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SUMMARY
Sensory perception and memory recall generate different conscious experiences. Although externally and
internally driven neural activities signifying the same perceptual content overlap in the sensory cortex, their
distribution in the prefrontal cortex (PFC), an area implicated in both perception and memory, remains
elusive. Here, we test whether the local spatial configurations and frequencies of neural oscillations driven
by perception and memory recall overlap in the macaque PFC using high-density electrocorticography
and multivariate pattern analysis. We find that dynamically changing oscillatory signals distributed across
the PFC in the delta-, theta-, alpha-, and beta-band ranges carry significant, but mutually different, informa-
tion predicting the same feature of memory-recalled internal targets and passively perceived external ob-
jects. These findings suggest that the frequency-specific distribution of oscillatory neural signals in the
PFC serves cortical signatures responsible for distinguishing between different types of cognition driven
by external perception and internal memory.
INTRODUCTION

Our daily conscious experience is based on externally driven

sensory inputs and internally generated images, such as

mental imagery, memory recall, and dreams. In general, these

two types of cognitive experiences are distinct phenomena;

however, the underlying neural mechanisms that dissociate

them remain unclear (Albright, 2012; Dijkstra et al., 2019).

Functional magnetic resonance imaging (fMRI) studies in hu-

mans using multivariate pattern analysis (MVPA) have sug-

gested that the patterns of activity for identical visual content

are similar during actual perception and mental imagery

throughout the ventral visual stream (Albers et al., 2013; Hori-

kawa and Kamitani, 2017; Stokes et al., 2009), with the similar-

ities increasing in the higher visual areas (Lee et al., 2012). The

prefrontal cortex (PFC) receives and integrates external inputs

and internal information (Miller, 2000). The PFC contains repre-

sentations of perceived visual information, including color and
This is an open access article und
faces (Haile et al., 2019; Tsao et al., 2008). The PFC also emits

a top-down signal that triggers the representation of memory-

recalled target information in the inferior temporal cortex, the

storehouse of visual long-term memory (Hasegawa et al.,

1998; Tomita et al., 1999). However, how the PFC represents

internally generated and externally driven perceptual experi-

ences is not well understood.

Mounting evidence suggests that the PFC uses neural oscil-

lations as a mechanism for coordinating neural processes in

other brain regions via top-down signals to control various

cognitive processes, including perception, attention, working

memory, and memory retrieval (Clayton et al., 2015; Helfrich

and Knight, 2016; Siegel et al., 2012). Furthermore, neural oscil-

lations at different frequencies are thought to coordinate the

bottom-up and top-down flow of information between cortical

areas (Bastos et al., 2015; Kerkoerle et al., 2014). Therefore,

we hypothesized that the spatial patterns of oscillations with

specific frequencies in the PFC would differentially represent
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Figure 1. Color-recall task and ECoG recording

(A) Two sets of associations between achromatic stimuli (cue) and colored choice stimuli (target).

(B) Task trial sequence. Following central fixation, a cue stimulus was presented, followed by a delay period and sequence of one to two colored choice stimuli

counterbalanced across trials. If the color of the choice stimulus corresponded to the color associated with the prior cue stimulus (target color), as indicated in (A),

the monkeys should release the lever to obtain a juice reward.

(C) Lateral views of individual monkey brains showing the position of the ECoG electrode grid, reconstructed by post mortem observations. Green dots indicate

individual electrodes. Scale bars, 10 mm.

(D) Time-frequency representations of the normalized ECoG powers averaged over all channels in the PFC of monkey L (left) and their induced components, not

phase locked to stimulus presentation (right). The thick horizontal black bars at the bottom of each graph represent the cue and choice presentation periods.
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the same visual feature of externally and internally derived

percept. The current study tested this hypothesis by implanting

high-density electrocorticographic (ECoG) electrode arrays in

the PFC of macaques to record cortical surface local field po-

tentials during recall and perception tasks and applying MVPA

to the oscillatory frequency components of the recorded sig-

nals. In addition, because localized regions of stimulus-driven

color sensitivity have been reported in the macaque PFC (Haile

et al., 2019; Lafer-Sousa and Conway, 2013), we chose color

information as the visual content to be decoded by MVPA.

