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Abstract. Polar systems are undersampled due to the difficulty of sampling remote and challenging environ-
ments; however, these systems are critical components of global biogeochemical cycles. Measurements on pri-
mary productivity in specific areas can quantify the input of organic matter to food webs and so are of critical
ecological importance as well. However, long-term measurements using the same methodology are available
only for a few polar systems. Primary productivity measurements using 14C-uptake incubations from the Ross
Sea, Antarctica, are synthesized, along with chlorophyll concentrations at the same depths and locations. A
total of 19 independent cruises were completed and 449 stations occupied where measurements of primary
productivity (each with seven depths) were completed. The incubations used the same basic simulated in situ
methodology for all. Integrated water column productivity for all stations averaged 1.10± 1.20 g C m−2 d−1, and
the maximum was 13.1 g C m−2 d−1. Annual productivity calculated from the means throughout the growing
season equalled 146 g C m−2 yr−1. The mean chlorophyll concentration in the euphotic zone (the 1 % irradiance
level) was 2.85± 2.68 mg m−3 (maximum observed concentration was 19.1 mg m−3). Maximum photosynthetic
rates above the 30 % isolume (normalized to chlorophyll) averaged 0.98± 0.71 mg C (mg chl)−1 h−1, similar to
the maximum rate found in photosynthesis–irradiance measurements. Productivity measurements are consistent
with the temporal patterns of biomass found previously, with biomass and productivity peaking in late Decem-
ber; mixed layers were at a minimum at this time as well. Estimates of plankton composition also suggest that
pre-January productivity was largely driven by the haptophyte Phaeocystis antarctica and summer productivity
by diatoms. The data set (https://doi.org/10.26008/1912/bco-dmo.863815.2, Smith, 2021) will be useful for a
comparison to other Antarctic regions and provide a basis for refined bio-optical models of regional primary
productivity and biogeochemical models for the Southern Ocean.

1 Introduction

A quantitative assessment of the ocean’s primary productiv-
ity (the rate at which carbon dioxide is reduced to organic
matter by marine phytoplankton photosynthesis) is a critical
variable in understanding the ecology and biogeochemistry
in marine systems. Phytoplankton, being the base of marine
food webs, grow at different rates in the ocean, rates that are
regulated by temperature, nutrients, and irradiance; they are
in turn grazed by herbivorous organisms that both incorpo-
rate the autotrophic organic matter into their own tissues and

recycle it by oxidizing a portion for energy use and releasing
inorganic materials back into the ocean. Phytoplankton are
also critical to marine elemental cycles as they are central in
cycling carbon, nitrogen, phosphorus, iron, and all bio-active
elements. In the carbon cycle they not only fix CO2 into or-
ganic matter but release dissolved organic matter that is used
by heterotrophic microbes. They also can sink and be incor-
porated into larger particles, and the flux of organic material
to depth is the essential driver of what is known as the bio-
logical pump (Basu and Mackey, 2018). The processes that
contribute to the vertical movement of organic matter can se-
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quester carbon from the atmosphere for periods from years
to centuries.

Primary productivity in the ocean traditionally has been
measured by collecting water, adding a radioactive tracer, in-
cubating samples in the irradiance environment from which
the sample was taken, and quantifying the radioactive uptake
after incubation. This procedure was introduced by Steemann
Nielsen (1952) and has been applied to nearly every ocean
numerous times. However, the ocean is far too large to mea-
sure productivity synoptically, and as a result numerous bio-
optical models have been derived to estimate primary pro-
ductivity using remotely sensed information (temperature,
chlorophyll concentrations, irradiance; e.g., Behrenfeld and
Falkowski, 1997a, b). These models have enabled oceanog-
raphers to estimate productivity on large space scales and
timescales, and they have also been used in more restricted
analyses of productivity (Mouw and Yoder, 2005; Smith et
al., 2000, 2021; Oliver et al., 2021). Two critical aspects
of the original Behrenfeld and Falkowski (1997a, b) models
were both based on results from primary productivity mea-
surements that used 14C uptake – the relationship between
the maximum rate of photosynthesis as a function of temper-
ature (then fit to a seventh-order polynomial) and the pho-
toinhibition estimate.

Carbon radioisotope measurements of primary productiv-
ity are extremely sensitive, and other methods (e.g., oxy-
gen changes) cannot discriminate the small changes that
characterize many marine systems. As a result, a compari-
son among different procedures has been difficult. Numer-
ous questions about the interpretation of 14C data also have
been posed. For example, concerns were expressed with re-
gard to whether the method measured net or gross produc-
tion, the effects of light and dark respiration, and the impact
of heterotrophic plankton (Marra, 2009). While these uncer-
tainties have been repeatedly acknowledged, it appears that
long (e.g., 24 h) measurements approximate net production,
but this has not been rigorously examined in polar systems
(Marra and Barber, 2014; Marra, 2009). However, it is likely
that the measurements reported herein should be interpreted
as net production.

