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Abstract:
Greenhouse gas (mainly CO2 and CH4) leakage from abandoned wells in CO2 enhanced
oil recovery sites is a long-standing environmental concern and health hazard. Although
multiple CO2 capture, utilization, and storage programs, e.g., CarbonSAFE and Regional
Carbon Storage Partnerships, have been developed in the U.S. to reach the net-zero
emission target by 2050, one cannot neglect the significant amount of CO2 and CH4 leakage
from abandoned wells. This study will investigate the potential of CO2 and oil components
leakages from the abandoned wellbore and develop the first-ever quantitative approach
to evaluating CO2 and oil component leakage from a CO2 enhanced oil recovery field.
Results show that in addition to a large amount of CO2 leakage, a significant amount of
light and intermediate oil components leaked through the wellbore. In contrast, a minimal
amount of heavy oil component leaked. Oil components’ leakage is mainly through the
gas phase rather than the liquid phase. CO2 leakage is positively correlated to reservoir
depth, wellbore pressure, and permeability through sensitivity analysis. In contrast, it is
negatively related to net-to-gross ratio, residual oil saturation, and mole fraction of CH4. On
the other hand, oil component leakages are positively correlated to all uncertain parameters,
except the net-to-gross ratio. Lastly, the reduced-order models generated using the machine
learning technique have a relatively high fidelity.

1. Introduction
Carbon capture and storage is needed now more than ever

to combat the current emissions levels and restore the concen-
trations to a manageable level (Lackner, 2003). While being
the direct source of these emissions by providing fossil fuels,
subsurface systems provide unmatched capacity to host the
captured CO2 (Middleton et al., 2012). CO2 storage has been
in saline aquifers (Yang et al., 2010; Iglauer and Al-Yaseri,
2021) and depleted hydrocarbon reservoirs (Boot-Handford
et al., 2014; Zhang et al., 2019). In addition, CO2 has been
previously utilized to enhance oil recovery (EOR) in numerous
reservoirs (Bui et al., 2018; Mehana et al., 2020c). Owing to its
superior dissolution and adsorption properties, CO2 is miscible
with the in-situ oil at relatively lower pressures, making CO2
an effective agent to extract the hydrocarbons from the pores
through several mechanisms such as oil swelling, viscosity
reduction, and interfacial tension reduction (Lake et al., 2014;

Mehana et al., 2018).
These CO2-filled reservoirs are a ticking time bomb for

potential leaks (Viswanathan et al., 2008). Fortunately, the
numerical simulation could provide the tool to optimize and
engineer our CO2-EOR operations (Dai et al., 2016; Middleton
et al., 2020). However, these reservoirs are complex, chal-
lenging to characterize, and difficult to control (Vafai, 2015).
Therefore, augmenting reservoir simulations with uncertainty
quantifications tools is necessary to estimate the associated
risk properly. However, the computational intensity of the
reservoir simulations becomes intractable, as the complexity
of the reservoir system increases. Therefore, reduced-order
models (ROMs) are introduced to overcome the prohibitive
computational cost of high-fidelity models. To this end, it
becomes feasible to conduct risk assessment analysis.

The characterization of subsurface reservoirs is always
prone to uncertainty (Lake, 1986). These reservoirs lie thou-
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sands of meters below the ground and span thousands of
meters. Relying on the geophysical surveys to infer the ge-
ological features and relying on the core measurements for
the petrophysical data is not enough to estimate the input
parameters for reservoir modeling. Therefore, it is always
encouraged to account for the uncertainty in the model
parameters and perform sensitivity analysis to identify the
main parameters controlling the performance and transport
behavior. Monte Carlo simulation is a widely used uncertainty
quantification method where the multi-dimensional parameter
space is effectively sampled (Mehana et al., 2020a). Recently,
the multifidility Monte Carlo method has shown promising
results, producing tighter distributions while reducing the
computational cost (O’Malley et al., 2018).

Previously, several studies focused on optimizing and quan-
tifying the uncertainty associated with CO2-EOR operations.
For instance, Dai et al. (2014b) used Monte Carlo simulation
of the reactive transport of CO2 during CO2-EOR to quantify
the inherited uncertainty. They highlight the significance of
reservoir characterization on the economics of CO2-EOR.
Then, they extended their scope and developed an integrated
framework to optimize the CO2-EOR operations (Dai et al.,
2014a). They identified that porosity, permeability, forma-
tion thickness, and depth are the main intrinsic parameters
controlling the performance. On the other hand, the main
operational parameters are the well spacing and the sequence
of alternating CO2 and water. In the same vein, Chen et
al. (2018) demonstrated the impact of reservoir management
and operation strategies on CO2 storage and oil recovery.
They reported better performance when jointly-optimized well
completions and well controls than solely-optimizing well
controls. Then, they proposed another approach to calibrate
their reservoir model with monitoring data to reduce the
uncertainty associated with the risk assessment (Chen et al.,
2020).

