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Abstract: This study investigated and compared the acid-free electropolishing of copper with the
state-of-the-art acidic electropolishing process. The acid-free medium used in this study is based on
a deep eutectic solvent comprised of 2:1 ethylene glycol and choline chloride. The electrochemical
study included voltammetry and chronoamperometry tests during the electropolishing process. The
characterization techniques used were atomic force microscopy (AFM) and digital microscopy, and
surface morphology comparisons summarized the electropolishing efficiency of phosphoric acid and
acid-free deep eutectic solvent treatments for high-purity copper. Electropolishing copper with a
deep eutectic solvent resulted in a mirror finish and a post-treatment surface that was 8× smoother
than the original metal surface prior to electropolishing treatments with a smoothing efficiency of
91.1 ± 1.5%. This eco-friendly solution produced polished surfaces superior to those surfaces treated
with industry standard acid electrochemistry treatments of 1 M H3PO4.

Keywords: electropolishing; Cu; deep eutectic solvent

1. Introduction

Electrochemical polishing or electropolishing is the controlled corrosion of metal
surfaces [1]. The concept behind this mechanism of liquids corroding metals is to reduce
the surface roughness of the polished metals [2,3]. Unlike surface buffing alternatives,
electropolishing can reduce surface roughness and impurities to nearly negligible quantities
on polished surfaces. Currently, large quantities of surface-polished products are being
treated with hazardous chemical solutions, such as phosphoric and sulfuric acids that are
used to electropolish stainless steel [4].

Recently, the benefits of electrochemical polishing are gaining more recognition as an
ideal method for improving a metal’s optimum roughness that can also greatly improve
electrical conductivity [5]. Many acid treatments currently utilized for electropolishing
metal surfaces provide an ideal mirror finish by removing the exposed surface layer of the
sheet metal. However, acid solutions provide this clean, electropolished finish to the metal
at the expense of hydrogen contamination [2,5]. The removal of hydrogen contamination
generally entails the use of high temperature treatments in excess of 800 ◦C for several
hours in vacuo [6].

Deep eutectic solvents have shown a great promise for many electrochemical appli-
cations [1–8]. The main advantages for deep eutectic solvents over state-of-the-art acidic
electropolishing are the wide potential windows and high conductivity compared to other
non-aqueous solvents [1–8].

In the current study, high-purity metal samples of copper will be tested to determine
the effectiveness of both an industry standard acid solution (1 M phosphoric acid), and a
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deep eutectic solvent medium comprised of ethylene glycol and choline chloride mixed in a
2:1 molar ratio, respectively [7,8]. Several scientists have demonstrated the effectiveness of
various conformities of this deep eutectic solvent with various metals and alloys [1,3,9,10].
It is the aim of this investigation to optimize the electrochemistry tests to produce a superior
polish for copper metals, and to weigh the benefits of this deep eutectic solvent against an
industry standard 1M phosphoric acid electropolishing treatment.

2. Materials and Methods

Materials: A 1 M phosphoric acid mixture was used for the acid treatments (Sigma-
Aldrich, St. Louis, MO, USA, 85%). Acid-free treatments were carried out using a deep
eutectic solvent comprised of choline chloride (Acros Organics, Fair Lawn, NJ, USA, 99%)
and ethylene glycol (Sigma-Aldrich, St. Louis, MO, USA, 99.8%); both chemicals were used
as received. The deep eutectic solvent mixture was created by stirring the two components
together at a component ratio of 2 ethylene glycol: 1 choline chloride at 70 ◦C until a
homogeneous colorless liquid emerged.

Samples Preparation: Samples of high-purity copper (>99.95%) were bored from
supplied sheets (3 mm thickness) and labeled for use. In each test, five samples of each
respective sample were taped with polyimide film tape to restrict electrochemical activity,
but leaving (not covering with the tape) a 1 cm2 region on both the front and back faces of
each metal to polish. This resulted in a 2 cm2 region of polishing for each sample when
calculating current density. Metal samples were then immersed in the electropolishing
solution of choice, such that the regions for polishing were completely immersed. Each
metal was submitted to a cursory linear sweep voltammetry test to determine optimum
voltage conditions to set for running chronoamperometry over a 900 s polishing sequence.

