
LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 1 of 22

LUCE: Linear User Cost Equilibrium

1 INTRODUCTION

In this chapter we present a new algorithm to solve the user equilibrium traffic assignment problem,

called Linear User Cost Equilibrium (LUCE). The LUCE algorithm was conceived by Guido

Gentile who during 2008 collaborated with PTV to produce a practical implementation of the

method in VISUM. At the time of writing, shortly before the release of VISUM 11, the core method

is stable enough to share it with our users, although some auxiliary functions are still missing and

some post-assignment analysis methods still need to be optimized for LUCE. At this stage PTV

provides LUCE as a prototype in VISUM 11. The prototype is provided mainly for evaluation

purposes. It does run on realistic networks, but it currently has a few limitations, which will be

lifted partly in VISUM 11 bugfixes, partly in the next major release, at which time LUCE will

probably become the default equilibrium assignment method in VISUM.

The rest of the chapter contains a detailed description of the method (sections 2 – 5), followed by an

explanation of practical usage within VISUM (section 6). Users who would like to get started

quickly should read the very brief sketch of the method in this introduction, then skip to section 6.

Exploiting the inexpensive information provided by the derivatives of the arc costs with respect to

arc flows, LUCE achieves a very high convergence speed, while it assigns the demand flow of each

O-D pair on several paths at once.

Similarly to Origin-Based methods, the problem is partitioned by destinations. The main idea is to

seek at each node a user equilibrium for the local route choice of drivers directed toward the

destination among the arcs of its forward star. The travel alternatives that make up the local choice

sets are the arcs that belong to the current bush – a bush is an acyclic sub-graph that connects each

origin to the destination at hand. The cost functions associated to these alternatives express the

average impendence to reach the destination linearized at the current flow pattern.

The unique solutions to such local linear equilibria in terms of destination flows, recursively applied

for each node of the bush in topological order, provide a descent direction with respect to the

classical sum-integral objective function. The network loading is then performed through such

splitting rates, thus avoiding explicit path enumeration.

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 2 of 22

2 MATHEMATICAL FORMULATION AND THEORETICAL FRAMEWORK

The transport network is represented through a directed graph G = (N, A), where N is the set of the

nodes and A NN is the set of the arcs. The nodes include the zone centroids and the road

intersections, while the arcs include the links and the connectors; when turns with impendence or

restrictions are introduced in the network model, then the node is properly exploded, so that such

turns are associated to specific or no arcs of the graph.

We adopt the following notation:

fij total flow on arc ijA, generic element of the (|A|1) vector f ;

cij cost of arc ijA, generic element of the (|A|1) vector c ;

cij(fij) cost function of arc ijA ,

Z N set of the zone centroids ;

Dod demand flow between origin oZ and destination dZ, generic element of the (|Z|
2
1)

vector D, that is the o-d matrix in row major order ;

Kid set of the acyclic paths between node iN and destination dZ ;

K = oZ dZ Kod is the set of paths available to users ;

ij
k
 is 1, if arc ijA belongs to path k, and 0, otherwise – for kK, this is the generic element of

the (|A||K|) matrix ;

od
k
 is 1, if path kK connects origin oZ to destination dZ (i.e. kKod), and 0, otherwise –

this is the generic element of the (|Z|
2
|K|) matrix ;

Fk flow on path kK, generic element of the (|K|1) vector F ;

Ck the cost of path k – for kK this is the generic element of the (|K|1) vector C ;

Wi
d
 the minimum cost to reach destination dZ from node iN ;

 space of real numbers ;

|S| cardinality of the generic set S ;

[TRUE] = 1, [FALSE] = 0 .

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 3 of 22

There are two fundamental relations between flow variables. The flow on arc ijA is the sum of the

flows on the paths that include it:

fij = kK ij
k
 Fk ;

the travel demand between origin oZ and destination dZ must be equal to the sum of the flows

on the paths that connect them:

kKod Fk = Dod ;

moreover, all path flows must satisfy non-negativity constraints.

As usual, we assume additive path costs, i.e. the impendence Ck associated by users to a given path

k is the sum of the costs on the arcs that belong to it:

Ck = ijA ij
k
 cij . (1)

By definition, the minimum cost to reach destination dZ from node iN is the cost of any shortest

path that connects them:

Wi
d
 = min{Ck : kKid} . (2)

In this case, the traffic assignment problem can be formalized through the following program:

min{(f) = ijA 0
 fij

cij(f) d f: f}, (3)

where:

 = {f
|A|

: f = F, F} is the set of feasible arc flows, and

 = {F
|K|

: F 0, F = D} is the set of feasible path flows.