Methods measuring 14C uptake vary among different in-
vestigators. Some studies used in situ incubations in which
samples were returned to the ocean at the depths from which
they were taken, thus insuring the same irradiance environ-
ment (Marra et al., 2021), while others used neutral density
screens and on-deck incubators that are cooled by running
seawater (e.g., Barber et al., 1997). Some studies use blue fil-
ters to correct for changes in spectral quality within the water
column, while others do not. Older studies used small glass
bottles, but it was subsequently determined that trace metals
could bind to glass and potentially alter estimates or produc-
tivity. Bottle size also was shown to be important as small
bottles tended to result in the death of microzooplankton and
disrupt the cycling of nitrogen (Eppley, 1982). Length of in-
cubation is also variable, with some measurements being rel-

Figure 1. Station map of all productivity stations included in this
analysis. The yellow box in the insert shows the location of the Ross
Sea.

atively short (6 h or less), while others encompass the entire
24 h photoperiod. Time of sampling during the day also var-
ied, with some sampling at dawn (but using irradiance pro-
files from the previous day), whereas others sampled when-
ever possible. All methods enclose samples in bottles and
thus remove the plankton from the natural, turbulent environ-
ment. As a result, these differences create challenges when
comparing productivity estimates.

Polar regions are even more challenging with regard to
measurements of primary productivity. Cruises to remote re-
gions are infrequent and are often completed during the sum-
mer when ice is reduced or absent and storms less frequent.
As such, temporal sampling is far from uniform. The envi-
ronmental features of polar systems are also unusual. For
example, low temperatures mean that growth rates tend to
be slow, and 24 h incubations are often used. Irradiance du-
rations are also diverse as photoperiods in many polar set-
tings during summer are 24 h (although local noon irradiance
values are at least an order of magnitude greater than those
at local midnight). Ice, when encountered, greatly reduces
the in situ irradiance, and thus on-deck incubations may not
truly represent the irradiance environment from which sam-
ples were taken.

This report summarizes rate measurements collected from
a relatively small region in the Southern Ocean, the Ross Sea,
Antarctica. While the Ross Sea covers a small portion of the
entire Southern Ocean, it is considered to be the most im-
portant region for the removal of CO2 from the atmosphere
as a result of its large productivity (Arrigo et al., 2008). It
also has been studied intensively since the first International
Geophysical Year in 1958. The measurements synthesized
here were done by a single investigator, using methods that
were largely the same over the span of ca. 25 years. They are
not continuous through space or time but represent a unique
data set that should be of use to those interested in validating
remote-sensing-based productivity models and biogeochem-
ical models of the region.
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Table 1. Name of the cruises and dates in which 14C productivity measurements were made, along with the number of stations completed
and the reference that published those data.

Cruise Dates Number of productivity Reference
stations

Glacier 1983: Leg I 1/26–2/2/1983 33 Wilson et al. (1986)
Glacier 1983: Leg II 2/2–8/1983 6 Wilson et al. (1986)
Polar Duke 1990 1/13–2/2/1990 68 Smith et al. (1996)
Polar Duke 1992 2/5–28/1992 45 Smith et al. (1996)
N.B. Palmer 94-06 11/14–12/8/1994 45 Smith and Gordon (1997)
N.B. Palmer 95-08 12/20/1995–1/20/1996 58 Smith et al. (1999)
N.B. Palmer 96-04 10/18–11/4/1996 14 Smith et al. (2000)
N.B. Palmer 97-01 1/13–2/8/1997 23 Smith et al. (2000)
N.B. Palmer 97-03 4/12–29/1997 12 Smith et al. (2000)
N.B. Palmer 97-08 11/15–12/10/1997 34 Smith et al. (2000); Hiscock et al. (2004)
Polar Sea 2001: Leg I 12/19–21/2001 8 Smith (unpubl.)
Polar Sea 2001: Leg II 2/2–6/2002 8 Smith (unpubl.)
Polar Sea 2002: Leg I 12/23–24/2002 3 Smith (unpubl.)
N.B. Palmer 03-05 12-26–29/2003 9 Smith (unpubl.)
Polar Sea 2003–2004 2/3–6/2004 11 Smith (unpubl.)
Polar Star 2004 12/21–24/2004 11 Smith (unpubl.)
N.B. Palmer 05-01 1/29–2/1/2005 13 Smith (unpubl.)
N.B. Palmer 06-01 12/27/2005–1/9/2006 27 Sedwick et al. (2011)
N.B. Palmer 06-08 11/20–12/3/2006 21 Sedwick et al. (2011)