Electrochemical Setup and Measurements: The deep eutectic solvent’s effects on elec-
tropolishing the metal surfaces of interest were analyzed using the necessary machines.
Voltammetry and chronoamperometry tests were conducted using a three electrodes sys-
tem (Scheme 1) connected to a Gamry PCI4-G750 potentiostat and controlled using the
accompanying framework and e-chem Analyst (v. 5.5) software.
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The electropolishing procedure made use of a flat platinum counter electrode plate
with a silver wire reference with a spacing of 2.5 cm between each electrode for the experi-
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mental setup. The temperature was maintained at 70 ◦C and flow control inside the beaker
was induced by a slow rotation at 60 rpm using a 1-inch magnetic stir rod via a hotplate.
Both electrodes were degreased using deionized water and acetone to preserve the purity
of samples during testing. The working electrode was abraded with 150 grit glass paper,
rinsed and dried prior to each recorded measurement to ensure reproducible voltammetric
effects. Electrochemical measurements were performed at 70 ◦C with a constant scan rate
of 20 mV/s used in voltammetric experiments.

Characterizations: An AFM surface analysis was carried out using a Dimension
3100 Nanoscope IV scanning probe microscope, manufactured by Digital Instruments, with
software version 6.12 in tapping mode. Step height measurements were recorded in µm via
the Alpha Step 200 by Tencor Instruments. A KH-1300 HIROX digital microscope was uti-
lized for optical comparison to produce representative images scaled to 1600 × 1200 pixels.
After completion of each experiment, samples were dried and weight was recorded using a
high precision digital scale for calculations of mass loss due to electrochemical etching.

3. Results

The mechanism for electropolishing copper metal surfaces using the deep eutectic sol-
vent electrolyte is represented in Figure 1. Upon comparison of voltammograms generated
for both the deep eutectic solvent and phosphoric acid treatments of copper samples when
stepped from 0 to 3 V at a constant scan rate of 20 mVs−1, the ideal scenario for chronoam-
perometry settings for both electrolytes revealed to be 1.5 V (Figure 2A). With a fixed
voltage of 1.5 V, both chronoamperograms revealed electropolishing rates consistent with
the currents reported from the I-V curve from linear sweep voltammetry with expressed
means of 0.38 A/cm2 and 0.06 A/cm2 for the phosphoric acid and acid-free electrolytes,
respectively (Figure 2B). Having selected a fixed voltage of 1.5 V for electropolishing copper
with the deep eutectic solvent, a reported current range of 0.04 to 0.08 A/cm2 for the
majority of chronoamperometry displayed a very slow rate of current decline (Figure 2B). A
comparison of mass before (7.382 ± 0.03 g) and mass post-electropolishing (7.329 ± 0.04 g)
revealed a difference of 0.053 g with an electropolishing rate of 59.44 µg/s (Table 1).
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Figure 1. Schematic diagram of anodic leveling of high-purity copper surfaces via AFM at different
phases of the study: (A) before electropolishing, and (E) after electropolishing treatments with the
deep eutectic solvent, with representative 2D surface profiles depicted (B) before, (C) during and
(D) after experiments. Presence of (CH3)3NCH2CH2OH, the choline chloride radical, and Cu2+ are
abbreviated in (C). AFM Z-axis = 100 nm/div.
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Figure 2. Linear sweep voltammograms (A) for both electropolishing mediums with copper samples
stepped from 0 to 3 V at a constant scan rate of 20 mV/s at 70 ◦C. The dashed line indicates the
ideal voltage utilized for (B) chronoamperometry for phosphoric acid (0.33 A/cm2) and the deep
eutectic solvent eutectic (0.06 A/cm2) with high-purity copper samples. Both figures feature samples
collected every 5 s, and the working potential of 1.5 V was selected based upon the stabilized local
minima, noted as the gray line in A.

Table 1. Average copper electropolishing rate (µg/s) calculations for five samples with a potential of
1.5 V in each medium at 70 ◦C over a 900 s treatment.