To ensure the existence and uniqueness of the solution to problem (3) we assume that:

cij(fij) is non-negative, continuous, strictly monotone increasing ;

Kod is non-empty ;

Dod is non-negative .

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 4 of 22

Problem (3), which is convex, can also be expressed in terms of path flows as follows:

min{(F) = ijA 0
kK ij

k Fk

cij(f) d f: F} , (4)

where, although the solution uniqueness does not hold anymore, the convexity of the mathematical

program is preserved, implying that any descent algorithm in the space of path flows will provide

one of the global solutions, which then make up a convex set.

The relevance of program (4) to traffic assignment stands from the fact that, in the case of additive

path costs, its first order (necessary) conditions coincide with the following formulation of the

deterministic user equilibrium based on Wardrop’s Principles, for each oZ and dZ:

Fk (Ck - Wo
d
) = 0 , kKod , (5.1)

Ck Wo
d
 , kKod , (5.2)

Fk 0 , kKod , (5.3)

kKod Fk = Dod . (5.4)

Based on (5):

- all used paths (Fk > 0) have minimum cost (Ck = Wo
d
) ;

- any unused path (Fk = 0) has not a lower cost (Ck Wo
d
) .

We have a user equilibrium if conditions (5) hold jointly for each o-d couple, while considering that

each path cost Ck is a function (potentially) of all the path flows F through the arc cost function:

Ck = ijA ij
k
 cij(kK ij

k
 Fk) , in compact form C =

T
c(F) . (6)

Since the gradient of (F) is C =
T
 c(F), by linearizing the objective function of problem (4) at

a given a point F, for X F we obtain:

(X) = (F) + C
T
(X-F) + o(||X-F||). (7)

From equation (7) we recognize that a direction E-F is descent if and only if:

C
T
(E-F) < 0. (8)

In other words, to decrease the objective function and maintain feasibility we necessarily have to

shift path flows getting a lower total cost with respect to the current cost pattern, i.e. move the

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 5 of 22

current solution from F towards an E, such that C
T
E < C

T
F, where C =

T
c(F); the

necessity derives from the convexity of the problem, since in this case at any point X such that

C
T
(X-F) > 0 we have: (X) > (F).

This approach to determine a descent direction can be applied to each o-d pair separately, to each

destination, or to the whole network jointly. Based on the above general rule, setting the flow

pattern E by means of an all-or-nothing assignment to shortest paths clearly provides a descent

direction. If we adopt such a direction for all o-d pairs of the network jointly, and apply along it a

line search, we obtain the well known Frank-Wolfe algorithm. However, at equilibrium each o-d

pair typically uses several paths, implying that any descent direction that loads a single path is

intrinsically myopic; in fact such algorithms tail badly.

Once we get a feasible descent direction E-F, since is convex, we can move the current solution

along the segment F+(E-F) and take a step (0,1] such that the objective function of problem

(4), redefined as () = (F+(E-F)), is sufficiently lowered. In this respect, knowing that is C
1

and convex, and thus also is such, several methods are available to determine an which

minimizes (). VISUM uses an Armijo-like search and determines the largest step = 0.5
k
, for

any non-negative integer k, such that

(0.5
k
)/ < 0. (9)

This method requires to compute the directional derivative of the objective function:

()/ = [c((F+(E-F)))]
T
[(E-F)] , (10)

which implies to evaluate the arc costs at the candidate flows F+(E-F), and then the difference

between the corresponding total costs obtained with the flows E and F; if such total costs with E are

smaller than those with F, then ()/ is negative so that the optimal solution is more toward E,

and vice versa.

3 LOCAL USER EQUILIBRIUM

In this section we present a new method to determine a descent direction, which is based on local

shifts of flows that satisfy the total cost lowering rule and exploits the inexpensive information

provided by the derivatives of the arc costs with respect to arc flows.

To grasp immediately the underlying idea, we can refer to the simplest network where one o-d pair

with demand D is connected by two arcs with cost function c1(f1) and c2(f2), respectively. At the

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 6 of 22

current flow pattern f

 = (D/2, D/2), it is c1 < c2 (see Figure 1, below), so that an all or nothing

approach would lead to a descent direction (D, 0), which is far away from the equilibrium f* (grey

circle in the Figure). The LUCE approach, instead, is to consider the first order approximations of

the cost functions at the current flow pattern, i.e. ca + ca(fa)/fa (fa - fa), and determine a user

equilibrium e among these lines (white circle in the Figure): this descent direction efficiently

approaches the equilibrium f*, and in most cases can be taken as the new iterate with a step one.

