica Note Mat. **42** (2022) no. 1, 37–45.

On the Radio k-chromatic Number of Paths

Niranjan P. K.

Department of Mathematics, RV College of Engineering, Mysuru Road, Bengaluru-560059, India.

niranjanpk704@rvce.edu.in

Srinivasa Rao Kola

Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025, India. srinukola@nitk.edu.in

Received: 7.9.2021; accepted: 1.5.2022.

Abstract. A radio k-coloring of a graph G is an assignment f of positive integers (colors) to the vertices of G such that for any two vertices u and v of G, the difference between their colors is at least 1 + k - d(u, v). The span $rc_k(f)$ of f is $max\{f(v) : v \in V(G)\}$. The radio k-chromatic number $rc_k(G)$ of G is $min\{rc_k(f) : f \text{ is a radio k-coloring of } G\}$. In this paper, in an attempt to prove a conjecture on the radio k-chromatic number of path, we determine the radio k-chromatic number of paths P_n for $k + 5 \le n \le \frac{7k-1}{2}$ if k is odd and $k + 4 \le n \le \frac{5k+4}{2}$ if k is even.

Keywords: radio k-coloring, radio k-chromatic number, radio coloring, radio number

MSC 2020 classification: 05C15, 05C78, 05C12

1 Introduction

All graphs considered in this paper are simple connected graphs. We use standard graph theory terminology according to [10]. The channel assignment problem is the problem of assigning frequencies to transmitters in some optimal manner. Chartrand et al. [1] have introduced radio k-coloring of graphs as a variation of channel assignment problem. A radio k-coloring of a graph G is an assignment f of positive integers to the vertices of G such that $|f(u) - f(v)| \ge$ 1 + k - d(u, v) for every pair u and v of vertices in G. The span of f is the largest integer assigned by f and is denoted by $rc_k(f)$. The radio k-colorings of G. A radio k-coloring having span $rc_k(G)$ is called a minimal radio k-coloring of G. If k is the diameter d of G, then f is called a radio coloring of G and the radio d-chromatic number is called the radio number of G, denoted by rn(G). A radio (d-1)-coloring and the corresponding chromatic number are said to be an antipodal coloring and the antipodal number ac(G) of G, respectively. A radio

http://siba-ese.unisalento.it/ (C) 2022 Università del Salento

(d-2)-coloring and the radio (d-2)-chromatic number are referred as a nearly antipodal coloring and the nearly antipodal number ac'(G) of G, respectively.

For any path P_{k+1} $(k \ge 1)$, Liu and Zhu [9] have determined the radio number as $\frac{k^2+3}{2}$ if k is odd and $\frac{k^2+6}{2}$ if k is even. Khennoufa and Togni [5] have shown that $ac(P_{k+2})$ is $\frac{k^2+5}{2}$ for an odd k > 2 and $\frac{k^2+6}{2}$ for an even k > 3. Kola and Panigrahi [6] have determined the nearly antipodal number of P_{k+3} as $\frac{k^2+7}{2}$ for an odd k > 4 and $\frac{k^2+8}{2}$ for an even k > 5. Also, in [7], they have found the radio k-chromatic number of P_{k+4} as $\frac{k^2+9}{2}$ for an odd k > 6 and given an upper bound for the same as $\frac{k^2+10}{2}$ for an even k > 7. Even though radio k-coloring of a graph G is defined for $k \le diam(G)$, it is studied for k > diam(G) as it is useful in determining the radio k-chromatic number of larger graphs. For any $k \ge n$, Kchikech et al. [4] have proved that $rc_k(P_n) = (n-1)k - \frac{1}{2}n(n-2) + 1$ if n is even and $rc_k(P_n) = (n-1)k - \frac{1}{2}(n-1)^2 + 2$ if n is odd.

For any path P_n and an integer k, 0 < k < n, Chartrand et al. [2] have given an upper bound for $rc_k(P_n)$ as below.

