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LUCE: Linear User Cost Equilibrium 

 

1 INTRODUCTION 

In this chapter we present a new algorithm to solve the user equilibrium traffic assignment problem, 

called Linear User Cost Equilibrium (LUCE). The LUCE algorithm was conceived by Guido 

Gentile who during 2008 collaborated with PTV to produce a practical implementation of the 

method in VISUM. At the time of writing, shortly before the release of VISUM 11, the core method 

is stable enough to share it with our users, although some auxiliary functions are still missing and 

some post-assignment analysis methods still need to be optimized for LUCE. At this stage PTV 

provides LUCE as a prototype in VISUM 11. The prototype is provided mainly for evaluation 

purposes. It does run on realistic networks, but it currently has a few limitations, which will be 

lifted partly in VISUM 11 bugfixes, partly in the next major release, at which time LUCE will 

probably become the default equilibrium assignment method in VISUM. 

The rest of the chapter contains a detailed description of the method (sections 2 – 5), followed by an 

explanation of practical usage within VISUM (section 6). Users who would like to get started 

quickly should read the very brief sketch of the method in this introduction, then skip to section 6. 

Exploiting the inexpensive information provided by the derivatives of the arc costs with respect to 

arc flows, LUCE achieves a very high convergence speed, while it assigns the demand flow of each 

O-D pair on several paths at once. 

Similarly to Origin-Based methods, the problem is partitioned by destinations. The main idea is to 

seek at each node a user equilibrium for the local route choice of drivers directed toward the 

destination among the arcs of its forward star. The travel alternatives that make up the local choice 

sets are the arcs that belong to the current bush – a bush is an acyclic sub-graph that connects each 

origin to the destination at hand. The cost functions associated to these alternatives express the 

average impendence to reach the destination linearized at the current flow pattern. 

The unique solutions to such local linear equilibria in terms of destination flows, recursively applied 

for each node of the bush in topological order, provide a descent direction with respect to the 

classical sum-integral objective function. The network loading is then performed through such 

splitting rates, thus avoiding explicit path enumeration. 
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2 MATHEMATICAL FORMULATION AND THEORETICAL FRAMEWORK 

The transport network is represented through a directed graph G = (N, A), where N is the set of the 

nodes and A  NN is the set of the arcs. The nodes include the zone centroids and the road 

intersections, while the arcs include the links and the connectors; when turns with impendence or 

restrictions are introduced in the network model, then the node is properly exploded, so that such 

turns are associated to specific or no arcs of the graph. 

 

We adopt the following notation: 

fij   total flow on arc ijA, generic element of the (|A|1) vector f ;  

cij   cost of arc ijA, generic element of the (|A|1) vector c ; 

cij( fij)  cost function of arc ijA , 

Z  N set of the zone centroids ; 

Dod  demand flow between origin oZ and destination dZ, generic element of the (|Z|
2
1) 

vector D, that is the o-d matrix in row major order ; 

Kid   set of the acyclic paths between node iN and destination dZ ; 

K = oZ dZ Kod  is the set of paths available to users ; 

ij
k
   is 1, if arc ijA belongs to path k, and 0, otherwise – for kK, this is the generic element of 

the (|A||K|) matrix  ; 

od
k
  is 1, if path kK connects origin oZ to destination dZ (i.e. kKod), and 0, otherwise – 

this is the generic element of the (|Z|
2
|K|) matrix  ; 

Fk   flow on path kK, generic element of the (|K|1) vector F ; 

Ck   the cost of path k – for kK this is the generic element of the (|K|1) vector C ; 

Wi
d
  the minimum cost to reach destination dZ from node iN ; 

   space of real numbers ; 

|S|   cardinality of the generic set S ; 

[TRUE] = 1, [FALSE] = 0 . 
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There are two fundamental relations between flow variables. The flow on arc ijA is the sum of the 

flows on the paths that include it: 

fij = kK ij
k
  Fk ;  

the travel demand between origin oZ and destination dZ must be equal to the sum of the flows 

on the paths that connect them: 

kKod Fk = Dod ;  

moreover, all path flows must satisfy non-negativity constraints. 

As usual, we assume additive path costs, i.e. the impendence Ck associated by users to a given path 

k is the sum of the costs on the arcs that belong to it: 

Ck = ijA ij
k
  cij . (1) 

By definition, the minimum cost to reach destination dZ from node iN is the cost of any shortest 

path that connects them: 

Wi
d
 = min{Ck : kKid} . (2) 

 

In this case, the traffic assignment problem can be formalized through the following program: 

min{(f) = ijA 0
 fij

cij( f )  d f: f}, (3) 

where: 

 = {f
|A|

: f = F, F} is the set of feasible arc flows, and 

 = {F
|K|

: F  0, F = D} is the set of feasible path flows. 