Figure 1. Linear Cost User Equilibrium between two paths.

To reach any destination dZ, at the equilibrium only shortest paths are utilized; given that the arc

cost functions are strictly monotone increasing, they make up an acyclic [*1] sub-graph of G, i.e. a

(reverse) bush rooted at d. On this base, when seeking a descent direction, in the following we will

limit our attention to the current bush B(d) and introduce a updating mechanism to make sure that

eventually any shortest path will be included into it; only this way equilibrium is actually attained.

*
1
 [In this case, indeed, any arc cost can be null only if its flow is such. However, in VISUM links

and connectors may have null impedance, producing twofold consequences: a) the corresponding

arc cost functions loose strict monotonicity, so that uniqueness is not guaranteed anymore; b) the

sub-graph made-up by arcs with positive destination flows at some of the possible equilibria may be

cyclic. The implementation of LUCE in VISUM specifically addresses this issue and converges to

one among the possible equilibria by forcing an acyclic solution and equally splitting the flow

c1 c2

 f1 f2

c1(f1)
c2(f2)

f

 e f*

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 7 of 22

among all alternatives with minimum cost in presence of uncongested sub-paths.]

Let us focus on the local route choice at a generic node iN for users directed to destination dZ.

For the topology of the bush we will use the following notation:

FSB(i, d) = {jN: ijB(d)} the forward star of node iN made-up by nodes that can be reached

from it through arcs belonging to the current bush B(d) of destination dZ;

BSB(i, d) = {jN: jiB(d)} the backward star of node iN made-up by nodes that can reach it

through arcs belonging to the current bush B(d) of destination dZ.

For the flow pattern we will use the following notation:

fij
d
 current flow on arc ijA directed to destination dZ ; by construction it is fij

d
 = 0 for each

jFSB(i, d) ; moreover it clearly is: fij = dZ fij
d
 ;

fi
d
 = jFSB(i, d) fij

d
 current flow leaving node iN directed to destination dZ ;

yij
d
 = fij

d
 / fi

d
 current flow proportion on arc ijA directed to destination dZ , if fi

d
 > 0;

yij
d
 = 0 , otherwise ;

eij
d
 descent direction, in terms of flow on arc ijA directed to destination dZ ;

ei
d
 descent direction, in terms of flow leaving node iN directed to destination dZ ;

xij
d
 = eij

d
 / ei

d
 descent direction, in terms of flow proportion on arc ijA directed to destination dZ.

For the cost pattern we will use the following notation:

Ci
d
 average cost to reach destination dZ from node iN ;

gij cost derivative of arc ijA ;

Gi
d
 derivative of the average cost to reach destination dZ from node iN .

The average cost Ci
d
 is the expected impendence that a user encounters by travelling from node iN

to destination dN; here it is defined recursively based on the current flow pattern:

if fi
d
 > 0 , then Ci

d
 = jFSB(i, d) yij

d
 (cij + Cj

d
) , else (11.1)

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 8 of 22

Ci
d
 = min{cij + Cj

d
: jFSB(i, d)} , (11.2)

as if drivers utilize paths accordingly with the current flow proportions. In the following we assume

that the cost function cij(fij) is continuously differentiable for each arc ijA:

gij = cij(fij) / fij . (12)

Under the assumption that an infinitesimal increment of flow leaving node iN directed towards

destination dZ would diverge accordingly with the current flow proportions, we have :

if fi
d
 > 0, then Gi

d
 = Ci

d
 / fi

d
 = jFSB(i, d) yij

d

2
 (gij + Gj

d
) , else (13.1)

Gi
d
 = jFSB(i, d) [Ci

d
 = cij + Cj

d
] (gij + Gj

d
) / jFSB(i, d) [Ci

d
 = cij + Cj

d
] , (13.2)

where the derivatives gij + Gj
d
 are scaled by the share yij

d
 of fi

d
 utilizing arc ij and then passing

through node j, that jointly with the flow proportion involved in the averaging yields the square yij
d

2
.

The average costs and their derivatives can be computed by processing the nodes of the bush in

reverse topological order, starting from Cd
d
 = Gd

d
 = 0.

We now address the local user equilibrium for the ei
d
 drivers directed to destination dZ, whose

available alternatives are the arcs of the bush exiting from node iN. To each travel alternative we

associate the cost function:

vij
d
(eij

d
) = (cij + Cj

d
) + (gij + Gj

d
) (eij

d
 - yij

d
 ei

d
) , (14)

resulting from a linearization at the current flow pattern of the average cost encountered by a user

choosing the generic arc ij, with jFSB(i, d).

