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ABSTRACT
Kaplan and Meier’s 1958 article developed a nonparametric estimator of the survivor function from a right-
censored dataset. Determining the size of the support of the estimator as a function of the sample size
provides a challenging exercise for students in an advanced course in mathematical statistics. We devise
two algorithms for calculating the support size and calculate the associated probability mass function for
small sample sizes and particular probability distributions for the failure and censoring times.
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1. Introduction

Kaplan and Meier’s 1958 article which established the non-
parametric product–limit estimator (Kaplan and Meier 1958) is
the most oft-cited article in the statistics literature (Noorden,
Maher, and Nuzzo 2014). It is a nonparametric estimate of
the survival function from a dataset of lifetimes that includes
right-censored observations. The Kaplan–Meier product–limit
estimator (KMPLE) is used in a variety of application areas.

• In reliability, the object of interest is a component or a system
and the event of interest is failure.

• In biostatistics, the object of interest is often a patient and
the event of interest might be death or the conclusion of
remission.

• In actuarial science, the object of interest is often the insured
(for life insurance) or property (for casualty insurance) and
the associated event of interest is death (for life insurance) or
claim (for casualty insurance).

For simplicity, we will refer to the object of interest generically
as the item and the event of interest as the failure.

Let n denote the number of items on test. The KMPLE of the
survival function S(t) is given by

Ŝ(t) =
∏

i:ti≤t

(
1 − di

ni

)
,

for t ≥ 0, where t1, t2, . . . , tk are the times when at least one
failure is observed (k is an integer between 1 and n, which is the
number of distinct failure times in the dataset), d1, d2, . . . , dk
are the number of failures observed at times t1, t2, . . . , tk, and
n1, n2, . . . , nk are the number of items at risk just prior to
times t1, t2, . . . , tk. It is common practice to have the KMPLE

CONTACT Lawrence Leemis leemis@math.wm.edu Department of Mathematics, William & Mary, Williamsburg, VA.

“cut off ” after the largest time recorded if it corresponds to
a right-censored observation (Kalbfleisch and Prentice 2002,
p. 16). The KMPLE drops to zero after the largest time recorded
if it is a failure; the KMPLE is undefined, however, after the
largest time recorded if it is a right-censored observation. This
convention will be followed in this article.

As a particular instance, consider the KMPLE when there are
n = 4 items on test, failures occur at times t = 1 and t = 3, and
right censorings occur at times t = 2 and t = 4. In this setting,
the KMPLE is

Ŝ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 0 ≤ t < 1(
1 − 1

4
) = 3

4 1 ≤ t < 3(
1 − 1

4
) (

1 − 1
2
) = 3

8 3 ≤ t < 4
NA t ≥ 4,

where NA indicates that the KMPLE is undefined. This example
illustrates that the effect of right censoring is to selectively
remove factors in the product(

1 − 1
4

)(
1 − 1

3

) (
1 − 1

2

)
(1 − 1)

when determining the possible values (support) of Ŝ(t) for
n = 4.

The goal of this article is to determine the support values
of the KMPLE and their associated probabilities for a given
value of n. Section 2 gives two algorithms for calculating
the support values. The probability mass function of Ŝ(t) for
one particular failure time distribution, right-censoring time
distribution, and the time value of interest is calculated in
Section 3. Section 4 contains conclusions and outlines further
work.

© 2022 The Author(s). Published with license by Taylor and Francis Group, LLC
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2. Determining Support Values and Support Size

Determining the support of the KMPLE as a function of n is
nontrivial. The next two sections contain algorithms for enu-
merating the support values and the associated support size.

2.1. Kaplan and Meier Meet Pascal

Consider the case of n items on test and distinct failure times
(i.e., d1 = d2 = · · · = dk = 1). When all failure times are
observed, the survival function estimate after the last observed
failure is

Ŝ(t) =
(

1 − 1
n

) (
1 − 1

n − 1

)
. . .

