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STORAGE EFFICIENCY or ESTUARIES 

Maynard M. Nichols' 

Estuaries or the U.S. Atlantic coast exhibit a range or storage efficiencies 
from complete storage to partial by-passing through the system. Efficiency, I.e. the 
ratio or sediment accumulation to river Input rate, ranges 0.7 in the Altamaha River, 
Ga. to 7.6 In the Choptank River, Md. Northern estuaries trap and store the bulk or 
their river input In addition to large amounts or sediment supplied from other 
sources. Southern estuaries accumulate major sediment loads in marshes and allow 
partial escape through channels to the sea. 

The storage efficiency or difrerent estuaries is compared with respect to key 
factors that can be quantified and that vary within the region, It was round that 
storage efficiency in northern estuaries is encouraged by low flushing velocity and 
high volumetric capacity relative to river inflow. The long-term rise of sea level 
relative to the land tends to offset sediment accumulation and maintain or increase 
capacity. Within the range of estuaries considered, efficiency generally increases 
as the flow ratio decreases. This trend suggests the estuarine circulation in 
partially-mixed systems is important both in trapping fluvlal sediment and in 
transporting sediment landward rrom the sea. 

I ntroduct1 on 

Estuaries and lagoons exhibit a range or storage efficiencies that extend from 
complete storage to complete by-passing or fluvial sediment through the system. 
Although the efficiency varies widely with location, the principal questions to be 
asked in each case are the same. or the total amount of fluvial material supplied to 
an estuary, how much is stored and how much passes through to the ocean? How 
efficient are estuaries in storing fluvial sediment? What physical factors determine 
the storage efficiency or an estuary? Storage efficiency is of fundamental interest 
because It determines whether or not fluvial sediment and river-borne contaminants 
are likely retained in an estuary. As a consequence of storage the kind and amount 
of suspended sediment discharged from an estuary may differ markedly frOCD the 
sediment supplied, This paper aims to discuss physical factors affecting sediment 
storage and to show their relative importance in different estuaries along the U.S. 
Atlantic seaboard. 

Comparison of estuaries ls facilitated by new morphometric and hydrologic data 
compiled by NOAA (1985) in a National Estuarine Inventory data atlas, Additionally, 
accumulation rates are known from new measurements of seismic surveys, geochemical 
chronology and compilation of bathymetric changes. 

Professor or Marine Science, Virginia Institute of Marine Science, School of 
Marine Science, The College or William and Mary, Gloucester Point, Virginia, U.S.A. 
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Derinitions 

Storage capacity is the amount or space or room, available to contain sediments. 
It is the rluid volume or an estuary basin at high tide. Ir eustatic sea-level and 
crustal movement are held constant, then sediment accumulation reduces storage 
capacity. The capacity lost annually, c1, expressed ln terms or percent, relates to 
the volume rate or sediment accumulation, Ra, (m 1 yr- 1

) by: 

C • 100 fi! 
l C 

( 1) 

Where C is the capacity (m'). 

Additionally, the rate or sedimentation (cm yr- 1 ) is equal to the volU111e accumulation 
(m 1 yr- 1 ) divided by the basin volume change (m'cm-'). 

Storage erriciency is the ability or an estuary to retain and hold sediment 
delivered to it. This can be expressed as a ratio or percentage or the accumulation 
mass to the input mass over a given time. Assuming a mass balance or sediment in an 
estuary and steady state on a geologic time scale, with no net additions or losses, 
then the input mass, Hi, _plus the sediment produced in the system, P, must equal the 
accumulation mass on the bed, Hs, plus the amount consumed in the system, C, and the 
output mass, He. Thus: 

HI• P • Hs • C • He (2) 

(sources) (losses or removal) 

Then, the storage erriciency {Si), i.e. rraction retained over a given time, can be 
expressed as a ratio or percentage 

Hs 
(3) 

EHi + P - C 

or 

Ms 
Si• 100 -----------

EHi + P - C 
(~) 