This problem can be formulated, in analogy to (5), by the following system of inequalities:

eij
d
 [vij

d
(eij

d
) - Vi

d
] = 0 , jFSB(i, d) , (15.1)

vij
d
(eij

d
) Vi

d
 , jFSB(i, d) , (15.2)

eij
d
 0 , jFSB(i, d) , (15.3)

jFSB(i, d) eij
d
 = ei

d
 , (15.4)

where we denote:

Vi
d
 local equilibrium cost to reach destination dZ from node iN ;

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 9 of 22

vij
d
 cost of the local alternative jFSB(i, d) to reach destination dZ from node iN.

If ei
d
 = 0, the solution to the above problem is trivially: eij

d
 = 0, for each jFSB(i, d). Consider then

the case where ei
d
 > 0. To improve readability, problem (15) can be rewritten as:

xj (aj + bj xj - v) = 0 , jJ , (16.1)

aj + bj xj v , jJ , (16.2)

xj 0 , jJ , (16.3)

jJ xj = 1 , (16.4)

where:

J = {(i, j, d): jFSB(i, d)} ;

aj = (cij + Cj
d
) - (gij + Gj

d
) ei

d
 yij

d
 ;

bj = (gij + Gj
d
) ei

d
 ;

xj = eij
d
 / ei

d
 ;

v = Vi
d
 .

Applying the usual Beckmann approach we can reformulate the equilibrium problem (16) as the

following quadratic program:

min{jJ 0
 xj

(aj + bj x) dx: xX} = min{jJ aj xj + 0.5 bj xj
2
: xX} , (17)

where X is the convex set of all vectors satisfying the feasibility conditions (16.3) and (16.4). The

gradient of the objective function is a vector with generic entry aj + bj xj , and then the Hessian of

the objective function is a diagonal matrix with generic entry bj . Therefore, if all entries bj are

strictly positive, the Hessian is positive definite and problem (17) has a unique solution. In order to

ensure such a desirable property we assume without loss of generality that the derivates gij are

strictly positive for all arcs ijA. Indeed, since the arc cost functions are strictly monotone

increasing, gij can be null only if also fij
d
 is null; therefore, at the equilibrium bj = 0 implies xj = 0. In

practice we will substitute any gij = 0 with a small .

To solve problem (16) we propose the following simple method. In order to satisfy condition (16.1),

either it is xj = 0, and in this case condition (16.2) requires aj v, or it is aj + bj xj = v. Let J0 J

be the set of alternatives with zero flow, that is J0 = { jJ: xj = 0}. For any given J0 the solution is

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 10 of 22

immediate, since from (16.4) it is jJ (v - aj) / bj = 1; therefore we have:

v = (1 + jJ\J0 aj / bj) / (jJ\J0 1 / bj) , (18.1)

xj = (v - aj) / bj , jJ\J0 , (18.2)

xj = 0 , jJ0 . (18.3)

The flow proportions provided by (18) implicitly satisfy (16.4), but to state that the chosen J0 yields

the solution of problem (16), we still must ensure the following conditions: aj < v, for each jJ\J0

(as required by (16.3), since xj = (v - aj) / bj > 0), and aj v, for each jJ0 (as required by (16.2),

since xj = 0). This implies that at the solution the value of v resulting form (18.1) must partition the

set J into two sub-sets: the set J0 , made up by the alternatives j such that aj v; and its complement

J\J0 , made up by the alternatives j such that aj < v.

At a first glance the problem to determine the set J0 of alternatives with zero flow may seam to be

combinatorial; however, this is not the case. Indeed, equation (18.1) can be rewritten as a recursive

formula, thus showing the effect of removing an alternative k from the set J0:

v[J0\{k}] = (v[J0] jJ\J0 1 / bj + ak / bk) / (jJ\J0 1 / bj + 1 / bk) . (19)

The right hand side of (19) can be interpreted as an average between v[J0] and ak with positive

weights jJ\J0 1 / bj and 1 / bk . Therefore, the local equilibrium cost increases by removing from J0

any alternative kJ\J0 for which ak is higher than the current value v[J0], and vice versa it decreases

by adding to J0 such alternatives. Consequently, the correct partition set J0 can be simply obtained

by adding iteratively to an initially empty set each alternative jJ\J0 such that aj > v, i.e. each

alternative for which (18.2) yields a negative flow proportion.