To ensure the existence and uniqueness of the solution to problem (3) we assume that: 

cij( fij) is non-negative, continuous, strictly monotone increasing ; 

Kod   is non-empty ; 

Dod   is non-negative . 
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Problem (3), which is convex, can also be expressed in terms of path flows as follows: 

min{(F) = ijA 0
kK ij

k  Fk

cij( f )  d f: F} , (4) 

where, although the solution uniqueness does not hold anymore, the convexity of the mathematical 

program is preserved, implying that any descent algorithm in the space of path flows will provide 

one of the global solutions, which then make up a convex set. 

The relevance of program (4) to traffic assignment stands from the fact that, in the case of additive 

path costs, its first order (necessary) conditions coincide with the following formulation of the 

deterministic user equilibrium based on Wardrop’s Principles, for each oZ and dZ: 

Fk  (Ck - Wo
d
) = 0  ,           kKod , (5.1) 

Ck  Wo
d
  ,                          kKod , (5.2) 

Fk  0  ,                              kKod , (5.3) 

kKod Fk = Dod . (5.4) 

Based on (5): 

- all used paths (Fk > 0) have minimum cost (Ck = Wo
d
) ; 

- any unused path (Fk = 0) has not a lower cost (Ck  Wo
d
) . 

We have a user equilibrium if conditions (5) hold jointly for each o-d couple, while considering that 

each path cost Ck is a function (potentially) of all the path flows F through the arc cost function: 

Ck = ijA ij
k
  cij(kK ij

k
  Fk) , in compact form C = 

T
c(F) . (6) 

 

Since the gradient of (F) is C = 
T
 c(F), by linearizing the objective function of problem (4) at 

a given a point F, for X  F we obtain: 

(X) = (F) + C
T
(X-F) + o(||X-F||).  (7) 

From equation (7) we recognize that a direction E-F is descent if and only if: 

C
T
(E-F) < 0. (8) 

In other words, to decrease the objective function and maintain feasibility we necessarily have to 

shift path flows getting a lower total cost with respect to the current cost pattern, i.e. move the 
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current solution from F towards an E, such that C
T
E < C

T
F, where C = 

T
c(F); the 

necessity derives from the convexity of the problem, since in this case at any point X such that 

C
T
(X-F) > 0 we have: (X) > (F). 

This approach to determine a descent direction can be applied to each o-d pair separately, to each 

destination, or to the whole network jointly. Based on the above general rule, setting the flow 

pattern E by means of an all-or-nothing assignment to shortest paths clearly provides a descent 

direction. If we adopt such a direction for all o-d pairs of the network jointly, and apply along it a 

line search, we obtain the well known Frank-Wolfe algorithm. However, at equilibrium each o-d 

pair typically uses several paths, implying that any descent direction that loads a single path is 

intrinsically myopic; in fact such algorithms tail badly. 

Once we get a feasible descent direction E-F, since  is convex, we can move the current solution 

along the segment F+(E-F) and take a step (0,1] such that the objective function of problem 

(4), redefined as () = (F+(E-F)), is sufficiently lowered. In this respect, knowing that  is C
1
 

and convex, and thus also  is such, several methods are available to determine an  which 

minimizes (). VISUM uses an Armijo-like search and determines the largest step  = 0.5
k
, for 

any non-negative integer k, such that 

(0.5
k
)/ < 0. (9) 

This method requires to compute the directional derivative of the objective function: 

()/ = [c((F+(E-F)))]
T
[(E-F)] , (10) 

which implies to evaluate the arc costs at the candidate flows F+(E-F), and then the difference 

between the corresponding total costs obtained with the flows E and F; if such total costs with E are 

smaller than those with F, then ()/ is negative so that the optimal solution is more toward E, 

and vice versa. 

3 LOCAL USER EQUILIBRIUM 

In this section we present a new method to determine a descent direction, which is based on local 

shifts of flows that satisfy the total cost lowering rule and exploits the inexpensive information 

provided by the derivatives of the arc costs with respect to arc flows. 

To grasp immediately the underlying idea, we can refer to the simplest network where one o-d pair 

with demand D is connected by two arcs with cost function c1( f1) and c2( f2), respectively. At the 
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current flow pattern f
 
 = (D/2, D/2), it is c1 < c2 (see Figure 1, below), so that an all or nothing 

approach would lead to a descent direction (D, 0), which is far away from the equilibrium f* (grey 

circle in the Figure). The LUCE approach, instead, is to consider the first order approximations of 

the cost functions at the current flow pattern, i.e. ca + ca( fa)/fa  ( fa - fa), and determine a user 

equilibrium e among these lines (white circle in the Figure): this descent direction efficiently 

approaches the equilibrium f*, and in most cases can be taken as the new iterate with a step one. 