IC production and consumption associated with organic activity within an estuary are 
small, these terms can be neglected, The input mass may be the fluvlal mass, or 
volume, where the river supply accounts for all the accumulated sediment. 
Alternately, the input mass may be the total mass from different sources, e.g. 
Cluvial, marine, shores or biological production. Since the source or material in 
the total accumulation mass usually ls unknown, the storage errtclency ratio may be 
referred to the Cluvlal input mass which is orten known. Therefore, a storage 
eCClciency or 1 implies that the amount or sediment accumulated ls equivalent to the 
amount supplied by rivers; however, the accumulated sediment may contain some 
sediment from marine or shore sources. An efficiency ratio greater than 1 implies 
that an estuary retains and stores more sediment than supplied by its rivers whereas 
a ratio less than 1 implies that the amount or sediment stored.is less than the total 
fluvlal input, a situation that develops when Cluvial sediment by-passes an estuary. 
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Storage Zones and Scales 

Sediment supplied to an estuary is not uniformly distributed throughout the 
system. Instead, accumulation is focused in certain zones or sites which are often 
manifest by morphological forms. The most common zone is a subtldal delta at the 
estuary head close to the main river, a major source of sediment In most 
estuaries (Fig. 1), Huch sand accumulates at an estuary mouth In subtldal bars and 
shoals separated by lnterdigltating ebb and flood dominated channels. Intertidal 
flats and salt marshes around margins of an estuary are also prominent zones of 
storage particularly In macrotldal estuaries and In estuaries receiving relatively 
high loads of fine sediment. Within an estuary, sediment is stored In less energetic 
sites as reentrants, mouths or tributaries, secondary channels and deep basins. 

Sediment that goes Into storage in an estuary Is not permanently lost from the 
transport system, Host sites are in a state of remobilization In response to 
fluctuations of waves and currents. The sediment may undergo repeated cycles of 
resuspension and deposition prior to semi-permanent storage. It may move from zone 
to zone down an energy gradient before it finds a resting place In a less energetic 
zone. 
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Storage and remobilization or sediment proceed over a wide range of time scales 
following the scales of motion or energy supply. The time intervals either are 
random or regular and periodic. As shown in figure 2A, remobilization can vary from 
seconds, a scale of turbulent energy, to semi-diurnal, diurnal or biweekly rhythms of 
the tide as well as long-term frequencies (10 1 to 10 10 secs) associated with 
infrequent episodic events as storms or, with sea level fluc~uatlons. On a time 
scale of 0.1 to 10' secs, sediment is stored and remobilized on entrance bars and 
shoals in response to turbulence, wind waves or semi-diurnal tidal currents (Fig. 
29), By contrast, sediment stored In marshes, roay require time periods of 10• to 
10 1 • secs or longer to remobilize as a result or storms or lateral channel migration. 

Evidence for episodes of storage and remobilization at scales of about 10' to· 
10 10 secs (i.e. one-half to one hundred years), Is expressed In estuarine deposits 
by: 1) differences between short-term deposlticn and long-ter~ total accumulation 
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rates. These rates can be determined by variations of activtty of different 
radlonuclldes with depth In deposits. Such differences represent sediment released 
from storage and transported elsewhere, 2) minor structures In bed deposits that 
display discontinuities and erosional activity {Nichols, 1986). Such structures are 
exhibited by X-ray radiographs or sediment cores and marked by changes of sediment 
density with depth. 

In many estuaries the internal storage and release or sediment may exceed the 
supply from external sources. The torbidl ty maximum or the Glronde Estuary, l'rance 
stores on the average~-~ tons or suspended sediment, an amount eq~al to about two 
years supply from the river. In years when river input Is low, the turbidity maximum 
can be depleted by 1.0 million tons or suspended sediment and the deficit released to 
the ocean (Jouanneau and LaTouche, 1981). 
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Figure 2. (A) Schematic representation or remobilization time scales contained in 
different types or energy input in estuaries. Energy scale is in 
arbitrary units, from Nichols (1986). (B) Corresponding distribution of 
time scales in different types or estuary storage zones, schematic. 

Regional Status 

Hore than 2~ major river estuaries indent the u.s. Atlantic coast between Cape 
Cod and Cape Canaveral (Fig, ~). The mid-Atlantic estuaries occupy river valleys cut 
In coastal plain strata when sea level was much lower c-1oom) than at present. The 
size of nine or these estuaries relates to mean annual river discharge (Fig. 3), 
This probably reflects the erosional ability of rivers during glacial times of low 
sea level (Emery and Uchupl, 1972), The Hudson and Penobscot estuaries however, 
which occupy glaciated valleys cut in crystalline rock, have r~latively low 
volumetric capacity in comparison to their river discharge. In contrast, Long Island 
Sound, which is overdeepened by glacier erosion (Cordon, 1980), has a relatively high 
capacity (65 km') in comparison to its river discharge (30 km'lyr). 