4 DESCENT DIRECTION

To obtain a complete pattern of arc flows e
d
 for a given destination dZ consistent with the local

user equilibrium we simply have to solve problem (15) at each node iN\{d} proceeding in

topological order, where the node flow is computed as follows:

ei
d
 = jBSB(i, d) eji

d
 + Did . (20)

In section 2 it has been shown that a given direction is descent if, and only if, (8) holds true, which

in terms of arc flows directed to destination dZ becomes:

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 11 of 22

ijA cij (eij
d
 - fij

d
) < 0 , (21)

expressing that the shift of flow from f
d
 to e

d
 must entail a decrease of total cost with respect to the

current cost pattern. The proof that the proposed procedure provides a descent direction goes

beyond the scope of this note and the interested reader is referred to the literature.

In the following we present an example showing the computation of the descent direction provided

by the LUCE algorithm. We consider the graph of the Braess paradox, with 4 nodes and 5 arcs.

Figure 2A. Numerical example of the procedure to obtain the descent direction.

The arc cost function is cij = Tij + Qij fij
2
 so that its derivatives is gij = 2 Qij fij .

There is only one destination d = 4, and two origins with travel demand D14 = 9 and D24 = 2. We

consider an initial flow pattern where all available paths, the 3 routes from 1 to 4 and the 2 routs

from 2 to 4, are equally used by each o-d pair. Clearly, in this case it is fij = fij
d
 and the bush is the

entire network.

After we evaluate at the current flow pattern the arc costs and their derivatives, we can compute for

each node i the average cost Ci
d
 and its derivative Gi

d
 iteratively stating from the destination, where

Cd
d
 = Gd

d
 = 0, and proceeding in reverse topological order. To this aim we apply the formulas:

Ci
d
 = jFSB(i, d) yij

d
 (cij + Cj

d
) , Gi

d
 = jFSB(i, d) yij

d

2
 (gij + Gj

d
) .

5
1

3

4

2

1

8
2

5
1

0
0

3
0

13
9

11
2

3
1

10
2

Ti
d

Did
Tij

Qij

node arc

4
0.5

3

4

2

1

8
2

6
0.66

11
0

7
0

9
9

3
0.33

7
1

4
0.5

fi
d

Did
fij

d

yij
d

node arc

21
0

3

4

2

1

42
2

41
0

0
11

52
9

81
9

29
9

52
9

42
2

Wi
d

ei
d
 *

cij
eij

d
 *

node arc

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 12 of 22

While the computation for node 3 is trivial, since its forward star is a singleton, for node 2 we have:

C2
4
 = y23

4
 (c23 + C3

4
) + y24

4
 (c24 + C4

4
) = 0.5 (21 + 52) + 0.5 (42 + 0) = 57.5 ,

G2
4
 = y23

4

2
 (g23 + G3

4
) + y24

4

2
 (g24 + G4

4
) = 0.5

2
 (8 + 14) + 0.5

2
 (16 + 0) = 9.5 ,

and for node 1 it is:

C3
4
 = y13

4
 (c13 + C3

4
) + y12

4
 (c12 + C2

4
) = 0.33(29 + 52) + 0.66(41 + 57.5) = 92.7 ,

G3
4
 = y13

4

2
 (g12 + G3

4
) + y12

4

2
 (g12 + G2

4
) = 0.33

2
(12 + 14) + 0.66

2
(12 + 9.5) = 12.4 .

Figure 2B. Numerical example of the procedure to obtain the descent direction.

Now we can compute for each node i the node flows ei
d
 and the arc flows eij

d
 iteratively by

proceeding in topological order.

To this aim we shall focus on the local route choice of the ei
d
 users, whose available alternatives are

the arcs of the bush exiting from node i. To each travel alternative we associate the cost function:

vij(eij
d
) = (cij + Cj

d
) + (gij + Gj

d
) (eij

d
 - yij

d
 ei

d
) ,

resulting from a linearization at the current flow pattern of the average cost encountered by a user

choosing arc ij, and we look for an equilibrium. We have shown that the latter can be determined

using the following formulas:

Vi
d
 = (1 + jJ aij

d
 / bij

d
) / (jJ 1 / bij

d
) , eij

d
 = ei

d
 (Vi

d
 - aij

d
) / bij

d
 ,

2.43
0.37

3

4

2

1

6.5
55.1

4.5
0.5

11
0

6.93
46.7

9
196.6

4.5
0.5

6.93
1

4.07
0.63

ei
d

Vi
d

eij
d

xij
d

node arc

21
8

3

4

2

1

57.5
9.5

41
12

0
0

52
14

92.7
12.4

29
12

52
14

42
16

Ci
d

Gi
d

cij

 gij

node arc

2.41
10.79

3

4

2

1

7.09
53.76

5.09
30.86

11
11

6.32
42.97

9
84.62

3.91
41.65

6.32
42.97

4.68
53.76

fi
d
 *

Wi
d
 *

fij
d
 *

cij *

node arc

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 13 of 22

where: aij
d
 = (cij + Cj

d
) - (gij + Gj

d
) ei

d
 yij

d
, bij

d
 = (gij + Gj

d
) ei

d
, while J is set initially to the

forward star FSB(i, d); if some eij
d
 results to be negative, then it is set to zero, j is removed from J

and the computation is repeated.

