
On Safe Usage of Shared Data in
Safety-Critical Control Systems

By the Faculty of Mathematics and Informatics
of the Technische Universität Bergakademie Freiberg

approved

Thesis

to attain the academic degree of

Doktor-Ingenieur
(Dr.-Ing.)

submitted by M. Sc. Georg Jäger
born on the 28. September 1991 in Halberstadt

Assessor: Prof. Dr. Sebastian Zug
Prof. Dr. António Casimiro
Prof. Dr. habil. Rudolf Kruse

Date of the award: Freiberg, July 04th, 2022

Abstract
The introduction of paradigms such as Internet of Things (IoT) and Cyber-Physical
System (CPS) form the basis of profound industrial transformations addressed by the
term Industry 4.0. The already introduced flexibility and efficiency can be even in-
creased when combined with concepts of automation and intelligent systems. It is
envisioned that autonomous mobile systems dynamically share their environmental
perceptions to cooperate and thereby generate emerging behaviors. Depending on the
contextual situation evolving at their run-time, participating systems are considered
to discover available sources of data and temporarily integrate them to increase their
performance.
This next step requires switching from a static to a dynamic system composition.
Instead of requiring knowledge about all components at design-time, systems with an
open architecture featuring a dynamic integration of available resources at run-time
are needed. Such dynamically composed systems, however, bring current processes
for guaranteeing their safety into question. In the endeavor of identifying the arising
challenges, this work starts by examining the functional safety standard IEC 61508.
From the derived challenges, the need for a run-time safety assessment methodology is
formulated. It is argued that only at run-time the system’s composition and the failure
characteristics of its components are available. Therefore, its safety can be assessed
only at run-time as well.
Following this reasoning, two objectives are formulated. Firstly, a failure model capable
of describing the failure characteristics of shared data is required. Secondly, a run-time
safety assessment is required that enables analyzing such a failure model and verifying
that the performance of implemented safety functions of a system is met.
For fulfilling both, state-of-the-art approaches are reviewed, assessed, and built upon.
In that endeavor, a Generic Failure Model (GFM) for representing one- and multi-
dimensional failure characteristics unambiguously is presented in conjunction with a
processing chain enabling to generate such a model.
In the following step, a run-time safety assessment methodology to analyze such failure
models of shared data is defined. For that, the theorem of Region of Safety (RoS) is
defined. Once fulfilled by a given control policy, it provides a guarantee that the
controlled system will not leave a region of safe states even when confronted with the
specified failure characteristics and/or uncertainties.
To evaluate both concepts, the use case of collision avoidance for robots sharing their
position data is considered. It is shown that not only a guarantee can be provided for
the safety of the robots when faced with the considered failure characteristics affecting
the shared data but also that their configuration can be safely adapted in accordance
with changed failure characteristics.
The work is concluded by stating the limitations of the presented concepts and deriving
directions for future work.

Acknowledgements
The journey to this work was full of learning, gaining insights, acquiring experiences,
and ultimately solving challenges.

On this journey, the support I received from my supervisor, Prof. Sebastian Zug was
invaluable. It was not only your patience in discussing my research in great detail that
allowed me to grasp its very essence and formulate this thesis but also your infectious
motivation that enabled me to grow from the challenge.

I would also like to express my gratitude to Prof. António Casimiro who supported
me from the very beginning. Our discussions and your insightful feedback provided me
with the means to bring me and my work to a higher level.

I’m very grateful to Madhura Thosar and Christian Müller with whom I argued and
thought about approaching experiments and structuring research in length as well.
In that line, I would also like to thank Martin Reinhardt, who was always open for
discussions on implementation details and provided me with valuable insights about
the process accompanying this dissertation.

After all, I would like to take the chance to thank my colleagues and friends at the
Otto-von-Guericke Universität Magdeburg as well as at the TU Bergakademie Freiberg.
Your kindness, patience, and happiness have encouraged me on my way and supported
me whenever I encountered a trouble spot.

My deepest gratitude, however, goes to my friends and family, especially to my par-
ents, brother, and grandparents, whose support I was always sure of. It is only their
love, their unwavering support, and their undiminishing motivation that enabled me
to pursue this dissertation from start to finish. I owe it all to you!

7

Contents
List of Acronyms 11

List of Theorems 15

List of Definitions 17

List of Figures 19

List of Tables 23

1. Introduction – Safety in Future Smart Industries 27
1.1. The Example of Smart Warehouses . 28
1.2. Functional Safety Standards . 31

1.2.1. Overview of Functional Safety Standards 32
1.2.2. IEC 61508 . 33

1.3. Scope of this Thesis . 45
1.3.1. Objectives . 46
1.3.2. Contributions . 49
1.3.3. Outline . 51

1.4. Related Publications by the Author . 52
1.5. Mathematical Notation . 53

2. State of the Art 55
2.1. State of the Art in Run-Time Safety Assessment 56

2.1.1. Approaches at the Functional Level 57
2.1.2. Approaches at the Technical Level 61
2.1.3. Conclusions . 65

2.2. State of the Art in Failure Modeling 66
2.2.1. The Definition of (Sensor) Failure Model 66
2.2.2. Interval-Based Failure Modeling 68
2.2.3. Distribution-Based Failure Modeling 69
2.2.4. Failure-Type-Based Failure Modeling 72
2.2.5. Conclusions . 74

2.3. Conclusions from the State of the Art 75

3. Generic Failure Model 77
3.1. Defining the Generic Failure Model . 78

3.1.1. Time- and Value-Correlated Random Distribution 79
3.1.2. A Failure Type’s Failure Amplitudes 81
3.1.3. A Failure Type’s State Function 82
3.1.4. Polynomial Representation of a Failure Type 84
3.1.5. Discussion on the Fulfillment of the Predefined Criteria 86

8 Contents

3.2. Converting a Generic Failure Model to an Interval 87
3.2.1. Converting a Time- and Value-Correlated Random Distribution 88
3.2.2. A Failure Type’s Interval . 92

3.3. Processing Chain for Generating Generic Failure Models 94
3.3.1. Identifying Failure Types . 95
3.3.2. Parameterizing Failure Types 101
3.3.3. Confidence Calculation . 103

3.4. Exemplary Application to Artificial Failure Characteristics 105
3.4.1. Generating the Artificial Data Set – Manually Designing GFMs 105
3.4.2. Identifying Failure Types . 112
3.4.3. Parameterizing Failure Types 119
3.4.4. Confidence Calculation . 122
3.4.5. Comparison to State-of-the-Art Models 131

3.5. Summary . 141

4. Region of Safety 145
4.1. Explicitly Modeling Uncertainties for Dynamically Composed Systems 146
4.2. Regions of Safety for Dynamically Composed Systems 148

4.2.1. Estimating Regions of Attraction in Presence of Uncertainty . . 149
4.2.2. Introducing the Concept of Region of Safety 155
4.2.3. Discussion on the Fulfillment of the Predefined Criteria 158

4.3. Evaluating the Concept of Region of Safety 158
4.3.1. Defining the Scenario and Considered Uncertainties 159
4.3.2. Designing a Control Lyapunov Function 160
4.3.3. Determining an Appropriate Value for λc 169
4.3.4. The Effect of Varying Sensor Failures on Regions of Safety . . . 173

4.4. Summary . 177

5. Evaluation and Integration 181
5.1. Multi-Robot Collision Avoidance . 182

5.1.1. Assumptions . 183
5.1.2. Design of the Circle and Navigation Scenarios 184
5.1.3. Kinematics . 185
5.1.4. Control Policy . 188
5.1.5. Intention Modeling by Model Uncertainty 193
5.1.6. Fusing Regions of Safety of Multiple Stability Points 195

5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model 197
5.2.1. Data Acquisition . 197
5.2.2. Failure Model Generation . 201
5.2.3. Evaluating the Quality of the Failure Model 207

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 209
5.3.1. Configuration for Region of Safety Estimation 209
5.3.2. Estimating Regions of Safety 216
5.3.3. Evaluation Using the Circle Scenario 223
5.3.4. Evaluation Using the Navigation Scenario 234

5.4. Summary . 238

Contents 9

6. Conclusions and Future Work 241
6.1. Summary . 241
6.2. Limitations and Future Work . 245

6.2.1. Limitations and Future Work on the Generic Failure Model . . 245
6.2.2. Limitations and Future Work on Region of Safety 247
6.2.3. Future Work on Safety in Dynamically Composed Systems . . . 249

Appendices 251

A. Defining Factors of Risk According to IEC 61508 253

B. Evaluation Results for the Identification Stage 255

C. Overview of Failure Amplitudes of Marker Detection Results 257

Bibliography 259

11

List of Acronyms
ACC Adaptive Cruise Control.

ADAS Advanced Driver Assistance System.

AI Artificial Intelligence.

ANN Artificial Neural Network.

ASIL Automotive Safety Integrity Level.

CACC Cooperative Adaptive Cruise Control.

CBF Control Barrier Function.

CDF Cumulative Distribution Function.

CLF Control Lyapunov Function.

ConSert Conditional Safety Certificate.

CPS Cyber-Physical System.

CWT Continuous Wavelet Transformation.

DDI Digital Dependability Identity.

DSC Dynamic Safety Contract.

EMD Earth Mover’s Distance.

EUC Equipment Under Control.

EUCCS Equipment Under Control (EUC) Control System.

FMEA Failure Mode and Effect Analysis.

FSC Functional Safety Concept.

FTA Fault Tree Analysis.

GFM Generic Failure Model.

GNSS Global Navigation Satellite System.

GP Gaussian Process.

12 List of Acronyms

GUM Guide to the Expression of Uncertainty in Measurement.

HARA Hazard Analysis & Risk Assessment.

ICDF Inverse Cumulative Distribution Function.

IoT Internet of Things.

KARYON Kernel-based ARchitecture for safetY-critical cONtrol.

LiDAR Light Detection and Ranging.

LoS Level of Service.

LSTM Long-Short Term Memory.

MAE Mean Absolute Error.

MBDA Model-Based Dependability Analysis.

ML Machine Learning.

MLP Multi Layer Perceptron.

MSE Mean Squared Error.

ODD Operational Design Domain.

ODE Ordinary Differential Equation.

PDF Probability Density Function.

PFD Probability of Fails on Demand.

RBF Radial Basis Function.

RL Reinforcement Learning.

RoA Region of Attraction.

RoS Region of Safety.

Safe RL Safe Reinforcement Learning.

SDE Stochastic Differential Equation.

SGD Stochastic Gradient Descent.

SIL Safety Integrity Level.

SOTIF Safety of the Intended Functionality.

SSE Sum of Squared Errors.

List of Acronyms 13

TBF Time Between Failure.

