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HIGHLIGHTS

Poultry processing plant wastewater may
spread antibiotic resistance genes (ARGs).
Sediment metagenomes from an impacted
and a reference tidal creek were com-
pared.

Higher diversity and abundance of ARGs
in the impacted creek was detected.

A link between ARGs and N cycle genes
was also investigated in creek sediments.
A nitrogen retention gene (nrfA) was
strongly correlated to the abundance of
ARGs.
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ABSTRACT

The intensification of the poultry industry may lead to the increased spread of antibiotic resistance genes (ARGs) in the
environment. However, the impacts of wastewater discharge from poultry processing plants on the sediment resistome
are relatively unexplored. Furthermore, its relationships with important biogeochemical pathways, such as the N cycle,
are virtually unknown. The overall objective of this study was to examine the abundance and diversity of antibiotic
resistance and N cycling genes in sediment microbial communities impacted by poultry industry wastewater. We per-
formed a metagenomic investigation of sediments in an impacted and a reference tidal creek. We also quantified the
abundance of the clinical class 1 integron-integrase gene (intl1) through qPCR as a secondary marker of anthropogenic
contamination. Abundance and diversity of ARGs were substantially higher in the impacted tidal creek, especially near
the wastewater discharge. Abundances of ARGs conferring resistance to macrolides, tetracyclines, and streptogramins
were also higher in the impacted creek than the reference creek. From the N cycling genes detected in the
metagenomes, nrfA, the genetic marker for dissimilatory nitrate reduction to ammonia (DNRA), had the strongest pos-
itive relationship with the total abundance of ARGs, which may indicate an increased potential of eutrophication in
ARG-impacted ecosystems due to nitrogen retention. This study demonstrates that wastewater discharge from a poul-
try processing plant can increase the spread of ARGs, which may result in negative impacts on ecosystem health.

* Corresponding author at: Department of Biological Sciences, Virginia Institute of Marine
Science, College of William & Mary, Gloucester Point, VA 23062, USA.
E-mail address: msemedo@ciimar.up.pt (M. Semedo).

http://dx.doi.org/10.1016/j.scitotenv.2022.159496

1. Introduction

Antibiotics are important pharmaceutical drugs used to protect humans
and other animals against infectious diseases caused by microbial organ-
isms. Their increased production and consumption in the past decades,
however, have led to increased environmental concentrations in aquatic
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ecosystems. Currently, around 50 % of surface waters in the United States
(US) have detectable levels of selected antibiotics at ppb concentrations
(Kolpin et al., 2002; Scott et al., 2016). Increased concentrations of antibi-
otics in the aquatic environment may have negative consequences, such
as growth and activity inhibition of non-target beneficial bacteria and the
spreading of antibiotic resistance (Danner et al., 2019).

Antibiotic usage varies between countries and regions. In the US and the
European Union (EU), antibiotic usage is evenly split between human and
veterinary uses (Kiimmerer, 2009; Scott et al., 2016). Antibiotics are used
in the livestock and poultry industry to prevent and treat disease or, in
some instances, as feed supplements to promote growth (Kiimmerer,
2009; USEPA, 2013). Increased antibiotic concentrations can be found in
aquatic environments surrounding animal housing facilities (Campagnolo
et al., 2002; Kim and Carlson, 2007; Mackie et al., 2006). Landfills and
wastewater treatment plants (WWTP) are another major source of antibi-
otics to the surrounding environment and increased concentrations are usu-
ally found near these facilities (Danner et al., 2019; Michael et al., 2013;
Scottetal., 2016; Wu et al., 2015). The sharp increase in poultry production
over the last decades has led to an increase in poultry processing plants that
directly discharge treated wastewater to surface waters (Semedo and Song,
2020). Due to the historical use of antibiotics in the poultry industry, these
direct discharges may result in an increase in antibiotic concentrations in
the aquatic environment (Kiimmerer, 2009). However, the relative contri-
bution of these discharges to antibiotic contamination or antibiotic resis-
tance is relatively unknown.