2 Data

Primary productivity was measured on 19 cruises in the Ross
Sea, Antarctica (Table 1), from 1983–2006 using simulated
in situ incubations (e.g., Smith et al., 2000). All stations
(n= 499) included in this analysis were located on the con-
tinental shelf (Fig. 1). Stations were not selected for a ge-
ographically even distribution but often were a function of
ice and chlorophyll concentrations (as well as other factors).
A total of 39 stations were sampled from 1980–1989, 299
from 1990–1999, and 111 from 2000–2009; 11, 74, 92, 21,
and 86 stations were sampled in October, November, Decem-
ber, January, and February, respectively. While interannual
variability does occur (e.g., Smith et al., 2006, 2011), the
seasonal variability is far greater than that observed among
years (Smith et al., 2014). Samples were taken from known
isolumes (determined usually by photosynthetically active
radiation (PAR) sensors on the CTD–Niskin (CTD signi-
fies conductivity temperature and pressure) system but in the
1980s by cruises through the use of a Secchi disk), inoculated
with ca. 100 µCi HCO−3 in 5 % KCl (pH 9.6) and incubated
for 24 h. In the earliest cruises (1983) 125 mL glass bottles
were used, but after 1990 polycarbonate bottles were adopted
(280 mL). Either individual bottles were wrapped in neutral
density screens, or incubators had tubes that were wrapped in
neutral density screens and unwrapped bottles placed inside.
After 1992 all incubators used blue filters (Cinemills Corp.
#M144; the same filters that were used in the Smith and Don-
aldson, 2015, photosynthesis–irradiance measurements) as
well at isolumes of 30 % and below. During all cruises except

NBP97-02, photoperiods were 24 h, and therefore samples
were collected independent of local time; incubations began
less than 20 min after sample collection. On all cruises addi-
tional phytoplankton variables were measured (e.g., chloro-
phyll, particulate organic carbon and nitrogen, biogenic sil-
ica, photosynthetic pigments, taxonomic composition), but
only chlorophyll concentrations, mixed layer depths, and the
dominant phytoplankton group are included here. Routine
oceanographic data (temperature, salinity, oxygen profiles)
are also available for each cruise, as well as additional par-
ticulate material analyses.

Ice concentrations were variable during the cruises. For
some stations ice cover was 100 % (e.g., all stations during
NBP97-02), and in others ice was absent. Most cruises in-
cluded stations that were in variable ice cover, as well as
open water. Sampling in ice-covered waters is possible and
routine, as long as the CTD can access water; however, deter-
mining the in situ irradiance is not direct using routine ship
methodologies. Even in ice-covered waters, the CTD-derived
PAR determinations of irradiance were used to sample. These
estimates of isolumes likely overestimated the actual depth of
isolumes, but the degree of overestimation is unknown. For
example, in waters with 10 % ice cover, measured isolume
depths are likely accurate, but in regions with 80 % ice cover
and more, isolume depths likely vary from the true depths
(Smith, 1995).

Incubations present additional challenges. For example,
during periods when snowfall is heavy and incubators with
lids are used, snow can accumulate rapidly and greatly re-

https://doi.org/10.5194/essd-14-2737-2022 Earth Syst. Sci. Data, 14, 2737–2747, 2022
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duce irradiance penetration into the incubator and samples.
This is not common but certainly occurs. Another challenge
involves the flowing seawater system. In periods such as au-
tumn and early spring when atmospheric temperatures are
substantially lower than those of the surface water (−1.8 ◦C),
the seawater that is normally circulating around samples to
keep them at the surface temperature can freeze, usually in
the incubator outflow and inflow lines, and when this hap-
pens the entire incubator can freeze quickly. Normal caution
of the shading of incubators by the ship superstructure also
need to be considered, given the low sun angles found for
much of the photoperiod. Barber et al. (1997) found that re-
flection of ship structures actually increased irradiance in the
incubators.

Most cruises collected samples from 100 %, 50 %, 30 %,
15 %, 5 %, 1 %, and 0.1 % of surface irradiance, but others
had slightly modified isolumes. The lowest isolume (0.1 %)
used was based on the report of El-Sayed et al. (1983) who
found significant 14C assimilation below the 1 % isolume.
Given that Antarctic phytoplankton were assumed to be ac-
climated to low irradiance levels, the 0.1 % was adopted for
most cruises. For simplicity in analyses, samples from 25 %
and 23 % of surface irradiance were pooled, as were those
from 16 % and 15 %, 10 % and 7 %, and 2 % and 1 %.