The development of ROMs and surrogate models was also
the focus of several studies (Mehana et al., 2020b). In one of
the early studies, McMillan et al. (2008) developed a reduced-
order model for CO2 injection based on modified Buckley-
Leverett theory, which estimated gas saturation distribution at
a reasonable accuracy. Similarly, Nordbotten and Celia (2011),
Nordbotten et al. (2005a, 2005b) developed an ensemble
of simplified-physics models assuming vertical equilibrium
to simulate CO2 migration, assuming vertical equilibrium
efficiently. In the same vein, In an effort, Bao et al. (2013)
developed a reduced-order model (ROM) based on reservoir
simulations, relating the reservoir properties to the pressure
build-up to quantify the impact of caprock and reservoir
properties on the ground surface displacement and induced
seismicity.

This is the first study to quantitatively evaluate greenhouse
gas leakage from CO2-EOR sites, and the reduced-order
models were first generated for predicting CO2/oil component
leakages from a CO2-EOR site. The remaining of this paper
were arranged as follows: First, an overview of the simulation
systems and sensitivity analysis were presented. Second, the
results for reduced-order model development were presented.
Third, the main findings and implications of this research were
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Fig. 1. Conceptual model for CO2/oil leakage analysis.

summarized.

2. Model setup and sensitivity analysis

2.1 Model setup
A conceptual model for modeling CO2/oil flow in the

reservoir and the leakage of CO2/oil from the wellbore to
aquifer was created. Fig. 1 shows the conceptual model that
contains the components of reservoir, caprock, aquifer and a
wellbore at the center of the model. The number of gridblocks
in x, y and z directions are 51, 51 and 20 respectively. In the
vertical direction, 3, 12 and 5 layers were used to model the
aquifer, caprock and reservoir respectively. The assumptions
for reservoir modeling and simulation include:

• The oil in reservoir is well swept (residual oil is uniformly
distributed).

• The reservoir is under residual oil saturation to gas flood.
• No injection and production periods, and the leakage

modeling starts from the end of production.
• Three oil components, i.e., C1, C4 and C10 respectively

to represent the light, intermediate and heavy components
of oil, are used.

2.2 Verification of CO2/oil component leakage
To verify the leakage of CO2 and oil from cemented

wellbore, a case with effective wellbore perm is set up to equal
to 100 mD. The permeabilities for reservoir and aquifer are
both set to be 100 mD. The reservoir simulation was performed
with Eclipse 300. Fig. 2 shows the amount and fraction of CO2
and oil leakage from the reservoir. As can be seen, CO2 has
the highest amount of leakage, and the light and intermediate
oil components (i.e., C1 and C4) have more amount of leakage
than heavy component (i.e., C10). It is also observed that the
total fractions of leakage for both CO2 and oil components
are less than 0.1% by the end of 100 years, and the leakage
of heavy oil component (i.e., C10) is negligible.

Fig. 3 shows the gas saturation evolution over time. The
mole fraction of CO2 and oil components in gas phase are
displayed in Fig. 4. Fig. 5 shows the oil saturation changing
over time and the associated mole fraction of CO2 and oil
components in oil phase are presented in Fig. 6. As can be se-
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Fig. 2. (a) CO2/oil leakage and (b) fraction of leakage.
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Fig. 3. Gas saturation evolution over time.
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Fig. 4. Mole fraction of CO2 and oil components in gas phase.
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Fig. 6. Mole fraction of CO2 and oil components in oil phase.
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Fig. 7. Impact of effective wellbore permeability on CO2 and oil components leakage: (a) CO2, (b) C1, (c) C4 and (d) C10.
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Fig. 8. Gas saturation evolution over permeability and time.

en from these figures, CO2 and oil are leaked mainly from the
gas phase rather than the oil phase.

2.3 Effect of effective wellbore permeability
To investigate the impact of effective wellbore permeabil-

ity, three different values, i.e., 10, 100 and 1,000 mD were
considered. Fig. 7 shows the CO2 and oil component leakages
under three different wellbore permeabilities. As can be seen

1 year 10 years 100 years

1 year 10 years 100 years
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1 D

10 mD

1 year 10 years 100 years

Fig. 9. Oil saturation evolution over permeability and time.

the higher permeability generally leads to higher amount of
leakage. Under the same wellbore permeability, CO2 has the
highest leakage amount, while C10 has the smallest amount
of leakage. Figs. 8 and 9, respectively, show the gas and oil
saturations changing over effective wellbore permeability and
time. It is observed that the higher wellbore permeability leads
to more leakage for both gas and oil phases. However, the
leakage from oil phase is much smaller than the leakage from
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Fig. 10. Impact of reservoir pressure on CO2 and oil component leakages: (a) CO2, (b) C1, (c) C4 and (d) C10.
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Fig. 11. CO2/oil component leakage with caprock thickness
equal to 240 ft.

gas phase.

2.4 Effect of reservoir pressure
The reservoir pressure also has impact on the leakage of

CO2 and oil components. Here, two different pressures were
considered: Initial reservoir pressure (P) and pressure equal
to 1.1 P. As can be seen from Fig. 10, the amount of CO2
and oil leakage under 1.1 P is about two times larger than

the amount of leakage under initial reservoir pressure, which
indicates that reservoir pressure plays a critical role in CO2
and oil leakage, and the reservoir pressure should not be too
high if storing CO2 in depleted EOR fields is considered.