Detecting and quantifying antibiotics in environmental matrices is not a
trivial task. It is labor-intensive, costly, and time-consuming, and might not
be sensitive enough for the detection of the low, sub-therapeutic doses
found in the environment. The wide array of different compounds adminis-
tered in livestock and poultry industries further obstructs the detection and
quantification of antibiotics based on targeted approaches toward small
groups of compounds. Quantification of antibiotic resistance genes
(ARGS) in environmental samples can serve as a proxy for antibiotic con-
tamination, since antibiotic exposure is a major selective pressure for the
acquisition of ARGs by microorganisms, even at low environmental concen-
trations (Aminov and Mackie, 2007; Bengtsson-Palme et al., 2018). The col-
lection of all the ARGs in microorganisms is known as the antibiotic
resistome (Wright, 2007). Previous studies have identified and quantified
ARGs in aquatic ecosystems impacted by different anthropogenic activities,
such as antibiotic production waste (Bengtsson-Palme et al., 2014;
Kristiansson et al., 2011), WWTPs (Chu et al., 2018; Czekalski et al.,
2014; Rowe et al., 2016), and animal production facilities (Chee-Sanford
et al., 2001; Mackie et al., 2006; Rowe et al., 2016). Two main approaches
can be used to detect ARGs in the environment, targeted and untargeted.
Targeted approaches quantify specific ARGs or associated mobile genetic
elements (MGEs), such as integrons and transposons, through polymerase
chain reaction (PCR) or quantitative PCR (qPCR) (Czekalski et al., 2014;
Mackie et al., 2006; Tennstedt et al., 2003). These studies have consider-
ably advanced our knowledge on the environmental contamination with
antibiotics and the spreading of antibiotic resistance. However, targeted
techniques may limit our ability to assess the diverse array of antibiotics po-
tentially used in the animal industry and to understand the differential
responses of different ARGs in the environment. Additionally, targeted
quantitative approaches such as qPCR may be biased due to the use of se-
lected primers for gene detection. In order to overcome these limitations,
shotgun metagenomics has recently been used to detect and quantify the
abundance of diverse ARGs responding to various types of antibiotic con-
tamination (Bengtsson-Palme et al., 2014; Chu et al., 2018; Kristiansson
et al., 2011; Liu et al., 2018; Rowe et al., 2016; Wu et al., 2017).

A better understanding of ARGs potential spreading from WWTP, ani-
mal processing facilities, or agricultural activities, is important for human
health due to the potential risk of reaching pathogenic bacteria. Besides
that, in the context of global increase in ARG environmental contamination,
it is important for environmental health to understand potential links to
ecosystem functions and metabolic cycles that play major environmental
roles. The nitrogen (N) cycle is of great relevance in the environment
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since N is an essential element of all biological molecules and has a crucial
role in regulating ecosystem productivity. Through an intricate network of
oxidation-reduction reactions (Kuypers et al., 2018), microbial communi-
ties transform inorganic N in both assimilatory and dissimilatory pathways.
Atmospheric N, is reduced to ammonia (NH3) through the activity of
nitrogenases in the N-fixation process, which is particularly important in
oligotrophic sites (Andersson et al., 2014). Non-assimilated NH3 can then
be aerobically or anaerobically oxidized through nitrification (oxidation
of NH; to NO5 and NO3 ) or anammox (the reduction of NO; with NH;
with the production of N»), respectively. Nitrate (NO3 ) or nitrite (NO5 )
can then be step-wise reduced to N,O and N, through denitrification, a cru-
cial nitrogen removal pathway in coastal environments. Dissimilatory ni-
trate reduction to ammonia (DNRA) competes with denitrification for
nitrate/nitrite reduction but its end-products are radically different. While
DNRA leads to fixed-N retention (via NHj3), denitrification leads to N
loss/removal from the environment (via N,O or N»). It is thus expected
that the DNRA/denitrification ratio is important for ecosystem health,
being frequently investigated in the literature (Burgin and Hamilton,
2007). Due to the importance of N cycling reactions and, in the context of
ARGs contamination, it is important to investigate the potential relation-
ships between ARG and N cycling genes and evaluate whether certain path-
ways are favored by high or low levels of ARG detection as a proxy of
antibiotic contamination. For instance, if the presence of ARG correlates
negatively with denitrification, this could present a 2-fold environmental
health risk of both ARG spreading and low N removal. Metagenomic ap-
proaches are particularly suitable to investigate these relationships since
the whole genomic content of all microorganisms in the sample is analyzed
with the same technology. Despite their importance, the abundance rela-
tionships between ARG and N cycling genes remain largely unknown, espe-
cially in tidal estuarine ecosystems.

The objectives of this study were to (1) investigate the antibiotic
resistome structure of sediment microbial communities impacted by poul-
try industry wastewater, and (2) evaluate the relationships between
nitrogen cycling potential and the resistome of sediment microbial commu-
nities. To achieve these goals, we performed a metagenomic investigation
of estuarine sediments collected during a field survey on two tidal creeks
differently impacted by the poultry industry. We also quantified the abun-
dance of the clinical class 1 integron-integrase gene (int/1) through qPCR
as a secondary genetic marker of anthropogenic contamination and antibi-
otic exposure (Gillings et al., 2015).

2. Material and methods
2.1. Field survey and sediment sampling

The tidal creeks selected for this study are located in the Virginia
Eastern Shore (VaES) of the Chesapeake Bay, USA, and were characterized
in our previous study (Semedo and Song, 2020). Briefly, a field comparison
was performed between two tidal creeks. Parker Creek, here referred to as
the impacted creek, was selected because it receives the direct discharge of
treated wastewater from a poultry processing plant. Nickawampus Creek,
here referred to as the reference creek, does not receive the direct discharge
from any processing plant. Three stations were sampled along a sediment
transect of the two creeks: Upstream (U), Midstream (M), and Downstream
(M) (Fig. S1). The upstream station in the impacted creek is the closest to
the processing plant discharge (between 1 and 3 km) and the downstream
the furthest (around 5 km). In the reference creek, the three stations sam-
pled targeted a similar salinity and distance gradient as in the impacted
creek. A seasonal sampling was performed and a subset of two seasons
was selected for this metagenome study: May and September 2017. At
each station, three replicate sediment samples were collected with a push
core device attached to core tubes (8 dia. X 30 cm length). The top 3 cm
of each sediment core were homogenized and stored at — 80 °C before mo-
lecular analysis. The bottom water nutrient concentrations and physico-
chemical characteristics of sampled tidal creeks were previously reported
and can be seen in Semedo and Song (2020).
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2.2. Metagenome sequencing and functional annotation