Theorem 1. [2] For 0 < k < n - 1,

$$rc_k(P_n) \le \begin{cases} rac{k^2 + 2k + 1}{2} & if \ k \ is \ odd, \\ rac{k^2 + 2k + 2}{2} & if \ k \ is \ even. \end{cases}$$

Kchikech et al. [4] have proposed the following conjecture. Conjecture 1. [4] For $k \ge 5$,

$$\lim_{n \to \infty} rc_k(P_n) = \begin{cases} \frac{k^2 + 2k + 1}{2} & \text{if } k \text{ is odd,} \\ \frac{k^2 + 2k + 2}{2} & \text{if } k \text{ is even.} \end{cases}$$

In an attempt to prove Conjecture 1, Kola and Panigrahi [8] have given upper bounds of $rc_k(P_n)$ for different intervals of n as below.

Theorem 2. [8] For $k \ge 7$ and $4 \le s \le \lfloor \frac{k+1}{2} \rfloor$

$$rc_k(P_{k+s}) \le \begin{cases} rac{k^2 + 2s + 1}{2} & \text{if } k \text{ is odd,} \\ rac{k^2 + 2s + 2}{2} & \text{if } k \text{ is even.} \end{cases}$$

Theorem 3. [8] For any even $k \ge 6$,

$$rc_k(P_n) \le \begin{cases} \frac{k^2 + k + 2}{2} & \text{if } n = \frac{3k + 2}{2}, \\ \frac{k^2 + k + 2s + 4}{2} & \text{if } \frac{(3 + 2s)k + 2s + 4}{2} \le n \le \frac{(5 + 2s)k + 2s + 4}{2}, \end{cases}$$

where $s = 0, 1, 2, \dots, \frac{k-4}{2}$.

On the Radio k-chromatic Number of Paths

Theorem 4. [8] For any odd $k \ge 5$,

$$rc_k(P_n) \le \begin{cases} \frac{k^2 + k + 2}{2} & \text{if } \frac{3k + 1}{2} < n \le \frac{5k - 1}{2}, \\ \frac{k^2 + k + 2s + 4}{2} & \text{if } \frac{(5 + 2s)k + 1}{2} \le n \le \frac{(7 + 2s)k - 1}{2}, \ s = 0, 1, 2, \dots, \frac{k - 5}{2}. \end{cases}$$

Further, Kola and Panigrahi [8] have re-conjectured Conjecture 1 as below. **Conjecture 2.** [8] For any integer $k \ge 5$ and $n \ge n_0$, $rc_k(P_n) = n_0$, where $n_0 = \frac{k^2+2k+2}{2}$ if k is even and $n_0 = \frac{k^2+2k+1}{2}$ if k is odd.

In this article, we prove that the upper bounds given in Theorem 2 are exact. Also, we show that the bounds in Theorem 3 when $\frac{3k+2}{2} \leq n \leq \frac{5k+4}{2}$ and the bounds in Theorem 4 when $\frac{3k+1}{2} \leq n \leq \frac{7k-1}{2}$, are exact.

2 Preliminaries

To obtain lower bounds for the radio k-chromatic number of the paths, we use the lower bound technique for radio k-coloring given by Das et al. [3]. For a subset S of the vertex set of a graph G, let N(S) be the set of all vertices of G adjacent to at least one vertex of S.

Theorem 5. [3] If f is a radio k-coloring of a graph G, then

$$rc_k(f) \ge |D_k| - 2p + 2\sum_{i=0}^{p-1} |L_i|(p-i) + \alpha + \beta,$$
 (2.1)

where D_k and L_i 's are defined as follows. If k = 2p + 1, then $L_0 = V(C)$, where C is a maximal clique in G. If k = 2p, then $L_0 = \{v\}$, where v is a vertex of G. Recursively define $L_{i+1} = N(L_i) \setminus (L_0 \cup L_1 \cup \cdots \cup L_i)$ for $i = 0, 1, 2, \ldots, p - 1$. Let $D_k = L_0 \cup L_1 \cup \cdots \cup L_p$. The minimum and the maximum colored vertices among the vertices of D_k are in L_α and L_β , respectively.

From the proof of Theorem 5 in [3], it is easy to see that the right hand side of (2.1) is actually counts the number of colors between minimum and maximum colors (both inclusive) among the vertices of D_k and hence we have the following theorem.