TDNN Time-Delay Neural Network.

TSC Technical Safety Concept.

TtR Time to Repair.

15

List of Theorems
4.1. Theorem (Region of Safety) . 155

17

List of Definitions
1.1. Definition (Statically Composed System) 29
1.2. Definition (Dynamically Composed System) 29
1.3. Definition (Safety) . 31
1.4. Definition (Functional Safety) . 32
1.5. Definition (Equipment Under Control) 34
1.6. Definition (EUC Control System) . 35
1.7. Definition (Risk) . 35
1.8. Definition (Hazard) . 35
1.9. Definition (Harm) . 35
1.10. Definition (Tolerable Risk) . 36
1.11. Definition (Safety Requirement) . 36
1.12. Definition (Safety Function) . 37
1.13. Definition (Safety Integrity Level) . 37
1.14. Definition (Fault) . 38
1.15. Definition (Error) . 38
1.16. Definition (Failure) . 38
1.17. Definition (Failure Characteristics) . 38
1.18. Definition (Safety of the Intended Functionality) 44

2.1. Definition (Lipschitz Continuity) . 64
2.2. Definition ((Sensor) Failure Model) . 67
2.3. Definition (Failure Type) . 72

19

List of Figures
1.1. Schematic visualization of a smart warehouse. 28
1.2. Comparing statically and dynamically composed systems. 30
1.3. Shared data in the safety process of statically composed systems. . . . 30
1.4. Overview of functional safety standards. 32
1.5. Safety life cycle according to IEC 61508. 34
1.6. Risk reduction model of IEC 61508. 35
1.7. Safety life cycle of IEC 61508 as a V-model. 39
1.8. SIL determination for IEC 61508. 41
1.9. Proposing a safety processes for dynamically composed systems. 46
1.10. Overview of the contents of this thesis. 51

2.1. Overview of the contents of Chapter 2. 55
2.2. Reviewed approaches to safety assessment. 56
2.3. Schematic visualization of RoA estimation. 64
2.4. Failure amplitudes of Sharp GP2D12 sensor. 67
2.5. Temporal failure patterns in sensor data. 71

3.1. Overview of contents of Chapter 3. 77
3.2. Schematic illustration of the GFM concept. 78
3.3. Explanation of a failure type’s failure amplitudes. 81
3.4. Explanation of a failure type’s state function. 83
3.5. Failure amplitudes of Sharp GP2D12 sensor simulated by a GFM 84
3.6. Sampling-based interval calculation of Lipschitz continuous function. . 89
3.7. Interval of a failure type’s state function. 93
3.8. Processing chain for generating a GFM 94
3.9. Process for identifying failure types. 95
3.10. Exemplary Scalogram for explaining CWT 97
3.11. Process of removing a failure type’s identified occurrences. 100
3.12. Parameterizing failure types. 101
3.13. Confidence calculation for a GFM . 103
3.14. Failure pattern of considered failure types. 107
3.15. Time- and value-correlations of failure types. 108
3.16. Quantile function of Noise failure type. 109
3.17. Failure amplitudes and reference signal for Noise failure type. 111
3.18. Simulations of failure models. 112
3.19. Identification process for failure types in failure amplitudes. 114
3.20. Comparison of identified failure patterns. 115
3.21. Comparison of identified failure patterns for FM{N,S,O,A}. 117
3.22. Extracted correlation functions. 121
3.23. Inaccuracy in representing quantile function. 123
3.24. Evaluating interval calculation. 126

20 List of Figures

3.25. Evaluating interval calculation for FM{N}. 129
3.26. Evaluate interval calculation for FM{S,O}. 129
3.27. Quantile functions extracted by the processing chain. 130
3.28. Intervals of an automatically generated failure model. 130
3.29. Components of the ground distance for calculating EMD. 134
3.30. Schematic visualization of EMD calculation. 136
3.31. Noise simulation by Gaussian and Uniform distributions. 138
3.32. Comparing original and simulated failure amplitudes for ˆFM{N,A}. . . 139
3.33. Simulations of ˆFM{A} with the GP model. 139
3.34. Simulations of ˆFM{S,O,A}. 140

4.1. Overview of contents of Chapter 4 . 145
4.2. Defining sources of uncertainty using an abstract control loop. 147
4.3. Schematic representation of the inverted pendulum system. 150
4.4. CLF for the inverted pendulum controller. 152
4.5. Fulfillment of RoA condition by states of the inverted pendulum. 153
4.6. Simulation of inverted pendulum with Noise sensor failure. 154
4.7. Schematic illustration of RoS estimation. 155
4.8. Energy-based CLF candidate. 162
4.9. True RoS of the inverted pendulum. 164
4.10. Fulfillment of RoA condition by m1 , m3 , and m6 165
4.11. Visualization of Control Lyapunov Function (CLF) candidate m2 . . . 166
4.12. Visualizing the effect of an asymmetric CLF 167
4.13. Visualization of CLF candidate m9 . 167
4.14. Visualization of CLF candidate m8 . 168
4.15. Schematic illustration of Eq. (4.29). 170
4.16. Evaluating the effect of λc. 172
4.17. The effect of FM{O} on RoS of the inverted pendulum. 176
4.18. The effect of different failure models on RoS of the inverted pendulum. 176

5.1. Overview of the contents of Chapter 5. 181
5.2. Representations of the navigation and circle scenario. 184
5.3. Defining the global and local coordinate system. 186
5.4. Phases of the collision avoidance strategy. 190
5.5. Deciding on a turning direction for collision avoidance. 191
5.6. Behavior assumption of objects during collision avoidance. 194
5.7. Fusing RoS for collision avoidance. 196
5.8. Data acquisition for the marker detection framework. 198
5.9. Overview on failure data for the marker detection framework. 199
5.10. Overview of failure amplitudes affecting Θ. 200
5.11. Identification process during failure model generation. 202
5.12. Comparing failure amplitudes for y component. 205
5.13. Mean activation of the Outlier-Offset failure type. 206
5.14. Comparing failure amplitudes for Θ component. 206
5.15. Simulation of failure amplitudes in y component. 207
5.16. Intervals for α = {0.95, 0.5} for X and Θ dimension. 208
5.17. Elements of CLF of collision avoidance controller. 210

List of Figures 21

5.18. Visualization of Vcircle of the applied CLF 211
5.19. Visualization of the final CLF . 213
5.20. Comparing perspectives of the global and local coordinate system. . . . 214
5.21. Examining RoS for FM{∅}. 218
5.22. Visualization of relation between estimated RoS and defined CLF 219
5.23. Invalid configuration for estimating a RoS for FM{∅}. 220
5.24. Examining RoS for FM{N}. 221
5.25. Invalid configuration of estimating a RoS for FM{N}. 221
5.26. Examining RoS for FM{N,O}. 222
5.27. Comparing valid and invalid RoS for FM{N,O,OO}. 223
5.28. Overview of results of circle scenario. 226
5.29. Exemplary results for circle scenario and FM{∅}. 228
5.30. Distance drobots over time. 229
5.31. Exemplary failing simulation for circle scenario and FM{N}. 230
5.32. Exemplary successful simulation for circle scenario and FM{N}. 230
5.33. Distances and velocities of robots during circle scenario for FM{N}. . . 231
5.34. Exemplary failing simulation for circle scenario and FM{N,O}. 233
5.35. Exemplarily successful simulation for circle scenario and FM{N,O}. . . 233
5.36. Exemplary successful simulation for circle scenario and FM{N,O,OO}. . 233
5.37. Distances of robots and obstacles over time. 236
5.38. Exemplary simulation of the navigation scenario. 237

6.1. Overview of the objectives and concepts of this thesis. 241

C.1. Overview of failures of Θ values. 257

23

List of Tables
1.1. Available SIL and their associated PFD in IEC 61508. 37

2.1. Reviewed approaches to interval-based failure modeling. 68
2.2. Reviewed approaches to distribution-based failure modeling. 70
2.3. Reviewed approaches to failure-type-based failure modeling. 72

3.1. Linguistic definitions of the considered failure types. 106
3.2. Time- and value-correlated distributions for modeled failure types. . . . 108
3.3. Labeling the considered failure models for evaluating GFM 110
3.4. Parameters of the identification stage. 113
3.5. Evaluating the occurrences of identified failure types. 119
3.6. Parameters of the parameterization stage. 120
3.7. Time- and value-correlated distributions of modeled failure types. . . . 123
3.8. Labeling the considered failure models for evaluating confidence values. 124
3.9. Evaluating interval calculation for α = γ = 1.0. 125
3.10. Evaluating interval calculation for α = γ = 0.75. 125
3.11. Confidence values for generated failure models. 128
3.12. Comparing GFM with state-of-the-art models. 137

4.1. Parameters of the inverted pendulum. 151
4.2. State space of the inverted pendulum. 153
4.3. Failure types for evaluating RoS estimation. 159
4.4. Failure models considered for the inverted pendulum scenario. 160
4.5. Configurations of CLF candidates. 162
4.6. Evaluation of CLF candidates. 165
4.7. The effect of λc on estimated RoS . 173
4.8. Choosing α and γ for interval calculation. 174
4.9. The effect of different failure models on RoS estimation. 175

5.1. Parameters of the control policy. 188
5.2. Parameters of the identification stage. 202
5.3. Parameters of the parameterizing stage. 203
5.4. Generated and manually adjusted polynomials. 204
5.5. Minimal distance to interval boarders for each dimension. 207
5.6. Extended system model for a single robot. 210
5.7. Parameters of the CLF of the collision avoidance controller. 212
5.8. State space for the robot scenarios. 216
5.9. Failure models for the robot scenarios. 216
5.10. Parameters for simulating the circle scenario. 224
5.11. Results from the circle scenario. 225
5.12. Failure amplitudes observed during the circle scenario. 226
5.13. Parameters for simulating the navigation scenario. 235

24 List of Tables

5.14. Schedule for failure models in the navigation scenario. 236
5.15. Minimal distances observed in the navigation scenario. 237