Two replicate cores from each station in each season were used for
metagenome analysis through shotgun sequencing. Genomic DNA was
extracted from 0.5 to 0.75 g of sediment using the PowerLyzer
PowerSoil DNA Isolation kit (MoBio), as previously described.
(Semedo and Song, 2020) Purified genomic DNA was sequenced by
Novogene Corporation (CA, USA). Libraries were prepared using the
[lumina Nextera XT Kit with an input of 1 ng of DNA per library. The
average DNA insert was approximately 350 bp. Nextera adapters were
ligated on to the libraries and sequenced on an Illumina HiSeq platform
(2 x 150 bp). Approximately 4 Gb (Giga base pairs) of data were gener-
ated for each sample.

The raw metagenome sequences were initially trimmed with
Trimmomatic V0.33 to remove adapter sequences, short reads (<36 bp),
and reads with an average quality score below 15 within 4-base windows
(Bolger et al., 2014). De novo assemblies of each sample metagenome
were carried out using MEGAHIT V1.1 (Li et al., 2016, 2015), with the
meta-large preset and minimum contig length of 500 bp. The resulting as-
sembled contigs were assigned to gene calls and protein-coding genes
with PROKKA (Seemann, 2014), using the metagenome preset settings.
To estimate gene abundance, the quality-filtered reads were mapped back
to the contigs with bowtie2 (Langmead and Salzberg, 2012), using the
local alignment mode while allowing for 1 base mismatch. The number of
reads mapped to the target genes of this study (antibiotic resistance and ni-
trogen cycling genes) was counted for each metagenome using SAMtools
(Danecek et al., 2021).

To investigate the impacts of poultry industry wastewater on the
resistome and to exclude the quantification of very low specificity resis-
tance genes (e.g. multidrug efflux pumps), we performed a string-based
word search on the PROKKA annotated metagenomes for protein names
associated with antibiotics approved for use in the poultry industry
(USEPA, 2013): bacitracin, chlortetracycline, erythromycin, gentamicin,
lasalocid, lincomycin, monensin, neomycin, nystatin, oxytetracycline,
penicillin, spectinomycin, streptomycin, sulfadimethoxine, tetracycline,
tylosin, and virginiamycin. To quantify the abundance of nitrogen cycling
genes (NCGs), we performed a string-based word search for the following
protein names in each metabolic reaction (gene name in parenthesis):
Nitrate reduction — respiratory nitrate reductase alpha subunit (narG), peri-
plasmic nitrate reductase (napA); DNRA - cytochrome c-552 (nrfA); denitri-
fication - nitrite reductase (nirS), copper-containing nitrite reductase
(nirK), nitric oxide reductase subunit B (norB), and nitrous-oxide reductase
(nosZ); nitrification — ammonia monooxygenase alpha subunit (amoA) and
hydroxylamine oxidoreductase (hao); anammox — hydrazine synthase sub-
unit alpha (hzo) and hydrazine dehydrogenase (hdh); nitrogen fixation —
nitrogenase iron protein (nifH). All protein annotations were verified in
the reviewed (Swiss-Prot) manually annotated UniProtKB database.
(Consortium, 2021).

To allow for gene-to-gene comparisons, the number of mapped reads to
each gene was normalized by gene length (obtained from the UniProtKB) to
obtain the coverage for each gene (Chu et al., 2018). To account for
differences in sequencing depth between samples, the number of mapped
reads to each target gene was normalized against the average count of
three single-copy genes found in nearly all free-living bacteria (Dupont
et al., 2012): RecA protein (RecA), DNA gyrase subunit B (gyrB), and
DNA-directed RNA polymerase subunit beta (rpoB). The normalized abun-
dance of a target gene (ARG or NCG) was then expressed as an average ge-
nomic copy number, similar to that proposed by Nayfach and Pollard
(2016) (Nayfach and Pollard, 2016), and was obtained using the formula
below:

Zcounts of target gene
gene length (bp) | ARG or NCG
Scounts of reference gene

gene length (bp)

Average Genomic Copy Number =

mean{ }
RecA gyrB.rpoB
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To normalize ARG richness estimates, PROKKA gene calls were also ran-
domly subsampled to the minimum number of gene calls in a sample of this
dataset.