Theorem 6. Let G be a graph, and L_i and D_k be as in Theorem 5. If f is a radio k-coloring of G, and $\lambda_{min} \in L_{\alpha}$ and $\lambda_{max} \in L_{\beta}$ are the minimum and the maximum colors respectively, assigned by f to the vertices of D_k , then

$$\lambda_{max} - \lambda_{min} + 1 \ge |D_k| - 2p + 2\sum_{i=0}^{p-1} |L_i|(p-i) + \alpha + \beta.$$

For a path P_n , if k is odd, we choose L_0 as two adjacent vertices which are at distance at least $\frac{k-1}{2}$ from the pendant vertices of P_n , and if k is even, we choose L_0 as one vertex which is at distance at least $\frac{k}{2}$ from the pendant vertices of P_n . For k = 2p + 1, we get $|L_i| = 2$ for all $i = 0, 1, 2, \ldots, p$, and for k = 2p, we get $|L_0| = 1$ and $|L_i| = 2$ for all $i = 1, 2, 3, \ldots, p$. In any case, D_k induces P_{k+1} for which L_0 is the center. Then Theorem 6 gives the theorem below.

Theorem 7. If f is a radio k-coloring of P_n , then

$$rc_k(f) \ge \lambda_{max} \ge \begin{cases} \frac{k^2+3}{2} + \alpha + \beta + \lambda_{min} - 1 & \text{if } k \text{ is odd,} \\ \frac{k^2+2}{2} + \alpha + \beta + \lambda_{min} - 1 & \text{if } k \text{ is even.} \end{cases}$$

3 Results

In this section, we determine the radio k-chromatic number of paths P_n where $k + 4 \le n \le \frac{5k+4}{2}$ if k is even and $k + 5 \le n \le \frac{7k-1}{2}$ if k is odd. We use Theorem 6 and Theorem 7 to get the lower bounds match those with the upper bounds in Theorems 2, 3 and 4. We use the following lemmas in the sequel.

Lemma 1. If f is a radio k-coloring of a graph G with span λ , then there exists a radio k-coloring g of G with span λ such that the vertices of G receiving 1 and λ by f receive λ and 1, respectively by g.

Proof. The radio k-coloring g of G defined as $g(v) = \lambda + 1 - f(v)$ for every vertex v of G is one of such colorings.

Lemma 2. If n_1 and n_2 are positive integers such that $n_1 < n_2$, then $rc_k(P_{n_1}) \leq rc_k(P_{n_2})$.

Theorem 8. If $k \ge 7$ and $4 \le s \le \lfloor \frac{k+1}{2} \rfloor$, then

$$rc_k(P_{k+s}) = \begin{cases} \frac{k^2 + 2s + 1}{2} & \text{if } k \text{ is odd,} \\ \frac{k^2 + 2s + 2}{2} & \text{if } k \text{ is even.} \end{cases}$$

Proof. Let f be a minimal radio k-coloring of path $P_{k+s} : v_1v_2v_3 \ldots v_{k+s}$ with span λ . Let i and j be the least positive integers such that $f(v_i) = 1$ and $f(v_j) = \lambda$. Without loss of generality, we assume that i < j. Case I: k = 2p + 1

To prove the result, depending on the positions of the maximum and the minimum colored vertices, we choose a P_{k+1} subpath (L_0 is the center of it) of P_n such that $\alpha + \beta \ge s - 1$. If $\alpha + \beta \ge s - 1$, we get the required lower bound

and if $\alpha + \beta > s - 1$, we get a contradiction to Theorem 2 (using Theorem 7). If $i \leq s$, then by considering the path $v_i v_{i+1} v_{i+2} \dots v_{i+p} v_{i+p+1} \dots v_{i+k}$, we get $\alpha = \frac{k-1}{2}$. Now, by using Theorem 7, we get $rc_k(f) \geq \frac{k^2+k+2}{2}$ which is a contradiction to Theorem 2 if $s \neq \frac{k+1}{2}$. If s < i < p+1, then by considering the path $v_s v_{s+1} v_{s+2} \dots v_{s+p} v_{s+p+1} \dots v_{s+k}$, we get $\alpha \geq s$. If $j \geq k+1$, then by considering the path $v_j - k v_j - k + 1 v_j - k + 2 \dots v_j - p - 1 v_j - p \dots v_j$, we get $\beta \geq \frac{k-1}{2}$ which is strictly greater than s - 1 if $s \neq \frac{k+1}{2}$. If p + s < j < k+1, then by considering the path $v_1 v_2 v_3 \dots v_{p+1} v_{p+2} \dots v_{k+1}$, we get $\beta \geq s - 1$. Suppose $p + 1 \leq i < j \leq p + s$.