After incubation, samples were removed and filtered
through 25 mL GF/F filters under low (< 1/3 atm) vacuum,
rinsed with ca. 5 mL 0.01N HCL in cold (0 ◦C) seawa-
ter to remove any inorganic carbon adhering to the filter,
and placed in scintillation vials (either 7 or 20 mL). Sam-
ples had an appropriate volume of liquid scintillation cock-
tail (LSC) added, were placed in the dark for at least 24 h
to reduce chemiluminescence, and were then counted on a
liquid scintillation counter. Total added HCO−3 was deter-
mined by adding 0.1 mL unfiltered sample to a base trap
(β-phenethylamine was most commonly used), and a hy-
drophilic LSC fluor was added and treated in a similar man-
ner as the filters. All calculations accounted for isotope dis-
crimination. Chlorophyll was quantified using fluorometric
techniques (Knap et al., 1996) in which samples were filtered
through 25 mm GF/F filters and extracted in 90 % acetone
for 24 h in the dark at 0 ◦C, and the fluorescence was mea-
sured before and after acidification. All fluorometers were
calibrated using commercially purified chlorophyll.

All 14C assimilation rates were reprocessed to insure uni-
form treatment. Integrated primary productivity rates were
computed through the 0.1 % isolume depth, based on the
report of El-Sayed et al. (1983) that indicated that a 1 %
euphotic zone depth was inappropriate for phytoplankton
assemblages growing in relatively deep mixed layers and
adapted to low light levels. The 0.1 % isolume depth was
set equal to zero 14C assimilation. We note that often the
1 % and 0.1 % isolume samples were not statistically differ-
ent (based on the number of disintegrations per minute of
the filters) so that integration to the 0.1 % isolume depth had
little impact on integrated productivity. Assimilation num-

bers (carbon fixation per unit chlorophyll) were also com-
puted for each depth. In addition to the rates of 14C assimila-
tion, chlorophyll and the dominant phytoplankton functional
group are listed (Table 2). A total of 3511 independent pro-
ductivity values are reported.

Mixed layer depths were determined from the sigma-t val-
ues from CTD casts and defined as a change of 0.01 kg m−3

from a stable surface value. This is a conservative choice but
was used to define a mixed layer in water columns where
stratification is very weak (e.g., Smith et al., 2000, 2013). In
the vast majority of stations, mixed layer depths calculated
by a change of 0.01 and 0.02 kg m−3 were the same, and a
refined determination of mixed layer based on chlorophyll or
fluorescence was not attempted (Carvalho et al., 2017). At
the few stations where mixed layers were greater than 150 m,
a mixed layer depth of 150 m was listed.

Characterization of the dominant functional group was at
times qualitative. Biomass of a particular group is often diffi-
cult to directly measure, and cell numbers provide a com-
pletely different measure of the abundance and ecological
importance of a particular group as smaller cells are often
much more numerically common but constitute a small por-
tion of the total carbon-equivalent biomass. This is particu-
larly true in the Ross Sea, where the two dominant functional
groups are diatoms and haptophytes – specifically the colo-
nial haptophyte Phaeocystis antarctica. Diatoms tend to be
large (ranging from 10–200 µm), whereas individual cells of
P. antarctica are ca. 5 µm in diameter but are often embed-
ded in a mucopolysaccharide sheath that houses thousands of
cells (Mathot et al., 2000). Colonies reach 2 mm in diameter.
Both diatoms and haptophytes have similar pigments as both
contain fucoxanthin, but P. antarctica has larger amounts of
19’-hexanoylfucoxanthin than diatoms; diatoms, in contrast,
have chlorophyll c3, which in the Ross Sea can be used with
other pigments to separate the two groups (DiTullio et al.,
2003). As a result, using chemical characteristics of pigments
is the most powerful means of distinguishing the dominance
of certain functional groups and their contribution to total
chlorophyll. HPLC (high-performance liquid chromatogra-
phy) measurements in the Ross Sea have repeatedly shown
only small amounts of phaeopigments (e.g., https://www.
bco-dmo.org/dataset/3107/data, last access: 5 June 2022),
and fluorometric and HPLC chlorophyll a measurements are
strongly correlated with a slope near 1 (Bidigare et al., un-
published). Diatoms also have a cell wall that includes silica,
and haptophytes do not; hence the presence of large amounts
of biogenic silica suggests substantial accumulation of di-
atoms. All of these were at times used to distinguish the
dominant functional group at each station. The seasonal pro-
gression of phytoplankton in the Ross Sea is generally de-
scribed as an initial spring bloom of Phaeocystis followed by
the growth and accumulation of diatoms (Smith et al., 2014),
and while the description does not capture all of the spatial
and temporal variability found in the Ross Sea, it is supported
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Table 2. Name of the columns provided in the primary productivity table along with a description of the variable and its units.