Electrolyte Mass Before (g) Mass After (g) Mass Diff. (g) Surface Degradation Rate (µg/s)

Deep Eutectic Solvent 7.382 ± 0.03 7.329 ± 0.04 0.053 ± 0.03 59.44 ± 2.83
Phosphoric Acid 7.340 ± 0.03 7.274 ± 0.08 0.066 ± 0.05 73.44 ± 4.03

As-received copper samples returned an average roughness of 167 ± 9 nm upon
scanning with AFM in tapping mode (Table 2). When compared with a 14.7 ± 2 nm
roughness average for post-treatment with the deep eutectic solvent medium (Figure 3), a
roughness comparison calculated a difference of 152.4 ± 3 nm (Table 2). This resulted in a
post-treatment surface 8× smoother than the original metal surface prior to electropolishing
treatments (Table 2). This differentiation in roughness accounts for a high percentage
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of smoothing efficiency, 91.1 ± 1.5% (Table 2). This efficiency calculation provides the
average roughness difference divided by the roughness prior to treatment (expressed as a
percentage) permitted for the exposed 2 cm2 region of the working electrode. Since this
percentage cannot ever truly be zero, given that a smoothness of zero would inevitably be
a frictionless surface, a value of 91.1 ± 1.5% is extremely high (Table 2). The step height
recorded for the deep eutectic solvent electropolishing treatment was 20.2 µm (Table 3).
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Figure 3. AFM of a copper sample in 2D (A) and 3D (B) after electropolishing treatments with a deep
eutectic solvent, recording an average roughness of 14.7 ± 2 nm via the roughness average method.
AFM Z-axis = 100 nm/div.

Table 2. Roughness average (Ra) in nm for five copper specimens post and prior to treatments with
the respective solutions noted at 70 ◦C for 900 s. Calculated differences determined % smoothing
efficiency (SE) for each sample. Compiled data from external references also noted for comparison.

Electrolyte Metal Ra Before (nm) Ra After (nm) Ra Diff. (nm) % Ra SE * Reference

Deep Eutectic Solvent Cu 167.1 ± 4 14.7 ± 2 152.4 ± 3 91.1 ± 1.5 This Study
Phosphoric Acid Cu 167.6 ± 4 82.6 ± 6 85.0 ± 5 50.7 ± 4.8 This Study

Deep Eutectic Solvent Al 159.3 ± 4 26.6 ± 2 132.6 ± 3 83.2 ± 3.9 [3]
Phosphoric Acid Al 159.1 ± 4 97.7 ± 7 61.3 ± 6 38.5 ± 1.2 [3]

Deep Eutectic Solvent Ni 112.6 ± 3 18.6 ± 2 93.9 ± 2 79.3 ± 4.1 [2]
Deep Eutectic Solvent Ag 151.4 ± 4 18.4 ± 2 132.9 ± 3 82.9 ± 2.2 [4]

* All smoothing efficiency measurements reported as a % out of 100.

Table 3. Average recorded step heights in µm for five copper samples after treatment with the
respective electrolytes listed at 70 ◦C for 900 s.

Electrolyte Step Height (µm)

Deep Eutectic Solvent 20.2 ± 0.2
Phosphoric Acid 24.0 ± 0.4

Electropolishing copper specimens with phosphoric acid revealed a steady incline
from 0 to 1.25 V with an initial peak at 0.54 A/cm2 and with an immediate decline to a
local minimum of 0.37 A/cm2 at 1.5 V. After this local minimum, the incline rate increased
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at 2.25 V and remained constant until nearly 3 V where, much like the deep eutectic solvent
curve for copper electropolishing, it reached a point of irreproducibility (Figure 2A).

After surveying the local maxima and minima present in the linear sweep voltammo-
gram, 1.5 V was selected to run chronoamperometry (Figure 2B). With the voltage fixed at
1.5 V, the current would not only be checked to authenticate the linear sweep voltammo-
gram for relative accuracy, but the optimum voltage could be confirmed while revealing a
resulting current density across the exposed surface used for polishing. The current range
from chronoamperometry was 0.34 to 0.30 A/cm2 in the form of a very gradual decline
nearly identical to the chronoamperogram produced by the deep eutectic solvent, with
the exception of a significantly higher current (Figure 2B). When compared to the copper
sample weight prior to electropolishing treatments, the mass difference was calculated to
be 0.053 g for an electropolishing rate of 73.44 µg/s (Table 1). Comparisons with other
similar pure metals revealed that the smoothing efficiency of the deep eutectic solvent in
this paper was greater than those observed in the external literature using the same deep
eutectic solvent under similar electropolishing conditions (Table 2).