Subcase (i): s = 2l

If $i \ge p+l+1$, then by choosing the path $v_1v_2v_3 \dots v_{p+1}v_{p+2} \dots v_{k+1}$, we get $\alpha \ge l-1$ and $\beta \ge l$. By Theorem 7, we get $rc_k(f) \ge \frac{k^2+3}{2} + l-1 + l = \frac{k^2+2s+1}{2}$. If $j \le p+l+1$, then by choosing $v_sv_{s+1}v_{s+2} \dots v_{s+p}v_{s+p+1} \dots v_{k+s}$ subpath, we get $\beta \ge l-1$ and $\alpha \ge l$. So, $\alpha + \beta \ge s-1$. Suppose $p+1 \le i < p+l+1 < j \le p+s$. Let $i = p+l+1-l_1$ and $j = p+l+1+l+l_2$ where $1 \le l_1 \le l$ and $1 \le l_2 \le l-1$. Suppose that $l_1 < l_2$. Then by considering the path $v_1v_2v_3 \dots v_{p+1}v_{p+2} \dots v_{k+1}$, we get $\alpha = (p+l+1-l_1) - (p+2) = l-l_1-1$ and $\beta = (p+l+1+l_2) - (p+2) = l+l_2-1$. Now, by Theorem 7, $rc_k(f) \ge \frac{k^2+3}{2}+l-l_1-1+l+l_2-1=\frac{k^2+3}{2}+2l+(l_2-l_1)-2\ge \frac{k^2+2s+1}{2}$. Suppose that $l_1 > l_2$. Then by considering the path $v_sv_{s+1}v_{s+2} \dots v_{s+p}v_{s+p+1} \dots v_{k+s}$, we get $\alpha = (p+2l) - (p+l+1-l_1) = l+l_1-1$ and $\beta = (p+2l) - (p+l+1+l_2) = l-l_2-1$. So, $\alpha + \beta \ge s-1$. If $l_1 = l_2$, then we choose $L_0 = \{v_p, v_{p+1}\}$ (we get the path $v_1v_2v_3 \dots v_k$). So, we get $|L_p| = 1$ and $|L_t| = 2, t = 0, 1, \dots, p-1$. Also, $\alpha + \beta = p+l+1-l_1-p+1+p+l+1+l_2-(p+1) = 2l = s$. Now, by Theorem 6, $rc_k(f) \ge 2p+1-2p+2\sum_{t=0}^{p-1} 2(p-t)+1 = \frac{k^2+2s+1}{2}$.

Subcase (ii): s = 2l + 1

If $i \ge p+l+1$ or $j \le p+l+2$, then as in Subcase (i), we get $rc_k(f) \ge \frac{k^2+2s+1}{2}$. So, we assume $p+1 \le i < p+l+1 < p+l+2 < j \le p+s$. Let $i = p+l+1-l_1$ and $j = p+l+2+l_2$ where $1 \le l_1 \le l$ and $1 \le l_2 \le l-1$. Rest of the proof is similar to that of Subcase (i).

Case II: k = 2p

Analogous to Case I, depending on the positions of maximum and minimum colored vertices, here also we choose a P_{k+1} subpath such that $\alpha + \beta \geq s$. If $i \leq s$, then we choose the path $v_i v_{i+1} v_{i+2} \dots v_{i+p} \dots v_{i+k}$. So, we get $\alpha = \frac{k}{2}$ and by Theorem 7, $rc_k(f) \geq \frac{k^2+k+2}{2}$, which is a contradiction to Theorem 2 if $s \neq \frac{k}{2}$. If $s < i \leq p$, then by choosing $v_s v_{s+1} v_{s+2} \dots v_{s+k}$ subpath, we get $\alpha \geq s$. If $j \geq k+1$, then as in the Case I, we get $\beta \geq s$. Suppose that