A.1. Components of risk according to IEC 61508. 253

B.1. Evaluating the occurrences of identified failure types 255

27

1. Introduction – Safety in Future
Smart Industries

Increased performance of wired and wireless communication, new approaches to pro-
cess automation, and advances in intelligent algorithms form the basis of a profound
industrial transformation termed Industry 4.0. The concept comprises paradigms, such
as Internet of Things (IoT) [1] and Cyber-Physical System (CPS) [2], that promise effi-
cient and sustainable industrial processes paired with increased flexibility to meet the
demand for individualized products. A key-enabler to reach these goals are Digital
Twins [3]. They are virtual replicates of physical processes which are updated regu-
larly using sensor observations. As such, they closely follow the states of the physical
process, which enables intelligent algorithms to optimize it, for instance, by predicting
failures, scheduling maintenance, and reducing down-times. This introduction of in-
telligent algorithms to complex control systems motivated to add the attribute Smart
to affected industries (e.g. Smart Traffic [4], Smart Manufacturing [2], Smart Ware-
houses [5], [6]).
For accelerating the smartification of these industries, the application of the paradigms
will be expanded beyond separated industries. For instance, products of smart man-
ufacturing processes can be delivered to smart warehouses by autonomous delivery
systems. Once arrived at their destination, they may integrate with the infrastructure
to share data and to navigate safely on site. As such shared data enhances the envi-
ronmental perception of the autonomous delivery systems, it may even facilitate it to
replenish the automated storage system directly.
To enable such a use case, a novel system architecture capable of integrating new
sources of shared data dynamically at run-time is required. Simultaneously, such a
system architecture has to support the well-known attribute of safety.
Commonly, systems are attributed with safety by considering all relevant factors at
design-time and showing that they will behave safely at run-time. For that, applicable
safety processes rely on complete knowledge about a system’s components and their
characteristics, cf. Fig. 1.3a. As sources of shared data are not available at design-
time, their characteristics can not be taken into consideration, cf. Fig. 1.2b. Therefore,
several questions arise.
Do existing approaches for guaranteeing safety cover systems that dynamically inte-
grate sources of shared data? What challenges arise from the changed system architec-
ture regarding safety? How can these challenges be addressed such that shared data
can be used safely?
To better understand the consequences the changed system architecture poses on the
process of guaranteeing safety for such systems, the next section firstly details the
example of smart warehouses. By means of this example, the terms of statically com-
posed systems and dynamically composed systems are introduced and defined to clarify
the consequences of the changed system architecture. This clear distinction enables

28 1. Introduction – Safety in Future Smart Industries

Smart Warehouse

Camera
Corp. C

Robot
Corp. A

Robot
Corp. B

Fig. 1.1.: Schematic visualization of an automated delivery system interacting with a smart warehouse
to safely transfer the transported goods.

identifying the arising challenges for guaranteeing safety in Section 1.2. These chal-
lenges form the basis from which the scope and objectives of this thesis are derived in
Section 1.3.

1.1. The Example of Smart Warehouses
Smart warehouses [5], [6] are one example of the profound transformations enabled
by the ideas of Industry 4.0. Their increased efficiency enables the rapid growth of
e-commerce. A convincing feature is the so-called Next-Day-Delivery which promises
customers that by finishing their order within a specified time, their bought products
are delivered the next day.
Providing this service for a wide range of products is possible only through automation
and information sharing as promised by Industry 4.0. For a smart warehouse, fulfilling
the orders in minimal time is enabled by an automated storage system. Instead of
having workers moving between racks to either restock them or pick items to fulfill
orders, the automated storage system comprises a fleet of autonomous mobile robots
moving the racks to designated restocking and picking stations. This eliminates the
need for human workers to cover long distances between racks and enables them to
focus on fulfilling the orders.
This changes the flow of commodities inside a smart warehouse. It now starts with the
arrival of a delivery, commonly by a manually operated truck. Consisting of multiple
products, the human workers identify the arrived items by scanning attached bar-codes.
This very first step enables the smart warehouse and its automated storage system
to become aware of the arrived items. They are brought to replenishment stations
where human workers store the items in racks brought to them by the automated
storage system. Once placed in a rack, which is observed by corresponding sensors, the
warehouse’s digital twin is updated. Thereby, not only the automated storage system
is aware of the restock but also the online shop advertising the arrived products to its
customers who can order these with only a minimal delay.
When an order is placed by a customer, the automated storage system is notified
and instructs mobile robots to move the corresponding racks holding the items to

1.1. The Example of Smart Warehouses 29

the picking stations. Human workers are then fulfilling the customer’s order. In a
subsequent process, the selected items are packaged and sent to the customer.
Next to the employed technologies, a key-enabler for this efficient process is its static
design. Although a multitude of sensors, versatile automation systems, and mobile
robots are employed and combined to form a complex process, its components are
determined at design-time. Moreover, human workers are employed at the intersection
of technologies such that a static design is sufficient. For instance, the restocking and
replenishment stations are designed in such a way that the workers have contact with
exactly one rack brought to them by a mobile robot. The robots, on the other hand,
are designed to operate in an enclosed space where no human workers1 are allowed.
Thus, the components and entities of the processes, as well as their interactions, are
known completely at design time. Thereby, such a system fulfills the definition of a
statically composed system [7].
Definition 1.1 (Statically Composed System)

A system whose components and their interactions are determined at design-time
and remain static at run-time.

As such, even highly automated smart warehouses scratch only at the surface of the
opportunities provided by Industry 4.0. They predict flexible communication even
between autonomous systems.
Combining, for instance, the idea of autonomous driving and smart logistics with the
idea of a smart warehouse could provide an even higher degree of automation. Instead
of having humans transport products to restock the warehouse, mobile robotic systems
could provide automation of deliveries, cf. Fig. 1.1. A robotic system (Robot Corp. A in
Fig. 1.1) could autonomously deliver goods to a smart warehouse. Once arrived at the
destination, the warehouse could grant the robotic system access to deliver the goods
to a specific location on site or even integrate with the automated storage system to
directly replenish racks. Utilizing the available sensors (Camera Corp. C in Fig. 1.1)
and sharing data with other mobile systems (Robot Corp. B in Fig. 1.1) operating
the warehouse would further improve the process. For instance, sharing position data
about static obstacles and other mobile systems can enable the arriving robot to avoid
collisions and navigate safely.
However, it changes the nature of the system fundamentally. Instead of being a stati-
cally composed system, new sources of data, that is, shared data, are integrated at the
system’s run-time. The emerging system is therefore dynamically composed.
Definition 1.2 (Dynamically Composed System)

A system having an open architecture that enables the dynamic integration of
multiple sources of data at run-time. These sources are considered unavailable and
unknown at design-time.

Considering the example visualized in Fig. 1.1, sources of shared position data, e.g.
Robot Corp. B, is not known at design-time and become available only at run-time
when the delivery robot arrives at a specific destination.
For the sake of clarity, both system types are abstracted and compared in Fig. 1.2.
At a superficial level, a statically composed system observes its environment using
local sensors, analyzes the provided data to determine appropriate control actions, and

1With the exception of specialized maintenance personnel

30 1. Introduction – Safety in Future Smart Industries

ControllerSensors Actuator

Environment

Statically Composed System

Controller

Internal
Sensors

Shared
Data

Actuator

Environment

Dynamically Composed System

(a) The simplified control loop of statically composed sys-
tems.

(b) The simplified control loop of dynamically composed
systems.

Fig. 1.2.: Comparing statically and dynamically composed systems.

System Design

Safety
Concept

Safety
Assessment

System
Operation

Design-
Time
Run-
Time

(a) Abstract safety process applicable to
statically composed systems.

System Design

Safety
Concept

Safety
Assessment

System
Operation

Shared Data

Design-
Time
Run-
Time

(b) Shared data are not considered during the safety process of statically
composed systems.

Fig. 1.3.: Shared data in the safety process of statically composed systems.

performs these using actuators. The effect on the system’s environment is observed
through its sensors again, cf. Fig. 1.2a. The automated storage system, for instance,
utilizes locally employed sensors to update the digital representation of the warehouse,
its digital twin. Having knowledge about all available items enables it to instruct the
mobile robots to move the correct racks to designated picking stations for fulfilling
incoming orders. In turn, the mobile robots can be operated efficiently as all sources of
data and their associated uncertainties are known at design-time. Minimal distances
between moving robots can be maintained due to the design-time knowledge which
thereby increases efficiency and safety.
In contrast, a delivery robot entering the smart warehouse and sharing its position
data would require the smart warehouse and its internal mobile robots to temporarily
incorporate the additional source of data. Represented by a cloud in Fig. 1.2b, the
previously static control loop is temporarily extended by external sources of data.
While this extension promises increased flexibility and efficiency as the environmental
perception of all participating systems is increased, it requires a fundamental change
in designing such systems. Statically composed systems are, by definition, complete at
design-time. Therefore, knowledge about all components is available. In dynamically
composed systems, components providing data, even safety-critical data such as the
position of other robots, are available solely at run-time.

1.2. Functional Safety Standards 31

This has severe consequences for the safety process of such systems, cf. Fig. 1.3. The
current safety process applicable to statically composed systems starts with an initial
system design which is complemented by a safety concept. After implementing both,
the system and measures ensuring its safety, the process of safety assessment provides
evidence that the system can be operated safely. The system is only executed after the
safety assessment is completed, Fig. 1.3a.
Contrarily, for dynamically composed systems, shared data is available only at its run-
time, cf. Fig. 1.3b. As a consequence, it can not be taken into account during safety
assessment. This means that it can not be shown whether or not the system will be-
have safely when using the shared data and being confronted with uncertainties that
may be associated with it. Therefore, as a consequence of the current safety process,
shared data can not be considered for safety-relevant functionality. However, when
considering autonomous systems as envisioned for the delivery system integrating with
the smart warehouse, shared data is safety-relevant as it directly affects the robot’s
decision-making. The question arises: how can the safety of a dynamically com-
posed system be guaranteed at design-time if critical information about its
components is available only at run-time?

1.2. Functional Safety Standards
In the endeavor of answering the question of safety in dynamically composed systems, it
has to be refined and examined in relation to relevant safety processes. For that, safety
is to be defined first to (a) differentiate between different perspectives and (b) identify
functional safety as most relevant to this work. This discussion underlines the central
role of functional safety standards and enables deriving the outline of this section.
In this work, safety is defined as follows [8].
Definition 1.3 (Safety)

The freedom from unacceptable risk of physical injury or of damage to the health
of people, either directly, or indirectly as a result of damage to property or to the
environment.

In other words, a system is considered safe if the risk associated with its operation
is acceptable [8], [9]. Conversely, risk is the central quantity for assessing safety and
has to be reduced to achieve the same. Depending on the source of risk, different
perspectives on safety can be distinguished [10].

Primary Safety Risk directly related to operating a system’s hardware, e.g. electric
shocks.

Indirect Safety Risk indirectly posed from incorrect system operation, e.g. racks are
incorrectly replenished such that their center of mass is elevated, which results in
an increased risk of rolling over.

Functional Safety Risk depending on the safe operation of the actual system in ques-
tion.

In this work, the focus is on functional safety, which is defined as follows [9].