(
1 − 1

2

)
(1 − 1) ,

which is zero. The KMPLE at any fixed time value consists of up
to n of these factors, which are denoted by f1, f2, . . . , fn, where
fi = 1 − 1/(n − i + 1) for i = 1, 2, . . . , n. The support of
the KMPLE can be written as a product of some permutation
of these factors:

Ŝ(t) ∈
{∏

i∈P
fi; P ∈ Pn

}

for all times t ≥ 0, where Pn is the set of all permutations
of {1, 2, . . . , n}. The effect on the KMPLE of right censoring
is to remove factors in the product that are associated with
right-censored observations. In the example from Section 1
with n = 4, for instance, the second factor, f2 = (1 − 1

3 ),
was eliminated from the product because the second item was
censored at t = 2. Using counting methods we can calculate
the number of possible combinations of factors used in the
calculation for Ŝ(t) for x right-censored observations for x =

0, 1, . . . , n − 1. Disregarding the last factor and the case in
which the last item is right-censored, there are

(n−1
x

)
ways to

combine the first n − 1 factors after eliminating the x factors
associated with the right-censored observations. The number of
permutations of possible factors corresponds to a row in Pascal’s
triangle.

There are two extreme cases. In the first case, x = 0 corre-
sponds to a complete dataset with no right-censored data values,
and therefore, no factors are eliminated in the calculation. In the
second case, x = n−1 corresponds to no observed failures in the
first n − 1 observations, and therefore all factors are eliminated.
In this special case there is one failure time observed after the
n − 1 right-censored items.

To illustrate, consider the case of n = 4 items on test. We
consider only the first n − 1 = 3 factors f1, f2, and f3. The
last factor, f4, will generate either a support value of zero (if
the largest recorded time corresponds to a failure) or an NA
(if the largest recorded time corresponds to a right censoring).
Table 1 contains all the possible support values corresponding
to x = 0, 1, 2, 3. The first column gives the number of right-
censored observations, x = 0, 1, 2, 3. The second column gives
the associated values of

(n−1
x

)
. This corresponds to the number

of ways that the x censored observations can be ordered among
the failure times, since we temporarily ignored the last factor
in the KMPLE

[
Ŝ(t) = 0

]
and the case in which the last item

is right-censored
[
Ŝ(t) = NA

]
. The values in this column

are the values in the fourth row of Pascal’s triangle. The third
column lists the potential factors for the KMPLE. The fourth
column lists the possible cumulative products. These cumulative
products are the support values associated with a particular
ordering of failure and right censoring times. These values are
sorted and displayed in lowest terms in the fifth column. We

Table 1. All possible KMPLE support values for n = 4.

Number of Support Possible

censored
(n−1

x
)

KMPLE value support

observations factors calculations values

x = 0 1
(

1 − 1
4

)
,
(

1 − 1
3

)
,
(

1 − 1
2

) (
1 − 1

4

)
1, 3

4 , 1
2 , 1

4 , 0(
1 − 1

4

) (
1 − 1

3

)
(

1 − 1
4

) (
1 − 1

3

) (
1 − 1

2

)
x = 1 3

(
1 − 1

4

)
,
(

1 − 1
3

) (
1 − 1

4

)
1, 3

4 , 2
3 , 1

2 , 3
8 , 1

3 , 0, NA(
1 − 1

4

) (
1 − 1

3

)
(

1 − 1
4

)
,
(

1 − 1
2

) (
1 − 1

4

)
(

1 − 1
4

) (
1 − 1

2

)
(

1 − 1
3

)
,
(

1 − 1
2

) (
1 − 1

3

)
(

1 − 1
3

) (
1 − 1

2

)
x = 2 3

(
1 − 1

4

) (
1 − 1

4

)
1, 3

4 , 2
3 , 1

2 , 0, NA(
1 − 1

3

) (
1 − 1

3

)
(

1 − 1
2

) (
1 − 1

2

)
x = 3 1 No factors 1, 0, NA
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include a zero, a one, and NA (for x > 0) after all other
support values have been determined. The one is included as
Ŝ(t) = 1 for all t < t1 before any failure times occur. The
zero is included for the last factor that we temporarily ignored
and occurs after the last (nth) item fails. One additional spe-
cial case occurs when the last (nth) item is right censored. It
results in Ŝ(t) being undefined. For x > 0, we have included
NAs to represent this case. Removing the duplicate values and
NAs from the rightmost column of Table 1 gives the set of
support values for KMPLE when there are n = 4 items on test:
{1, 3

4 , 2
3 , 1

2 , 3
8 , 1

3 , 1
4 , 0}.