The northern estuaries receive a much larger freshwater discharge than the 
southern estuaries (Fig. ijA), Despite the relatively high river discharge the 
sediment influx, prior to extensive intervention of man (1909), ls lower in the 
northern estuaries than in the southern est~arles (Fig ~B). This is a consequence of 
the erosion-resistant character of glaciated terrain in the north {Heade, 1969), In 
contrast, rivers of relatively low discharge in the south drain weathered and 
erodable Piedmont terrain, Although reservoirs have been constructed and upland land 
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use has changed since 1900, according to Meade and Trimble (1971i) sediment loads have 
not been reduced markedly (fig lie) .• 
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Figure 3. Volumetric capacity of major U.S. East Coast estuaries as a function of 
mean annual river discharge. Modified from Emery and Uchupi (1972). 
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Figure 4. Major rivers and estuaries of the Atlantic seaboard showing, bf the width 
of black forms: (A) Freshwater discharge mainly from U.S.G.S. stream 
records, 1931-1960: (B) Suspended sediment discharge based on Dole and 
Stabler (1909): {C) Suspended sediment influx affected by dams, about 
1970. From Heade (1969), Meade and Trimble (1974). 
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Accumulation rates in the selected Atlantic coast estuaries range rrom about 
0.07 million metric tons/yr in marshes or the Altamaha River estuary to 6.8 million 
tons/yr in Delaware Bay (Table 1). In general, estuaries with substantial or high 
volumetric capacity have relatively high accumulation rates except ror Long Island 
Sound. The Savannah River estuary has relatively high accumulation, an estimated 2.7 
million tons/yr, despite its small capacity. This ls likely encouraged by channel 
dredging. The accumulation rates include material supplied frOIII rivers as well as 
rrom other sources. 

Storage efficiency which ts expressed as a ratio or sediment accumulation to 
river input rate, ranges 0.7 in the Altamaha River estuary, Ca. to 7.6 in the 
Choptank River estuary, Md. (Table 1). The data available are mainly ror the 
northern estuaries and vary widely with location. The variability can result rrom 
changes in either mass accumulation or river input. All the northern estuaries have 
erriciency ratios greater than 1 indicating that they trap and store an amount or 
sediment equivalent to the input or suspended sediment rrom their rivers in addition 
to sediment rrom other sources as the ocean. or note are the large ratios in 
Narragansett Bay, Delaware Bay, the Rappahannock and Choptank river estuaries. 

The Altamaha river and Mobile Bay have ratios of 0.7 lndlcatlng that they trap 
and store an amount equivalent to about 70 percent or their river input whereas about 
30 percent escapes to the ocean. In comparison the Gtronde, France exports on amount 
equivalent to 70 percent of its river input but this may include some sediment 
derived from sources within the estuary ~swell as the river. 

Rationale 

Many physical ractors combine to determine the storage errtclency or an estuary. 
A simple deduction ls that the storage quantity, Ms, varies as a runction or multiple 
ractors: the supply or input, Mi, the storage capacity, C, the character or the 
sediment, C, and the removal or loss through the entrance, He, the energy input and 
circulation, E, expressed in a simple general rorm as: ' 

Hs. f(Hi, C, C, He, E) (5) 

The variables are all a runction or time and represent volumes per unit time (L,/T), 
except ror c. Storage thererore, results rrom the interaction or variables that tend 
to add or remove sediment with a resultant net accumulation. The expression ls the 
basts ror more elaborate models and in ltselr ts userul ror sorting out prospective 
relationships. 

The Input Factor 

A supply or sediment ts a prerequisite ror sediment storage; it ls a key term 
ror estimating storage erriclency. In the simplest case, the storage rates respond 
directly to input variations. In real estuaries however, sediment ls focused in 
storage sites. As an estuary rills, the size or the sites as well as the size or an 
entire estuary basin, can change. Thus, younger sediment may be spread over a larger 
area or the estuary floor than the older sediments, hence accumulating in thinner 
layers. A constant Input thererore, can be expressed in a single core or stored 
sediment as a changing Input. 