 

 

Figure 1. Linear Cost User Equilibrium between two paths. 

 

To reach any destination dZ, at the equilibrium only shortest paths are utilized; given that the arc 

cost functions are strictly monotone increasing, they make up an acyclic [*1] sub-graph of G, i.e. a 

(reverse) bush rooted at d. On this base, when seeking a descent direction, in the following we will 

limit our attention to the current bush B(d) and introduce a updating mechanism to make sure that 

eventually any shortest path will be included into it; only this way equilibrium is actually attained. 

*
1
 [In this case, indeed, any arc cost can be null only if its flow is such. However, in VISUM links 

and connectors may have null impedance, producing twofold consequences: a) the corresponding 

arc cost functions loose strict monotonicity, so that uniqueness is not guaranteed anymore; b) the 

sub-graph made-up by arcs with positive destination flows at some of the possible equilibria may be 

cyclic. The implementation of LUCE in VISUM specifically addresses this issue and converges to 

one among the possible equilibria by forcing an acyclic solution and equally splitting the flow 

c1 c2 

 f1  f2 

c1( f1) 
c2( f2) 

f
 
  e  f* 
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among all alternatives with minimum cost in presence of uncongested sub-paths.] 

 

Let us focus on the local route choice at a generic node iN for users directed to destination dZ. 

For the topology of the bush we will use the following notation:  

FSB(i, d) = {jN: ijB(d)} the forward star of node iN made-up by nodes that can be reached 

from it through arcs belonging to the current bush B(d) of destination dZ; 

BSB(i, d) = {jN: jiB(d)} the backward star of node iN made-up by nodes that can reach it 

through arcs belonging to the current bush B(d) of destination dZ. 

For the flow pattern we will use the following notation:  

fij
d
  current flow on arc ijA directed to destination dZ ; by construction it is fij

d
 = 0 for each 

jFSB(i, d) ; moreover it clearly is: fij = dZ fij
d
 ; 

fi
d
 = jFSB(i, d) fij

d
  current flow leaving node iN directed to destination dZ ; 

yij
d
 = fij

d
 / fi

d
   current flow proportion on arc ijA directed to destination dZ , if fi

d
 > 0;      

yij
d
 = 0 , otherwise ; 

eij
d
  descent direction, in terms of flow on arc ijA directed to destination dZ ;  

ei
d
  descent direction, in terms of flow leaving node iN directed to destination dZ ; 

xij
d
  = eij

d
 / ei

d
  descent direction, in terms of flow proportion on arc ijA directed to destination dZ. 

For the cost pattern we will use the following notation:  

Ci
d
 average cost to reach destination dZ from node iN ; 

gij  cost derivative of arc ijA ; 

Gi
d
 derivative of the average cost to reach destination dZ from node iN . 

 

The average cost Ci
d
 is the expected impendence that a user encounters by travelling from node iN 

to destination dN; here it is defined recursively based on the current flow pattern: 

if fi
d
 > 0 , then Ci

d
 = jFSB(i, d) yij

d
  (cij + Cj

d
) , else (11.1) 
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Ci
d
 = min{cij + Cj

d
: jFSB(i, d)} , (11.2) 

as if drivers utilize paths accordingly with the current flow proportions. In the following we assume 

that the cost function cij( fij) is continuously differentiable for each arc ijA: 

gij = cij( fij) / fij .  (12) 

Under the assumption that an infinitesimal increment of flow leaving node iN directed towards 

destination dZ would diverge accordingly with the current flow proportions, we have : 

if fi
d
 > 0, then Gi

d
 = Ci

d
 / fi

d
 = jFSB(i, d) yij

d
 
2
  (gij + Gj

d
) , else (13.1) 

Gi
d
 = jFSB(i, d) [Ci

d
 = cij + Cj

d
]  (gij + Gj

d
) / jFSB(i, d) [Ci

d
 = cij + Cj

d
] , (13.2) 

where the derivatives gij + Gj
d
 are scaled by the share yij

d
 of fi

d
 utilizing arc ij and then passing 

through node j, that jointly with the flow proportion involved in the averaging yields the square yij
d
 
2
. 

The average costs and their derivatives can be computed by processing the nodes of the bush in 

reverse topological order, starting from Cd
d
 = Gd

d
 = 0. 

 

We now address the local user equilibrium for the ei
d
 drivers directed to destination dZ, whose 

available alternatives are the arcs of the bush exiting from node iN. To each travel alternative we 

associate the cost function:  

vij
d
(eij

d
) = (cij + Cj

d
) + (gij + Gj

d
)  (eij

d
 - yij

d
  ei

d
) ,  (14) 

resulting from a linearization at the current flow pattern of the average cost encountered by a user 

choosing the generic arc ij, with jFSB(i, d). 