To further explore the relationships between N cycling genes' presence
and the detection of ARGs in the metagenomes, metagenomic binning
was performed in merged sequence libraries from each location. Quality-
trimmed sequence libraries from each station from each creek were merged
and co-assembles with MEGAHIT V1.2.9 (Li et al., 2016, 2015) and contig
binning was performed with MetaBAT v1.7 (Kang et al., 2015). The
CheckM software (Parks et al., 2015) was used to keep only medium- and
high-quality metagenome assembled genomes (MAGs), according to the
following published criteria: >90 % and 50 % completeness and <5 %
and 10 % of contamination for high- and medium-quality MAGs, respec-
tively (Bowers et al., 2017). The obtained MAGs were functionally anno-
tated using PROKKA, as described above, and taxonomy was inferred by
using the GTDB-Tk v1.7.0 (Chaumeil et al., 2020). The metagenome bin-
ning workflow was performed using the Kbase environment (Arkin et al.,
2018).

2.3. qPCR of clinical class 1 integron-integrase (intl1) and total bacteria (16S)

The prevalence of anthropogenic pollution in the sediments was quanti-
fied by quantitative polymerase chain reaction (QPCR) of clinical class 1
integron-integrase gene, intl1, in the extracted DNA. Standards were pre-
pared through a serial dilution of M13 PCR products from plasmids carry-
ing the target gene and quantified using an Agilent 220 TapeStation
System (Agilent Technologies). The primers intIF165 and intI1R476 were
used to generate 311 bp amplicons (Gillings et al., 2015). The 20 pL
qPCR reactions for intl1 quantification consisted of 10 pL of SYBR green
Go-Taq gPCR Master Mix (Promega), 0.05 pL of CRX dye, 0.25 pL of each
primer (10 uM), 0.2 pL of bovine serum albumin (BSA), 2 ng of template
DNA, and were adjusted to final volume with nuclease-free H,O. The
qPCR conditions for intlI1 quantification were the following: 3 min at
94 °C, followed by 35 cycles of 30 s at 94 °C, 30 s at 62 °C, 60 s at 72 °C,
and 3 s at 80 °C for fluorescence detection. Amplification efficiency was
78 % and the R? value of the standard curve was 0.97. All reactions were
performed in 96 well plates with two negative controls, which contained
no template DNA, to exclude any potential contamination. Reaction
specificity was confirmed using gel electrophoresis in comparison with
standards and monitored by analysis of dissociation curves during quantita-
tive amplification. The relative abundance of the intl1 gene was normalized
against total bacterial abundance, estimated by qPCR of the 16S rRNA gene.
The primers used for 16S rRNA gene amplification were EU341F and 685R
and the qPCR components and thermal cycling conditions were the same as
previously described (Semedo et al., 2018).

2.4. Statistical analysis

A principal coordinate analysis (PCoA) was performed to evaluate dis-
similarity of ARGs structure using Bray-Curtis distances between samples
with the phyloseq package in R (McMurdie and Holmes, 2013). Significant
effects of creek, location, and month in gene structure dissimilarity were
tested by permutational ANOVA (PERMANOVA) using the adonis function
of the vegan package in R (Oksanen et al., 2017). All PERMANOVA models,
either including only creek, only location, or only month, and the different
combinations of the three factors were compared with the Akaike Informa-
tion Criterion (AIC) and the model with lowest corrected AIC and highest
weight was used for subsequent analysis and interpretation. A one-way
ANOVA was also performed to test for significant differences of samples dis-
similarity distance (Bray-Curtis) between sampling location (upstream,
midstream, downstream). Differences in the relative abundance of the
intl1 gene between impacted and reference creeks at each month were an-
alyzed using two-way ANOVAs. The factors included in the ANOVA were
creek (categorical; reference or impacted) and location (categorical; up-
stream, midstream, downstream). Tukey's-HSD test was used to perform
multiple comparisons between groups. Normality and homoscedasticity
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were assessed with Q-Q plots and residual plots. IntI1 relative abundance
was log-transformed to meet ANOVA assumptions. Significant relationships
for all tests were considered at o < 0.05. All statistical analyses were con-
ducted in R (version 3.2.2. Copyright 2015 The R Foundation for Statistical
Computing).

3. Results
3.1. Antibiotic resistance genes (ARGS) in sediment metagenomes

An average of 25,087,219 sequences per sample was obtained for contig
assembly and functional annotation following quality screening and re-
moval of adapter sequences (Table S1). From an average of 168,413 contigs
per sample, 130,354 gene calls were detected, on average, representing an
average of 5000 unique genes in each sample.

After subsampling all samples to the same number of gene calls
(39,017) to allow for normalized comparisons of ARG diversity between
samples, we identified 35 different genes conferring resistance to antibi-
otics among all samples. A PCoA, representing the dissimilarity between
the samples based on the relative abundance of the antibiotic resistance
genes (ARGs), is presented in Fig. 1.

The first two principal coordinates represented 51.6 % of the variation
in the resistome structure of these communities. The best PERMANOVA
model, selected through an AICc model comparison, included creek only
as of the predictor variable (Table S2), despite the low explanatory power
and being marginally non-significant (R*yaria = 0.07, p = 0.081), proba-
bly due to the high variability observed and the limited replication. The
two creeks, however, presented a different spatial trend across the three lo-
cations. While the samples from the reference creek do not present a clear
separation between upstream, midstream, and downstream stations, the
samples from the impacted creek present some separation from upstream
to downstream stations. This spatial variation in the impacted creek also
corresponds to a dissimilarity trend with the samples from the reference
creek. The upstream stations from the impacted creek cluster further
apart from the corresponding stations in the reference creek than the

PCoA: Antibiotic Resistance Genes
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midstream or downstream stations, indicating a more distinct resistome
structure at the upstream station, near the wastewater discharge of the
poultry processing plant. In fact, if we calculate the Bray-Curtis distances
between the two creeks, these are significantly higher between the up-
stream stations, when compared to the midstream and downstream stations
(Fig. S2).