 $p + 1 \le i < j \le p + s.$ Subcase (i): s = 2l

If i > p + l, then by choosing the path $v_1v_2v_3 \dots v_{p+1} \dots v_{k+1}$, we get $\alpha \ge l$ and $\beta \ge l+1$. If $j \le p+l$, then by considering the subpath $v_sv_{s+1}v_{s+2}\dots v_{s+p}$ $\dots v_{s+k}$, we get $\beta \ge l$ and $\alpha \ge l+1$. Suppose $p+1 \le i \le p+l < j \le p+s$. Let $i = p+l+1-l_1$ and $j = p+l+l_2$, where $1 \le l_1 \le l$ and $1 \le l_2 \le l$. The cases $l_1 < l_2$ and $l_1 > l_2$ are similar to Subcase (i) of Case I. If $l_1 = l_2$, we choose $L_0 = \{v_p\}$. So, we get $|L_0| = |L_p| = 1$ and $|L_t| = 2, t = 1, 2, 3, \dots, p-1$. Also, $\alpha + \beta = p+l+1-l_1 - p+p+l+l_2 - p = 2l+1 = s+1$. Now by Theorem 6, $rc_k(f) \ge 2p-2p+2p+2\sum_{t=1}^{p-1} 2(p-t)+s+1 = \frac{k^2+2s+2}{2}$.

Subcase (ii): s = 2l + 1

If i > p + l + 1 or $j \le p + l$, then as in Subcase (i), we get $rc_k(f) \ge \frac{k^2 + 2s + 1}{2}$. So, we assume that $p+1 \le i < p+l+1 < p+l+2 < j \le p+s$. Let $i = p+l+1-l_1$ and $j = p + l + 1 + l_2$ where $1 \le l_1 \le l$ and $0 \le l_2 \le l - 1$. Rest of the proof is similar to that of Subcase (i).

Theorem 9. If k > 7 is even and $n = \frac{3k+2}{2}$, then $rc_k(P_n) = \frac{k^2+k+2}{2}$.

Proof. From Theorem 8, we have $rc_k(P_{\frac{3k}{2}}) = \frac{k^2+k+2}{2}$. By Lemma 2 and Theorem 3, we get the result.

Theorem 10. If $k \ge 7$ is odd and $\frac{3k+1}{2} \le n \le \frac{5k-1}{2}$, then $rc_k(P_n) = \frac{k^2+k+2}{2}$.

Proof. From Theorem 8, we have $rc_k(P_{\frac{3k+1}{2}}) = \frac{k^2+k+2}{2}$. By Lemma 2 and Theorem 4, we get the result.

Lemma 3. Let $k \ge 7$ be odd and f be a minimal radio k-coloring of P_n : $v_1v_2...v_n$ where $n = \frac{5k-1}{2}$. If $f(v_i) = 1$ and $f(v_j) = \frac{k^2+k+2}{2}$, then $\{i, j\} = \{k, n-k+1\}$.

Proof. Let $f(v_i) = 1$ and $f(v_j) = \lambda$ where $\lambda = \frac{k^2+k+2}{2}$. Without loss of generality, we assume that i < j. Let k = 2p + 1. To prove i = k and j = n - k + 1, we first show that j - i = p or j - i = p + 1. If j - i < p or $p+1 < j-i \leq k$, then we choose the path $v_{j-k}v_{j-k+1}v_{j-k+2}\ldots v_{j-p-1}v_{j-p}\ldots v_j$ if j > k, else we choose the path $v_iv_{i+1}v_{i+2}\ldots v_{i+p}v_{i+p+1}\ldots v_{i+k}$. In any case, we get one of α and β is $\frac{k-1}{2}$ and the other is at least 1. Now, by Theorem 7, $rc_k(f) \geq \frac{k^2+k+4}{2}$, which is a contradiction. Suppose that j - i > k. If the color λ is not used in the path $v_iv_{i+1}v_{i+2}\ldots v_{i+p}v_{i+p+1}\ldots v_{i+k}$, using Theorem 7, we get a contradiction. Suppose the color λ is used in the path $v_iv_{i+1}v_{i+2}\ldots v_{i+p}v_{i+p+1}\ldots v_{i+k}$, using Theorem 7, we get a contradiction. Suppose the color λ is used in the path $v_iv_{i+1}v_{i+2}\ldots v_{i+p}v_{i+p+1}\ldots v_{i+k}$, using