This problem can be formulated, in analogy to (5), by the following system of inequalities: 

eij
d
  [vij

d
(eij

d
) - Vi

d
] = 0  ,           jFSB(i, d)  , (15.1) 

vij
d
(eij

d
)  Vi

d
  ,                           jFSB(i, d)  , (15.2) 

eij
d
  0  ,                                     jFSB(i, d)  , (15.3) 

jFSB(i, d) eij
d
 = ei

d
  , (15.4) 

where we denote: 

Vi
d
  local equilibrium cost to reach destination dZ from node iN ; 
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vij
d
  cost of the local alternative jFSB(i, d) to reach destination dZ from node iN. 

If ei
d
 = 0, the solution to the above problem is trivially: eij

d
 = 0, for each jFSB(i, d). Consider then 

the case where ei
d
 > 0. To improve readability, problem (15) can be rewritten as: 

xj  (aj + bj  xj - v) = 0  ,          jJ  , (16.1) 

aj + bj  xj  v  ,                        jJ  , (16.2) 

xj  0  ,                                    jJ  , (16.3) 

jJ xj = 1  , (16.4) 

where: 

J = {(i, j, d): jFSB(i, d)}  ; 

aj = (cij + Cj
d
) - (gij + Gj

d
)  ei

d
  yij

d
  ; 

bj = (gij + Gj
d
)  ei

d
  ; 

xj = eij
d
 / ei

d
  ; 

v = Vi
d
  . 

Applying the usual Beckmann approach we can reformulate the equilibrium problem (16) as the 

following quadratic program: 

min{jJ 0
 xj

(aj + bj  x)  dx: xX} = min{jJ aj  xj + 0.5  bj  xj
2
: xX} , (17) 

where X is the convex set of all vectors satisfying the feasibility conditions (16.3) and (16.4). The 

gradient of the objective function is a vector with generic entry aj + bj  xj , and then the Hessian of 

the objective function is a diagonal matrix with generic entry bj . Therefore, if all entries bj are 

strictly positive, the Hessian is positive definite and problem (17) has a unique solution. In order to 

ensure such a desirable property we assume without loss of generality that the derivates gij are 

strictly positive for all arcs ijA. Indeed, since the arc cost functions are strictly monotone 

increasing, gij can be null only if also fij
d
 is null; therefore, at the equilibrium bj = 0 implies xj = 0. In 

practice we will substitute any gij = 0 with a small . 

To solve problem (16) we propose the following simple method. In order to satisfy condition (16.1), 

either it is xj = 0, and in this case condition (16.2) requires aj  v, or it is aj + bj   xj = v. Let J0  J 

be the set of alternatives with zero flow, that is J0 = { jJ: xj = 0}. For any given J0 the solution is 
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immediate, since from (16.4) it is jJ (v - aj) / bj = 1; therefore we have: 

v = (1 + jJ\J0 aj / bj) / (jJ\J0 1 / bj)  , (18.1) 

xj = (v - aj) / bj  ,                    jJ\J0  , (18.2) 

xj = 0  ,                                   jJ0  . (18.3) 

The flow proportions provided by (18) implicitly satisfy (16.4), but to state that the chosen J0 yields 

the solution of problem (16), we still must ensure the following conditions: aj < v, for each jJ\J0 

(as required by (16.3), since xj = (v - aj) / bj > 0), and aj  v, for each jJ0 (as required by (16.2), 

since xj = 0). This implies that at the solution the value of v resulting form (18.1) must partition the 

set J into two sub-sets: the set J0 , made up by the alternatives j such that aj  v; and its complement 

J\J0 , made up by the alternatives j such that aj < v. 

At a first glance the problem to determine the set J0 of alternatives with zero flow may seam to be 

combinatorial; however, this is not the case. Indeed, equation (18.1) can be rewritten as a recursive 

formula, thus showing the effect of removing an alternative k from the set J0: 

v[J0\{k}] = (v[J0]  jJ\J0 1 / bj + ak / bk) / (jJ\J0 1 / bj + 1 / bk) . (19) 

The right hand side of (19) can be interpreted as an average between v[J0] and ak with positive 

weights jJ\J0 1 / bj and 1 / bk . Therefore, the local equilibrium cost increases by removing from J0 

any alternative kJ\J0 for which ak is higher than the current value v[J0], and vice versa it decreases 

by adding to J0 such alternatives. Consequently, the correct partition set J0 can be simply obtained 

by adding iteratively to an initially empty set each alternative jJ\J0 such that aj > v, i.e. each 

alternative for which (18.2) yields a negative flow proportion. 