Among the 35 different ARGs detected in this study, 9 were found exclu-
sively in the impacted creek, 3 exclusively in the reference creek, and 23 de-
tected in both creeks. The difference between the creeks is more obvious at
the upstream stations, where the number of ARGs found exclusively in the
impacted creek (narg = 11) was around 6 times higher than the corre-
sponding number in the reference creek (narg = 2) and even exceeded
the number of genes present in both creeks (narg = 10) (Fig. 2). These dif-
ferences are dissipated in the midstream and downstream stations, where
the number of shared genes between the two creeks is always higher than
the genes found exclusively in the impacted creek. When considering
ARGs associated with individual compounds, it is worth noticing the diver-
sity of tetracycline resistance genes exclusively found in the impacted
creek, from classes B, D, and E.

The average genomic copy number of total ARGs at the upstream station
in the impacted creek was five times higher than in the reference creek
(Fig. 3). Due to the large variability observed and limited sample size, how-
ever, this difference was not considered to be significant (t-test). Neverthe-
less, it is important to note that virtually every single ARG had their average
abundance higher in the impacted creek than in the reference creek, at the
upstream stations (with the only exception of extended-spectrum beta-
lactamase PER-1).

At the midstream and downstream stations, the difference between the
two creeks weakens and the distribution of ARGs becomes more similar be-
tween reference and impacted creeks. The most abundant ARGs in both
creeks and across all stations were the macrolide export ATP-binding/
permease protein (MacB) and macrolide export protein (MacA), with com-
bined average abundances of 2.37 and 1.17 average genomic copy numbers
in the impacted and reference creek, respectively. At the upstream stations,
the difference between the two creeks was larger, with a combined average
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Fig. 1. Principal Coordinate Analysis (PCoA) plot representing the dissimilarity in the normalized abundance of antibiotic resistance genes in the sediments collected from the
reference (blue) and the impacted (red) creeks. Upstream (circles), midstream (squares), and downstream (triangles) samples from May and September are shown. Sample
dissimilarity and distance analysis was calculated using the Bray-Curtis dissimilarity index.
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Fig. 2. Venn diagrams describing the ARGs identified exclusively in the reference (blue) or the impacted creek sediments (red). The shaded overlap represents the number of
genes shared between the two creeks. The percentage (in parenthesis) represents the proportion of genes from each sub-group in relation to the total number of ARGs

identified in each station.

abundance of 2,72 and 0.98 in the impacted and reference creek, respec-
tively. When considering the resistance to tetracycline, one of the most
commonly used antibiotics in the animal industry, we found an average
genomic copy number of 0.184 in the impacted creek and 0.016 in the
reference creek. The tetracycline genes identified belong to classes A, B, C,
D, E, G, H, and O of tetracycline resistance determinants. The most abundant
was class C, with an average genomic copy number of 0.347 in the impacted
creek and 0.069 in the reference creek. We also found three genes conferring
resistance to virginiamycin, a streptogramin commonly used in the animal
industry as a growth promoter and therapeutic drug: virginiamycin A acetyl-
transferase, virginiamycin B lyase, and streptogramin A acetyltransferase.
The average genomic copy number of these genes was 0.109 in the impacted
creek and 0.027 in the reference creek.

3.2. Abundance of clinical class 1 integron-integrase gene (intl1)

Relative abundance of the clinical class 1 integron-integrase gene (intl1)
determined by qPCR assays is shown in Fig. 4. The intl1 relative abundance
in the reference creek ranged from 0.013 to 0.041 gene copies/16S gene
copies without any monthly or spatial trend. In the impacted creek, the
intl1 relative abundance ranged from 0.015 to 0.235 gene copies/16S
gene copies with a clear spatial trend. In both sampling months, the highest
abundances in the impacted creek were observed at the upstream station,
closest to the wastewater discharge from the processing plant. The relative
abundance of this gene at the upstream station in the impacted creek
was on average 6 times higher than in the reference creek. In September,

the difference between the two creeks was also observed in the midstream
stations.

3.3. Abundance of N cycling genes in sediment metagenomes

The average genomic copy number of all N cycling genes found in the
studied sediments is shown in Fig. 5. The estimated abundance of nitrate re-
duction genes, narG and napA, was not different, in general, between the
two creeks. The normalized abundance of nrfA, the marker gene for dissim-
ilatory nitrate reduction to ammonium (DNRA), was approximately four
times higher in the impacted creek than in the reference creek across all sta-
tions sampled. Regarding denitrification, which competes with DNRA for
dissimilatory nitrate/nitrite reduction, the trend is less clear. Despite occa-
sionally higher mean abundances in the impacted creek (e.g. nirS and nosZ
at the downstream location), the variability is high and no substantial
differences were observed for nirS, nirK, norB, or nosZ genes. The combined
observations of increased DNRA genetic potential and no consistent
changes in denitrification potential indicates that the impacted creek is
more prone to reactive N retention than removal when compared to the
reference creek.