Initially, we investigated whether the spatial patterns of oscilla-

tions encoded information predicting the color to be chosen

that was recalled from long-term associative memory and the

color that was passively perceived by external visual stimula-

tion. We then examined the relationship between the distribu-

tions of this memory-recalled and externally driven color-

related information, as well as their frequency specificity and

temporal dynamics.
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RESULTS

Behavioral tasks and ECoG from PFC
Two adult macaquemonkeys (L and Q) were trained to perform a

picture-color association (color-recall) task with two different

sets of stimuli (sets A and B, Figure 1A), in which three achro-

matic cue stimuli specified one of the three isoluminant colors

(red, green, and blue) of three different shapes. In each trial of

the task (Figure 1B), one of the cue stimuli was presented, and

after a delay, the monkeys judged whether the color of the

sequentially presented choice stimuli matched the color associ-

ated with the cue (target color), regardless of the shape. As con-

trols, the monkeys performed a passive viewing task using the

stimuli used as cue or choice stimuli in the color-recall task.

While the animals were performing these tasks, we recorded sur-

face local field potentials (LFPs) using a 64-channel ECoG elec-

trode array (2.5mm interelectrode spacing) implanted subdurally

over the monkeys’ right lateral PFCs (Figure 1C). Internally
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Figure 2. Time courses of decoding recalled color and perceived cue and color

(A) Decoding for cue-associated information in the color-recall task (orange) and passive viewing task (blue) in each monkey using oscillatory powers of the PFC

recorded by ECoG. The classifiers were trained and tested on datasets sharing the same stimulus set but different trials. In the orange boxes in the top illustration,

examples of a cue stimulus, target color, and first-choice stimulus on a given trial of the color-recall task in the data used to train or test a classifier are shown in

order from left to right. For the passive viewing task, only an example of the presented stimulus is shown in the blue or green boxes. The median decoding

accuracies obtained from 5,000 iterations were plotted. Shading indicates a 95% confidence interval. The thick horizontal black bars at the bottom of each graph

represent the cue and choice presentation periods. However, in the passive viewing task, no choicewas presented. The presentation period of the cue and choice

stimuli, as well as 250 ms before and after their presentation, are enclosed in gray frames when the analysis window can include those presentation periods.

Dotted lines denote the chance level. Colored lines at the top indicate time points at which decoding accuracy was significantly higher than the chance level

(bootstrap test; p < 0.05; false discovery rate [FDR] correction for 46 time points).

(B) Cross-decoding across different stimulus sets for recalled color (orange) and passively viewed cue stimuli (blue). The orange arrowheads at the bottom

indicate the first decoding peak after the cue onset and the last decoding peak in the delay period not influenced by the colored choice stimulus in the color-recall

task, respectively.

(C) Decoding of the perceived color in the passive viewing task.

(legend continued on next page)
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generated oscillatory components of the LFPs (induced oscilla-

tions; Figure 1D), excluding those evoked by the external trial

events per se, were extracted by subtracting the average signal

obtained across the trials from the raw signal recorded in each

trial (see STAR Methods; Tallon-Baudry et al., 1999). The spec-

tral powers of induced oscillations in delta, theta, alpha, beta,

low-gamma, and high-gamma bands (1–4, 4–8, 8–13, 13–30,

30–70, and 70–200 Hz, respectively) for all channels at each

time point were used as input features to train a support vector

machine pattern classifier to decode the target color.

Decoding of recalled and perceived color information
from PFC oscillatory signals
When a classifier was trained and tested on the dataset from

within the same stimulus set (A or B) but across different trials,

the decoding performance increased following cue presentation

and was significantly above the chance level of 33.3% during

most of the delay period, in both animals (Figure 2A, orange).

Whenwe analyzed the ECoG signals obtained during the passive

viewing of cue stimuli, the performance significantly increased

after the cue onset but decreased to the chance level after the

offset (Figure 2A, blue), suggesting that the significant decoding

observed during the late delay period was specific to the color-

recall task. However, it is possible that the increase in decoding

performance in the color-recall task reflected information about

not only the recalled color but also perceived cue and/or choice

stimuli. To eliminate the contribution of these perceived stimuli to

the decoding performance, we used cross-decoding analysis

(Kriegeskorte, 2011). Trials were divided into four groups ac-

cording to the cue type (set A or B) and choice type (whether

the first-choice stimulus contained the target color or not;

Table S1). Then, a classifier was trained on each trial group,

and its performance was tested in the other trial group that

shared neither cue type nor choice type with the trial group

used for training. Using this procedure, whereby the classifier

was unable to use information about the perceived cue or choice

stimuli, the decoding performance still increased above the level

of chance (Figure 2B, orange), suggesting that the spatial pat-

terns of oscillatory activity within the PFC can predict the target

color independent of cue type and choice type. Specifically, de-

coding performance peaked once after the cue onset, then

declined, and peaked again during the late phase of the delay

period (early and late peaks in Figure 2B, orange arrowheads).

The accuracy of cross-decoding across cue sets during passive

viewing failed to reach significance (Figure 2B, blue), suggesting

that the two cue sets did not evoke shared spatial oscillatory pat-

terns in PFC. We henceforth regard the ability of the classifier to

predict the target color before its presentation in cross-decoding

as being able to classify the recalled color information, but we

address the details of alternative interpretations in the

discussion.