4 DESCENT DIRECTION 

To obtain a complete pattern of arc flows e
d
 for a given destination dZ consistent with the local 

user equilibrium we simply have to solve problem (15) at each node iN\{d} proceeding in 

topological order, where the node flow is computed as follows: 

ei
d
 = jBSB(i, d) eji

d
 + Did . (20) 

In section 2 it has been shown that a given direction is descent if, and only if, (8) holds true, which 

in terms of arc flows directed to destination dZ becomes: 
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ijA cij  (eij
d
 - fij

d
) < 0 , (21) 

expressing that the shift of flow from f
d
 to e

d
 must entail a decrease of total cost with respect to the 

current cost pattern. The proof that the proposed procedure provides a descent direction goes 

beyond the scope of this note and the interested reader is referred to the literature. 

 

In the following we present an example showing the computation of the descent direction provided 

by the LUCE algorithm. We consider the graph of the Braess paradox, with 4 nodes and 5 arcs. 

 

 

Figure 2A. Numerical example of the procedure to obtain the descent direction. 

 

The arc cost function is cij = Tij + Qij  fij
2
 so that its derivatives is gij = 2  Qij  fij . 

There is only one destination d = 4, and two origins with travel demand D14 = 9 and D24 = 2. We 

consider an initial flow pattern where all available paths, the 3 routes from 1 to 4 and the 2 routs 

from 2 to 4, are equally used by each o-d pair. Clearly, in this case it is fij = fij
d
 and the bush is the 

entire network. 

After we evaluate at the current flow pattern the arc costs and their derivatives, we can compute for 

each node i the average cost Ci
d
 and its derivative Gi

d
 iteratively stating from the destination, where 

Cd
d
 = Gd

d
 = 0, and proceeding in reverse topological order. To this aim we apply the formulas: 

Ci
d
 = jFSB(i, d) yij

d
  (cij + Cj

d
)  ,  Gi

d
 = jFSB(i, d) yij

d
 
2
  (gij + Gj

d
) . 

5 
1 

3 

4 

2 

1 

8 
2 

5 
1 

0 
0 

3 
0 

13 
9 

11 
2 

3 
1 

10 
2 

Ti
d
 

Did 
Tij 

Qij 

node arc 

4 
0.5 

3 

4 

2 

1 

8 
2 

6 
0.66 

11 
0 

7 
0 

9 
9 

3 
0.33 

7 
1 

4 
0.5 

fi
d
 

Did 
fij

d
 

yij
d
 

 

node arc 

21 
0 

3 

4 

2 

1 

42 
2 

41 
0 

0 
11 

52 
9 

81 
9 

29 
9 

52 
9 

42 
2 

Wi
d
 

ei
d
 * 

 

cij 
eij

d
 * 

node arc 



LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum 

13 November 2012 page 12 of 22 

While the computation for node 3 is trivial, since its forward star is a singleton, for node 2 we have: 

C2
4
 = y23

4
  (c23 + C3

4
) + y24

4
  (c24 + C4

4
) = 0.5  (21 + 52) + 0.5  (42 + 0) = 57.5 , 

G2
4
 = y23

4
 
2
 (g23 + G3

4
) + y24

4
 
2
  (g24 + G4

4
) = 0.5

2
  (8 + 14) + 0.5

2
  (16 + 0) = 9.5 , 

and for node 1 it is: 

C3
4
 = y13

4
  (c13 + C3

4
) + y12

4
  (c12 + C2

4
) = 0.33(29 + 52) + 0.66(41 + 57.5) = 92.7 , 

G3
4
 = y13

4
 
2
 (g12 + G3

4
) + y12

4
 
2
  (g12 + G2

4
) = 0.33

2
(12 + 14) + 0.66

2
(12 + 9.5) = 12.4 . 

 

 

Figure 2B. Numerical example of the procedure to obtain the descent direction. 

 

Now we can compute for each node i the node flows ei
d
 and the arc flows eij

d
 iteratively by 

proceeding in topological order. 

To this aim we shall focus on the local route choice of the ei
d
 users, whose available alternatives are 

the arcs of the bush exiting from node i. To each travel alternative we associate the cost function: 

vij(eij
d
) = (cij + Cj

d
) + (gij + Gj

d
)  (eij

d
 - yij

d
  ei

d
) ,  

resulting from a linearization at the current flow pattern of the average cost encountered by a user 

choosing arc ij, and we look for an equilibrium. We have shown that the latter can be determined 

using the following formulas: 

Vi
d
 = (1 + jJ aij

d
 / bij

d
) / (jJ 1 / bij

d
)  ,  eij

d
 = ei

d
  (Vi

d
 - aij

d
) / bij

d
 , 

2.43 
0.37 

3 

4 

2 

1 

6.5 
55.1 

4.5 
0.5 
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0 

6.93 
46.7 
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0.5 

6.93 
1 
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0.63 
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16 
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1 
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where: aij
d
 = (cij + Cj

d
) - (gij + Gj

d
)  ei

d
  yij

d
, bij

d
 = (gij + Gj

d
)  ei

d
, while J is set initially to the 

forward star FSB(i, d); if some eij
d
 results to be negative, then it is set to zero, j is removed from J 

and the computation is repeated. 