t-i = p+1. Since $f(v_t) = f(v_j) = \lambda$, $t+k < j \le n$. If the color 1 is not used in the path $v_t v_{t+1} v_{t+2} \dots v_{t+p} v_{t+p+1} \dots v_{t+k}$, using Theorem 7, we get a contradiction. Suppose the color 1 is used in the path $v_t v_{t+1} v_{t+2} \dots v_{t+p} v_{t+p+1} \dots v_{t+k}$, say $f(v_l) = 1$. Since $l-t \le k$, l-t is p or p+1. Since $f(v_i) = f(v_l) = 1$, $l-i \ge k+1$. Therefore l-i = k+1. Now, the minimum color used in the path $v_{i+1} v_{i+2} v_{i+3} \dots v_{l-1}$ (path on k vertices) is not less than p+2. So, the colors available to color the path $v_{i+1} v_{i+2} v_{i+3} \dots v_{l-1}$ is from $p+2 = \frac{k+3}{2}$ to $\frac{k^2+k+2}{2}$. Since $rc_k(P_k) = \frac{k^2+3}{2}$ and $\frac{k^2+k+2}{2} - \frac{k+3}{3} + 1 = \frac{k^2+1}{2}$, the path $v_{i+1} v_{i+2} v_{i+3} \dots v_{l-1}$ cannot be colored. Therefore in any case, $j-i \ne k$ and hence j-i = p or p+1.

Next, we show that $k \leq i < j \leq n - k + 1$ and $j - i \neq p$. For that, we first prove that the colors 1 and λ are used only once by f. Suppose $f(v_l) = 1$ for some $l \neq i$. Since $f(v_i) = 1$, $l \geq i + k + 1$ and hence l > j. So, l - j is p or p+1. Therefore $l-i=l-j+j-i\leq k+1$ and hence l-i=k+1. Now, the minimum color used in the path $v_{i+1}v_{i+2}v_{i+3}\ldots v_{l-1}$ (path on k vertices) is not less than p+2. So, the colors available to color the path $v_{i+1}v_{i+2}v_{i+3}\ldots v_{l-1}$ is from $p+2=\frac{k+3}{2}$ to $\frac{k^2+k+2}{2}$. Since $rc_k(P_k)=\frac{k^2+3}{2}$ and $\frac{k^2+k+2}{2}-\frac{k+3}{3}+1=$ $\frac{k^2+1}{2}$, the path $v_{i+1}v_{i+2}v_{i+3}\ldots v_{l-1}$ cannot be colored. Hence the color 1 is assigned to only v_i and by Lemma 1, the color λ is assigned only to v_j . If i < k, then $v_{i+1}, v_{i+2}v_{i+3} \dots v_n$ is a path of at least $\frac{3k+1}{2}$ vertices. Since $rc_k(P_{\frac{3k+1}{2}}) =$ $\frac{k^2+k+2}{2} = \lambda$ and the color 1 is not used in the path $v_{i+1}, v_{i+2}v_{i+3} \dots v_n$, we get a contradiction. Hence $i \ge k$. Suppose that j > n-k+1. Then $v_1v_2v_3 \dots v_{j-1}$ is a path of at least $\frac{3k+1}{2}$ vertices and $rc_k(P_{\frac{3k+1}{2}}) = \frac{k^2+k+2}{2} = \lambda$. But maximum color used for a vertex of $v_1v_2v_3...v_{j-1}$ is at most $\lambda - 1$, which is a contradiction. Therefore $k \leq i < j \leq n-k+1$. If j-i = p, then i = k, j = k+p or i = k + 1, j = k + p + 1. If i = k and j = k + p, then by considering the path $v_{k+p}v_{k+p+1}v_{k+p+2}\dots v_{k+2p}v_{k+2p+1}\dots v_n$, we get $\beta = \frac{k-1}{2}$ and the color 1 is not used for $v_{k+p}v_{k+p+1}v_{k+p+2}\ldots v_n$. Now, by using Theorem 7, we get $rc_k(f) \geq \frac{k^2+k+4}{2}$, which is a contradiction. If i = k+1 and j = k+p+1, then for the path $v_1v_2v_3\ldots v_{p+1}v_{p+2}\ldots v_{k+1}$, the color $\frac{k^2+k+2}{2}$ is not used and $\alpha = \frac{k-1}{2}$. Now, by Theorem 7, we get $rc_k(f) \geq \frac{k^2+k+4}{2}$, which is a contradiction. Therefore, j - i = p + 1, that is, i = k and j = n - k + 1. QED

Theorem 11. If $k \ge 7$ is odd, then $rc_k(P_n) = \frac{k^2 + k + 4}{2}$, where $\frac{5k+1}{2} \le n \le \frac{7k-1}{2}$.