The computations associated with n = 4 given in the
previous paragraph have shown that there are 8 possible defined
support values on [0, 1] (not including NA as a support value)
for the KMPLE associated with n = 4 items on test. This
example exposes some computational issues in terms of both
speed and memory for larger values of n. In addition to the
number of combinations from a row of Pascal’s triangle, the
associated cumulative products must be calculated, the resulting
fractions must be converted to lowest terms, and the duplicate
fractions must be eliminated, requiring significant computer
time and memory as n increases.

2.2. Induction Algorithm

The computational issues associated with the previous algo-
rithm prompted us to consider an algorithm based on induction.
We continue to assume that all failure times are distinct. Two key
observations are necessary to devise the induction algorithm.

1. A KMPLE support value associated with n − 1 items on
test must necessarily be a KMPLE support value for n items
on test. The rationale for this observation is the fact that
the KMPLE simply adds one new factor for each additional
item on test. The factors associated with n − 1 items on test,
f1, f2, . . . , fn−1, are all present in the case of n items on test.

2. Let χn−1 be the set of KMPLE support values associated with
n − 1 items on test. Let |χn−1| be the cardinality of χn−1. The
set of KMPLE support values associated with n items on test
is the union of χn−1 and the set consisting of the elements
of χn−1 multiplied by (1 − 1

n ) = n−1
n , the first factor in the

KMPLE.

Determining χn via induction for the first few values of n is
described below.

• When n = 1, the set of support values for Ŝ(t) is χ1 = {1, 0}.
• When n = 2, in addition to the existing support values for

n = 1, the potential new support values can be calculated by
multiplying (1 − 1

2 ) by the existing support value set, which
is χ1 = {1, 0}, resulting in a support value set for n = 2:
χ2 = {1, 1

2 , 0}.
• When n = 3, we repeat the calculation above by multiplying

(1− 1
3 ) by the existing support value set χ2 = {1, 1

2 , 0}, which
gives the result χ3 = {1, 2

3 , 1
2 , 1

3 , 0}.

In this way, to generate the support value set for a particular
n, we multiply (1 − 1

n ) by the support value set for n − 1, and
then add the new values to the support set. Note that duplicate
values in addition to 0 will emerge during the process when

Table 2. Number of support values on [0, 1] for the KMPLE for n from 1 to 40.

n |χn| n |χn| n |χn| n |χn|
1 2 11 409 21 76889 31 10275645
2 3 12 681 22 115397 32 16487301
3 5 13 1361 23 230793 33 22679853
4 8 14 2307 24 383753 34 33790243
5 15 15 3597 25 536994 35 48842489
6 25 16 5088 26 820907 36 60737510
7 49 17 10175 27 1189517 37 121475019
8 83 18 16711 28 1597245 38 204647341
9 134 19 33421 29 3194489 39 303830465
10 205 20 55211 30 5137823 40 391169317

we calculate χn for larger n. Those duplicate values should be
removed to get the final support value set.

The Maple computer algebra system is particularly well
suited for implementing the induction algorithm because the
language includes a data structure for sets which automatically
eliminates duplicate support values. The Maple code used to
compute the support values (excluding zero) for n = 1, 2, . . . , 40
follows.

support := {1};
for n from 2 to 40 do
support := support union
{(n - 1) / n * op(support)}:

od:

Table 2 shows the number of the support values for Ŝ(t) for n
items on test, which is computed by including the additional
statement print(nops(support) + 1); at the bottom
of thefor loop. Adding one is to account for the value of 0 in χn.
Table 2 only includes support values on [0, 1]; NA is not included
in the counts. The appendix contains R code that implements
the induction algorithm.