2.5 Effect of caprock thickness
The effect of caprock thickness on CO2/oil leakage was

investigated by increasing the caprock thickness from 240
ft to 1,200 ft. Here, the effective wellbore permeability was
set equal to 10 mD. The CO2/oil component leakages with
caprock thickness equal to 240 ft were shown in Fig. 11. As
can be seen that the total amount of CO2 leakage is about
18 tons by the end of 100 years. The total amount of each
oil component leakage is less than 4 tons, which is significant
smaller than the CO2 leakage. It is also observed that there is
no CO2 and oil leakages under the scenario of thickness equal
to 1,200 ft.

3. Reduced-order model development
To develop the fast predictive model to predict the CO2 and

oil component (especially CH4) leakages from the reservoir, it
is need to identify the uncertain parameters that may affect the
leakage. Table 1 lists the uncertain parameter and its range for
reduce-order model (ROM) development. 250 training samples
were generated using Latin Hypercube Sampling approach. All
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Fig. 12. Sensitivity analysis using Pearson’s Correlation: (a) Total amount of CO2 leakage, (b) Total amount of C1 leakage,
(c) Total amount of C4 leakage and (d) Total amount of C10 leakage.

Table 1. Uncertain parameter and its range for ROM
development.

Parameters Values

Storage reservoir depth 3,000-9,000 ft

Abandoned reservoir pressure multiplier 1.0-1.2

Caprock thickness 200-1,500 ft

Effective wellbore perm 0.5-1,000 mD

Reservoir permeability 10-100 mD

Net to gross ratio 0.4-1

Initial oil saturation (So) 0.2-0.4

Residual CO2 saturation 1-So-0.3

Fraction of C1 (Light component) 0.1-0.3

Fraction of C4 (Intermediate component) 0.15-0.45

Fraction of C10 (Heavy component) 1-fC1-fC10

the training simulations were performed by using Eclipse 300.
Fig. 12 shows the results of sensitivity analysis using Pear-

son’s correlation. As can be seen, CO2 leakage is positively
correlated to reservoir depth, reservoir pressure, mole fraction
of intermediate component (i.e., C4) and wellbore permeabil-
ity. However, it is negatively correlated to oil saturation and
mole fraction of light component (C1). C1 and C4 leakages
are positively correlated to all the uncertain parameters except
for net-to-gross ratio.

The ROMs for the prediction of CO2/oil leakage (in unit
of lb) were developed using MARS. Fig. 13 shows the 10-fold
cross validation for each ROM. The R2 values for the ROM
of CO2, C1 and C4 leakage are all over 0.9. The R2 value
for the ROM of C10 is about 0.8. As can be seen, the ROMs
developed can provide a relatively accurate prediction of CO2
and oil leakage. In our future work, different machine learning
algorithms such as neural network and generation of more
training samples will be explored to improve the predictive



26 Chen, B., et al. Advances in Geo-Energy Research, 2023, 7(1): 20-27

0 1 2 3 4 5 6 7 8
MARS prediction 1e6

0

1

2

3

4

5

6

7

8
Tr

ue
 v

al
ue

 fr
om

 si
m

ul
at

io
n

1e6 CO2

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
MARS prediction 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ue

 v
al

ue
 fr

om
 si

m
ul

at
io

n

1e8 C1
(b)

0.0 0.2 0.4 0.6 0.8 1.0
MARS prediction 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 v
al

ue
 fr

om
 si

m
ul

at
io

n

1e8 C4
(c)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
MARS prediction 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ue

 v
al

ue
 fr

om
 si

m
ul

at
io

n

1e6 C10
(d)

Fig. 13. 10-fold cross validation for the ROMs of CO2 and oil component leakage prediction: (a) CO2, (b) C1, (c) C4 and (d)
C10.

accuracy of the ROMs.

4. Conclusions
In this work, wellbore leakage analysis for the CO2-

EOR field was performed. Numerical simulations were also
conducted to investigate the impact of a variety of uncertain
characteristics. The ROMs for the predictions of CO2 and oil
leakage from the reservoir were also developed. The following
conclusions can be drawn from this study:

1) In addition to a large amount of CO2 leakage, a significant
amount of light and intermediate oil components (i.e.,
C1 and C4) leaked through the wellbore. In contrast, a
minimal amount of heavy oil component (C10) leaked.

2) Oil components’ leakage is mainly through the gas phase
rather than the liquid phase.

3) CO2 leakage is positively correlated to reservoir depth,
reservoir pressure, and permeability through sensitivity
analysis. In contrast, it is negatively related to net-to-
gross ratio, residual oil saturation, and mole fraction of
CH4. On the other hand, oil component leakages (C1 and

C4) are positively correlated to all uncertain parameters,
except the net-to-gross ratio.

4) The ROMs generated using the machine learning tech-
nique MARS have relatively high fidelity (R2 values are
all over 0.8). They can be used as a fast evaluation tool
to quantify the amount of CO2 and oil leakage from an
EOR field. In our future work, different machine learning
algorithms (e.g., convolutional neural network) will be
explored to improve the predictive accuracy of ROMs.
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