32 1. Introduction – Safety in Future Smart Industries

IEC 61508

ISO 13849
Machinery

Control Systems

IEC 62061
Machinery

IEC 61131-6
Programmable

Controllers

ISO 26262
Automotive

EN 50128
Railway

Applications

IEC 61511
Process Industry

DO178
Airborne Systems

Legend:
Type B StandardType A Standard Type C Standard

Fig. 1.4.: Non-exhaustive overview on industry-specific standards for functional safety. Figure inspired
by [11]

Definition 1.4 (Functional Safety)
Functional safety is part of the overall safety that depends on a system or equipment
operating correctly in response to its inputs.

According to Definition 1.4, functional safety is an attribute that, once assigned, guar-
antees that a system performs operations to maintain a safe state when detecting
potentially unsafe states.
Considering the mobile robots in a smart warehouse as described in Section 1.1, a
potentially unsafe state occurs when their sensors detect an obstacle in their vicinity.
The robot’s collision avoidance then takes over to (a) re- or maintain a safe distance
to the obstacle and (b) bypass the obstacle. To consider the robot safe, the correct
functioning of the collision avoidance has to be proven at design-time. It is only then
that the risk posed by collisions is shown to be sufficiently reduced such that the
residual risk is tolerable.
For that, functional safety standards can be employed. Depending on the system under
consideration and the targeted industry, different standards exist. In the endeavor of
providing an overview, the next subsection discusses a non-exhaustive list of standards
and identifies the IEC 61508 [8] as a central standard from which others are derived.
Consequently, Section 1.2.2 reviews the standard in detail to determine challenges for
guaranteeing the safety of dynamically composed systems.

1.2.1. Overview of Functional Safety Standards in Different
Industries

To be accepted by society, physical systems are required to be functionally safe before
brought into operation. While this means in general that the risk of operating these
systems has to be at a tolerable level, legislative authorities are needed to define what
is tolerable. In this endeavor, the targeted industry has to be taken into account. The
benefits gained by operating systems have to be compared to the risk posed by them
differently for different industries. From that consideration, different perspectives on
tolerable risk as well as on how to achieve it developed over time and resulted in three

1.2. Functional Safety Standards 33

different types of functional safety standards. Fig. 1.4 provides an exemplary overview
of standards for some domains, which is discussed in this subsection.
Type C standards are most specific and target individual products. IEC 61131-6 [12],
for instance, targets programmable controllers that may be used within safety-related
systems. As such, not a specific safety function is addressed but rather controllers
that can be used to implement such a safety function at a system level. Regarding
the example of a smart warehouse, this standard can be applied to the embedded
controllers implementing the navigation functionality of the mobile robots moving the
racks.
Type B standards are more abstract and are domain- or system-specific. ISO 26262 [13]
addresses functional safety of road vehicles while EN 50128 [14] and DO178 [15] are
the corresponding versions addressing the railway or avionics domain. These types
of standards can also address the manufacturing industry, e.g. IEC 61511 [16] which
specifically targets process industries, or machinery within those industries, e.g. ISO
13849 [17] or IEC 62061 [18]. For instance, ISO 13849 [17] could be applied to the
automated storage system of a smart warehouse and, individually, to its robots.
Lastly, type A standards are the most basic and provide general principles applicable
across industries. IEC 61508 [8] is a prominent example that addresses “Functional
Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems”. As
such, the focus of this standard is on electronic systems in general. It, therefore, applies
to embedded controllers used in the automotive industry, to control systems of airborne
systems, and to the automated storage system of smart warehouses. Exactly this
applicability across industries matches the transformative nature of Industry 4.0 and its
paradigms of IoT and CPS which result in dynamically composed systems. Therefore,
the next subsection will discuss the approach to functional safety as prescribed by
the IEC 61508 in detail and identify challenges for the usage of shared data in such
systems.

1.2.2. IEC 61508

While the IEC 61508 was firstly introduced in 1998, the current revision dates to
2010. It is a normative standard that defines cross-industry processes and methods for
designing safety-relevant programmable electronic systems. Following the definition of
safety (cf. Definition 1.3), the standard takes a risk-based approach. It acknowledges
the fact that risk can be reduced but not eliminated. In this endeavor, it proposes an
overall safety life cycle comprising 16 phases (cf. Fig. 1.5) which guide engineers from
designing the first concept of the envisioned system to generating an appropriate safety
concept and to operating the system safely.
To analyze the safety life cycle in detail, the next paragraph introduces a selection of the
terms used in IEC 61508 before the following paragraphs examine the individual phases
with regard to the challenges arising for safety in dynamically composed systems. As
some of the identified challenges are addressed by the standard ISO 21448 [19], its main
characteristics and differences to IEC 61508 are briefly summarized in a concluding
paragraph.

34 1. Introduction – Safety in Future Smart Industries

1 Concept 2 Overall Scope
Definition 3 Hazard and

Risk Analysis

4
Functional

Safety Concept5
Overall Safety
Requirements

Allocation

9
E/E/PE System

Safety Requirements
Specification

10
Realization of
Safety-Related

E/E/PE Systems

12
Overall Installation
and Commissioning

13 Overall Safety
Validation

14
Overall Operation,

Maintenance,
and Repair

16 Decommissioning
or Disposal

8

Overall
Installation and
Commissioning

Planning

7
Overall Safety

Validation
Planning

6
Overall Operation
and Maintenance

Planning

Overall Planning

11

Specification and
Realization of
External Risk

Reduction
Measures

15
Overall

Modification
and Retrofit

Fig. 1.5.: The figure lists the 16 phases of the safety life cycle of IEC 61508, which are arranged into
5 groups. The boxes are colored to highlight their affinity to these groups. Fig. 1.7 rearranges these
groups and builds upon the coloring to clarify the associations. The figure is inspired by [11].

Terms of IEC 61508

Most central to the IEC 61508 is the definition of Equipment Under Control (EUC),
which enables differentiating between the initial system whose safe operation shall be
achieved and other systems contributing to the actual safety. IEC 61508 defined EUC
as follows [8].
Definition 1.5 (Equipment Under Control)

Equipment, machinery, apparatus or plant used for manufacturing, process, trans-
portation, medical or other activities.

The EUC is the hardware providing the function the overall system is designed for.
For instance, the hardware platform of the smart warehouse’s mobile robot would be a
EUC . To fulfill its goal of moving from a starting position to an end position (e.g. to
move one rack to a picking station) it requires a EUC Control System (EUCCS) which
reacts to inputs and generates the required actions [8].

1.2. Functional Safety Standards 35

Increasing
Risk

EUC
Risk

Tolerable
Risk

Residual
Risk

Necessary Risk Reduction

Actual Risk Reduction

Partial risk
covered by other

risk reduction
measures #2

Partial risk covered
by E/E/PE safety

related systems

Partial risk
covered by other

risk reduction
measures #1SIL 4

SIL 3
SIL 2
SIL 1

Risk reduction achieved by all the safety-related
systems and other risk reduction measures

Fig. 1.6.: Risk reduction model of IEC 61508 showing the effect of different Safety Integrity Level
(SIL) [8].

Definition 1.6 (EUC Control System)
System which responds to input signals from the process and/or from an operator

and generates output signals causing the EUC to operate in the desired manner.

The combination of a EUC and its control system provides the intended functionality
of the system. For instance, the hardware of a mobile robot (EUC) and its navigation
controller (EUCCS) together form a system. However, its operation may pose a risk,
e.g. the risk of colliding with obstacles. In the endeavor of assessing the risk posed by
a EUC and reducing it if necessary, the IEC 61508 assumes the Risk Reduction Model
(cf. Fig. 1.6) and defines risk as follows [20].
Definition 1.7 (Risk)

Risk R is proportional to a measure for the probability P of an event (frequency,
likelihood) and the consequences C of an event (impact, effect on objectives):

R = P ⊗ C (1.1)

In this definition, proportionality is abstracted to ⊗ and symbolizes that an application-
and domain-specific derivation of risk from its parameters P and C is required. A
multiplication, indicated by “·” and used by other works, might not be sufficient.
Independently of the used symbol, risk depends on the likeliness of unwanted events
to occur and their consequences. An unwanted event posing a potential safety-threat
is called a hazard.
Definition 1.8 (Hazard)

A potential source of harm.

with harm being defined as follows [8].
Definition 1.9 (Harm)

Damage to human health, to property, or to the environment.

36 1. Introduction – Safety in Future Smart Industries

Therefore, the total risk posed by a EUC when not considering any safety-related
measures is the sum of risks of all hazards.
For the smart warehouse and its automated storage system, this means that all haz-
ards have to be considered. Colliding mobile robots moving the filled racks is only
one hazard. Another hazard is the possibility of a rack falling over due to unevenly
distributed load or a mobile robot not coming to a full stop due to overloading. The
sum of the risks associated with these and other, not-listed hazards forms the total risk
of the automated storage system.
To determine whether or not this is acceptable, the IEC 61508 defines tolerable risk [8].

Definition 1.10 (Tolerable Risk)
Risk which is accepted in a given context based on the current values of society.

At this point, tolerable risk can not be defined in more detail as the standard does
neither apply to a certain industry nor to a specific legislative authority. It is therefore
an example of why type B and C standards are needed.
Despite its vague definition, the tolerable risk conceptually defines the maximal risk
acceptable to operate a EUC . In other words, a system can be considered safe only, if
the risk it poses is less or equal to what legislative authorities deem tolerable.
Conversely, if the initial risk posed by a EUC exceeds this threshold, risk reduction
measures are required. More precisely, the difference between the initial risk of a EUC
and the tolerable risk describes the required performance of risk reduction measures
and thereby defines the required effort to provide safety for the system in question.
This is described by the risk reduction model of IEC 61508 which is illustrated in
Fig. 1.6 [8].
To derive appropriate risk reduction measures, safety requirements are formulated and
associated with the identified hazards. Maintaining their fulfillment shall prevent the
hazards from occurring once the system is in operation. Therefore, safety requirements
are defined as follows.
Definition 1.11 (Safety Requirement)

Specification of operating condition(s) that have to be maintained by a safety func-
tion to guarantee the overall system’s safety.

According to this definition, a safety requirement states the condition(s) that have to
be fulfilled for the overall system to be safe. Due to their association to specific hazards,
each safety requirement enables a partial risk reduction, cf. Fig. 1.6. Depending on
the overall required risk reduction, a set of safety requirements may be needed for the
system to be safe.
For the automated storage system, for instance, each hazard has to be addressed by
one or more safety requirements. One of which would address the necessity for avoiding
collisions of employed robots.
However, safety requirements only enable risk reduction. For the risk to be indeed
reduced, they have to be implemented such that the conditions they state are ful-
filled. This is achieved by designated electric, electronic or programmable electronic
safety-related systems. These safety-related systems implement a so-called safety func-
tion.