As observed from Table 2, every time n is incremented from
a composite number to a prime number, |χn| almost doubles.
In particular, |χn+1| = 2|χn| − 1. Our induction process shows
why this happens. When we multiply the existing support values
(which are all unique) in the set by the new initial factor f1,
which has a prime denominator, the updated support values
will all be distinct from the existing values, except for 0. This
is discussed in more detail in Section 2.3.

Figure 1 displays the support values for n = 1, 2, . . . , 8. We
observe that as n increases, there is a trend that more support
values are added below 1

2 than above 1
2 . In the figure, blue points

are “predictable” values (i.e., x
n , where x = 0, 1, . . . , n). The

red points are what we call the “unpredictable” values. The first
unpredictable value is

(
1 − 1

4
) (

1 − 1
2
) = 3

8 , which occurs at
n = 4. Unpredictable values will always be due to censoring,
although not all censored data points will cause unpredictable
values. The gray line depicts the average of the support values.
The blue lines show the symmetric envelope of the support
values that extends from 1

n to n−1
n .

2.3. Percent Increase in Support Size

After calculating the support sizes for n = 1, 2, . . . , 40, we
explored the percent increase in the support size as n increases
by 1. As illustrated in Figure 2, the highest percent increases
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Figure 1. Support values for KMPLE for n from 1 to 8. The blue points are x/n, where x = 0, 1, . . . , n and all other support values are red dots. The blue lines give the
envelope of fractional support values and the gray line gives the average of the support values.

occur at prime numbers due to the fact that the new support
values for n will be distinct from the original support set for
n − 1, except for Ŝ(t) = 0. Therefore, the dotted segments at
the top of the graph show that the highest percent increases
converge to 100%. Also, notice that the percent increases at
the even numbers immediately following the primes are signif-
icantly higher than the other composite values.

Using the induction algorithm, we know that

χn+1 =
{

n
n + 1

· χn

}
∪ χn,

where { n
n+1 · χn} denotes the set of support values in χn, each

multiplied by n
n+1 . There is a special relationship that exists

between |χn| and |χn+1| when n + 1 is prime. Consider the case
of n = 6. Temporarily ignoring the support values of 0 and NA
by suppressing the final factor f6, we know that χ6 consists of the
products of all combinations of the factors

f1f2f3f4f5 =
(

1 − 1
6

) (
1 − 1

5

)(
1 − 1

4

) (
1 − 1

3

) (
1 − 1

2

)

= 5
6

· 4
5

· 3
4

· 2
3

· 1
2

once duplicate support values (for example, 2
5 can be obtained

as 4
5 · 3

4 · 2
3 or as 4

5 · 1
2 ) have been removed, and 0 has been added.

Since n + 1 = 7 is prime, the set χ7 = { 6
7 · χ6

} ∪ χ6 consists of
0 and the products of all combinations of the factors

f1f2f3f4f5f6 = 6
7

· 5
6

· 4
5

· 3
4

· 2
3

· 1
2

.

Notice that the 7 in the denominator of the first factor, f1, is
prime and therefore will not have any cancellation with any of
the numerators. Zero will be the only duplicate value in the two
support sets χ6 and χ7. This means that in the general case when
n + 1 is prime, {

n
n + 1

· χn

}
∩ χn = {0}

so that

|χn+1| = 2|χn| − 1

and the associated percent increase is

2|χn| − 1 − |χn|
|χn| · 100% = |χn| − 1

|χn| · 100%.

This maximum possible percent increase is reflected in Figure 2
as a dotted line. This maximum possible percent increase is only
achieved when there is a prime number of items on test.
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Figure 2. Increase in support size for n = 2, 3, . . . , 40.

2.4. Tied Observations

So far, we have assumed that the failure times and censoring
times are all distinct. Since time is continuous, the probability
that two events occur at the same time is 0. However, in some
applications, tied observations can occur. In survival analysis,
for example, the survival time of patients might be measured
in days; therefore, multiple patients could die or leave the study
on the same day. In this section, we will show that the case of
tied observations will not affect our algorithms that generate the
KMPLE support values.

There are three possibilities for tied observations: the tied
observations are a mix of failure and censoring times, all tied
observations are censoring times, and all tied observations are
failure times.