Proof. Let $n = \frac{5k+1}{2}$, $P_n : v_1 v_2 v_3 \dots v_n$ and $\lambda = \frac{k^2+k+2}{2}$. Suppose $rc_k(P_n) = \lambda$. Let f be a minimal radio k-coloring of P_n . Now, f restricted to $v_1 v_2 v_3 \dots v_{n-1}$ is a minimal radio k-coloring of P_{n-1} . By Lemma 3, we get $\{f(v_k), f(v_{n-k})\} = \{1, \lambda\}$. By restricting f to the path $v_2 v_3 \dots v_n$ and using Lemma 3, we get $\{f(v_{k+1}), f(v_{n-k+1})\} = \{1, \lambda\}$. Therefore, $rc_k(P_n) \ge \frac{k^2 + k + 4}{2}$ and hence by Theorem 4, $rc_k(P_n) = \frac{k^2 + k + 4}{2}$.

Lemma 4. Let k = 2p > 7 and f be a minimal radio k-coloring of $P_n : v_1v_2...v_n$ where $n = \frac{3k+2}{2}$. If $f(v_i) = 1$ and $f(v_j) = \frac{k^2+k+2}{2}$, then $\{i, j\} = \{p+1, n-p\}$.

Proof. Let $f(v_i) = 1$ and $f(v_j) = \lambda$ where $\lambda = \frac{k^2 + k + 2}{2}$. Without loss of generality, we assume that i < j. To prove i = p + 1 and j = n - p, we first show that j - i = p. Suppose that j - i < p. If j > k, then by choosing $v_{j-k}v_{j-k+1}v_{j-k+2}\ldots v_{j-p}\ldots v_j$ path and if $i \leq p+1$, then by choosing $v_iv_{i+1}v_{i+2}\ldots v_{i+p}\ldots v_{i+k}$ path, we get $\alpha + \beta \geq \frac{k}{2} + 1$, a contradiction, by Theorem 7, to the fact that $rc_k(f) = \frac{k^2 + k + 2}{2}$. If $i \geq \lceil \frac{3p+1}{2} \rceil$, then by considering $L_0 = \{v_p\}$ and using Theorem 6, we get a contradiction as $\alpha + \beta \geq \frac{k}{2} + 2$. If $j \leq \lceil \frac{3p+1}{2} \rceil$, then by considering the path $v_{p+1}v_{p+2}v_{p+3}\ldots v_{2p+1}\ldots v_n$ we get a contradiction. So, $p + 1 < i < \lceil \frac{3p+1}{2} \rceil < j \leq k$. Let $i = \lceil \frac{3p+1}{2} \rceil - l_1$ and $j = \lceil \frac{3p+1}{2} \rceil + l_2$. By applying Theorem 6 with $L_0 = \{v_{2p+2}\}$ if $l_1 \geq l_2$ and with $L_0 = \{v_p\}$ if $l_1 < l_2$, we get a contradiction to the fact that $rc_k(f) = \frac{k^2 + k + 2}{2}$. Therefore $j - i \not< p$. If j - i > p, then by considering an appropriate subpath of k+1 vertices (starting with v_i or ending with v_j), again we get a contradiction. Therefore j - i = p.