We next examined whether recalled and perceived colors

induce similar spatial oscillatory patterns in PFC. When both
(D) Cross-decoding of the recalled color in the color-recall task with the classifier

arrowhead).

(E and F) Decoding of the recalled color (E) and perceived color (F) from the powe

reaching significance in both animals are shown. Those in other frequency band
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animals passively viewed the colored choice stimuli, the de-

coding performance for colors using the recorded ECoG sig-

nals was higher than the chance level following the stimulus

onset (Figure 2C), suggesting that the perceived color was rep-

resented in spatial oscillatory patterns of the PFC. We selected

the classifier that performed best in predicting perceived colors

during the cue period of the passive viewing task (Figure 2C,

green arrowheads) and tested whether it could decode the

target color in the color-recall task. The decoding performance

remained non-significant until the end of the trial (Figure 2D).

We also found that classifiers trained at the early and late

peaks of decoding in the color-recall task (Figure 2B, orange

arrowheads) failed to reach significance in decoding the

perceived color throughout the trial of the passive viewing

task (Figure S3A). These results suggest that the recall and

perception of the same color induced different spatial patterns

of oscillatory activity in the PFC.

Frequency and spatial specificities of decoding
accuracy
We separately examined the time courses of decoding accuracy

in the color-recall task solely based on the power of individual

frequency bands as input features to determine which frequency

band powers carry information signifying the recalled color.

When theta, alpha, or beta powers were used individually, de-

coding was significant at specific time points in both animals

(Figure 2E). In particular, the time course exhibited early and

late peaks in theta and alpha bands. Furthermore, the same anal-

ysis using the dataset from the passive viewing task using

colored stimuli showed that the delta, alpha, and beta patterns

showed significant decoding in both animals (Figure 2F). Mean-

while, in each task, decoding accuracy for frequency bands

other than those listed above was not significant in both animals

or was significant in only one animal (Figures S2A and S2B).

Hereafter, we will focus on the results in the frequency bands

that were significant in both animals. However, the variability

between animals will be discussed in the discussion.

We conducted searchlight analysis (Kriegeskorte et al., 2006)

to reveal regional specificity within the PFC for predicting the re-

called colors from individual frequency powers at the peak time

points. When using theta or alpha powers, we found the regions

with the highest decoding accuracy for recalled color information

to be anterior to the inferior limb of the arcuate sulcus and ventral

to the principal sulcus in both animals at early and/or late peak

time points (Figure 3A). According to the sulcus landmarks, these

regions were mainly located in the ventrolateral PFC (vlPFC)

(Goulas et al., 2017; Petrides and Pandya, 2006), although the

time point at which such information appeared varied between

animals. In contrast, the beta band consistently exhibited a de-

coding performance that was highest in the dorsolateral PFC

(dlPFC), close to the dorsal tip of the arcuate sulcus in both an-

imals (Figure 3A). For the passive viewing task using colored

stimuli, our searchlight decoding revealed peak decoding
trained to decode the perceived color at the peak time in the top panel (green

rs of individual frequency bands. Only the time courses in the frequency bands

s are shown in Figure S2.
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Figure 3. Regions carrying the recalled color and perceived color information in specific frequency bands
Decoding accuracymapswith searchlight classifiers (33 3 channels) for recalled (A) and perceived (B) color information based on powers of individual frequency

bands in each monkey. Maps are shown at early (left panels) and late (right panels) peak time points in the time courses indicated by arrows in Figures 2E and 2F.

Major sulci (ps, principal sulcus; as, arcuate sulcus) are drawn to compare the positions of the electrode arrays acrossmonkeys. The numbers above themaps for

the recalled color in (A) are Spearman’s r values between those maps and the maps for the perceived color in the same animal and the same frequency band

shown in (B) or Figure S2D. Numbers in red and cyan indicate significant positive and negative correlations, respectively (bootstrap test; *p < 0.05). Here, we show

only the cases of frequency bands that showed significant decoding accuracy at some time point in both animals. Maps for other frequency bands are shown in

Figures S2C and S2D. The maximum accuracy adjusted range of the color scale for each map to visualize peaks in the accuracy map for each frequency band.