Although mass balance calculations assume steady state input, this condition 
obtains only at very long time scales, 10 11 secs or longer. At these scales the 
input can be the original source such as eroded upland soil, Host measurements or 
input however, span short time scales, years and decades, and record substantial 
r1uctuatlons, e.g. as a result or varying rlver dlscharge and sediment 
concentrations. At short time scales the bulk or the input likely ls derived from 
proximate sources as estuary shores, banks and r1uvlal rloodplains that are, 
themselves, intermediate or transient stor~ge sites. Estimates or storage erriciency 
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therefore, are tempered by multiple sources with different time histories and by lack 
of common data in which input and storage terms are measured over the same time 
periods. 

The Capacity Factor 

For an estuary to store sediment there must be room to contain the sediment. If 
other factors are constant, the larger the estuary basin, the greater the estuarys' 
ability to retain and hold sediment. For example, the Delaware estuary and Northern 
Chesapeake Bay with capacities greater than 10 km• have accumulation rates exceeding 
3 million tons/yr. In contrast the Altamaha and Choptank estuaries with capacities 
less than 1.5 km• have acc11111ulation rates less than 0,5 million tons/yr (Table 1). 
Capacity decreases the sediment-transport capacity because the cross-sectional area 
for freshwater flow usually increases seaward through an estuary resulting in a 
reduction in velocity. Furthennore, capacity increases retention of sediments by 
increasing the residence time of the water for a given inflow, and thus favors 
settling of suspended sediment to the bed. 

A rise of sea level relative to the land increases estuary capacity if the rate 
or rise exceeds the rate or sediment infilling. Sea level rise opposes infilling. 
Where the relative rise or sea level ls large compared to accumulation rates, the 
storage capacity is likely large and increasing with time. This ls the case for most 
estuaries between Cape Cod and Cape Lookout except for the Hudson (Fig. SA; Table 1). 
Where sea level rise ls small compared to accumulation rates, the storage capacity is 
small or likely exceeded by infilling, This ls the case ror estuaries bordered by 
extensive marshland between Cape Lookout and Cape Canaveral (Fig. SA, Table 1). 
These estuaries are likely filled nearly to capacity during the postglacial rise of 
sea level by high sediment influx of their rivers (Heade, 1982}. 

In an evaluation of sediment trap efficiency of freshwater reservoirs, Brune 
(1953) used the ratio of volumetric capacity to annual river inflow to develop a 
curve for predicting the life of a reservoir. Biggs and Howell (1984} use Brune's 
curve to predict the sediment trapping ability of estuaries. The present set of data 
do not fall within the envelope of Brune's curve except for Hoblle Bay. Within the 
range of estuaries considered there ls no trend of trapping efficiency to increase 
with an increase of in the capacity-inflow ratio. All the northern estuaries as a 
group, except the Hudson, exhibit relatively high capacity-inflow ratios compared to 
the southern estuaries except Savanna. 
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Figure 5, (A) Variation of relative sea level rise in relation to sediment 
accumulation rates in estuaries of the Atlantic seaboard. Data from tide 
gages between 1940-1980 (Hicks et al., 1983) and accumulation rates from 
various sources (Table 1); (8) Distrlbutlon of estuary capacity; (C) 
Variation or r1ushlng velocity tn estuaries along the Atlantic Seaboard. 
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Sediment Character 

Sediment storage ls encouraged by rapid particle settling from suspension to the bed, 
I.e. for a given residence time and average water depth. In estuaries, settling 
velocity or fine sediment not only depends on particle size but on the state or 
aggregation. Composite particles like floes, aggregates or agglomerates settle many 
times faster than their dispersed component particles and hence, go into storage more 
readily than dispersed particles. Whether or not physlcoche111lcal flocculation plays 
an important role In estuaries ls an open question. Estuaries however, are often 
very productive and contain large nl1ll!bers or suspension reeding animals that filter. 
ingest and void sediment, thus forming fecal pellets or agglomerates bound by sticky 
organic matter. In a study of biological processing in Delaware Bay, Biggs and 
Howell (198~) found that organisms are capable of depositing 200 times the annual 
fluvial input of suspended sediments. Because settling rates change with state of 
aggregation and with the degree of organic processing which are largely unknown, it 
is beyond the present scope to calculate settling rates and resultant accumulation 
rates as a function of storage efficiency. 