The first case is one or more failure time(s) being tied with
one or more censoring time(s) at time t. In this case, we follow
the convention of assuming that the failure times are treated
as occurring just prior to time t, while the censoring times are
treated as occurring slightly after t (Kaplan and Meier, 1958,
p. 461). Therefore, the calculation of KMPLE will be the same
as if the failure times and the censoring times are distinct.

The second case is two or more censoring times being tied
at time t. Since the KMPLE is calculated only when a failure is
observed, not when an item on test is censored, these censored
items will not be taken into account until the next failure time
after t during the calculation. It is the same case as having the
same number of distinct and consecutive censoring times before
the next observed failure and, therefore, does not affect our
algorithm.

Finally, when two or more failure times are tied at time t,
we illustrate below that it is effectively equivalent to the same
number of items failing close together.

To illustrate, consider the case of n = 6 with the following
observations:

• at time t1, a failure is observed and an item is censored,
• at time t2, two failures are observed, and
• at time t3, a failure is observed and an item is censored,

where 0 < t1 < t2 < t3. Before t1, no failures are observed, so
the KMPLE on the time interval 0 ≤ t < t1 is Ŝ(t) = 1.

At time t1, we use the convention of treating the first failure
time as occurring just prior to t1 and the first censoring time
as occurring slightly after t1. So Ŝ(t) =

(
1 − d1

n1

)
, where the

number of failures at time t1 is d1 = 1, and the number of items
at risk just prior to time t1 is n1 = 6. The KMPLE on t1 ≤ t < t2
is

Ŝ(t) =
(

1 − 1
6

)
= 5

6
.

At time t2, Ŝ(t) = (
1 − 1

6
) (

1 − d2
n2

)
. Since there are two failures

observed at time t2, d2 = 2, and since one failure was observed
and one item was censored before t2, the number of items at
risk just prior to time t2 is n2 = 6 − 2 = 4. The KMPLE on
t2 ≤ t < t3 is

Ŝ(t) =
(

1 − 1
6

)(
1 − 2

4

)
= 5

6
· 2

4
= 5

12
.
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Now, we compare Ŝ(t) with the case in which those two failure
times are not tied. Let one of the two failures be observed at time
t2 − ε, where 0 < ε < t2 − t1, while the other failure is still
observed at time t2. The KMPLE values are calculated as follows:

Ŝ(t) =
(

1 − 1
6

) (
1 − 1

4

)

= 5
6

· 3
4

= 5
8

(t2 − ε ≤ t < t2),

Ŝ(t) =
(

1 − 1
6

) (
1 − 1

4

)(
1 − 1

3

)

= 5
6

· 3
4

· 2
3

= 5
12

(t2 ≤ t < t3).

Notice that Ŝ(t) = 5
12 in the case of tied observations also occurs

in the case of distinct observations. The factor
(
1 − 2

4
)

in the

calculation of KMPLE at t2 in the former case has the same effect
as the factors

(
1 − 1

4
) (

1 − 1
3
)

in the latter case. As ε goes to zero,
the value 5

8 will be excluded from the support of KMPLE in this
particular case. At time t3, following the convention again, for
the observed failure we get the KMPLE for t = t3:

Ŝ(t) =
(

1 − 1
6

) (
1 − 2

4

) (
1 − 1

2

)
= 5

6
· 1

2
· 1

2
= 5

24
.

However, the last item is censored, and since we treat the cen-
sored item as occurring slightly after t3, the KMPLE is undefined
(NA) for t > t3.

Finally, the realized KMPLE values in this particular illustra-
tion are {1, 5

6 , 5
12 , 5

24 , NA}, which is a subset of the full support
for KMPLE for n = 6 when we have distinct failure and
censoring times:

{
1,

5
6

,
4
5

,
3
4

,
2
3

,
5
8

,
3
5

,
5
9

,
8

15
,

1
2

,
4
9

,
5

12
,

2
5

,
3
8

,
1
3

,
5

16
,

3
10

,
5

18
,

4
15

,
1
4

,
2
9

,
5

24
,

1
5

,
1
6

, 0, NA
}

.