When considering ammonium oxidation pathways, we detected genes
from both aerobic (nitrification) and anaerobic (anammox) pathways.
The hydroxylamine oxidoreductase gene (hao) was the only gene found
for nitrification and its abundance was five and 50 times lower in the im-
pacted creek, when compared to the reference creek, at the upstream and
midstream stations, respectively. In the downstream stations, there was
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Fig. 5. Normalized abundance of N cycling genes in assembled metagenomes from the reference (blue) and the impacted (red) sediments. Bars represent mean * SE of four
cores (2 replicates X 2 months) in each location (upstream, midstream, or downstream). The abundance is expressed as the average genomic copy number to normalize for
gene length and sequencing depth, as described in the Material and methods section. The genes are vertically ordered by N metabolic pathway.

no detected difference between the two creeks. Regarding anammox, no ap-
parent differences between the two creeks were detected.

The genetic potential for nitrogen fixation, quantified by the normalized
abundance of the nitrogenase iron protein gene (nifH), was apparently
lower in the impacted creek than in the reference creek. In fact, this gene
was exclusively detected in the reference reek, at the upstream and mid-
stream stations.

3.4. Relationship between the resistome and N cycling genes

The relationship between the normalized abundance of the N cycle and
antibiotic resistance genes is shown in Fig. 6. Between the two genes
encoding for nitrate reduction to nitrite, narG genes showed a positive
and significant correlation with total ARG abundance, while napA showed
no significant correlation. However, it is worth saying that the observed
positive correlation between narG and total ARGs may be biased due to
the presence of a single sample with extremely high ARG and narG normal-
ized abundances (Fig. 6). Among the denitrification genes quantified, norB
and nosZ were significantly and positively correlated with total ARG abun-
dance while the nitrite reduction genes (nirS and nirK) did not present a sig-
nificant correlation. On the other hand, nrfA, responsible for nitrite
reduction in DNRA was significantly and positively correlated with the
total ARGs abundance in the studied sediments.

Regarding ammonia oxidation (aerobic and anaerobic) and N fixation
genes, no significant correlations with total ARGs were observed. However,
it is worth noticing a negative spearman correlation coefficient of hao
(nitrification) with total ARGs, indicating that lower genetic potential for
nitrification was observed in samples where total ARGs were highest,
which occurred mostly at the upstream station of the impacted creek.

To further explore whether the significant correlations observed be-
tween N cycling genes and ARGs were driven by genes occurring in the
same genomes and eventual co-selection, we performed contig binning
from the metagenomic reads (Fig. 7). Similarly to the normalized abun-
dances shown above, the metagenome assembled genomes (MAGs) with

the highest number of ARGs were found at the upstream station of the im-
pacted creek. At this location, the mean ARG count per MAG is 3.95 in the
impacted creek and 0.67 in the reference creek. At the midstream station is
2.67 and 2.42 in the impacted and reference creeks, respectively, while at
the downstream stations is 1.86 and 2.00. Regarding the taxonomic classi-
fication of high-ARG containing MAGs (with 3 or more ARGs), we observed
a wide range of taxa, but Gamma-proteobacteria consistently had a repre-
sentative MAG with the highest number of ARGs at each station from
both creeks.

The significant correlation observed between normalized abundance of
ARGs and nrfA gene (Fig. 6) did not translate into a clear co-occurrence pat-
tern in MAGs, i.e. high-ARG containing MAGs were not always carrying the
nrfA gene and this gene was also present in low-ARG containing MAGs
(Fig. 7). In total, we found 31 high-ARG containing MAGs (with 3 or
more ARGs) and 25 low-ARG containing MAGs (with <3 ARGs). The nrfA
gene was present in 23 % of the high-ARG containing MAGs as well as in
24 % of the low-ARG containing MAGs. The other N cycling genes were
also evenly distributed among high- and low-ARG containing MAGs and
only spatial patterns already described above could be observed after the
MAG analysis.

4. Discussion

The diversity and abundance of antibiotic resistance genes (ARGs) in
the impacted creek were considerably higher than in the reference creek.
This result was particularly clear at the upstream stations, closest to the
discharge of the poultry processing plant in the impacted creek. At these
stations, nearly half (48 %) of all ARGs found were observed exclusively
in the impacted creek. On the other hand, at the downstream stations, far-
ther from the processing plant, the difference in the resistome abundance
and diversity between impacted and reference creeks is minimal. This de-
creasing gradient of dissimilarity and the higher abundances detected at
the upstream stations suggest that the wastewater discharge, occurring up-
stream of the three analyzed stations, is the main source of most ARGs or
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releases the chemicals enhancing the ARG abundance. These results are
comparable to previous studies which found higher abundances of ARGs
near wastewater treatment plants or animal feeding operations, when com-
pared to reference or more distant sites (Chu et al., 2018; Czekalski et al.,
2014; Lu et al., 2022; Mackie et al., 2006; Pruden et al., 2012). Others
have found even larger differences, for example, by comparing lakes
directly affected by antibiotic manufacturing to remote pristine lakes
where differences of more than three orders of magnitude can be found
(Bengtsson-Palme et al., 2014). In the terrestrial environment, previous
studies have also shown spatial and temporal trends, with higher abun-
dances in soils collected near livestock feeding areas and lower abundances
of ARGs years after termination of farming operation (Agga et al., 2019).
The results from our study support the abundant literature reporting dis-
semination of ARGs in environments impacted by anthropogenic activities
generating human or animal-related wastewater (Bengtsson-Palme et al.,
2014; Chu et al., 2018; Pruden et al., 2012; Scott et al., 2016).