1.2. Functional Safety Standards 37

Tab. 1.1.: Available Safety Integrity Level (SIL) and their associated Probability of Fails on Demand
(PFD) in IEC 61508 [8].

Safety Integrity Level Low-demand mode of
operation

High-demand mode of
operation

4 ≥ 10−5 to < 10−4 ≥ 10−9 to < 10−8

3 ≥ 10−4 to < 10−3 ≥ 10−8 to < 10−7

2 ≥ 10−3 to < 10−2 ≥ 10−7 to < 10−6

1 ≥ 10−2 to < 10−1 ≥ 10−6 to < 10−5

Definition 1.12 (Safety Function)
Function to be implemented by an E/E/PE safety-related system that is intended
to achieve or maintain a safe state for the EUC, in respect of a specific hazardous
event.

Thus, the safety function directly aims at preventing a specific hazard to occur, that
is, preventing its consequences C by reducing its likeliness to occur (P). For that,
the safety function itself has to be available, that is, be able to perform the required
functionality, with high probability such that it does not fail when needed.
This is a direct consequence of the definition of risk, cf. Definition 1.7. If the safety
function preventing a negative consequence is not sufficiently available, the hazard
will occur with an intolerable probability nonetheless and the associated risk is not
sufficiently reduced.
Therefore, the required probability for a safety function to be available is derived from
the initial risk identified for a hazard. In the context of IEC 61508, it is termed as the
safety integrity of the safety function. The standard defines four different levels to be
assigned to a safety function.
Definition 1.13 (Safety Integrity Level)

Discrete level (one out of four), corresponding to a range of safety integrity values,
where safety integrity level 4 is the highest and 1 is the lowest.

Following the idea that a safety function reduces risk by limiting the likeliness of a
hazard to occur, the SILs are mapped to a maximal Probability of Fails on Demand
(PFD), cf. Table 1.1. During the development of a safety function, it has to be shown
that its PFD is less or equal to what is specified in the assigned SIL. In that regard,
the SIL can be seen as the safety performance of a safety function.
The standard distinguishes between a low-demand and high-demand mode of opera-
tion of a safety function. A safety function assigned to a high-demand mode of oper-
ation generally has to have an increased availability, which in turn requires a reduced
PFD.
For instance, the collision avoidance of a mobile robot in an automated storage sys-
tem addresses the hazard of colliding robots and is, therefore, a safety function for
which a SIL needs to be assigned. Moreover, as the robots operate in shared spaces,
collisions might occur frequently (if not prevented) which puts the collision avoidance

38 1. Introduction – Safety in Future Smart Industries

functionality in a high-demand mode of operation.
While having a collision avoidance functionality in place is intuitive for a mobile robot,
identifying necessary safety functions for a EUC , in general, does not have to be sim-
ilarly straight forward. To provide a better understanding of the development of a
hazard and consequently enable defining appropriate safety functions, the IEC 61508
adopts the notion of the Fault-Error-Failure chain [8], [10].
Definition 1.14 (Fault)

Abnormal condition that may reduce or stop the capability of a functional unit to
perform a required function.

As such a fault describes an internal state diverging from normal behavior. It affects a
functional unit, which does not necessarily mean that it results in a hazard. However,
it can be a source of a hazard. If not detected, a fault propagates through a system
causing an Error.
Definition 1.15 (Error)

Discrepancy between a computed, observed or measured value or condition and the
true, specified or theoretically correct value or condition.

At this point, the error describes a state diverging from what is specified. Therefore,
an error can be detected and, possibly, prevented from propagating. As such, detecting
an error can form the basis of implementing a safety function.
Contrarily, if an error is allowed to propagate, it can cause a failure.
Definition 1.16 (Failure)

Termination of the ability of a functional unit to provide a required function.

In other words, a failure of a functional unit occurs when it can not fulfill its specified
function or service. It follows directly, that the behavior of a functional unit may vary
from what is specified in versatile ways. These different aspects are described by its
failure characteristics2.
Definition 1.17 (Failure Characteristics)

The set of observable behaviors of a functional unit in case of a single or multiple
errors or failures.

This definition builds upon the concept of a functional unit as a component providing
a specified service. Once it fails to provide this service, a failure occurs. As this is
a consequence of an error, the set of errors also dictates the specific behavior of the
functional unit in case of a failure. In other words, the failure characteristics of a
functional unit describe its behavior in case of failure. Note that, within this work, a
model or representation of failure characteristics is referred to as a failure model. This
term is defined more clearly in Definition 2.2 in Chapter 2.
With respect to the automated storage system, one can consider a single distance sensor
of a mobile robot. A fault of this sensor could be an incorrectly implemented rounding
functionality. Once it is activated, it causes an internal error where the generated
distance value differs from the true distance. If allowed to propagate, this incorrect
value is provided to an application as a sensor observation. As the sensor does not

2The concept of failure characteristics is not part of IEC 61508 but is added here by the author for
clarification.

1.2. Functional Safety Standards 39

Concept &
Scope Definition {1 − 2}

Hazard
Analysis &

Risk Assessment
{3}

Functional
Safety Concept

Technical
Safety Concept

Safety Concept {4 − 5}

Product Development {6 − 11}

Quantitative
Safety Analysis

Qualitative
Safety Analysis

Safety
Case

Operation{12, 14 − 16}

Safety Assessment{13}

Sy
st

em
Le

ve
l

Time

Technical
Level

Functional
Level

Fig. 1.7.: Simplified safety life cycle according to IEC 61508. The individual phases of Fig. 1.5 are
referenced in braces.

adhere to its specified function, the sensor fails and a failure occurs. In this case, the
difference between the specification and the provided observation determines its failure
characteristics.
Within the IEC 61508, the failure characteristics of a functional unit are categorized
into random failures or systematic failures. While random failures are commonly as-
sociated with wear and tear of hardware, systematic failures are caused by deficiencies
of the system’s design, for instance, an incorrectly implemented rounding functional-
ity.
Both classes of failures are addressed independently by the standard. While the likeli-
ness of random failures causing hazards is reduced by redundancy, systematic failures
are addressed by following a prescribed development process which is part of the overall
safety life cycle.

Safety Life Cycle of IEC 61508

The IEC 61508 is a normative standard. As such, it provides processes and methods
to be applied during product development to design a safe system. These processes
and methods are organized in a so-called safety life cycle based on the general life
cycle of the system under consideration. To identify the challenges arising when such a
system is a dynamically composed system, the IEC 61508 safety life cycle is discussed
briefly.
For that, the 16 phases of the cycle defined by the standard (cf. Fig. 1.5) are arranged
into 5 groups that form a V-Model3, cf. Fig. 1.7. Each of these groups is discussed in
detail in the following paragraphs.

3A development model that graphically represents the relation of each phase during software devel-
opment with the corresponding testing phase [21]

40 1. Introduction – Safety in Future Smart Industries

Concept and Scope Definition Covering phases 1-2 of the IEC 61508 safety life
cycle, the goal is to define the Equipment Under Control (EUC), its control system
(EUCCS), and its Operational Design Domain (ODD). While the EUC and its control
system describe the initial system and how it achieves the envisioned functionality, the
Operational Design Domain (ODD) restricts its operational context. It defines under
which environmental conditions the system can be operated and the assumptions made
during operation respectively.
The first challenge for dynamically composed systems arises here. At design-time,
neither the number of systems sharing their data nor the kind or quality of data be-
ing available at run-time can be foreseen. Moreover, the conditions under which the
available systems may share their data are unclear.
Within the use case of a smart warehouse, situations may reach from a single deliv-
ery robot up to a great number of robots to support the scalability of the approach.
Heterogeneity of the systems will even increase complexity and decrease the ability to
specify an ODD in detail.

Challenge 1.1 (ODD Coverage) The increased complexity and limited
knowledge about systems sharing their data decreases the ability to fully spec-
ify the Operational Design Domain (ODD) of a dynamically composed system
at design-time.

It needs to be noted that Challenge 1.1 applies to complex systems operating on
open environments in general and may not be limited to dynamically composed sys-
tems.

Hazard Analysis and Risk Assessment Given the system description and its opera-
tional context, the Hazard Analysis & Risk Assessment (HARA) has to be executed.
Its goal is to identify all hazards of the EUC to determine its initial risk, specify func-
tional descriptions of safety functions that shall mitigate the risk of each hazard, and
assign corresponding SIL to them.
For the first step of identifying all hazards, resources such as historic data, field studies,
or brainstorming sessions with involved engineers [10], are used. The process can be
structured with methods such as Fault Tree Analysis (FTA) [22] and Failure Mode and
Effect Analysis (FMEA) [23], which additionally enable analyzing their root causes
and consequences. Both of which are central artifacts for the next step, the risk as-
sessment.
Implied by the definition of risk (cf. Definition 1.7), the consequences of a hazard as
well as its likeliness of occurrence have to be determined to assess the risk. Although
not applicable for all EUC , the IEC 61508 proposes to split the likeliness of occurrence
into three parameters, having in total four risk parameters (C, F, P, W). The pa-
rameters, their values, and descriptions are provided in Table A.1 in the appendix for
reference.
The already mentioned parameter Consequences C captures the implications a hazard
may have when occurred. Ranging from minor injuries (C1) to the death of many
people (C4), the IEC 61508 focuses on harm to the health of people. The standard,
however, notes that other classification schemes may be developed to take damage to
property or monetary costs into account as well.

1.2. Functional Safety Standards 41

W1

W2

W3

- - * SIL 1 SIL 1 SIL 2 SIL 3 SIL 3

- * SIL 1 SIL 1 SIL 2 SIL 3 SIL 3 SIL 4

* SIL 1 SIL 1 SIL 2 SIL 3 SIL 3 SIL 4

C1 C2 C3 C4

F1 F2 F1 F2

P1 P2 P1 P2

- No safety
requirements *

No special safety
requirements

A single safety function
is not sufficient

Fig. 1.8.: Determining the required SIL of safety function depending on the risk of the associated
hazard. Figure inspired by [24].

The remaining three parameters serve the purpose of classifying the likeliness of a haz-
ard occurring. For that, the frequency F describes how often situations fostering the
conditions for a hazard to occur while the probability P takes into account whether
the hazardous event can be avoided by operating personal or external circumstances.
Finally, the probability of the unwanted occurrence W describes how likely the occur-
rence of the hazard is without any implemented safety function.

Using these parameters, the risk of each hazard in question is assessed. From that,
appropriate safety requirements, safety functions and their required safety performance
(in terms of SIL) have to be determined. This can be achieved, for instance, using the
risk graph of Fig. 1.8.