In general, tied failure and censoring times, as well as tied
censoring times, have no effect on the calculation of the KMPLE,
while tied failure times will only remove support values instead
of adding new ones. Therefore, our algorithms for generating
the support values of the KMPLE can still be applied to situa-
tions in which there are tied observations.

3. Probability Mass Function of the KMPLE

Given a set of support values of the KMPLE for a particular
number of items on test n, we devised an algorithm to generate
the probability mass function associated with the support. In
particular, given a fixed time t0, we are interested in the prob-
ability mass function of the random variable S = Ŝ(t0), where
S ∈ χn. There are an infinite number of settings of

• the number of items on test,
• the probability distribution of the failure times,
• the probability distribution of the censoring times, and
• the fixed time of interest t0.

In this section, we choose one particular setting of these ele-
ments in order to illustrate the calculation of the probability
mass function.

The notation associated with the algorithm is established in
this paragraph.

• Let n be the number of items on test.
• Let the random failure times be T1, T2, . . . , Tn.
• Let the random censoring times be C1, C2, . . . , Cn.
• Let Xi = min{Ti, Ci}, for i = 1, 2, . . . , n. The observed values

of X1, X2, . . . , Xn are denoted by x1, x2, . . . , xn.
• Let

δi =
{

1 if the ith item failed (that is, Ti ≤ Ci)
0 if the ith item is censored (that is, Ci < Ti)

for i = 1, 2, . . . , n.

• Let t0 ≥ 0 be the fixed time of interest.
• Let S = Ŝ(t0) be the random KMPLE whose probability

distribution is desired. The support of this random variable
is χn, which can be determined by one of the two algorithms
in the previous section.

The failure times and the censoring times are assumed to be
continuous random variables with positive support. These are
common assumptions in survival analysis.

Without loss of generality, assume that X1 < X2 < · · · < Xn.
There are n + 1 time intervals before, after, and in between the
X1, X2, . . . , Xn values in which t0 can fall. Denote the interval
into which t0 falls by l, where l = 0, 1, . . . , n. The first interval,
[0, X1), corresponds to l = 0. The second interval, [X1, X2),
corresponds to l = 1. The last interval, [Xn, ∞), corresponds
to l = n.

This paragraph describes the five steps in the algorithm to
compute the probability mass function of the KMPLE. First, the
support χn is determined using the induction algorithm. The
mass values associated with each support value are initialized to
zero. The second step in the algorithm is to calculate the prob-
ability that Xl ≤ t0 < Xl+1, for l = 0, 1, . . . , n, where X0 = 0
and Xn+1 = ∞ in order to accommodate the extreme intervals.
Let fXl ,Xl+1(xl, xl+1) denote the joint probability density function
of the adjacent observations Xl and Xl+1. For the fixed time t0,
the probability that the random interval [Xl, Xl+1) contains t0,
for l = 0, 1, . . . , n, is

P(Xl ≤ t0 < Xl+1) =
∫ t0

0

∫ ∞

t0

fXl ,Xl+1(xl, xl+1) dxl+1 dxl.

In the third step of the algorithm, all possible sequences of
δ1, δ2, . . . , δl are identified for l = 0, 1, . . . , n. Interval l has
2l possible sequences of δ1, δ2, . . . , δl by the multiplication rule.
The fourth step of the algorithm is to calculate the probabilities
associated with each sequence of δ1, δ2, . . . , δl identified in the
third step of each algorithm. The final step is to accumulate these
probabilities into the probability mass function values for the
appropriate support value.
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Table 3. Calculations for finding the probability mass function of the KMPLE at t0 = − ln(1/2)/2 for n = 3, Ti ∼ exponential(1), and Ci ∼ exponential(1), for i = 1, 2, 3.

l P(Xl ≤ t0 < Xl+1) δ1, δ2, . . . , δl Ŝ(t0) = s P
(

Ŝ(t0) = s, Xl ≤ t0 < Xl+1
)

l = 0
1
8

— 1
1
8

l = 1
3
8

δ1 = 0 1
3
8

· 1
2

= 3
16

δ1 = 1
2
3

3
8

· 1
2

= 3
16

l = 2
3
8

(δ1, δ2) = (0, 0) 1
3
8

· 1
4

= 3
32

(δ1, δ2) = (0, 1)
1
2

3
8

· 1
4

= 3
32

(δ1, δ2) = (1, 0)
2
3

3
8

· 1
4

= 3
32

(δ1, δ2) = (1, 1)
1
3

3
8

· 1
4

= 3
32

l = 3
1
8

(δ1, δ2, δ3) = (0, 0, 1)