We star then with node 1, whose node flow is e1
4
 = D14 = 6 :

a13
4
 = (c13 + C3

4
) - (g13 + G3

4
) e1

4
 y13

4
 = (29 + 52) - (12 + 14) 9 0.33 = 3 ,

a12
4
 = (c12 + C2

4
) - (g12 + G2

4
) e1

4
 y12

4
 = (41 + 57.5) - (12 + 9.5) 9 0.66 = -30.5 ,

b13
4
 = (g13 + G3

4
) e1

4
 = (29 + 14) 9 = 387 ,

b12
4
 = (g12 + G2

4
) e1

4
 = (41 + 9.5) 9 = 454.5 ,

V1
4
 = (1 + a13

4
/b13

4
 + a12

4
/b12

4
) / (1/b13

4
 +1/b12

4
) = (1+ 3/387-30.5/454.5) / (1/387+1/454.5) = 196.6 ,

e13
4
 = e1

4
 (V1

4
 - a13

4
) / b13

4
 = 9 (196.6 - 3) / 387 = 4.5 ,

e12
4
 = e1

4
 (V1

4
 - a12

4
) / b12

4
 = 9 (196.6 + 30.5) / 454.5 = 4.5 .

Then we go on with node 2, whose node flow is e2
4
 = e12

4
 + D24 = 4.50 + 2 = 6.5 :

a23
4
 = (c23 + C3

4
) - (g23 + G3

4
) e2

4
 y23

4
 = (21 + 52) - (8 + 14) 6.5 0.5 = 1.5 ,

a24
4
 = (c24 + C4

4
) - (g24 + G4

4
) e2

4
 y24

4
 = (42 + 0) - (16 + 0) 6.5 0.5 = -10 ,

b23
4
 = (g23 + G3

4
) e1

4
 = (8 + 14) 6.5 = 143 ,

b24
4
 = (g24 + G4

4
) e1

4
 = (16 + 0) 6.5 = 104 ,

V2
4
 = (1 + a23

4
/b23

4
 + a24

4
/b24

4
) / (1/b23

4
 +1/b24

4
) = (1 +1.5/143 -10/104) / (1/143+1/104) = 55.1 ,

e23
4
 = e2

4
 (V2

4
 - a23

4
) / b23

4
 = 6.5 (55.1 - 1.5) / 143 = 2.43 ,

e24
4
 = e2

4
 (V2

4
 - a24

4
) / b24

4
 = 6.5 (55.1 + 10) / 104 = 4.07 .

Finally we consider node 3, whose node flow is e3
4
 = e13

4
 + e23

4
 + D34 = 4.5 + 2.43 + 0 = 6.93 :

Since there is only one alternative here, we have immediately e34
4
 = e3

4
 = 6.93, while we compute

V3
4
 only or completeness as follows:

V3
4
 = (c34 + C4

4
) + (g34 + G4

4
) (e34

4
 - e3

4
 y34

4
) = (52 + 0) + (14 + 0) (6.55 - 6.93 1) = 46.7 .

The flow pattern we have just found is a descent direction because we have:

ijA fij
d
 cij = 949 > ijA eij

d
 cij = 897 .

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 14 of 22

In Figure 2A, we have shown (denoted by an asterisk) the AON assignment on shortest paths. In

Figure 2B, we show (denoted by an asterisk) the equilibrium flow and cost pattern. It can be seen

that one single iteration of the proposed descent direction allows a substantial step towards the

solution.