Hazards having only negligible consequences and are unlikely to occur do not entail
any safety requirements while hazards with slightly increased risks may not need a
special safety requirement. Any hazard deemed unacceptable, however, requires a
safety requirement and a corresponding safety function of at least SIL 1. The level
is increased up to the point where consequences and likeliness of occurrences require
more than a single safety function.

It is only the set of these hazards and safety functions of at least SIL 1 that have to
be accounted for during the following phases. The assumption is, that reducing the
risk associated with them by implementing corresponding safety functions is sufficient
to provide safety for the system. This, however, presumes that the set of identified
hazards is complete and their risks are assessed correctly.

Contrarily, the concept of dynamically composed systems causes the lack of knowledge
regarding its components during design-time, that is, when Hazard Analysis & Risk
Assessment (HARA) is executed. As a result, relevant hazards might not be detected
or their risk may be misjudged. Challenge 1.2 describes the former, while Challenge 1.3
addresses the latter.

42 1. Introduction – Safety in Future Smart Industries

Challenge 1.2 (Hazard Coverage) The inherent lack of knowledge about
all components of a dynamically composed system at design-time poses a
threat to the completeness of the hazard analysis. Relevant hazards might
not be identified.

Challenge 1.3 (Risk Assessment) The failure characteristics of shared
data can not be determined at a dynamically composed system’s design-time.
Thus, the risk of a hazard can not be fully assessed. This either results in
overly restrictive safety functions or an underestimation of the posed risk.

Consider the example of a smart warehouse having a mobile robot with a robotic arm
tasked to lift goods from a delivery robot, cf. Fig. 1.1. This, however, introduces the
hazard of the robotic arm damaging the delivery robot or the transported goods. From
the perspective of a manufacturer of a delivery robot, this hazard can be identified only
if the option of a robotic arm lifting the goods is considered during HARA. Contrarily,
when considering only the movement of the delivery robot and its goal to reach a target
position, this hazard might not be identified.
Similarly, as described by Challenge 1.3, identified risks might not be assessed correctly
due to missing information. Consider, for instance, the situation in which a delivery
robot enters a warehouse. At this point, it might use the warehouse’s internal local-
ization system due to Global Navigation Satellite System (GNSS) being unavailable.
Depending on the accuracy of provided position information, the robot might not be
able to navigate indoors which might cause collisions. The risk of this hazard depends
on the quality of the provided position information, which can be known only at run-
time and not during HARA at design-time. As a consequence, the assigned SIL might
not be appropriate.

Safety Concept Definition The HARA identified hazards and defined top-level safety
requirements and safety functions with associated SIL for managing their associated
risk. These, however, are defined in an implementation-independent manner and have
to be refined to derive specifications for the actual product development. In this en-
deavor, the goal of the safety concept definition (comprising phases 4 and 5 of the
overall safety life cycle) is to derive functional and technical safety requirements to
guide the product development.
In the context of IEC 61508, no specific distinction between different types of safety
requirements is provided. Therefore, the definitions of functional and technical safety
requirements as proposed by the ISO 26262 [13] (a Type B functional safety standard
derived from the IEC 61508) are used here.
The standard defines functional safety requirements as refinements of top-level
safety goals which specify measures to reduce associated risk in an implementation-
independent way. Thus, functional and logical entities of the preliminary system ar-
chitecture are referenced without specifying their actual implementation. As a con-
sequence, the first step is to refine the top-level requirements into functional safety
requirements by following a top-down approach that takes the preliminary system ar-
chitecture into account. The set of all functional safety requirements forms the Func-
tional Safety Concept (FSC).

1.2. Functional Safety Standards 43

The potential hazard of a mobile robot colliding with an obstacle, for instance, could
be refined to the requirement that a minimum distance of D̂min should be kept at all
times.
The functional safety requirements are subsequently refined to technical safety require-
ments. They are implementation-dependent and support the proper realization of the
intended safety functions. Therefore, they define the specific safety mechanisms to be
implemented. Similar to the FSC , the set of all technical safety requirements form the
Technical Safety Concept (TSC).
With respect to the collision avoidance of a mobile robot, the controller for maintaining
a safe distance could be specified as a P-controller. This choice entails that target
distance Dmin, with which the P-controller might be configured, will not be met always,
e.g. due to the well-known overshoot behavior [25]. A technical safety requirement
therefore could be that Dmin > D̂min to ensure that the functional safety requirement
is met nonetheless.

Product Development This group covers phases 6-11 of IEC 61508 in which the
actual system is developed according to the previously generated specifications. Specific
decisions are made on implementing functional and technical safety requirements, which
are thereby refined to hardware and software requirements. Plans for maintenance,
verification, and validation, as well as for installation of the system, are made.

Safety Assessment The safety assessment (phase 13) forms another critical activity
in the IEC 61508 safety life cycle. Its objective is to reuse the artifacts of previous
phases to generate the so-called safety case which documents that all safety require-
ments are met, all safety functions adhere to their assigned SIL, and ultimately the
overall risk is reduced to an acceptable level. For that, not only the documentation
of the overall development process is used but also quantitative and qualitative safety
analyses are applied. Together, they provide evidence of safety on each abstraction
level.
Starting with unit- and integration tests to show the fulfillment of hardware and soft-
ware requirements, fault injection campaigns complementing simulations and field tests
might be used to assess the fulfillment of technical safety requirements. Furthermore,
these approaches can be used to generate reliability metrics, such as failure rates, which
are inputs to quantitative safety analysis methods.
Approaches such as FTA [22] and FMEA [23] can be used in that regard again. In
contrast to HARA, however, the focus is on the already implemented safety functions
this time. They use a component-wise view of the system architecture and analyze it
deductively (FTA) or inductively (FMEA). In the case of FTA, the interactions of the
individual components are analyzed to track top-level failures to their possible causes.
In FMEA, a qualitative safety analysis method, failures of individual components are
considered and their effect on the overall system is analyzed. Causes, as well as ef-
fects, should now be covered by appropriate safety functions which thereby successfully
mitigate the posed risks. On a functional level, field tests and system-level tests may
provide empirical data to support the claims of fulfilled functional safety requirements
and to show the integrity of implemented safety functions.

44 1. Introduction – Safety in Future Smart Industries

Such tests, however, require knowledge about failure characteristics to expect from the
individual components of a system, which forms a challenge for dynamically composed
systems.

Challenge 1.4 (Safety Assessment) Missing information about the fail-
ure characteristics of shared data does not allow assessing the effectiveness of
implemented safety functions on mitigating hazards or their associated risk.
Thus, their adherence to their assigned SIL can not be evaluated.

Especially the focus of quantitative safety analysis methods on reliability metrics is
challenging when considering dynamically composed systems. Missing information
about the uncertainty of shared data that is possibly used in safety functions prohibits
assessing their effectiveness.
Considering the delivery robot arriving at a smart warehouse again where the perfor-
mance of its collision avoidance now depends on the uncertainty of the position data
shared by the warehouse or other mobile robots. Without knowledge about this uncer-
tainty, it can not be assessed whether the implemented controller and its configuration
of Dmin can successfully prevent collisions.

Operation Finally, the safety assessment provided evidence for the safety case arguing
the safety of the system by taking the implemented safety functions into account. This
allows the system to be brought into operation, which covers phases 12 and 14-16 of
the overall safety life cycle and concludes the same.

For dynamically composed systems, however, the safety life cycle can not be applied to
guarantee safety without overcoming the identified challenges. These start as soon as
defining the context and conditions for the operation of the envisioned system (cf. Chal-
lenge 1.1), span to the identification and assessment of hazards (cf. challenges 1.2
and 1.3) and finally address the question of how to evaluate whether safety has been
achieved (cf. Challenge 1.4).

ISO 21448 – Safety of the Intended Functionality

Some of the challenges identified in the last subsection are not only valid for dynamically
composed systems but became apparent also by the advent of technologies of Machine
Learning (ML) and Artificial Intelligence (AI) [26]. Especially in the automotive sector,
were Advanced Driver Assistance System (ADAS) and autonomous driving accelerate
the development of complex functionalities, Challenge 1.1 and Challenge 1.2 where
recognized. Thus, in 2019, the ISO 21448 - “Road vehicles - Safety of the Intended
Functionality (SOTIF)” was introduced.

Definition 1.18 (Safety of the Intended Functionality)
The absence of unreasonable risk due to hazards resulting from functional insuffi-
ciencies of the intended functionality or by reasonably foreseeable misuse by persons
is referred to as the Safety Of The Intended Functionality.

1.3. Scope of this Thesis 45

With that definition, the standard does not focus on hazards caused by failure or
malfunctioning of the system in question but by performance limitations of the in-
tended function or unexpected operation conditions. In the endeavor of reducing the
risk of such hazards, the normative standard emphasizes the idea of use cases and
scenario-based development instead of the identification of requirements. It reflects
the standard’s assumption that neither the set of all hazards, nor all operating con-
ditions can be foreseen at design-time. This is also acknowledged by the fact that
the standard does not prescribe a methodology for classifying risk according to SIL or
Automotive Safety Integrity Level (ASIL) (the automotive version of SIL according to
ISO 262626 [13]). Instead, measures for assessing risk and whether or not it could be
reduced is defined individually for each use case.

1.3. Scope of this Thesis
The challenges identified in the previous section clarify that a changed system design
process is needed to guarantee safety in dynamically composed systems. Moreover,
they enable deriving the scope of this thesis, which is the focus of this section.
In that endeavor, the previous section showed that challenges 1.1 and 1.2 are already
addressed by the recently introduced standard ISO 21448 [19].
However, it does not propose a detailed process for risk assessment, but only vaguely
defines that this depends on the scenarios and use cases defined for the system under
consideration. This is in line with Challenge 1.3 which describes the problem from
the perspective of dynamically composed systems. As knowledge about the failure
characteristics of shared data is missing at design-time, the risk a hazard poses may
be misjudged. The situation is aggravated by the fact that for determining the risk
of a hazard, its contextual and environmental conditions have to be known. Although
being overly restrictive, one solution assumed for this work is to presume the highest
risk and therefore require the highest SIL (SIL 4) to be fulfilled by a safety function
associated with the hazard.
Despite this restrictive assumption, safety can not be guaranteed because the missing
knowledge remains the driver of Challenge 1.4. Assuming that a relevant hazard has
been identified (e.g. collision of a delivery robot with other mobile robots in a smart
warehouse environment) and a corresponding safety function has been implemented
with SIL 4 (a collision avoidance controller), it still needs to be shown that the safety
performance is actually met. In other words, the safety assessment of the implemented
safety function has to prove that it successfully maintains a safe state. For that, the
failure characteristics of shared data have to be taken into account, which is available
only at run-time. Thus, the central question addressed in this thesis is:

How can a run-time safety assessment of a safety function guarantee the
safety of a dynamically composed system?