Header Description Units

CRUISE Name of the cruise
STANUM Station number used in publications or data source
CAST/EVENT NUMBER CTD cast number or event number assigned in cruise (if available)
LAT Latitude of sampling Decimal degrees
LON Longitude of sampling Decimal degrees
DATE Date of sample collection Local date
MONTH Month of sample collection Local month
JUL Julian date (local) 1 Jan. = 1
JUL CONSEC Consecutive Julian date 1 Jan. = 366
ZMIX Mixed layer depth m
INC Length of incubation h (rounded to

nearest hour)
Z Depth from which sample was collected m
E Percentage of surface irradiance in which the sample was incubated %
PP Primary productivity measured by 14C uptake mg C m−3 h−1

CHL Chlorophyll concentration measured by fluorometry mg chl m−3

AN Assimilation number (rate of carbon fixation per unit of chlorophyll) mg C (mg chl)−1 h−1

INT-PP Primary productivity integrated from the surface to the 0.1 % isolume depth mg C m−2 d−1

INT-CHL Chlorophyll integrated through the 1 % isolume mg chl m−2

INT-PAR Integrated photosynthetically active radiation (400–700 nm) mol photons m−2 d−1

PHYTO Dominant phytoplankton component in sampled assemblage
REF Data source or publication which describes the data most completely

by the temporal pattern of dominance determined at the pro-
ductivity stations.

3 Quality control

As assimilation numbers (maximum chlorophyll-normalized
production rates within the water column in response to nat-
ural PAR) in polar waters are in line with PBmax values (PBmax
is the maximum rate of photosynthesis when normalized to
chlorophyll at saturating irradiance using controlled incu-
bations; Bouman et al., 2018) that have been measured in
the Ross Sea (Smith and Donaldson, 2015), any assimilation
numbers that were over 4 times the standard deviation of the
mean assimilation number at that specific irradiance in that
cruise were checked for fidelity in both the carbon assimila-
tion rates and chlorophyll concentrations. In situ fluorescence
patterns from the CTD casts often allowed for an assessment
of the reliability of those values; if chlorophyll values were
considered to be reliable, then the 14C-uptake values were
inspected for spurious values. Using this method, six assim-
ilation number values were removed (from 2 of the 449 sta-
tions).

4 Results

The mean primary productivity measured by 14C-
uptake incubations was 1.10± 1.20 g C m−2 d−1 (Fig. 2;
n= 483; minimum 10.4 mg C m−2 d−1 and maximum
13.1 g C m−2 d−1, a range of over 3 orders of magnitude;

Table 3), with the minimum occurring in ice-covered, low-
biomass waters in April, when solar radiation was greatly
reduced. The maximum rate occurred on 22 December
during a large bloom of diatoms. Productivity within the
water column exhibited a broad maximum from the surface
to the 15 % isolume, with only a modest (18.8 %) decrease
at the surface relative to 30 % of surface irradiance (Fig. 2).
Chlorophyll decreased by 13.8 % at the surface relative
to the chlorophyll maximum (Table 3), suggesting that
while photoinhibition of fluorescence and productivity did
occur at the surface, on average it was relatively minor.
Southern Ocean phytoplankton have a variety of responses
to irradiance. One is the pigment packaging effect, which
decreases the amount of light absorption per cell relative to
the same absolute amount of pigment (Stuart et al., 1998).
A second is variability in the accessory pigments relative
to chlorophyll (e.g., Kropuenske et al., 2009), including
the concentrations of xanthophyll cycling pigments which
are known to be a major photoprotective mechanism. In
addition, species-specific effects are known. Kropuenske et
al. (2009) found that Phaeocystis antarctica and the diatom
Fragilariopsis cylindrus both used xanthophyll cycling
but that the diatom had much higher rates and hence better
mechanisms to cope with a transition to high irradiance.
P. antarctica did not exhibit non-photosynthetic quenching
(NPQ), while the diatoms NPQ displayed reduced quenching
after exposure to high irradiance. Different species and cell
sizes have a wide variety of responses to irradiance, and
such strategies effectively reduce photoinhibition but do

https://doi.org/10.5194/essd-14-2737-2022 Earth Syst. Sci. Data, 14, 2737–2747, 2022
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Table 3. Mean and standard deviation, maximum observed, and number of measurements of primary productivity (PP), chlorophyll concen-
tration (Chl), and assimilation number (AN) within the euphotic zone of the Ross Sea. E = percentage of surface irradiance; E0 = surface
irradiance; PPmax =maximum rate of productivity at that isolume; Chlmax =maximum chlorophyll concentration at that isolume; ANmax =
maximum assimilation number at that isolume; n= number of observations. Daily photosynthetically active radiation values for each station
are available in the publicly available data set.