However, to avoid emphasizing low decoding accuracies, if the maximum accuracy was less than 37%, it was adjusted by 37% instead. The maps not adjusted

for each map are shown in Figure S4. To avoid double dipping, we only deal with the location of the accuracy peaks, but not the statistics of these maps.
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performance in the vlPFC in both animals only when delta, alpha,

or beta powers were used (Figure 3B). To investigate whether the

distributions of the PFC subregions carrying the recalled and

perceived color information were similar or not, we calculated

Spearman’s rank correlation between their decoding accuracy

maps. We found that the maps in delta, theta, and beta bands

were not significantly correlated in both animals (Figure 3A;

Table S2; p > 0.05; two-sided bootstrap test). This finding indi-

cates that the spatial distributions of these two types of color

information in the PFC were not similar for these frequency

bands. On the other hand, the alpha maps for recalled and

perceived color information were significantly correlated in

both animals in early or late peak time points (Figure 3A;

Table S2; p < 0.05; two-sided bootstrap test). Therefore, we

examined the time course of cross-decoding using only alpha

power between the two tasks. However, the decoding perfor-

mance was not significant until the end of the trial (Figures S3B

and S3C). These results suggest that, although the subregions

carrying recalled and perceived color information via alpha oscil-

lations overlapped in the PFC, the local configurations of their

oscillatory patterns for individual colors were different.
Cross-temporal decoding for recalled color information
Our searchlight analysis also showed that, depending on the

frequency band, the accuracy maps for recalled colors tended

to differ between the early and late peak time points (Figure 3A),

implying that the maps varied over time. Therefore, to investi-

gate the temporal dynamics of the oscillatory neural represen-

tation of recalled color information, we conducted cross-

temporal decoding (King and Dehaene, 2014), a method that

analyzes the extent to which the decoding of a classifier at a

given time point generalizes over time. The results showed

intermittent significant decoding performance on the diagonal

of the cross-temporal decoding matrix at specific frequency

bands, common to both animals (Figures 4 and S2E). This

result indicates that, in principle, the spatial patterns of oscilla-

tory activity induced by color recall were not stable over time

but changed dynamically in the PFC. However, analysis using

delta and theta powers in monkey Q showed significant

cross-temporal decoding performance, even for time points

away from the diagonal, indicating a relatively long temporal

generalization. Finally, we examined the temporal generaliza-

tion performance of cross-decoding between recalled and
Cell Reports 39, 110676, April 12, 2022 5



Figure 4. Cross-temporal generalization of recalled color information

Cross-temporal decoding matrix for recalled color information in the color-

recall task. A classifier was trained on training data at each 500-ms bin in the

color-recall task, and its decoding accuracy was tested at every 500-ms bin

of the test data. The y and x axis reflect the classifier training and testing time

relative to the cue onset, respectively. Black bars on the axes indicate the cue

and choice presentation periods. The color codes indicate the cross-de-

coding accuracy for recalled color information, and their significance

thresholds are shown as contour lines (bootstrap test; p < 0.05; FDR

correction for 64 time point pairs). Powers of all frequency bands were used

as features in the top row, and those of individual frequency bands were used

in the lower rows. Only the matrices in the frequency bands that showed

significant accuracy in both animals are shown. Those in other frequency

bands are shown in Figure S2E.
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perceived colors but found no significant cross-temporal

generalization at any combination of time points (Figures S3D

and S3E). This indicates that the recall and perception of the

same color did not share the spatial patterns of oscillatory ac-

tivity at any time point.
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DISCUSSION

Our study showed that the spatial pattern of oscillatory activity

spanning the PFC predicts the passively perceived color and

the to-be-chosen target color recalled from associative memory.

The frequency bands encoding recalled and perceived color in-

formation partially overlapped but remained distinct. Specif-

ically, recalled color information was encoded as spatial patterns

of oscillations in theta, alpha, and beta bands, while perceived

color information was encoded as those in delta, alpha, and

beta bands. Notably, a searchlight analysis revealed that the dis-

tribution of decoded color information was not similar between

them, except for alpha. Moreover, the cross-decoding analysis

revealed that both types of color information did not share the

configuration of spatial oscillatory patterns, even in the alpha

band. These results suggest that the topographical organization

of the frequency-specific oscillation patterns generated by asso-

ciative recall and perception of the same color were different in

the PFC. In the sensory cortex, shared representation for these

two types of visual information has been proposed based on

fMRI studies (Albers et al., 2013; Horikawa and Kamitani, 2017;

Stokes et al., 2009). Furthermore, a recent human study using

cross-decoding in electroencephalogram (EEG) showed that pa-

rieto-occipital alpha oscillations are involved in the shared repre-

sentations between imagery and perception, while theta and

beta oscillations failed to generalize between them (Xie et al.,

2020). Together with our results, this EEG study indicates that

theta and beta oscillations in the PFC and sensory cortex are

good candidates for the neural codes that make sensory visual

input and internally generated images different perceptual

experiences.