In the endeavor of approaching this question, it is examined in the next subsection to de-
rive the objectives of this thesis. Accordingly, Section 1.3.2 briefly discusses this work’s
contributions before an outline of the following chapters is given in Section 1.3.3.

46 1. Introduction – Safety in Future Smart Industries

Statically Composed System

Intended EUC

Concept &
Scope Definition

Hazard Analysis &
Risk Assessment

Safety Concept
Derivation

Product
Development

Safety Assessment

Operation

Design-
Time
Run-
Time

Dynamically
Composed System

Intended EUC

Concept &
Scope Definition

Hazard Analysis &
Risk Assessment

Safety Concept
Derivation

Product
Development

Safety Assessment
- Static Elements -

Safety Assessment
- Shared Data -

Operation

Shared Data

Modeling Failure
Characteristics

Failure Model
Quality Assessment

Integration Step

Fig. 1.9.: Comparing the abstract safety processes of statically and dynamically composed systems.
The shift of parts of the safety assessment into the run-time is highlighted along with the activities
addressed in this work.

1.3.1. Objectives
The discussion of the identified challenges clarified that for guaranteeing the safety
of dynamically composed systems the activity of safety assessment has to be split
and partially shifted into its run-time as it is only then that all required information is
available. In this section, this shift is analyzed and the envisioned approach is discussed
to derive objectives for this thesis.
In this endeavor, Fig. 1.9 visualizes the envisioned change in the safety process. While
the left side shows the simplified safety process of IEC 61508 considering no shared
data, the right-hand side schematically sketches required changes. The highlighted
phases represent activities targeted by this work.
While the first phases involving the specification and development of the EUC , EUCCS ,
and its safety concept require to take sharing data with other systems into account,
central changes have to be applied to the phase of safety assessment. It is proposed that
the process of safety assessment is split into two parts. Static elements not using shared
data can be assessed using traditional approaches following the process of IEC 61508.

1.3. Scope of this Thesis 47

Dynamic elements, that is, safety functions using shared data, have to be assessed at
run-time. Such a run-time safety assessment forms the first objective.

Objective 1.1 (Run-Time Safety Assessment) The first objective of
this thesis is to develop a run-time safety assessment method allowing to deter-
mine whether or not an envisioned safety performance is achieved by a given
safety function that relies on shared data.

Such a method is a key-enabler to decide whether or not shared data can be used
in a safety-critical functionality. This, however, requires that a description of the
failure characteristics of shared data is available. From this, the second requirement
follows.

Objective 1.2 (Generic Failure Model) The second objective of this
thesis is to develop a generic failure model capable of representing failure
characteristics of shared data in such a way that it can be used for run-time
safety assessment methods.

For deriving what is necessary to fulfill both objectives, a set of criteria to assess the
same is required. Correspondingly, the following paragraphs take the objectives into
account and derive criteria for assessing their fulfillment in the following chapters.

Criteria for Run-Time Safety Assessment

The purpose of the run-time safety assessment is to guarantee that a safety function
using shared data will meet its safety performance despite failures impairing the data.
Consequently, the first criterion is that a suitable approach takes a shared failure model
as an input to perform the assessment.

Shared Failure Model The run-time safety assessment method takes a failure model
describing the failure characteristics of shared data as an input to derive whether
or not a safety function can meet its required performance.

This criterion is central to ensure that the knowledge missing at design-time is in-
corporated into the decision process at run-time. This is required to guarantee at
design-time that the method will maintain the safety of the system at run-time. To
support providing this guarantee, the functional correctness of the approach has to be
provable at design-time.

Functional Correctness The elements comprising the run-time safety assessment have
to be proven functionally correct at design-time such that its result is valid at
run-time.

In this sense, the approach provides an indirection for guaranteeing safety. Instead of
showing that a safety function generally fulfills its envisioned safety performance, as it is
done in IEC61508, it is ensured that the functionality assessing the safety performance
of a safety function regarding the specific failure characteristics of shared data works
correctly and comes to a valid conclusion. Fulfillment of this criterion enables to argue

48 1. Introduction – Safety in Future Smart Industries

the safety of the system by arguing the correctness of the implemented run-time safety
assessment approach.
To supplement this criterion, it is required that a run-time safety assessment provides
a run-time certificate.

Run-time Certification The central result to be generated by the run-time safety as-
sessment is a binary decision on whether or not the safety function under con-
sideration meets its safety performance when using a specific source of shared
data. In other words, the run-time safety assessment certifies dynamically that
a combination of a statically composed system with a source of shared data will
either maintain its safety or not.

This criterion builds upon the central task of safety assessment, which is to check
whether or not a safety function is meeting its required performance. Depending on
the outcome of this check, the run-time safety assessment either certifies a dynamically
composed system as safe or unsafe. With these two options available, the criterion
implies that the possibility of not being able to use shared data due to safety concerns
has to be accounted for at a system’s design-time.
Finally, it has to be noted that the run-time safety assessment and these criteria rely
on the fact that the shared failure model indeed represents the failure characteristics
of shared data. That is, incorrect failure models shared with malicious intentions are
not addressed in this work.

Criteria for Generic Failure Modeling

For the run-time safety assessment to decide whether or not a safety function meets its
performance when using shared data, a model describing the failure characteristics that
have to be expected is required. Described by Objective 1.2, a suitable failure model
has to fulfill five requirements to meet the objective. As this question is partially
addressed by Jäger, Zug, and Casimiro [7] already, the relevant criteria are repeated
here.
First and foremost, the failure model needs to be interpretable by a run-time safety
assessment method. As the system providing a failure model for shared data and
the system interpreting the model to execute the assessment are possibly designed
independently of each other, the interpretation of the failure model has to be clear.
Therefore, the first criterion for a suitable failure model is Clarity [7].

Clarity The means used in a failure model to represent failure characteristics must be
such that these characteristics will be interpreted unambiguously by an automated
mechanism, e.g. a run-time safety assessment.

Fulfilling this requirement is mandatory to ensure a semantically correct safety assess-
ment. Otherwise, a receiving system may misinterpret the failure model and potentially
underestimate the threat the shared data poses to the system’s safety.
Another aspect requiring an analytic interpretation is the requirement for supporting
versatile methods of run-time safety assessment. Reaching from temporarily limited
scenarios where only a superficial safety assessment can be executed up to long-lasting
scenarios with sufficient computational resources enabling a fine-grained analysis of
the represented failure characteristics. To cover this wide range, the failure model

1.3. Scope of this Thesis 49

has to be comparable to safety requirements under the conditions provided by an
application [7].

Comparability For the flexible use of a failure model when comparing failure charac-
teristics and application needs, the representation of failure characteristics must
allow for interpretations with various levels of granularity.

Requiring comparability underlines the necessity to interpret a shared failure model
within a run-time safety assessment. As already mentioned, these may be versatile and
follow different approaches depending on the safety function whose performance shall
be assessed. Therefore, comparability entails that the failure model is general in its
definition to support a wide range of run-time safety assessment approaches [7].

Generality An appropriate failure model is required to have a generic approach to
the representation of failure characteristics. This shall enable an application-
independent description of failure characteristics that can be transformed into an
application-specific representation when needed.

However, despite generality, a failure model remains a model which abstracts reality
by omitting irrelevant information and focusing on application-specific information. In
that sense transforming a model can not generate missing information. Therefore, a
failure model for shared data should aim at providing a detailed description of the fail-
ure characteristics to enable receiving systems to generate their internal representations
required for the implemented run-time safety assessment. Moreover, to enable versatile
applications, a wide range of failure characteristics has to be representable [7].

Coverage An appropriate failure model must be capable of representing various failure
characteristics in a versatile way.

Finally, based on the described failure characteristics, a run-time safety assessment
is required to guarantee the safety of a system. However, this is possible only if one
can rely on the correctness of the modeled failure characteristics. To express this, a
confidence value should accompany a suitable failure model.

Confidence The confidence of the failure model combines the aspects of verification
and validation to provide evidence that the modeled failure characteristics repre-
sent the actual characteristics sufficiently close.

The confidence value should be continuous to express belief in the correctness of what is
modeled. It can be used by the receiving system to decide whether the modeled failure
characteristics are accepted and further analyzed by a run-time safety assessment. In
the latter, the safety function can not rely on the shared data, but the system’s safety
is not endangered by an invalid assessment result.
Fulfilling these requirements, a failure model is suitable to be shared from one system
to another for a run-time safety assessment.

1.3.2. Contributions
The overarching goal of this thesis is to provide a run-time safety assessment that
enables the safe use of shared data in a safety function. To that end, the two objectives
identified in the previous section have to be fulfilled. In this thesis, they are addressed
by the following contributions.

50 1. Introduction – Safety in Future Smart Industries

Generic Failure Model (GFM) The GFM is a model capable of representing versatile
failure characteristics in an unambiguous way. Aimed at dynamically composed
systems, it is mathematically defined to allow sharing it between systems. The
receiving system can then interpret and analyze the failure model, e.g., to perform
a run-time safety assessment.
In that endeavor, the model is defined as nothing but a set of so-called failure
types4 where each failure type represents a specific aspect of the overall failure
characteristics. For that, a failure type comprises a deterministic failure pattern,
describing its effect over time, as well as a stochastic scaling of the same. This
representation is combined with distributions stating the conditions under which
a failure type becomes active to acknowledge the random occurrence of failures.
These elements of an individual failure type enable to represent systematic and
random failures as described by the IEC 61508. Consequently, these aspects are
available for the overall failure model.
Moreover, due to the fulfillment of the clarity criterion by the GFM , its pa-
rameters can be specified in an manual process. This allows reviewing the final
parameters, modifying an existing failure model by hand, and designing failure
characteristics. This transparency in the GFMs generation process supports its
usage in both, safety assessments at design- and run-time. Finally, the definition
of a confidence value enabling to assess whether or not failure characteristics are
represented in their entirety complements this usage.
On the other hand, this flexibility in representing failure characteristics requires
the model to have parameters encoding the same. For deriving these parameters
from a given dataset and thereby simplifying the usage of GFMs a processing
chain is proposed. It provides an automation for identifying and parameterizing
failure types for generating failure models and ultimately enables determining its
confidence values.