E PP PPmax Chl Chlmax AN ANmax n

(% of E0) (mg C m−3 h−1) (mg C m−3 h−1) (µg L−1) (µg L−1) (mg C (mg chl)−1 h−1) (mg C (mg chl)−1 h−1)

100 2.16± 2.33 20.2 2.88± 2.69 15.1 0.94± 0.71 4.62 492
50 2.48± 2.77 27.1 2.91± 2.69 19.1 1.01± 0.72 4.38 487
30 2.70± 3.40 25.7 2.80± 2.34 13.5 1.00± 0.69 4.09 319
25 2.75± 2.01 25.2 3.27± 3.00 17.1 0.80± 0.61 4.52 166
15 2.44± 2.85 13.9 3.23± 2.75 15.2 0.81± 0.63 4.10 416
10 1.32± 1.91 13.5 2.33± 2.50 10.3 0.61± 0.48 2.50 17
5 1.41± 2.39 31.9 3.04± 2.76 13.6 0.46± 0.40 3.36 472
1 0.49± 0.70 6.71 2.63± 2.71 18.8 0.24± 0.33 3.89 556

Figure 2. Vertical distribution of average primary productivity
(PP), chlorophyll concentrations (Chl), and assimilation numbers
(AN) in the Ross Sea. Standard deviations for all depths and all
variables are listed in Table 3.

not eliminate it. Positive productivity was often observed
at the 1 % irradiance depth, confirming the suggestion of
El-Sayed et al. (1983) that the euphotic zone in the Ross
Sea could be deeper than the generally assumed 1 % light
depth. Chlorophyll concentrations were also relatively
uniform through the 15 % light level and decreased slightly

Figure 3. Seasonal progression of mixed layer depth (Zmix). All
mixed layers greater than 150 m were set equal to 150 m. Error bars
represent the standard deviation from the mean. Gaps in time were
periods when no data were collected.

below that, although the decrease was far less than for
primary productivity (Fig. 2). Assimilation numbers were
also relatively uniform throughout the upper euphotic zone,
although there was substantial variation in this response
(Table 3). The 100 %, 50 %, and 30 % isolumes averaged
0.98 mg C (mg chl)−1 h−1 (Fig. 2), in line with the maximum
photosynthetic rate compiled for the Ross Sea conti-
nental shelf from photosynthesis–irradiance experiments
(1.10 mg C (mg chl)−1 h−1; Smith and Donaldson, 2015).

The temporal patterns of phytoplankton composition and
biomass in the Ross Sea are relatively well known (Ar-
rigo et al., 1999; Smith et al., 2000, 2011, 2014). Spring
blooms begin at the latest by the end of October, although
further analysis suggests that the onset of growth is at least
1 month earlier (Zhong and Smith, unpublished). Growth
in early spring is thought to be limited by irradiance as re-
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Figure 4. Temporal distribution of surface (PP0) and integrated pri-
mary productivity (6PP; through the 0.1 % isolume) and surface
chlorophyll concentrations (Chl0). Data were binned in 5 d inter-
vals, and each bin had different numbers of samples (ranging from
2–27 values in each bin). Gaps in time were periods when no data
were collected.

duced irradiance levels are imposed by ice cover, low so-
lar angles, and deep vertical mixing. The temporal changes
in mixed layer depths are similar to modeled changes and
observations within 1 year (e.g., Smith et al., 2000; Smith
and Jones, 2015), with minimum mixed layer depths occur-
ring in mid-December and generally remaining low through
much of January (Fig. 3). Mean monthly mixed layer depths
from October through February were 101, 58.5, 26.8, 21.8,
and 30.6 m. Based on chlorophyll concentrations from incu-
bations, chlorophyll was maximal around 21 December but
greater than 2 µg L−1 from 21 November through the end
of December (Fig. 4). Surface and integrated productivity
paralleled biomass, with maxima co-occurring with chloro-
phyll concentrations (Fig. 4). Indeed, surface chlorophyll
and surface primary productivity were significantly corre-
lated (R2

= 0.669; p < 0.0001), as were surface and inte-
grated productivity (R2

= 0.737; p < 0.001). Annual inte-
grated productivity (calculated from the data in Fig. 4) equals
146 g C m−2 yr−1. The maxima of all three variables corre-
spond to the maximum of P. antarctica concentrations that
have been repeatedly observed. However, recent investiga-
tions of temporal changes in the particulate organic car-
bon : chlorophyll ratios (Smith and Kaufman, 2018; Ryan-
Keogh and Smith, 2021; Chen et al., 2021) suggested that
summer productivity (that is, after the Phaeocystis bloom
had dissipated) remained elevated and is not adequately as-
sessed by chlorophyll-based satellite bio-optical models such
as that of Schine et al. (2015). The mean productivity values
do not directly support this, but it is worth noting that inte-
grated productivity rates in January were still substantial.