We star then with node 1, whose node flow is e1
4
 = D14 = 6 : 

a13
4
 = (c13 + C3

4
) - (g13 + G3

4
)  e1

4
  y13

4
 = (29 + 52) - (12 + 14)  9  0.33 = 3 , 

a12
4
 = (c12 + C2

4
) - (g12 + G2

4
)  e1

4
  y12

4
 = (41 + 57.5) - (12 + 9.5)  9  0.66 = -30.5 , 

b13
4
 = (g13 + G3

4
)  e1

4
 = (29 + 14)  9 = 387 , 

b12
4
 = (g12 + G2

4
)  e1

4
 = (41 + 9.5)  9 = 454.5 , 

V1
4
 = (1 + a13

4
/b13

4
 + a12

4
/b12

4
) / (1/b13

4
 +1/b12

4
) = (1+ 3/387-30.5/454.5) / (1/387+1/454.5) = 196.6 , 

e13
4
 = e1

4
  (V1

4
 - a13

4
) / b13

4
 = 9  (196.6 - 3) / 387 = 4.5 , 

e12
4
 = e1

4
  (V1

4
 - a12

4
) / b12

4
 = 9  (196.6 + 30.5) / 454.5 = 4.5 . 

Then we go on with node 2, whose node flow is e2
4
 = e12

4
 + D24 = 4.50 + 2 = 6.5 : 

a23
4
 = (c23 + C3

4
) - (g23 + G3

4
)  e2

4
  y23

4
 = (21 + 52) - (8 + 14)  6.5  0.5 = 1.5 , 

a24
4
 = (c24 + C4

4
) - (g24 + G4

4
)  e2

4
  y24

4
 = (42 + 0) - (16 + 0)  6.5  0.5 = -10 , 

b23
4
 = (g23 + G3

4
)  e1

4
 = (8 + 14)  6.5 = 143 , 

b24
4
 = (g24 + G4

4
)  e1

4
 = (16 + 0)  6.5 = 104 , 

V2
4
 = (1 + a23

4
/b23

4
 + a24

4
/b24

4
) / (1/b23

4
 +1/b24

4
) = (1 +1.5/143 -10/104) / (1/143+1/104) = 55.1 , 

e23
4
 = e2

4
  (V2

4
 - a23

4
) / b23

4
 = 6.5  (55.1 - 1.5) / 143 = 2.43 , 

e24
4
 = e2

4
  (V2

4
 - a24

4
) / b24

4
 = 6.5  (55.1 + 10) / 104 = 4.07 . 

Finally we consider node 3, whose node flow is e3
4
 = e13

4
 + e23

4
 + D34 = 4.5 + 2.43 + 0 = 6.93 : 

Since there is only one alternative here, we have immediately e34
4
 = e3

4
 = 6.93, while we compute 

V3
4
 only or completeness as follows: 

V3
4
 = (c34 + C4

4
) + (g34 + G4

4
)  (e34

4
 - e3

4
  y34

4
) = (52 + 0) + (14 + 0)  (6.55 - 6.93  1) = 46.7 . 

The flow pattern we have just found is a descent direction because we have: 

ijA fij
d
  cij = 949 > ijA eij

d
  cij = 897 . 
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In Figure 2A, we have shown (denoted by an asterisk) the AON assignment on shortest paths. In 

Figure 2B, we show (denoted by an asterisk) the equilibrium flow and cost pattern. It can be seen 

that one single iteration of the proposed descent direction allows a substantial step towards the 

solution. 

5 ASSIGNMENT ALGORITHM 

Below we provide a pseudo code of the procedure within the framework of an assignment algorithm. 