Next, we show that i = p + 1 and j = n - p. For that, we first show that the colors 1 and λ are not repeated. Suppose $f(v_l) = 1$ for some $l \neq i$. Then $l \geq i + k + 1$ and l - j = p. Therefore l = j + p = i + 2p = i + k, which is a contradiction. Hence the color 1 is assigned to only v_i and by Lemma 1, the color λ is assigned only to v_j . Suppose that $i \leq p$. Then $v_{i+1}v_{i+2}v_{i+3}\ldots v_{i+p+1}\ldots v_{i+k+1}$ does not contain the color 1. Let λ_{min} be the minimum color used in $v_{i+1}v_{i+2}v_{i+3}\ldots v_{i+p+1}\ldots v_{i+k+1}$, say $f(v_t) = \lambda_{min}$. Since $rc_k(P_{k+1}) = \frac{k^2+6}{2}$ and the maximum color used is $\frac{k^2+k+2}{2}$, $\lambda_{min} \leq p - 1$. Now, $p-2 \geq \lambda_{min} - 1 \geq 2p + 1 - d(v_i, v_t) = 2p + 1 - (t - i)$, that is $t \geq i + p + 3$. So, $\alpha = t - (i + p + 1) = (t - i) - (p + 1) \geq 2p + 1 - \lambda_{min} + 1 - (p + 1) = p + 1 - \lambda_{min}$ and $\beta = 1$. Now, by Theorem 7, we get $rc_k(f) \geq \frac{k^2+2}{2} + p + 1 - \lambda_{min} + 1 + \lambda_{min} - 1 = \frac{k^2+k+4}{2}$ which is a contradiction. Similarly, by considering the path $v_{j-k-1}v_{j-k}v_{j-k+1}\ldots v_{j-p-1}\ldots v_{j-1}$, we get a contradiction if j > n - p. Therefore j = n - p and i = p + 1.

Theorem 12. If k > 7 is even, then $rc_k(P_n) = \frac{k^2 + k + 4}{2}$, where $\frac{3k+4}{2} \le n \le \frac{5k+4}{2}$.

Proof. Similar to the proof of Theorem 11, using Lemma 4.

On the Radio k-chromatic Number of Paths

4 Conclusion

For any non-trivial class of graphs, the radio k-chromatic number is not known for arbitrary k, in fact, little has been done when $k \leq diam(G) - 2$. One of the possible reasons could be that finding $rc_k(G)$ is difficult for smaller values of k, in general. As far as we know, $rc_k(G)$ has been studied for $k \leq diam(G) - 3$ only when $G = P_n$. In this article, we have determined $rc_k(P_n)$ for $k \geq \frac{2n+1}{7}$ if k is odd and for $k \geq \frac{2n-4}{5}$ if k is even. From Theorem 11 and Theorem 12, for the infinite path P_{∞} , $rc_k(P_{\infty}) \geq \frac{k^2+k+4}{2}$ which improves the lower bound given by Das et al. [3] by one, a step towards Conjecture 1.

References

- G. Chartrand, D. Erwin, F. Harary, and P. Zhang, *Radio labelings of graphs*, Bull. Inst. Combin. Appl., 33 (2001),77–85.
- [2] G. Chartrand, L. Nebeský, and P. Zhang, Radio k-colorings of paths, Discuss. Math. Graph Theory, 24(1) (2004), 5–21.
- [3] S. Das, S. C. Ghosh, S. Nandi, and S. Sen, A lower bound technique for radio k-coloring, Discrete Math., 340(5) (2017), 855–861.
- [4] M. Kchikech, R. Khennoufa, and O. Togni, *Linear and cyclic radio k-labelings of trees*, Discuss. Math. Graph Theory, 27(1) (2007), 105–123.
- [5] R. Khennoufa and O. Togni, A note on radio antipodal colourings of paths, Math. Bohem., 130(3) (2005), 277–282.
- [6] S. R. Kola and P. Panigrahi, Nearly antipodal chromatic number $ac'(P_n)$ of the path P_n , Math. Bohem., 134(1) (2009), 77–86.
- S. R. Kola and P. Panigrahi, On radio (n 4)-chromatic number of the path P_n, AKCE Int. J. Graphs Comb, 6(1) (2009), 209–217.
- [8] S. R. Kola and P. Panigrahi, On a conjecture for radio k-chromatic number of paths, Proceedings of the International Conference on Applied Mathematics and Theoretical Computer Science, (2013), 99-103.
- D. Liu and X. Zhu, Multilevel distance labelings for paths and cycles, SIAM J. Discrete Math., 19(3) (2005), 610–621.
- [10] D. B. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ, (1996).