5 ASSIGNMENT ALGORITHM

Below we provide a pseudo code of the procedure within the framework of an assignment algorithm.

function LUCE

 f = 0 initialize the solution flows to zero

 for k = 1 to n perform n iterations

 for each dZ for each destination d

 for each ijA compute arc costs and their derivatives

 cij = cij(fij)

 gij = max{cij(fij)/fij, }

 if fi
d
 > 0 then yij

d
 = fij

d
 / fi

d
 else yij

d
 = 0

 B(d) =B(B(d), c, f) initialize or modify the current bush

 Cd
d
 = 0 the average cost of the destination is zero

 Gd
d
 = 0 so its derivative

 for each i:ijB(d) in reverse topological order for each node i d in the bush

 if fi
d
 > 0 then

 Ci
d
 = jFSB(i, d) yij

d
 (cij + Cj

d
) compute the node average cost to d

 Gi
d
 = jFSB(i, d) yij

d

2
 (gij + Gj

d
) and its derivative

 else

 Ci
d
 = min{cij + Cj

d
: jFSB(i, d)}

 Gi
d
 = jFSB(i, d) [Ci

d
 = cij + Cj

d
] (gij + Gj

d
) / jFSB(i, d) [Ci

d
 = cij + Cj

d
]

 e
d
 = 0 reset the arc and node flows to d

 for each oZ load on the origins the demand to d

 eo
d
 = Dod

 for each i:ijB(d) in topological order for each node i d the bush

 J = FSB(i, d) initialize the set of arcs with positive flow

 = 0

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 15 of 22

 until = 1 do

 = 1

 Vi
d
 = [ei

d
 + jJ (cij + Cj

d
) / (gij + Gj

d
) - ei

d
yij

d
] / jJ 1/(gij + Gj

d
)

 for each jJ

 eij
d
 = Vi

d
 / (gij + Gj

d
) - (cij + Cj

d
) / (gij + Gj

d
) + ei

d
yij

d

 if eij
d
 < 0 then

 eij
d
 = 0

 J = J \ {j} remove ij from the set of arcs with positive flow

 = 0 then repeat the procedure

 for each jJ

 ej
d
 = ej

d
 + eij

d
 propagate the arc flows to the head node flows

 = 1

 if k > 1 then

 until ijA cij(fij + (eij
d
 - fij

d
)) (eij

d
 - fij

d
) < 0 do = 0.5 armijo step

 for each ijA update arc flows

 fij = fij + (eij
d
 - fij

d
)

 fij
d
 = fij

d
 + (eij

d
 - fij

d
)

The bush of each destination dZ is initialized with the set of efficient arcs that bring closer to the

destination, where the minimum cost are evaluated at zero flow. At the generic iteration, any non-

efficient arc on the bush carrying no destination flow is removed from it, while any arc that would

improve shortest paths on the bush is added to it, if its reverse arc does not carry destination flow. If

the resulting sub-graph is acyclic, then it is substituted to the current bush of that destination. Since

the LUCE algorithm tends to an equilibrium on the bush, eventually the flow on non-efficient paths

disappears and the bush can be properly modified.

Note that, beside the initialization of the bushes, the LUCE algorithm does not require shortest path

computations, but only simple visits of the bushes.

6 USAGE

LUCE is one of the private transport assignment methods in VISUM 11. To run a LUCE

assignment set up a model run under Calculate – Procedures and select Equilibrium assignment

LUCE as the sub-method of operation Assignment.

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 16 of 22

Set the convergence criteria in the Terminate, if section.

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 17 of 22

The other procedure parameters control memory consumption and route storage. LUCE differs from

all other VISUM assignment methods in that it is not explicitly path-based, but uses an implicit

representation of the loaded paths, the bushes explained above. The main benefit of this

representation is that LUCE can load a richer set of paths than VISUM’s classic path-based

equilibrium assignment, in a limited number of iterations. The representation has an important

effect on memory consumption:

Memory

consumption for …

classic equilibrium assignment LUCE

path storage explicit storage of all paths more compact implicit storage of

bushes

link / turn /

connector volumes

one volume for each network

element per demand segment

one volume for each network element

per demand segment and origin

The table shows that path storage is more memory-efficient in LUCE, but network volumes need to

be stored per origin zone which can consume much more memory than in the classic assignment.

To minimize this effect it is important to store volumes only for those network elements which are

essential in route choice. Link and connector volumes are always stored. (Main) turns, which

contribute the largest number of network elements, are only relevant to the assignment, if they

differ in impedance. Basically, if the turns at a given node have identical transport system sets and

identical delays, then their impedances and volumes can be ignored in the calculation, and memory

saved. If not, the node needs to be “exploded”, i.e. the turns need to be added as arcs to the graph

for the assignment, as explained in section 2 above.

Exploding nodes

You control the explosion of nodes through the Explode (main) node parameter:

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 18 of 22

There are four possible values:

none: (main) turns are generally not exploded, i.e. differences in impedance (if present) are ignored

all: (main) turns are exploded at all nodes

according to (main) node attribute “LUCE explode Standard” (default): VISUM pre-calculates the

zero-or-one attribute LUCE explode Standard. The value is 1, if the turns differ and need to be

exploded, and 0, if they can be safely ignored.

according to (main) node attribute “LUCE explode”: While LUCE explode Standard is a read-only

attribute, LUCE explode is editable. If you need fine control over which nodes are exploded, copy

the values of LUCE explode Standard to LUCE explode, and modify them where necessary.