Once cohesive sediment ls deposited on the bed, its rate ls determined by its 
yield strength or force required to break bonds between aggregates and by the shear 
velocity for erosion. Sediment can remain in temporary storage if its shear strength 
exceeds the critical shear velocity. The relation between yield strength and 
critical shear velocity is known from experimental results of Hignlot (1968) and 
Krone (1963). Data on both the properties and excitation of sedinr&nt are not, as 
yet, adequate to compare estuaries. However, Hignlot's relationship can provide an 
evaluation of the long-term balance or erosion or accumulation in an estuary and 
thus, indicate whether the bed ls a source or sink for sediment. 

Entrance Morphology and Output 

Storage in estuaries ls relatively low if more sediment ls removed and exported 
through the entrance than ls added by all sources. Output is affected by the 
morphology and size or the entrance that in turn, has a direct effect on the estuary 
residence time. Morphology varies from semi-enclosed to open or unrestricted. These 
types depend on the relative magnitude and effectiveness or wave-induced onshore and 
longshore drift in building bars, spits or sills that obstruct flow through the 
entrance. This action is opposed to the flushing ability of tidal and freshwater 
discharge that tend to keep the entrance open. In macrotidal estuaries like the 
Gironde, France, discharge through the entrance ls augmented by intense tidal mixing, 
sediment resuspension and coastal currents that carry resuspended sediment down the 
coast. 

Estuary entrances tend to attain dynamic equilibri1.1111 whereby the tidal and 
freshwater discharge coadJusts to the cross-sectional geometry through eros~on and 
deposition. The discharge, Q, ls a function or mean velocity, V, and cross-sectional 
area, A, so that in any section x: 

O •VA 
-X X X 

(6) 

Host entrances exhibit equilibrium and follow a linear relationship between flow area 
and tidal prism (Fig, 5). Therefore, morphology has little effect on storage. 
Disequilibrium occurs however, when longshore and onshore drift carry sand into the 
entrance raster than it can be recnoved by flow in and out. The entrance itself not 
only stores sediment but lt reduces exchange between the estuary and ocean thus 
encouraging storage of sediment supplied by rivers or shores, Similar disequilibra 
can arise if the tidal pri9111 ls reduced, for a given entrance flov area, by 
intertidal tilling. Changes in entrance morphology and resulting storage often occur 
seasonally linked to shitting wind and wave regimes or fluctuating river inflow. The 
entrance therefore, acts like a dynamic "valve" to reg~late the export of sediment. 
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As the sediment storage capacity of an estuary is reduced by infilling, a greater 
proportion of the river input likely will be exported than stored. 

The Energy and Circulation Factor 

For an estuary to store sediment delivered to it, the energy input must be 
sufficiently low to allow sediment to deposit and accumulate. The chief sources of 
energy are the river flow, waves and tides. Sediment carried by river flow tends to 
go into storage because the flow usually looses its transport capacity as it flows 
seaward through enlarged cross sections of an e3tuary. River flow ls most important 
near the estuary head but during floods, inflow may dominate throughout. As a result 
river-borne sediment, together with sediment scoured from the estuary, can pass 
directly into the sea. 

The degree to which sediment ts thrust through an estuary is determined by the 
river's flushing velocity (Gibbs, 1977). This parameter is derived from mean annual 
river discharge divided by the cross-sectional area at the landward limit or salt 
water, 1 ppt, a key chemical boundary. The flushing velocity dictates the seaward 
position where suspended sediment is dispersed by estuarine mixing and by the 
transport of tides and density currents. 

As shown by data from selected estuaries on the Atlantic seaboard, the flushing 
velocity for the northern estuaries ranges 0.2 to 3.6 emfs whereas for the southern 
estuaries it ranges 8 to 22 emfs (Fig, 5C), The southern estuaries also have a 
relatively small volumetric capacity and a large seasonal range (Fig. 6). In • 
contrast, large rivers like the Amazon and Mississippi thrust most of their water and 
sediment seaward into the ocean. Consequently, their storage efficiency may be 
expected to be very low, or nil, compared to northern estuaries of the Atlantic 
seaboard. 