A recorded roughness average of 82.6 ± 6 nm for phosphoric acid electropolishing
revealed that a roughness difference of 85.0 ± 5 nm exists between the original as-received
sample roughness and the subsequent electrochemical testing reported (Table 3). It can
be noted that, although pitting affected the phosphoric acid representative polish of the
total region, there were extreme peaks and troughs left due to pitting at low current
densities. Hydrogen contamination can be observed to affect the overall roughness average
of the region, with an average roughness of 16 ± 2 nm in a 4.5 × 4.5 µm recording region
(Figure 4A). A step height analysis revealed a vertical step distance of 24.0 µm etched away
from the original copper metal surface during electropolishing (Table 3).
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Figure 4. AFM of copper post-electropolishing with phosphoric acid in 2D (A) and 3D (B), recording
an average roughness of 82.6 ± 6 nm by utilizing the roughness average method for calculation. A
10 × 10 µm recording region was utilized. AFM Z-axis = 100 nm/div. The yellow pattern shown in
the bottom center of A is an example of aberrant hydrogen contamination.

4. Discussion

The electropolishing rate for copper with phosphoric acid was reported as 73.44 µg/s,
whereas treatments via the deep eutectic solvent electrolyte yielded a less comprehensive
polishing rate of 59.44 µg/s (Table 1). When comparing step height of both samples, it was
again confirmed that the etching efficiency was higher for phosphoric acid treatments with
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copper, measuring at 24.0 µm, compared to a step height of only 20.0 µm reported for deep
eutectic solvent electropolishing results (Table 3).

Roughness averages for copper samples using both electrolytes shared little in com-
mon (Table 2). The roughness difference for the deep eutectic solvent was reported as
152.4 ± 3 nm, whereas phosphoric acid treatments reported an overall change in roughness
from pre-treatment to post-treatment of 85.0 ± 5 nm (Table 2). This difference being nearly
double for the deep eutectic solvent mixture, the indication is clearly that the phosphoric
acid mixtures are utilized for their superior rate of etching, and not for their overall smooth-
ing efficiency [9]. Providing roughness averages to consider, a post-treatment roughness
analysis revealed heavy splotching in the copper samples treated with phosphoric acid,
which is only further accentuated by a view of the accompanying 3D microscale terrain
map. With a reported roughness average of 82.6 ± 6 nm, the phosphoric acid solution
revealed significant peaks and residual splotches likely caused by oxidation at the metal’s
surface during electropolishing (Figure 4) [10].

Throughout the 900-s electropolishing experiment, a chemical reaction occurred at the
anode immersed in the deep eutectic solvent due to the oxidation of Cu and the formation
of CuCl2 (Equation (1)). This is notably similar to the literature documenting reactions with
high-purity nickel noted in [2]:

Cu→ 2e− + Cu2+ 2Cl−−→ CuCl2 (1)

We observed the presence of trimethylamine, ethanol, ethylene glycol and other
products, with the incidence of trimethylamine being accounted for by the Hofmann
elimination of the choline base as choline hydroxide (Equation (2)):

(CH3)3NCH2CH2OH + −OH→ N(CH3)3 + H2O + HOCH2 = CH2 ↔O = CH2CH3 (2)

The reduction reaction at the cathode (counter electrode) involves the decomposition
of choline by the formation of a choline radical via the acceptance of an electron:

(CH3)3NCH2CH2OH +e−−→ [(CH3)3NCH2CH2OH]� →N(CH3)3+
�CH2CH2OH (3)

Thus, the transient choline radical, depicted in parentheses (Equation (3)), results
from the addition of an electron from the anode at the cathode, and quickly decomposes
to trimethylamine [2]. A review of the literature also indicates that the residual pitting
on the surface of the metal not only affects surface reflectivity, but also is likely to affect
conductivity due to increased surface area [11–13]. The plentiful abrasions and bumps
generated during the electropolishing procedure (clearly visible in AFM imagery) are a
result of bubbles formed on the metal’s surface during electropolishing. With significant
proportions of the metal surface being deteriorated per second, the bubbling that occurs
at the cathode can often leave these marks as they pop on the metal’s surface, sometimes
marring the newly treated surface (Figure 5B) [12,14].