 

function LUCE 

 f = 0           initialize the solution flows to zero 

 for k = 1 to n        perform n iterations 

  for each dZ       for each destination d 

   for each ijA      compute arc costs and their derivatives 

    cij = cij( fij) 

    gij = max{cij( fij)/fij, } 

    if fi
d
 > 0 then yij

d
 = fij

d
 / fi

d
 else yij

d
 = 0 

   B(d) =B(B(d), c, f)    initialize or modify the current bush 

   Cd
d
 = 0         the average cost of the destination is zero 

   Gd
d
 = 0        so its derivative 

   for each i:ijB(d) in reverse topological order   for each node i  d in the bush 

    if fi
d
 > 0 then  

     Ci
d
 = jFSB(i, d) yij

d
  (cij + Cj

d
)       compute the node average cost to d 

     Gi
d
 = jFSB(i, d) yij

d
 
2
 (gij + Gj

d
)       and its derivative 

    else 

     Ci
d
 = min{cij + Cj

d
: jFSB(i, d)} 

     Gi
d
 = jFSB(i, d) [Ci

d
 = cij + Cj

d
]  (gij + Gj

d
) / jFSB(i, d) [Ci

d
 = cij + Cj

d
] 

   e
d
 = 0         reset the arc and node flows to d 

   for each oZ      load on the origins the demand to d 

    eo
d
 = Dod 

   for each i:ijB(d) in topological order     for each node i  d the bush 

    J = FSB(i, d)      initialize the set of arcs with positive flow  

     = 0 
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    until  = 1 do 

      = 1 

     Vi
d
 = [ei

d
 + jJ (cij + Cj

d
) / (gij + Gj

d
) - ei

d
yij

d
] / jJ 1/(gij + Gj

d
) 

     for each jJ 

      eij
d
 = Vi

d
 / (gij + Gj

d
) - (cij + Cj

d
) / (gij + Gj

d
) + ei

d
yij

d
  

      if eij
d
 < 0 then 

       eij
d
 = 0 

       J = J \ {j}   remove ij from the set of arcs with positive flow 

        = 0     then repeat the procedure 

    for each jJ 

     ej
d
 = ej

d
 + eij

d
     propagate the arc flows to the head node flows 

    = 1 

   if k > 1 then 

    until ijA cij( fij + (eij
d
 - fij

d
))  (eij

d
 - fij

d
) < 0 do  = 0.5     armijo step 

   for each ijA      update arc flows 

    fij = fij + (eij
d
 - fij

d
) 

    fij
d
 = fij

d
 + (eij

d
 - fij

d
) 

 

The bush of each destination dZ is initialized with the set of efficient arcs that bring closer to the 

destination, where the minimum cost are evaluated at zero flow. At the generic iteration, any non-

efficient arc on the bush carrying no destination flow is removed from it, while any arc that would 

improve shortest paths on the bush is added to it, if its reverse arc does not carry destination flow. If 

the resulting sub-graph is acyclic, then it is substituted to the current bush of that destination. Since 

the LUCE algorithm tends to an equilibrium on the bush, eventually the flow on non-efficient paths 

disappears and the bush can be properly modified. 

Note that, beside the initialization of the bushes, the LUCE algorithm does not require shortest path 

computations, but only simple visits of the bushes. 

6 USAGE 

LUCE is one of the private transport assignment methods in VISUM 11. To run a LUCE 

assignment set up a model run under Calculate – Procedures and select Equilibrium assignment 

LUCE as the sub-method of operation Assignment. 
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Set the convergence criteria in the Terminate, if section. 



LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum 

13 November 2012 page 17 of 22 

The other procedure parameters control memory consumption and route storage. LUCE differs from 

all other VISUM assignment methods in that it is not explicitly path-based, but uses an implicit 

representation of the loaded paths, the bushes explained above. The main benefit of this 

representation is that LUCE can load a richer set of paths than VISUM’s classic path-based 

equilibrium assignment, in a limited number of iterations. The representation has an important 

effect on memory consumption: 

Memory 

consumption for … 

classic equilibrium assignment  LUCE 

path storage explicit storage of all paths more compact implicit storage of 

bushes 

link / turn / 

connector volumes 

one volume for each network 

element per demand segment 

one volume for each network element 

per demand segment and origin 

 

The table shows that path storage is more memory-efficient in LUCE, but network volumes need to 

be stored per origin zone which can consume much more memory than in the classic assignment. 

To minimize this effect it is important to store volumes only for those network elements which are 

essential in route choice. Link and connector volumes are always stored. (Main) turns, which 

contribute the largest number of network elements, are only relevant to the assignment, if they 

differ in impedance. Basically, if the turns at a given node have identical transport system sets and 

identical delays, then their impedances and volumes can be ignored in the calculation, and memory 

saved. If not, the node needs to be “exploded”, i.e. the turns need to be added as arcs to the graph 

for the assignment, as explained in section 2 above. 