The energy input of waves is largely determined by water depth, fetch and 
intensity or winds. Generally, in broad estuaries, sediment goes into storage below 
a critical depth, or base level, for the deepest penetration of storm waves. In Long 
Island Sound this level la about t8m (Bokuniewicz and Gordon, 1980). The level for 
sediment accumulation ls not constant however, but can vary within limits depending 
on the effectiveness of orbital wave motion on the bed sediment character, boundary 
roughness, suspended sediment concentrations and morphology. In broad shallow bays 
of Texas, sediment builds up to a level or equilibrium appropriate to the ratio 
between average wind fetch and water depth (Price, 1947). 
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Where the tide ls the main energy Input sediment storage ls mediated by the 
behavior or the tide wave as It Interacts with the channel geometry to develop toward 
maximum stability. Depth and width convergence rates with distance landward tend to 
balance rrictional dissipation or the tide wave (Wright et al. 1973). To attain 
dynamic equilibrium. an estuary co-adjusts its tidal discharge and its channel 
geometry by changing its tidal characteristics including tidal vave length, amplitude 
and the longitudinal gradient or tidal discharge which is determined by the tidal 
prism as in equation (6). Coadjustments are also made by erosion and deposition. An 
estuary channel must be neither too deep nor too shallow ror the amount or discharge 
and for the load or sediment it transports. Ir the supply or sediment and energy 
input are not in balance, then transport processes act to establish equilibrium by 
either trapping or bypassing the sediment supply. When a natural estuary ls dredged 
to depths greater than those dictated by the equilibrium regime, sediments go into 
storage to reestablish an equilibrium level in accord with the tidal regime (Inglis 
and Allen, 1957), This ls exemplified by changes in cross-sectional areas along the 
Delaware Estuary, (Fig. A) and along the Gironde (Fig. 8). A regular exponential 
increase or cross-sectional area with distance seaward suggests near-equilibrium 
between geometry and tidal flow. 
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Figure 7, (A) Changes in cross-sectional area along the Delaware Estuary between 
1878 and 1970 in relation to shoaling zones in 1970. Zone of reduced 
cross section, shaded. from Nichols (1978). Reproduced with permission of 
Dowden, Hutchinson and Ross; (B) Distribution of cross-sectional areas 
along the Gironde estuary between 1893 and 1960. Zone or reduced cross 
section shaded. Reproduced by permission of E. Schweizerbart'sche 
Verlagsbuchhandlung. 
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Figure 8. Cycling modes and rate or suspended sediment in an estuary. Arrows 
represent pathWays or sediment dispersal: schematic. From Nichols and 
Biggs (1985). 

The rate or sediment in an estuary is partly determined by cycling pathways. 
Three modes are possible: 1) the suspended sediment settles and accumulates in low 
energy zones, i.e. orr river mouths or in basins with restricted circulation (Fig, 
8C). Narragansett Bay is an example or this mode or transport but with a 
superimposed estuarine circulation (HcHaster, 198~). 2) the sediment is partially 
entrapped in a nearly-closed circulation system and recycled or resuspended rrom the 
bed, prior to accumulation (Fig. 88). Northern Chesapeake Bay, the Potomac and 
Rappahannock exemplify this transport mode. 3) the sediment moves directly through 
the estuary and escapes, either by the force or river floods, or by intense wave and 
tidal mixing (Fig. 8A): alternatively, ~he sediment temporarily deposits and moves 
through in progressive steps, a step with each flood or storm (Fig. 8A). The 
Hississippi River entrance and the Oironde River estuary in time or rlood, are 
examples or this transport mode. 

Within estuaries or the same geometric type, there are dirrerences in the net 
circulation caused by dtrrerences in river inflow and tidal range. Pritchard (1955) 
shows that when width and depth are held constant, the circulation changes rrom a 
well-mixed or partially-mixed (Type B) system to a salt wedge (Type A) system as the 
ratio or inrlow to tidal current increases. 