Figure 5. (a) Relationship of mixed layer chlorophyll concentra-
tions with mixed layer depth, and (b) relationship of chlorophyll
concentrations at stations dominated by either diatoms or Phaeo-
cystis to mixed layer depths.

The importance of mixed layers in regulating the growth
and accumulation of phytoplankton has long been recog-
nized in polar oceans (Sverdrup, 1953; Mitchell and Holm-
Hansen, 1990; Nelson and Smith, 1991; Smith and Jones,
2015). In general, deeper mixed layers reduce the mean ir-
radiance available for photosynthesis, as well as mixing low-
chlorophyll water from depth with waters in the surface layer
which have greater concentrations of biogenic material, thus
“diluting” particulate matter in the mixed layer. Mitchell and
Holm-Hansen (1990) suggested that in the Southern Ocean
mixed layers greater than 40 m would preclude positive pho-
tosynthesis; however, Smith and Jones (2015) showed that in
the Ross Sea there were specific conditions that clearly did
not support this hypothesis. In addition, it has been suggested
from laboratory and field investigations that P. antarctica is
capable of utilizing reduced irradiance levels in deep mixed
layers, thus allowing it to grow in spring (e.g., Kropuenske et
al., 2009; Tozzi and Smith, 2017). Indeed, the data of Smith
and Jones (2015) in which deep mixed layers supported a
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Figure 6. Relationship between integrated chlorophyll concentrations (integrated through the 1 % isolume depth) and the 1 % isolume depth
at (a) stations dominated by Phaeocystis antarctica and (b) stations dominated by diatoms. The relationships were best described by an
exponential decay equation and were highly significant (R2

= 0.77 and R2
= 0.17; p < 0.0001 for both). Both axes were made equal to

allow a direct comparison.

very large standing stock of chlorophyll consisted of stations
that were largely dominated by Phaeocystis. To see if the
productivity data supported the hypothesis of Mitchell and
Holm-Hansen (1990), the relationship of chlorophyll con-
centrations to the mixed layer was analyzed (Fig. 5). No sim-
ple relationship like those found in individual cruises was
apparent, nor was there a relationship from stations domi-
nated by Phaeocystis or those dominated by diatoms. This
may have resulted from a number of factors. Mixed lay-
ers are actually homogeneous layers and can be substan-
tially deeper than active mixing layers (Taylor and Ferrari,
2011). Also, the timescales of mixing can be less than 1 d
(that is, water column mixing responds relatively rapidly to
a change in wind speed or ice-generated mixing), whereas
chlorophyll concentrations under low-irradiance conditions
might require a number of days to respond. Determining
the relevant timescales of each during an oceanographic
cruise is exceptionally difficult. Finally, it is well known that
phytoplankton acclimate to low-irradiance conditions by in-
creasing the amount of chlorophyll per cell, and therefore
chlorophyll changes may be related more to photophysiolog-
ical changes than actual growth (e.g., Geider et al., 1998).
Chlorophyll also can be influenced by the iron supply as well
(Greene et al., 1991; Price, 2005). Hence the relationship of
chlorophyll to mixed layer depths can be obscured by the
other factors operating within the water column.

The relationship between the 1 % isolume depth and in-
tegrated chlorophyll concentrations was characterized by an
exponential decay response, which is expected given the im-
portance of phytoplankton particles to irradiance attenuation.
Because the data on composition are qualitative and discon-
tinuous, a statistical analysis of the impact of assemblage
composition on the relationship between chlorophyll and the
1 % isolume is not possible. However, the two major groups
– diatoms and P. antarctica – seemed to demonstrate a dif-

ference between stations dominated by haptophytes and di-
atoms, as well as those with a mixed assemblage (Fig. 6).
The equation at stations dominated by P. antarctica was

ZE1 % = 27.9+ 165× e−0.109
∫ 0

1 %Chl, (1)

where ZE1 % is the 1 % isolume depth, and
∫ 0

1 %Chl is the
integrated chlorophyll concentration from the surface to the
1 % isolume depth (R2

= 0.88, p < 0.0001), whereas the re-
lationship for stations dominated by diatoms was best fit by
the equation

ZE1 % = 23.4+ 28.8× e−0.0476
∫ 0

1 %Chl (2)

(R2
= 0.17, p < 0.0001). Such a difference needs to be as-

sessed using controlled experiments to clarify the potential
differences among the group’s absorption characteristics, but
it is consistent with the in situ data that clearly showed that
diatoms have reduced carbon : chlorophyll ratios in summer
under iron-limiting conditions in the Ross Sea (Smith and
Kaufman, 2018; Ryan-Keogh and Smith, 2021).