(δ1, δ2, δ3) = (0, 1, 1) 0
1
8

· 4
8

= 1
16

(δ1, δ2, δ3) = (1, 0, 1)

(δ1, δ2, δ3) = (1, 1, 1)

(δ1, δ2, δ3) = (0, 0, 0)

(δ1, δ2, δ3) = (0, 1, 0) NA
1
8

· 4
8

= 1
16

(δ1, δ2, δ3) = (1, 0, 0)

(δ1, δ2, δ3) = (1, 1, 0)

We will illustrate the algorithm with the case of n = 3 items
on test. There is an infinite number of choices for the failure time
distributions, right-censoring time distributions, and t0 values.
One set of these is illustrated here in order to demonstrate the
process of finding the probability mass function of the KMPLE.
We make the following further assumptions associated with a
random censoring scheme:

• T1, T2, . . . , Tn are iid exponential(1) failure times,
• C1, C2, . . . , Cn are iid exponential(1) right-censoring times,

and
• t0 = − ln(1/2)/2 is the time value of interest (t0 is the

median of an exponential(2) random variable).

With these assumptions, it is equally likely that an item on
test is observed to fail or be right censored because the
two exponential distributions have the same rate parameter.
In other words, P(δi = 0) = P(δi = 1) = 1/2 for
i = 1, 2, . . . , n. Furthermore, since the minimum of two
independent exponential random variables is also exponential,
Xi = min {Ti, Ci} ∼ exponential(2) for i = 1, 2, . . . , n. So
choosing the median of an exponential(2) random variable for t0
means that Xi is equally likely to fall to the left of t0 or to the right
of t0.

To implement the algorithm for determining the probability
distribution of the KMPLE at t0, the first step is to determine

the support using the induction algorithm, yielding χ3 ={
0, 1

3 , 1
2 , 2

3 , 1
}

. The second step is to calculate the probability
that t0 will fall in the random interval [Xl, Xl+1) by calculating
the appropriate double integral, yielding

P(0 ≤ t0 < X1) = 1
8

, P(X1 ≤ t0 < X2) = 3
8

,

P(X2 ≤ t0 < X3) = 3
8

, P(t0 ≥ X3) = 1
8

.

The third step is to identify the potential sequences of
δ1, δ2, . . . , δl for interval l. These sequences are given in the
third column of Table 3. The fourth step is to calculate the
survivor function values and probabilities associated with
each of these values, which are shown in the fourth and fifth
columns of Table 3. As a particular instance of part of the
calculation of one of the relevant probabilities in the fifth
column,

P
(

Ŝ(t0) = 1
3

∣∣∣∣ x2 ≤ t0 < x3

)
= 1

4
.

The fifth and final step in the algorithm is to sum the
probabilities associated with each of the support values for
l = 0, 1, 2, 3, in order to generate the following probabil-
ity mass function of support values for the KMPLE when
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Figure 3. Probability mass function of the KMPLE for n = 3.

Figure 4. Probability mass functions of the KMPLE for n from 1 to 8.

n = 3:

P
(
Ŝ(t0) = s

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
16 s = 0
3

32 s = 1
3

3
32 s = 1

2
9

32 s = 2
3

13
32 s = 1
1

16 s = NA.

Figure 3 displays the graph of the probability mass function for
n = 3.