The ratio or mean annual river discharge entering an estuary during a tidal 
cycle, to the mean tidal prism provides an index to the degree or haline mixing and 
type or estuarine circulation. Flow ratios in estuaries or the Atlantic seaboard 
range rrom 0.005 in the Penobscot to 0.283 in the Altamaha (Fig. SD). By comparison 
ratios reach 0.~5 in Hoblle Bay and 0.50 in the Olronde Estuary, France. This 
indicates that the river flow ls surficiently large to overwhelm the tidal rlow and 
tends to rlush out fine sediment. Storage efriciency therefore, ls likely reduced. 
A graph or storage efficlency·as a function or rlow ratios for the Atlantic coast 
estuaries evaluated (Fig, 9), shows a broad trend or efficiency to be lower in 
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Figure 9. Graph or storage erriciency ratio as a runction or r1ow ratio ror selected 
Atlantic coast estuaries. Flow ratios rrom NOAA (1985). 

estuaries with high rlow ratios and higher in estuaries with low rlow ratios. Host 
or the systems are partially-mixed with ratios in the range or 0.015 to 0.5, Mobile 
Bay and the Gironde River are highly stratified during floods whereas Narragansett 
Bay, Long Island Sound and Delaware Bay are essentially well-mixed systems. Within 
the range or partially-mixed estuaries the trend or the flO\I ratios suggests that the 
estuarine circulation is important both in trapping r1uvial sediment input and in 
transporting sediment landward rrom the sea. The relatively low storage efficiency 
or estuaries with low flow ratios that approach a highly stratified regime, suggests 
that the river flO\I can overwhelm tidal currents and periodically flush out part ot 
the river load. In well-mixed systems with low rlow ratios, other ractors as high 
capacity relative to inflow, rapid particle settling and biological processing may 
have a greater influence than the estuarine circulation in promoting storage. 

Efrect or Evolution 

The sequence froai rull storage to partially by-passing can proceed with long
term infilling and decreasing volumetric capacity which is manirest in decreasing 
water depth below the equilibrium depth. The effect of depth on salinity, 
circulation and mixing has been demonstrated in hydraulic and numerical models 
(Nichols, 1972: Simmons, 1965: 1972: Festa and Hansen, 1976). As an estuary shoals, 
near-bottom flow from the ocean is reduced, vertical velocity increases and the two
layered circulation weakens, I.e. the circulation type shirts rroa Type B (partially 
mixed, Pritchard, 1955) toward Type C (well-mixed) assuming inrlow, tides and width 
are constant. As an estuarine channel approaches or exceeds the equilibrium depth, 
sediment storage shifts into littoral zones and sediment patterns become canplicated 
because inflow, tides and waves alternately dominate. The Gironde estuary, France ls 
a good example or this stage (Jouanneau and Latouche, 1981). Long-continued 
entrapment and storage can convert an estuarine environment into a rluvlal dominated 

284 ' 



regime whereby river sediment passes directly into the ocean, as exemplified by Alsea 
Bay, Oregon (Peterson et al., 198~). Thus, with progressive infilling, the geologic 
function or an estuary can change from a slnk for fluvial and marine sediment to a 
source of fluvial sediment for the ocean. 

Uncertainties and Constraints 

Calculation or storage efficiency and comparison or characteristics or estuaries 
is tempered by a lack or input and accumulation data from the southern estuaries. 
Host data comes from individual studies and different sources. Consequently there is 
a lack or common sampling methods, a lack or common time scales and lack or input and 
accumulation measurements over the same time periods, Host rates are measured during 
normal conditions and steady state ls assumed in sediment budgets. In contrast, much 
sediment likely goes into storage after storms. The problems are amplified because 
errors and uncertainties or mass balance budgets are seldom reported. The lack or 
Information contributes to the variability or data (e.g. Table 1) and lack or 
statistically significant relationships between storage efficiency and causal 
factors. Despite these limitations, the results document regional trends and they can 
assist in further elaboration and sorting out prospective relationships. 

Conclusions 

1. 

2. 

3. 

Estuaries or the u.s. Atlantic coast exhibit a range or storage efficiency. The 
northern estuaries have much larger storage efficiency ratios than the southern 
estuaries. They not only store an amount equivalent to their river Input but 
also store large amounts or sediment supplied from other sources as the sea. 

Hany factors combine to regulate storage efficiency. In the northern estuaries 
storage ls encouraged by low flushing velocity and high volumetric capacity 
relative to river Inflow, Within the range of partially-mixed systems, flow 
ratios suggest that the estuarine circulation is important In trapping fluvial 
sediment and in transporting sediment landward from the sea. 
As a result of the moderate to high storage efficiency, most particle-reactive 
contaminants supplied by rivers are likely retained in estuaries and the regional 
impact or contamination on the ocean ls minimized. 

This is a contribution or the Virginia Institute or Marine Science. 

• 
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