Once electropolishing is complete, surface scrapes seem mostly absent from both the
phosphoric acid and acid-free treatments. Although some of the surface reflectivity of
the metal seems contained in the smoothed outlines of the present scratches, the rough-
ness is relatively unaffected with an average of 14.7 ± 2 nm (Figure 3) [11]. With the
aberrant marring of the copper sample during phosphoric acid electropolishing treat-
ments, the roughness average greatly suffers (82.6 ± 6 nm), with intermittent peaks
that caused the silicon tip attached to the AFM cantilever to become stuck during the
trace and retrace of scattered spots on the copper metal surface. This occurred during
two discarded post-electropolishing surveys, which required tip replacement and AFM
recalibration (Figure 4) [2,12].

This exchange is heavily recorded in the literature regarding electropolishing and
extensive use of hydrogen evolution at the cathode as a driver for this type of pitting.
The bubbles tend to form at points in the range when low current densities occur in the
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electropolishing procedure [15]. This tends to happen towards the end of the trial, when
most of the originally protruding surfaces to be polished and deteriorated away have
been removed [16,17]. When this occurs, the associated chronoamperogram reports a slow
and steady decline, as the remaining surface area available to be electropolished slowly
decreases at the rate recorded in Table 1.
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Figure 5. Comparative imagery of a copper sample electropolished with 1 M phosphoric acid. Digital
microscopy (A) at 1 × 350 µm resolution displays surface marring resulting from pitting at low
current densities. (B) AFM of a 20 × 20 µm area shows residual pitting on the copper surface. AFM
Z-axis = 100 nm/div.

Pitting tends to occur at low current densities, or when the current applied through
the 2 cm2 exposed surface of the metal is occurring over less and less surface area as the
sample is being polished [1,18]. This pitting is relatively inevitable, since the concept of
electropolishing is to always have less surface area than prior to treatment [19]. With
good fortune, this decreased surface area will be accompanied by the benefit of an overall
smoother surface and heightened electroconductivity properties as electrical impulses will
have less distance to dissipate along the microscale surface of the metal over significant
distances [13]. For this to occur, the protruding peaks, Figure 1A,B, must somehow be
electropolished at a faster rate than the average surface in the working electrode surface.
Provided that all of these interactions occur appropriately at the metal’s surface and at the
proper prescribed rates, an efficient electropolishing treatment can be achieved [11].

5. Conclusions

Electropolishing treatments of high-purity copper metal using a phosphoric acid
electrolyte mixture etched at a faster rate than the deep eutectic solvent electropolishing
treatments, including those observed in other pure metals surveyed in the literature. This
distinction is likely to be the reason why the global industry has made it and other acid
solutions the standard for electropolishing. The caveat of this fast rate of polishing is
that this acid-based method of electropolishing facilitates extensive hydrogen evolution
at the working metal cathode, causing pitting at low current densities or bubbling that
ultimately mars the treated surfaces of acid polished samples. This occurrence of over-
potentials causes the roughness of copper metals to yield more favorable results for average
roughness with the utilization of the deep eutectic solvent medium comprised of ethylene
glycol and choline chloride. Electropolishing copper with a deep eutectic solvent comprised
of (2:1) ethylene glycol and choline chloride resulted in a mirror finish and a post-treatment
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surface 8× smoother than the original metal surface prior to electropolishing treatments
with a smoothing efficiency of 91.1 ± 1.5%.

Regarding the replacement of the industry standard 1 M phosphoric acid mixture, it is
likely that the deep eutectic solvent mixture could replace phosphoric acid as an efficient
electrolyte for polishing on the grounds that smoother surfaces are generated. The deep
eutectic solvent mixture additionally provides the added benefits of recyclability without
loss of electropolishing efficiency to present an ecologically friendly supplement for the
electropolishing of high-purity copper metals.
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