As discussed in previous works, the higher abundance of ARGs in
metagenomes from the impacted creek can be explained by a selective pres-
sure from historical exposure to high concentrations of antibiotics in the

creek or due to migration of resistant bacteria directly from the processing
plant (Bengtsson-Palme et al., 2014). The presence of antibiotics in the en-
vironment (creek or processing plant) favors an increase in the frequency of
ARGs and acts as a major selection force of antibiotic resistant bacteria
(Wu et al., 2017). It is true that other contaminants, such as metals or disin-
fectants, may co-select or be major drivers for the presence of some ARGs
(Danner et al., 2019; Lu et al., 2022). However, our approach of searching
for a subset of ARGs that confer resistance to a particular group of antibi-
otics (authorized for usage in the poultry industry), aimed to eliminate
the weight of the co-selection confounding factor by pollutants other than
antibiotics. It is thus reasonable to expect that the main selective force of
the examined ARGs is antibiotics, rather than other co-selectors. Since
ARGs can remain in bacterial communities even after the selective pressure
is removed, the “easy-to-get, hard-to-loose” phenomenon (Aminov and
Mackie, 2007), we cannot determine if the antibiotic pressure is due to a re-
cent or past exposure; this determination is out of the scope of this work.
When considering the individual ARGs detected in this study, the two
most abundant ARGs, MacA and MacB confer resistance to macrolides.
Macrolide resistance genes were also abundant ARGs in the sediment
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Fig. 7. Nitrogen cycling genes and number of ARGs detected in mid- and high-quality MAGs from creek sediments. N cycling genes presence (“yes”) is highlighted with yellow
background. For each location, MAGs are ordered by decreasing number of ARGs detected. Percent completeness and contamination is shown for each MAG. Archaeal MAGs
are shown in purple font.
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metagenomes near WWTP outfalls (Chu et al., 2018). Macrolide antibiotics,
such as erythromycin and tylosin, are commonly used in the poultry indus-
try and up to 67 % of tylosin may be excreted by livestock or poultry when
orally administered, favoring environmental dissemination (USEPA, 2013).
The average normalized abundance of the two genes was higher in the
impacted creek, especially MacA at the upstream station, where its average
genomic copy number was four times higher than in the reference creek.
The proteins encoded by MacB and MacA are part of a transmembrane com-
plex (MacAB) that provides macrolide-specific resistance through active
efflux (Kobayashi et al., 2001). The relatively high abundance of these
genes in the impacted creek suggests the exposure to macrolide com-
pounds, which is possibly due to their high usage in the poultry industry.

We also found substantially higher diversity and abundance of tetracy-
cline resistance genes in the impacted creek than in the reference creek. The
two most abundant tetracycline resistance genes found in our study belong
to class A and class C that were mostly found in the impacted creek. A pre-
vious study identified classes C, E, and O as associated with WWTPs and
classes H, Q, S, and T to be associated with animal feeding operations
(Storteboom et al., 2010). We found genes from all classes of the first
group (CEO) with a cumulative genomic copy number of 0.84 in the refer-
ence creek and 4.61 in the impacted creek, but very low to zero abundances
of genes in classes H, Q, S, or T. The distribution of the tetracycline resis-
tance classes in our study suggests that the molecular signature of these sed-
iment metagenomes is representative of a WWTP more so than an animal
feeding operation, which is not surprising since the processing plant con-
tains its own WWTP to treat the wastewater before discharging to the
creek. This finding is also in agreement with the microbial community re-
sults described in our previous work (Semedo and Song, 2020), which
showed a community composition characteristic of WWTP effluent. How-
ever, we also found an increased abundance of the genes conferring resis-
tance to streptogramin, such as virginiamycin, which is not expected near
urban or municipal WWTP outfalls (Chu et al., 2018). Two genes conferring
resistance to virginiamycin were found (virginiamycin B lyase and
virginiamycin A acetyltransferase), with a cumulative average genomic
copy number of 0.64 in the reference creek and 3.61 in the impacted
creek. This result indicates that these ARGs may be specific to wastewater
from the poultry industry.