Phytoplankton composition appeared to change from an
assemblage largely dominated by P. antarctica to one largely
composed of diatoms (Table 4) despite the qualitative assign-
ment of “dominance” through the use of various metrics. The
transition of an assemblage dominated by P. antarctica to
one composed of diatoms or a mixed assemblage of diatoms
and haptophytes begins in late December, and while sub-
stantial spatial variability occurs in the distribution of both
groups over the entire continental shelf, it is consistent with
the observations on various scales of time and space (e.g.,
Fragoso and Smith, 2012; Liu and Smith, 2012; Kaufman et
al. 2014; Ryan-Keogh and Smith, 2021). The first date of a
mixed diatom–haptophyte assemblage was on 21 November,
and a diatom-dominated assemblage was observed on 26 and
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27 November. However, most stations during November and
December were haptophyte-dominated. Haptophytes never
completely disappeared, but solitary cells likely became the
dominant form after colonies disappeared (Smith et al., 2003;
Jones and Smith, 2017). Diatoms became much more abun-
dant and dominant in January and February. Only one station
had a cryptomonad dominance; dominance by this group is
likely stimulated by glacial run-off and likely is restricted to
narrow bands near the coast of Victoria Land (Moline et al.,
2004). Interestingly, P. antarctica was dominant (albeit in ex-
tremely low chlorophyll concentrations and under 100 % ice
cover) in April at the few stations that had been sampled.
Should the species be able to remain in low concentrations
throughout winter, it might help explain its early growth as
sea ice begins to recede and mixed layers shoal (and irradi-
ance increases) in spring. Additionally, molecular analyses
have suggested that P. antarctica may have heterotrophic ca-
pabilities (Rizkallah et al., 2020), but direct examination of
this ability has so far failed to demonstrate the haptophyte’s
ability to grow on reduced organic substrates (David Caron,
personal communication, 2020).

5 Data availability

All compiled data containing the 3512 depths and 492 sta-
tions are available at the Biological and Chemical Oceanog-
raphy Data Management Office (BCO-DMO) available
at https://doi.org/10.26008/1912/bco-dmo.863815.2 (Smith,
2021). Integrated water column data and PAR informa-
tion are available as a supplemental file at the same
site. If additional data for a specific cruise or group
of cruises are of interest, they can be obtained di-
rectly from the author and/or the requisite data reposi-
tory. Data are also archived at the National Tibetan Plateau
Science Data Center (https://doi.org/10.26008/1912/bco-
dmo.863815.2, Smith, 2022).

6 Recommendations for the use of these data

This data set from the Ross Sea has multiple uses and is
of value to numerous investigators. The first would be as
a comprehensive database to generate new models of satel-
lite productivity, given that present estimates of chlorophyll
and biomass from satellite data are inadequate (Chen et al.,
2021). These data will provide a clear database to test the va-
lidity of productivity models not only of the Ross Sea but of
other continental shelf regions in the Antarctic. A second use
might be to assess the role of ecological hot spots – those re-
stricted areas that are characterized by elevated primary pro-
ductivity and serve as regions of enhanced ecological impor-
tance in food webs. They also provide a baseline for ecolog-
ical investigation of biogeochemical cycles and trophic ecol-
ogy.

7 Conclusions

The synthesis of productivity data from the Ross Sea demon-
strates the patterns of productivity that have previously only
been inferred; that is, productivity is characterized as a uni-
modal peak during late December, and it closely follows the
biomass of the system throughout the entire growing sea-
son. Productivity can be substantial; the maximum primary
production rate measured was 13.1 g C m−2 d−1. Annual in-
tegrated productivity is estimated to be 146 g C m−2 yr−1.
Chlorophyll-specific productivity rates in the upper surface
layer average 0.98 mg C (mg chl)−1 h−1, similar to the rate
found in short-term photosynthesis–irradiance experiments.
Previously hypothesized relationships between mixed layer
depths and productivity are not supported by this synthesis,
and no clear relationship was observed between assemblage
composition and mixed layers. Photoinhibition at the surface
occurred but only decreased productivity by ca. 18 %. De-
spite the potential uncertainties in the measurement of pro-
ductivity, this synthesis confirms that the Ross Sea continen-
tal shelf is the most productive region of the Southern Ocean.
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