In most cases it is best to accept the default. Choose the second or fourth option, if you plan to

warm-start LUCE subsequently, and for the new run (main) turn impedances or transportation

system sets will be different from the first run. Any (main) turns to be exploded in the second run

must already be exploded in the stored result of the first run for warm-start to work. Choose all, if

you can afford the extra memory consumption, or choose the fourth option and set the LUCE

explode attribute to 1 for exactly those (main) nodes that should be exploded. Use the option none

for a fast sketch-level assignment ignoring turn impedances altogether.

Route extraction

LUCE’s big advantage over VISUM’s classic assignment algorithm is the richer path sets it loads.

The classic algorithm will load at most one path per O-D pair and iteration. Consider the totally

symmetric grid graph displayed below to which traffic is assigned for a single O-D pair (top left to

bottom right).

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 19 of 22

If we run the classic algorithm on this graph for 100 iterations, exactly 100 paths will be found and

loaded in the final result. VISUM will reach the unique equilibrium link volumes with a very good

gap. Note, however, that unlike link volumes, route flows are not unique in equilibrium assignment.

The 100 loaded paths clearly represent an extreme corner solution in the space of route flow

patterns which are consistent with the link volumes. In contrast, LUCE loads over 34000 paths in

just 85 iterations.

The artificial example demonstrates that in networks with many attractive alternative routes, the

number of loaded paths per O-D pair can be quite high. The assignment algorithm itself does not

work with paths, and in some applications it is never necessary to extract the loaded routes, e.g. if

link volumes are sufficient. But for various post-assignment operations, e.g. select-link analysis or

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 20 of 22

matrix estimation, routes are necessary.

Extracting all routes from the compact bush representation may be impossible, for memory reasons,

in large, highly symmetric networks. In such extreme cases, most of the routes will have

exceedingly small volumes. In order to avoid being swamped by an astronomical number of very-

low-volume links, VISUM lets you control the set of paths to be extracted:

Use the three parameters to define a cut-off point below which paths are not extracted. Any demand

on the ignored paths is proportionately redistributed to the surviving paths.

Parameter A defines an absolute cut-off point. For O-D pairs with a high number of trips the

absolute cut-off point may still be inconveniently small and too many paths survive. Use parameter

B in these cases to define a cut-off point relative to the total demand of the O-D pair. In some cases,

there may be many paths for a single O-D pairs, but all of them have very small volumes. Then

there is a danger that all paths fall below the cut-off point defined by A and B. Parameter C then

ensures that at least the paths with (near-) maximum volume will always survive.

For those cases where you do not need routes at all, you can save memory by turning off route

extraction altogether.

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 21 of 22

Under Calculate – Procedures – PrT Functions – Assignment choose the Do not save option for

paths, in which case LUCE will only save link volumes, but no paths at all. The default setting is

Save Paths as routes, which stores paths. The third option (as connections) is reserved for dynamic

assignment methods.

7 PERSPECTIVES

The LUCE algorithm released with VISUM 11 is fully functional. Some extensions are already

planned and – where possible – will be added even before the next major release:

Warm start: Like other assignment methods in VISUM, LUCE will be able to accept an existing

assignment result as an initial solution. Because the warm start functionality requires a set of bushes,

the prior assignment result must be of type LUCE.

Faster skim matrices and select-link analysis (flow bundle): In the initial release, all post-

assignment analysis functions are available for LUCE, because from the bush representation of the

equilibrium solution VISUM extracts paths in the classic format. This can be a memory bottleneck

in some networks (see above). Some of the analysis methods can actually be re-implemented to

work directly with the implicit bush representation which not only saves memory, but also speeds

up the operation. Bush adaptations of these methods will be added to VISUM at a later time.

LUCE: Linear User Cost Equilibrium – VISUM11 Manual Addendum

13 November 2012 page 22 of 22

Bush storage: Similar to route extraction, LUCE will gain an option to enable / disable bush

storage and save memory, because bushes only need to be saved, if you plan to warm-start or use

post-assignment analysis.

General tuning: Although we have tested LUCE on diverse networks we fully expect performance

(in terms of memory and runtime) to vary with the characteristics of the networks, and it is quite

likely that we will need to tune the implementation for the cases that have escaped us so far. You

can help us by reporting to the VISUM hotline instances in which LUCE consumes unlikely

amounts of runtime or memory.