The relative abundance of the clinical class 1 integron-integrase (intl1)
gene in this study was also higher in the impacted creek than the reference
creek, especially at the upstream and midstream stations. Higher abun-
dance of mobile genetic elements (MGEs), including integrases and
transposases, near wastewater discharges or antibiotic-polluted environ-
ments has been reported in previous studies (Bengtsson-Palme et al.,
2014; Kristiansson et al., 2011). The intI1 gene was proposed as a genetic
marker of anthropogenic pollution due to its rapid response to various
human pollutants, such as antibiotics, disinfectants, and heavy metals
(Gillings et al., 2015). Livestock waste products are characterized by in-
creased levels of diverse antibiotic resistance genes and enriched concentra-
tions of heavy metals (Zhu et al., 2013), so the increased abundance in the
impacted creek is not surprising. Indeed, the presence of class 1 integrons
was previously reported to increase in poultry house litter, CAFOs aerosols,
and groundwater impacted by animal farming (Hong et al., 2013;
Ling et al., 2013; Nandi et al., 2004). This result underscores that this
creek is highly impacted by the chicken industry, when compared to the
reference creek.

In this study, we also aimed to explore the metagenomic profile of N
cycling genes in the sediments of impacted and reference tidal creeks as
well as the potential relationships with ARGs distribution. Our results sug-
gest that the DNRA pathway was favored at the upstream station of the im-
pacted creek, compared with the same station of the reference creek, while
denitrification gene differences were not detectable in the metagenomes.
The denitrification gene results contrast with our previous observations of
inhibited denitrification activity in the same station of the impacted
creek, when compared to the reference creek (Semedo and Song, 2020).
A disconnect between metagenomic gene abundance and activity measure-
ments is not unique to this study (Frostegard et al., 2022) and, in this case,
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was possibly explained by an inhibition at the expression or even at the en-
zymatic activity level. Another possible explanation for the inconsistency is
that metagenomic sequencing coverage for target genes (e.g. denitrifica-
tion) is expected to be relatively low, in comparison to targeted approaches,
such as qPCR.

The increased DNRA potential observed in the impacted creek may lead
to increased N retention, which is supported by the significantly higher
levels of bottom DIN (both NH; and NOj3) previously found in this
creek, especially at the upstream and midstream stations (Semedo and
Song, 2020). The lower abundance of nitrifying hao also contributes to
explaining the higher NH; found in this creek. Despite higher DNRA and
lower nitrification potential in the impacted creek, however, the NO3
was still substantially higher at the upstream station of the impacted
creek (Semedo and Song, 2020), which is probably explained by the
continuous supply of external NO3 to the creek, commonly observed in
waterways draining WWTP and/or animal facilities (Carey and Migliaccio,
2009; Lofton et al., 2007). Despite these observations, and through a biogeo-
chemical point of view, it was still surprising to find a higher DNRA/DNF
ratio potential in these stations, since this ratio is expected to be lower in
high NO3 /organics sites (Beate et al., 2014; Yoon et al., 2015), such as
the upstream station of the impacted creek. With the observation of the
significant relationship between nrfA and total ARGs (Fig. 6), one could
speculate that the DNRA pathway may have been more co-selected with
ARGs than denitrification genes in the impacted creek. However, after
metagenomic binning, it does not appear that any particular N cycling path-
way is directly linked to the presence of ARGs in individual genomes or that
any specific gene is being co-selected with ARGs in the same genomes
(Fig. 7). The correlation may thus be driven by a parallel response to factors
co-occurring in the same location, the upstream station of the impacted
creek in this case. Antibiotic resistance genes are probably responding to
the wastewater input and the associated contaminants (Bengtsson-Palme
et al., 2014; Chu et al., 2018; Pruden et al., 2012; Scott et al., 2016), while
nrfA gene abundance could be simply responding to the high NO, levels de-
tected since it is a required electron acceptor, despite the abundant literature
describing DNRA as being electron donor limited (Beate et al., 2014; Bu
et al., 2017; Giblin et al., 2013; Yoon et al., 2015). Alternatively, both
genes could be responding to the environmental disturbance caused by
wastewater input. The clarification of these mechanisms, however, could
only be achieved by experimental work with wastewater exposure and
assessment of ARGs and nrfA gene co-evolution in different conditions of
NOj3 supply, which future studies may address. Nevertheless, it is important
to underscore that finding significant or non-significant correlations in field
observations such as the ones in this study must be cautiously considered
since a causal relationship is not certain and requires further validation
through targeted experiments and theoretical support.

In summary, the results from this study show that wastewater discharge
from a poultry processing plant may lead to an increase in ARGs and
integron-integrase genes in receiving waterbodies. Simultaneous high
abundances of ARGs and mobile genetic elements in impacted creeks are
a cause for concern due to an increased risk of antibiotic resistance propa-
gation among bacterial communities in the aquatic environment, which
may have negative consequences on environmental and human health.
Due to the increasing trend of global poultry production, this source of an-
tibiotic resistance should not be ignored in future estimates of antibiotic re-
sistance levels in the Anthropocene. Our results also suggest that microbial
communities highly impacted by antibiotic resistance genes, a N retention
pathway (DNRA) may be favored in relation to a N removal pathway
(denitrification), which presents a two-fold concern for ecosystem health
related to aquatic eutrophication.
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