Our ‘‘color-recall’’ task did not require the subject to recall the

image of a color per se but at minimum to assign a tag specifying

the target color associated with the cue based on long-term

memory. Possibly, the neural code of that target color tag may

represent the color image itself. Alternatively, it could represent

more abstract information, such as a criterion for classifying

the upcoming choices into three discrete categories or the para-

metric wavelength of a reference color. In any case, such inter-

nally generated neural code might be more or less overlapped

with the externally driven perceptual color code in the distributed

cortical circuits.We initially aimed to determine their spatial over-

lap, focusing on the neural oscillations in the PFC. However, the

lack of cross-decoding across the recall and passive tasks indi-

cated that the PFC’s oscillatory code less likely represents the

recalled color image itself.

Many possible explanations for what was decoded from the

oscillatory patterns prior to target presentation during the co-

lor-recall task have been provided. Previous studies have shown

that the activity of PFC neurons prospectively codes internally

generated signals anticipating targets (Rainer et al., 1999) and

plays a role in signifying the perceptual property of the target,

the actual representation of which is presumably distributed

downstream in ventral visual cortices (Hasegawa et al., 1998; Si-

mons and Spiers, 2003). The PFC also transforms sensory and

internal information into voluntary motor actions (Miller and Co-

hen, 2001). Such transformed information may be organized as

action-oriented representations in support of upcoming behavior
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(Myers et al., 2017; Nobre and Stokes, 2019). It is also possible

that we decoded the cue category sorted by the target colors

(Hasegawa and Miyashita, 2002). However, prediction of the

target color based on the cue category class, if any, should be

context dependent, because even after learning of the color-

recall task with two cue sets in monkey L, cross-decoding accu-

racy failed at chance in the passive viewing condition (Figure 2B,

blue). Thus, in addition to prospective coding of the target color,

the PFC’s oscillatory activity pattern prior to target color presen-

tation can reflect multiple types of information about the target

color other than the color itself, such as preparation for action

on the target color and top-down control of color representation.

Considering the time-varying maps in searchlight analyses and

the poor temporal generalization of decoding for recalled colors,

we speculate that what is decoded during the color-recall task

might have dynamically changed over time across multiple fre-

quency bands from color memory recall to motor preparation

for the anticipated color.

We did not address the results that differed between the two

macaques in the study. A possible reason for the variations in re-

sults could be that the timing of recall and preparation for action

in the color-recall task may have differed across animals. Also,

since the data of the passive viewing task with color stimuli

were recorded after the training of the color-recall task in mon-

key L but before the training in monkey Q, the variation in the re-

sults could be due to the possibility that the oscillatory activity

patterns were reorganized after the training of the color-recall

task in one monkey. Such learning effects were indicated by

the studies showing changes in spiking activity and neural oscil-

lations in the PFCwith workingmemory task training (Brincat and

Miller, 2015; Constantinidis and Qi, 2018).

Neural oscillations in specific frequency bands and oscilla-

tory dynamics, such as phase synchrony and cross-frequency

coupling, in the PFC are implicated in many cognitive functions,

including working memory and memory recall (Helfrich and

Knight, 2016; Miller et al., 2018; Siegel et al., 2012). Beta oscil-

lations represent internally generated contents of working

memory and memory recall (Brincat and Miller, 2016; Salazar

et al., 2012) and regulate gamma bursts that contribute to the

readout and maintenance of working memory (Lundqvist

et al., 2016, 2018). By contrast, theta oscillations are proposed

to prioritize goal-relevant information in working memory

(Riddle et al., 2020; Vries et al., 2020) and to control the repre-

sentation of working memory content via synchronous oscilla-

tions with the posterior sensory cortex (Lara and Wallis, 2014;

Liebe et al., 2012). In an associative learning task, theta and

alpha/beta synchronous oscillation between the hippocampus

and PFC carried error- and correct-trial information, respec-

tively (Brincat and Miller, 2015). Our findings that theta-,

alpha-, and beta-band signals can predict memory-recalled co-

lor targets are not only consistent with these studies but further

suggest that these frequency-specific oscillatory signals are

organized topographically in the PFC. Several fMRI studies re-

vealed functional organization of stimulus-driven responses to

visual attributes, such as face and color, in PFC (Haile et al.,

2019; Lafer-Sousa and Conway, 2013; Tsao et al., 2008). We

believe that an approach using high-density ECoG with rela-

tively broad cortical coverage has the potential to reveal
detailed functional organization of neural-oscillation-mediated,

higher order cognitive functions in the PFC.
Limitations of the study
There is a trade-off between the extent of the cortical area

covered by a neuronal recording system and its spatial resolu-

tion. The area of PFC covered by our multi-channel ECoG grid

was 17.5 mm 3 17.5 mm2 centered on the principal sulcus,

which was larger than conventional single-unit recordings but

smaller than whole-brain imaging methods, such as fMRI, and

restricted to the exposed cortical surface. To record neural oscil-

lation patterns from a wider brain region, we need to design a

larger and within-sulcal electrode array (Matsuo et al., 2011). It

should also be challenged to capture submillimeter profiles of

the local neural architecture by designing a higher density

ECoG array at the expense of areal coverage in future studies.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Isao Ha-

segawa (isaohasegawa@med.niigata-u.ac.jp).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Processed ECoG data used for the analyses have been deposited at Zenodo and are publicly available. The DOI is listed in the

key resources table.