The probability mass function was generated using this
algorithm for n = 1, 2, . . . , 8, and the result is presented
in Figure 4. Each probability mass function is rotated 90◦
clockwise and displayed on a common scale. These probability
mass functions are supported by a Monte Carlo simulation
experiment.
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4. Conclusions and Further Work

The purpose of the work described here is to provide a chal-
lenging exercise for students in an advanced course in math-
ematical statistics, and to encourage these students to think
in depth about the KMPLE. We have devised two algorithms
for computing the support values of the KMPLE. As shown in
Figure 1, there are significant gaps in the support of the KMPLE
near 0 and 1 for small values of n. This should be recognized
by the analyst when n is small and S(t0) is likely to be near
0 or 1. Figure 1 also shows the support values cluster tightly
as n increases, with more support values appearing below 1/2
than above 1/2. A dataset that contains tied observations does
not result in additional support values relative to a dataset with
distinct observations. In addition, we have devised an algorithm
for computing the probability mass function of the KMPLE.
This algorithm has been implemented under simple conditions
(exponentially distributed failure and censoring times) for n =
1, 2, . . . , 8.

In terms of further work, we are interested in finding the
lowest percentage increase in the support size. The limiting
value of the average of the support values as n → ∞ (see
Figure 1) is an open question. Also, finding the probability mass
function for more general conditions and larger sample sizes is
another further direction of inquiry. Finally, we are exploring
the application of this probability mass function in Bayesian
survival analysis.

Appendix. Implementing the Induction Algorithm in R

The Maple language is ideal for generating the support values of the
KMPLE via induction because (a) fractions are stored as exact values,
(b) fractions are internally reduced to their lowest terms, and (c) it
includes a set as a data structure, which means that duplicate support
values are eliminated. The Maple code in Section 2.2 will generate
the support values for any value of n subject to CPU and memory
restrictions.

The induction algorithm can also be implemented in R even though
exact fractions and sets are not supported. The most straightforward
implementation of the induction algorithm uses the as.fractions
function in the MASS package, as shown in the code below.

support = 1
for (n in 2:5) {

support = unique(c(support,
(n - 1) * support / n))

cat(paste("The", length(support) + 1,
"support values for n =", n,
"are:", paste(MASS::as.fractions(
c(0, sort(support))),
collapse = ", "), "\n"))

}

The output associated with the code for determining the support values
on [0, 1] associated with n = 2, 3, 4, 5 is shown below.

The 3 support values for n = 2 are: 0, 1/2, 1
The 5 support values for n = 3 are: 0, 1/3,

1/2, 2/3, 1
The 8 support values for n = 4 are: 0, 1/4,

1/3, 3/8, 1/2, 2/3, 3/4, 1
The 15 support values for n = 5 are: 0, 1/5,

1/4, 4/15, 3/10, 1/3, 3/8, 2/5, 1/2, 8/15,
3/5, 2/3, 3/4, 4/5, 1

Although this code should return the correct support values for any
n in principle, it only works through n = 7; it fails for n = 8 and
beyond. Roundoff in the values stored in thesupport vector, the tight
clustering of support values illustrated in Figure 1, and failure of the
unique and as.fractions functions for larger values of n mean
that more sophisticated R programming is required.

The R code given below stores the numerators and denominators
of the support values as integers. The outside for loop runs over the
values of n. The inside for loop reduces each new support value to
lowest terms. The numerators and denominators of the fractional sup-
port values are temporarily converted to the real and imaginary parts
of complex numbers in order to use the unique function to eliminate
duplicate fractions. At the bottom of the outside for loop, the numer
and denom vectors contain the numerators and denominators of the
support values for a particular value of n.
memory.limit(size = 160000)
n = 1
numer = 1L
denom = 1L
for (n in 2:35) {
numer.new = (n - 1) * numer
denom.new = n * denom
for (i in 1:length(numer.new)) {

numerator = numer.new[i]
denominator = denom.new[i]
remainder = -1
while (remainder != 0) {
remainder = numerator
numerator = denominator
if (remainder != 0)

denominator = remainder
}
numer.new[i] = numer.new[i] / denominator
denom.new[i] = denom.new[i] / denominator

}
numer = c(numer, numer.new)
denom = c(denom, denom.new)
temp = complex(real = numer,

imaginary = denom)
temp = unique(temp)
numer = Re(temp)
denom = Im(temp)
print(length(c(0, numer)))

}

This code has been tested for n = 2, 3, . . . , 35 and the output matches
the support sizes given in Table 2.
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