 

Exploding nodes 

You control the explosion of nodes through the Explode (main) node parameter:  
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There are four possible values: 

none: (main) turns are generally not exploded, i.e. differences in impedance (if present) are ignored 

all: (main) turns are exploded at all nodes 

according to (main) node attribute “LUCE explode Standard” (default): VISUM pre-calculates the 

zero-or-one attribute LUCE explode Standard. The value is 1, if the turns differ and need to be 

exploded, and 0, if they can be safely ignored.  

according to (main) node attribute “LUCE explode”: While LUCE explode Standard is a read-only 

attribute, LUCE explode is editable. If you need fine control over which nodes are exploded, copy 

the values of LUCE explode Standard to LUCE explode, and modify them where necessary. 

In most cases it is best to accept the default. Choose the second or fourth option, if you plan to 

warm-start LUCE subsequently, and for the new run (main) turn impedances or transportation 

system sets will be different from the first run. Any (main) turns to be exploded in the second run 

must already be exploded in the stored result of the first run for warm-start to work. Choose all, if 

you can afford the extra memory consumption, or choose the fourth option and set the LUCE 

explode attribute to 1 for exactly those (main) nodes that should be exploded. Use the option none 

for a fast sketch-level assignment ignoring turn impedances altogether.  

Route extraction 

LUCE’s big advantage over VISUM’s classic assignment algorithm is the richer path sets it loads. 

The classic algorithm will load at most one path per O-D pair and iteration. Consider the totally 

symmetric grid graph displayed below to which traffic is assigned for a single O-D pair (top left to 

bottom right). 
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If we run the classic algorithm on this graph for 100 iterations, exactly 100 paths will be found and 

loaded in the final result. VISUM will reach the unique equilibrium link volumes with a very good 

gap. Note, however, that unlike link volumes, route flows are not unique in equilibrium assignment. 

The 100 loaded paths clearly represent an extreme corner solution in the space of route flow 

patterns which are consistent with the link volumes. In contrast, LUCE loads over 34000 paths in 

just 85 iterations. 

The artificial example demonstrates that in networks with many attractive alternative routes, the 

number of loaded paths per O-D pair can be quite high. The assignment algorithm itself does not 

work with paths, and in some applications it is never necessary to extract the loaded routes, e.g. if 

link volumes are sufficient. But for various post-assignment operations, e.g. select-link analysis or 
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matrix estimation, routes are necessary. 

Extracting all routes from the compact bush representation may be impossible, for memory reasons, 

in large, highly symmetric networks. In such extreme cases, most of the routes will have 

exceedingly small volumes. In order to avoid being swamped by an astronomical number of very-

low-volume links, VISUM lets you control the set of paths to be extracted: 

 

Use the three parameters to define a cut-off point below which paths are not extracted. Any demand 

on the ignored paths is proportionately redistributed to the surviving paths. 

Parameter A defines an absolute cut-off point. For O-D pairs with a high number of trips the 

absolute cut-off point may still be inconveniently small and too many paths survive. Use parameter 

B in these cases to define a cut-off point relative to the total demand of the O-D pair. In some cases, 

there may be many paths for a single O-D pairs, but all of them have very small volumes. Then 

there is a danger that all paths fall below the cut-off point defined by A and B. Parameter C then 

ensures that at least the paths with (near-) maximum volume will always survive. 

For those cases where you do not need routes at all, you can save memory by turning off route 

extraction altogether.  
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Under Calculate – Procedures – PrT Functions – Assignment choose the Do not save option for 

paths, in which case LUCE will only save link volumes, but no paths at all. The default setting is 

Save Paths as routes, which stores paths. The third option (as connections) is reserved for dynamic 

assignment methods. 

7 PERSPECTIVES 

The LUCE algorithm released with VISUM 11 is fully functional. Some extensions are already 

planned and – where possible – will be added even before the next major release:  

Warm start: Like other assignment methods in VISUM, LUCE will be able to accept an existing 

assignment result as an initial solution. Because the warm start functionality requires a set of bushes, 

the prior assignment result must be of type LUCE.  

Faster skim matrices and select-link analysis (flow bundle): In the initial release, all post-

assignment analysis functions are available for LUCE, because from the bush representation of the 

equilibrium solution VISUM extracts paths in the classic format. This can be a memory bottleneck 

in some networks (see above). Some of the analysis methods can actually be re-implemented to 

work directly with the implicit bush representation which not only saves memory, but also speeds 

up the operation. Bush adaptations of these methods will be added to VISUM at a later time. 
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Bush storage: Similar to route extraction, LUCE will gain an option to enable / disable bush 

storage and save memory, because bushes only need to be saved, if you plan to warm-start or use 

post-assignment analysis. 

General tuning: Although we have tested LUCE on diverse networks we fully expect performance 

(in terms of memory and runtime) to vary with the characteristics of the networks, and it is quite 

likely that we will need to tune the implementation for the cases that have escaped us so far. You 

can help us by reporting to the VISUM hotline instances in which LUCE consumes unlikely 

amounts of runtime or memory. 

 