d All original code has been deposited at Zenodo and is publicly available. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal care and use
Two Japanese monkeys (Macaca fuscata, age 4–7 years, weight 5.6-7.1 kg, one female, monkey L, and one male, monkey Q),

provided by NBRP ‘‘Japanese Monkeys’’ through the National BioResource Project of the MEXT, Japan, were used in the study.

All monkeys were housed in standard primate cages in an air-conditioned room under a 14:10-h light-dark cycle with environmental

enrichment that allowed them to live comfortably. The monkeys were given primate food supplemented with fruits and vegetables.

The experimental protocol was approved by the Institutional Animal Care and Use Committee of Niigata University (Permission num-

ber 27-184-1). All animal procedures conformed to the Act on Welfare and Management of Animals in Japan, Fundamental Guide-

lines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions under the jurisdiction of the

MEXT, Japan, and the National Institute of Health Guide for the Care and Use of Laboratory Animals.

METHOD DETAILS

General surgical procedures
Aseptic surgeries were performed to implant the headpost before behavioral task training requiring head fixation and to implant the

ECoG grid before ECoG recording, as described in the following. After premedication with ketamine (50 mg/kg) and medetomidine
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(0.03 mg/kg), each animal was intubated with an endotracheal tube and connected to an artificial respirator (A.D.S.1000, Engler En-

gineering Corp., FL). The venous line was secured using lactated Ringer’s solution, and ceftriaxone (100 mg/kg) was dripped as a

prophylactic antibiotic. Body temperature was maintained at 37�C using an electric heating mat. A vacuum fixing bed (Vacuform,

B.u.W.Schmidt GmbH, Garbsen, Germany) was used to maintain the position of the body. Oxygen saturation, heart rate, and

end-tidal CO2 were continuously monitored (Surgi Vet, Smiths Medical PM Inc., London, UK) throughout surgery to adjust the levels

of anesthesia. The skull was fixed with a stereotactic frame (Narishige, Tokyo, Japan) for the headpost implant or a three-point

fastening device (Integra Co., NJ) with a custom-downsized attachment for macaques for the ECoG grid implant. The skin and mus-

cles over the target location were removed after local lidocaine injection. For the headpost implant, a titanium headpost (Gray Matter

Research, MT) was attached to the skull and secured with resin and bone screws. For the ECoG grid implant, craniotomy and dur-

otomy were performed using a microscope (Ophthalmo-Stativ S22, Carl Zeiss Inc., Oberkochen, Germany) with a CMOS color cam-

era (TS-CA-130MIII, MeCan Imaging Inc., Saitama, Japan). After the implant, the grid was covered by the dura mater, bone flap, and

skin, the exposed skull was covered with resin, and the surgery was finished. Postoperatively, the monkeys received ketoprofen as

an analgesic for three days, and antibiotics were continued for one week after surgery. The procedures for surgery, anesthesia, and

postoperative treatment have already been described previously (Matsuo et al., 2011).

Behavioral tasks.We trained themonkeys to perform a color-recall task (Figure 1B). Each trial beganwhen themonkey held down a

lever after an auditory ‘‘go’’ tone was sounded. A fixation point (0.1 � 3 0.1 � in visual angle, square) appeared at the center of the

monitor, and the animal was required to maintain its gaze within ±1.5� of the fixation point until the trial finished; breaks in fixation

resulted in the trial being terminated without reward. Following a blank pre-stimulus period (1.5 s), an achromatic cue stimulus

was presented (0.5 s); this, in turn, was followed by a blank delay period (2.0 s) and a pseudorandom sequence of one to two colored

choice stimulus presentations (0.5 s each) with an interval (1.0 s). To be rewarded with a drop of juice, the animal had to release the

lever during a response period (within 1 s after the choice onset) upon being presented with a choice stimulus with the correct color

associated with the presented cue (target color). The first choice stimulus had the target color in a random half of trials, and the sec-

ond choice stimulus had the target color in the remaining half of trials. Apart from this rule, we presented choice stimuli in a pseudo-

random order concerning color and shape. An inter-trial interval (2.5 s) was inserted before the next ‘‘go’’ tone. There were two

different sets of cue stimuli (Figure 1A): (1) three achromatic scene images (set A; 4.6� wide), and (2) three monochrome Fourier de-

scriptors (set B; �3.5� wide). Either type of cue stimuli was used in a recording session. There were nine choice stimuli, with three

different shapes in three different colors (Figure 1A; red, green, and blue; �3.7� wide). Cue and choice stimuli were presented at

the center of the monitor with the fixation point. The colors of choice images, irrespective of image shape, were associated with

one of the three cues in each cue type. As a control, the animals also carried out a passive viewing task, in which they had to maintain

a fixed gaze on a fixation point during a pre-stimulus period (1.5 s), stimulus presentation (0.5 s), following delay period (2.0 s), and

were required to release the lever in order to obtain a juice reward when the fixation point dimmed.

In behavioral analyses, we defined an error as either a lever release following an incorrect choice or failure to release after a correct

choice; lever releases before the response period and fixation breaks were regarded as aborted trials, not as error trials. We moni-

tored eye position using an infrared pupil-position monitoring system (iRecHS2 [Matsuda et al., 2017]). Task controls and behavioral

data recordings were performed using custom-made software (NS computer service, Japan) running on LabVIEW (National Instru-

ments, TX). For data collection, the animals were required to perform at least 500 successful trials each day and perform the same

task for 3 days. The performance on the color-recall task (success rate in non-aborted trials) of monkeys L and Q was 97.2% (set A:

97.9%, set B: 96.5%) and 97.4% (set A: 98.1%, set B: 96.7%). We analyzed only completed trials (see Table S1 for the number of

trials used in the analysis). The data of the passive viewing task using colored and cue stimuli were recorded before and after the

training of the color-recall task in monkeys Q and L, respectively.

ECoG recording and data processing. To record surface potentials from the PFC, we designed a 64-channel electrode array to

cover a 17.53 17.5-mm2 cortical area. We fabricated the electrode array on a 20-mm thick, flexible Parylene-C film usingmicro-elec-

tro-mechanical systems technology, as described previously (Kaiju et al., 2017; Toda et al., 2011). The electrode contacts were gold

surfaces of 0.53 0.5 mm square exposed from the film. Electrode impedances were typically 20–50 kU at 1 kHz. The center-to-cen-

ter distance between adjacent electrodes was 2.5 mm.

Under sterile surgical conditions, we implanted the electrode array subdurally onto the animals’ PFCs, over the lateral prefrontal

cortex (Figure 1C). We determined the target location and craniotomy size using preoperative magnetic resonance imaging. A gold

reference electrode was placed close to the ECoG array in the subdural space facing the dura. Lead wires from the ECoG array and

reference electrodes were connected tomicro connectors (Omnetics, MN) in a custom-made titanium chamber fixed to the skull with

resin. ECoG signals were amplified and band-pass filtered (Butterworth, 0.7–300 Hz) using a differential amplifier (PBX, Plexon, TX),

sampled digitally, and stored on hard-disk drives at a sampling rate 1 kHz.

Data processing was performed using custom MATLAB codes (MathWorks, MA) with the FieldTrip toolbox (https://www.

fieldtriptoolbox.org Oostenveld et al., 2011). ECoG signals were segmented, from 4.5 s before to 7.0 s after the onset of the cue

stimuli, downsampled to 500 Hz. We eliminated noise components using independent component analysis, implemented in the

FieldTrip toolbox (Jung et al., 2000). Signals were re-referenced by subtracting the average values of all electrodes within the

same array.We removed signals that were phase-locked to stimulus presentation (i.e., event-related potentials, ERPs) by subtracting

the average across trials from each trial to extract internally induced components that were not phase-locked to the stimulus

presentation (Figure 1D) (Brincat and Miller, 2015; Siegel et al., 2009; Tallon-Baudry et al., 1999). In Figure 1D, the powers were
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normalized by 1/frequency and baseline subtracted (baseline: 0.75–0.25 s before stimulus onset) to increase readability. However,

this normalization was not applied to the powers used in the following analyses to preserve information that might have been present

in the baseline period (see below). Signal power spectra were calculated at a 1-Hz resolution between 1Hz and 200Hz using complex

Morlet wavelets (Torrence and Compo, 1998) on a 500-ms analysis windowwith 100-ms steps, and the time index was aligned to the

center of the window. Spectral powers were averaged over each of the following conventionally defined frequency ranges: delta

(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), low gamma (30–70 Hz), and high gamma (70–200 Hz) bands (Fukushima

et al., 2012; Nakahara et al., 2016; Whittingstall and Logothetis, 2009).

Once all the recording experiments were completed, the animals were administered an overdose of sodium pentobarbital and

transcardially perfused with 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). Electrode locations in the animals’ brains

were determined postmortem. As ECoG electrode grids were encapsulated in the dura, we photographed the brains before and after

dura mater removal and referred to the photographs to identify the electrode locations on the brain’s surface.

Pattern classification analysis. For classification analysis, the powers of the individual frequency bands recorded at all electrodes

at a given time point were used as input features, unless stated otherwise. In this study, we defined the term ‘‘pattern’’ as the channel-

wise spatial configuration of the oscillatory powers used as the input features to be classified at a given time point. We first indepen-

dently z-normalized the values of each feature using the mean and SD calculated with the training dataset to avoid high-feature

values dominating the outcome of the classifier. We did not apply the baseline correction of features in classification analysis to study

whether possible contamination in the pre-cue period related to either the upcoming stimulus or the previously seen item (Jafarpour

et al., 2013). We used a subset of trials (training dataset) to train a linear support vector machine (LIBLINEAR [Fan et al., 2008]) clas-

sifier to discriminate task conditions (e.g., which color the monkey was supposed to respond to in the trial) based on patterns of fea-

tures. We then quantified the classifier’s accuracy to predict the conditions present in an independent subset of trials (test dataset).

Tominimize the bias of the classifier, we sampled the same number of trials for each task condition in the classification analysis. If the

number of trials varied in respect of the conditions, we randomly sampled a subset of trials with more trials to ensure that all condi-

tions had the same number of trials.

To study whether the information about the task condition was available in the pattern of features within one type of task, we as-

sessed the decoding accuracy using a 10-fold cross-validation procedure. In doing so, we trained a classifier using all trials, but one

of the ten splits of the dataset and then tested its performance on the remaining one. This procedure was repeated ten times, using a

different split for testing each time. The splits used for training did not include the split used for testing for each repetition. The clas-

sifier’s performance for all trials was considered to be the decoding accuracy of the classifier. In studying a particular aspect of the

information about task conditions (e.g., recalled color, perceived color), we used two types of datasets sharing just one aspect of

information (e.g., cue, choice) about the task condition. We used one dataset to train a classifier and tested the performance on

the other dataset and vice versa (cross-decoding).

In the searchlight analysis (Figures 3, S2D, and S2E), we computed the accuracy based on powers at electrodes within a local

sphere (radius 3.6 mm, corresponding to 3 3 3 electrodes) centered on each electrode at a given time point and mapped it onto

the center of the sphere to create decoding accuracy maps. We repeated this procedure across all electrodes. In the time course

of the decoding accuracy for the recall color in each frequency band (Figures 2B and S2A), we defined the first significant peak after

the cue stimulus onset and the latest significant peak earlier than 250ms before the choice stimulus onset as the early and late peaks

and created accuracy maps at those time points (Figures 3A and S2C). We also created accuracy maps for the perceived color

(Figures 3B and S2D) at the time point of the first significant peak after the colored stimulus onset in the decoding accuracy time

course (Figures 2C and S2A). For frequency bands that did not have significant peaks in the time course as described above, accu-

racy maps were created at the peak time points in the time course using the powers of all frequency bands (Figures 2B and 2C).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using customMATLAB codes. We tested the statistical significance of the classifier’s perfor-

mance using the bootstrapmethod. From the training dataset, we constructed a new dataset by randomly resampling the same num-

ber of trials as the dataset with replacement, trained a classifier on that dataset, and tested the classifier’s performance on an entire

test dataset as described above. This procedure was repeated 5000 times to create a bootstrap distribution of decoding accuracy,

and its median and 95% confidence interval were estimated. The proportion of values in that distribution that was smaller than the

chance level was calculated as the p value for the null hypothesis that decoding accuracy does not differ from the chance level. If the

observed p value was lower than the lowest possible p value achievable with our bootstrapmethod (p = 23 10�4 for 5000 samples), it

was set to p = 2 3 10�4. Unless otherwise specified, corrections for multiple comparisons were performed using Benjamini and

Hochberg’s false discovery rate method (Benjamini and Hochberg, 1995). For the statistics of Spearman’s rank correlation between

the decoding accuracy maps for the recalled colors and perceived colors (Figures 3, S2C, and S2D), the correlation coefficients of

decoding accuracies of 64 channels were calculated on 5000 pairs of maps obtained by the above procedure, and the resulting cor-

relation coefficient distribution was tested to see if it was significantly different from 0 using a two-sided bootstrap test (Table S2). In

this analysis, no correction for multiple comparisons was performed. We set our threshold for significance across all tests at p < 0.05.

The numbers of trials used for the analyses are shown in Table S1.
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