Region of Safety (RoS) With the GFM enabling to share a failure model along with
the actual data in a dynamically composed system, the input for a run-time safety
assessment is available. For addressing this task, the approach of RoS is proposed.
Building on the approach of Region of Attraction (RoA), which provides guaran-
tees for control systems on their asymptotic stability, the approach of RoS aims
at guaranteeing that a control system does not leave a region of safe states. For
that, a system model capable of integrating versatile sources of uncertainty and
failure characteristics (one of which is shared data) is introduced in a first step.
In a second step, the theorem of RoS enables estimating which regions of the
state space are safe for a given control policy and with respect to the specified
uncertainties.
Analyzing the produced RoS , therefore, informs about whether or not a system
will be safe when using shared data. Moreover, due to its mathematical approach,
the concept provides guarantees that the system will not leave the determined
RoS . Therefore, when using shared data only if a valid RoS can be calculated at
run-time provides the guarantee that the system will be safe already at design-
time.

4A definition of a failure type is provided in Section 2.2.4

1.3. Scope of this Thesis 51

1.3.3. Outline

Operation

Dynamically Composed System

Intended EUC

Concept &
Scope Definition

...

Safety Assessment
- Static Elements -

Safety Assessment
- Shared Data -

Operation

Design-
Time
Run-
Time

Shared Data

Modeling Failure
Characteristics

Failure Model
Quality Assessment

Integration Step

Chapter 3

Chapter 4

Chapter 2

Chapter 2

Chapter 5

Fig. 1.10.: Simplified safety process from Fig. 1.9 showing the contents addressed by the individual
chapters of this thesis.

The main contributions described in the previous section are derived, described, and
evaluated in the following five chapters. The association of their contents with the
abstract components of the introduced safety process is illustrated in Fig. 1.10.
Using the stated criteria to fulfill Objective 1.1 and Objective 1.2, the state of the art
regarding both is reviewed in the following chapter.
For that, the first part focuses on works regarding safety assessment and ideas on
how to execute the activity at a system’s run-time. In the end, one concludes that
approaches targeting the functional level are available but are missing for the technical
level.
Similarly, approaches to modeling failures, especially sensor failures, are available but
focus on statically composed systems without the need of communication descriptions
of failures. Therefore, the clarity criterion, which is most central, is not fulfilled.
Having identified these gaps, Chapter 3 introduces the GFM and a corresponding
processing chain for deriving a failure model from given time-series data. Using artificial
data, the effectiveness of the processing chain and the fulfillment of the criteria are
shown in a preliminary evaluation.
With a suitable approach to modeling failure characteristics at hand, Chapter 4 in-
troduces the concept of RoS as an extension of the approach of Region of Attraction
(RoA). Motivated by the problem of the inverse pendulum, the concept of RoS is
similarly evaluated preliminary as well.
However, as neither of the previous evaluations addressed the use case of a dynamically
composed system, Chapter 5 takes upon the use case of the smart warehouse. Assuming
a delivery robot operating next to other mobile robots, the safety function of collision

52 1. Introduction – Safety in Future Smart Industries

avoidance is assessed using the concept of RoS and in regard with different failure
models to show that not only different distances Dmin are calculated in relation to
different failure models but also the resulting parameterization of the safety function
indeed maintains the safety of the overall system. With this evaluation in mind, the
thesis is concluded in Chapter 6 and future work is described.

1.4. Related Publications by the Author
In accordance with the outline of this thesis, the author has published the following
articles as the leading or co-author.
The following contributions were made to the state of the art and have lead to the
central ideas presented in this work.

• G. Jäger, S. Zug, T. Brade, A. Dietrich, C. Steup, C. Moewes, and A. Cretu,
“Assessing neural networks for sensor fault detection,” in 2014 IEEE Interna-
tional Conference on Computational Intelligence and Virtual Environments for
Measurement Systems and Applications (CIVEMSA), 2014, pp. 70–75. doi: 10.
1109/CIVEMSA.2014.6841441

• T. Brade, G. Jäger, S. Zug, and J. Kaiser, “Sensor- and environment depen-
dent performance adaptation for maintaining safety requirements,” in Computer
Safety, Reliability, and Security, A. Bondavalli, A. Ceccarelli, and F. Ortmeier,
Eds., Cham: Springer International Publishing, 2014, pp. 46–54. doi: 10.1007/
978-3-319-10557-4_7

• G. Jaeger, T. Brade, and S. Zug, “Using failure semantics to maintain safety for
dynamic composed systems,” in ARCS 2016; 29th International Conference on
Architecture of Computing Systems, 2016, pp. 1–7

• J. Höbel, G. Jäger, S. Zug, and A. Wendemuth, “Towards a sensor failure-
dependent performance adaptation using the validity concept,” in Computer
Safety, Reliability, and Security, S. Tonetta, E. Schoitsch, and F. Bitsch, Eds.,
Cham: Springer International Publishing, 2017, pp. 270–286

The initial ideas forming Chapter 3 were published in the following articles but are
refined and corrected in this work.

• G. Jäger, S. Zug, and A. Casimiro, “Generic sensor failure modeling for coopera-
tive systems,” Sensors, vol. 18, no. 3, 2018. doi: 10.3390/s18030925

• G. Jäger, K. Kirchheim, F. Schrödel, and S. Zug, “Multi-dimensional failure mod-
eling for shared data in cooperative systems,” IFAC-PapersOnLine, 2020, IFAC
World Congress 2020

Similarly to the GFM , the initial ideas of Chapter 4, the concept of RoS , were published
in the following article but are refined in this thesis.

• Analyzing Regions of Safety for Handling Shared Data in Cooperative Systems
G. Jäger, J. Schleiss, S. Usanavasin, S. Stober, and S. Zug, “Analyzing regions of
safety for handling shared data in cooperative systems,” in 2020 25th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, 2020, pp. 628–635. doi: 10.1109/ETFA46521.2020.9211932

https://doi.org/10.1109/CIVEMSA.2014.6841441
https://doi.org/10.1109/CIVEMSA.2014.6841441
https://doi.org/10.1007/978-3-319-10557-4_7
https://doi.org/10.1007/978-3-319-10557-4_7
https://doi.org/10.3390/s18030925
https://doi.org/10.1109/ETFA46521.2020.9211932

1.5. Mathematical Notation 53

Moreover, the author was involved in application-specific publications focusing on
generic, fault-tolerant robotic systems, which are listed below.

• G. Jäger, C. A. Mueller, M. Thosar, S. Zug, and A. Birk, “Towards robot-centric
conceptual knowledge acquisition,” Robots that Learn and Reason Workshop in
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018

• M. Thosar, C. A. Mueller, G. Jäger, J. Schleiss, N. Pulugu, R. Mallikarjun
Chennaboina, S. V. Rao Jeevangekar, A. Birk, M. Pfingsthorn, and S. Zug, “From
multi-modal property dataset to robot-centric conceptual knowledge about house-
hold objects,” Frontiers in Robotics and AI, vol. 8, p. 87, 2021. doi: 10.3389/
frobt.2021.476084

• M. Thosar, C. A. Mueller, G. Jaeger, M. Pfingsthorn, M. Beetz, S. Zug, and T.
Mossakowski, “Substitute selection for a missing tool using robot-centric concep-
tual knowledge of objects,” in Proceedings of the 35th Annual ACM Symposium on
Applied Computing. New York, NY, USA: Association for Computing Machinery,
2020, pp. 972–979

1.5. Mathematical Notation
This thesis provides mathematical formulations complementing the linguistic descrip-
tion of the presented concepts. To support the reader, a brief description of the most
central elements of the employed notation is provided hereafter.

Scalars and Vectors Variables are written in bold letters to denote vectors while not-
bold letters indicate scalar values. For instance x ∈ R is a scalar, but x ∈ Rn is
a vector with n ≥ 2.

Sets Sets are denoted using calligraphic letters. For instance, X = {1, 2, . . . , N} is a
set of N integer numbers.

Domains Domains, for instance the set of real numbers, are written in double-struck
letters. An example is the already used set of real numbers R.

Euclidean Norm if not stated otherwise, the following notation is used to indicate the
Euclidean norm: ‖. . .‖.

https://doi.org/10.3389/frobt.2021.476084
https://doi.org/10.3389/frobt.2021.476084

55

2. State of the Art

Dynamically Composed System

Intended EUC

Concept &
Scope Definition

...

Safety Assessment
- Static Elements -

Safety Assessment
- Shared Data -

Operation

Design-
Time
Run-
Time

Shared Data

Modeling Failure
Characteristics

Failure Model
Quality Assessment

Integration Step

Section 2.2

Section 2.1

Fig. 2.1.: Simplified safety process from Fig. 1.9 showing the contents addressed in this chapter.

Starting with the review of the IEC 61508 standard with its application to dynamically
composed systems in mind, the last chapter motivated the need to shift parts of a sys-
tem’s safety assessment to its run-time to assess the performance a safety function can
maintain when incorporating shared data. From that, two objectives of this thesis were
derived. According to these, this chapter discusses state-of-the-art approaches.
An overview of the central sections is provided in Fig. 2.1. Section 2.1 targets Ob-
jective 1.1 and reviews work on run-time safety assessment. For structuring this dis-
cussion the presented approaches are categorized with respect to the level of system
abstraction they are aiming at. In accordance with Section 1.2.2 and the phase of
Safety Concept Definition, the functional (implementation-independent) and technical
(implementation-dependent) level are distinguished1.
At first, approaches targeting the functional level, that is, approaches consider-
ing implementation-independent safety assessment methods requiring only knowledge
about the functional entities of a system are presented. Using the predefined criteria

1It needs to be noted, that approaches can not always be unambiguously associated with the func-
tional or technical level, in which case the decision was made for the sake of structuring the
argumentation.

56 2. State of the Art
Sy

st
em

C
om

po
sit

io
n

dy
na

m
ic

st
at

ic

Safety Assessment

design-time run-time

Legend:
Functional

Level

Technical
Level

Modular
Safety

Case [36] DDI [37]

FMEA [23]

FTA [22]

ConSert [38]

DSC [39]

Failure
Semantics [29]

Safety
Kernel [40]

Runtime Cer-
tificates [41]

MBDA [42]

Reachability
Sets [43]

CBF [44]

RoA [45]

Fig. 2.2.: Overview and categorization of reviewed approaches to safety assessment.

presented in the previous chapter, it can be shown that different strategies towards
run-time safety assessment exist.
In contrast, the same is missing for the technical level. At this level, approaches
targeting specific safety mechanisms and implementation-dependent safety assessment
strategies are in question.
However, the lack of those approaches motivates the development of a run-time safety
assessment method focusing on the technical level. Following the predefined criteria,
such a method shall facilitate analyzing the failure model of shared data for deciding
on whether or not to use the same. Consequently, Section 2.2 targets Objective 1.2
and examines approaches to failure modeling. Due to the targeted level of control
systems, sensor failure models are considered. They are assessed with respect to the
criteria presented in Section 1.3.1. As none of the reviewed approaches fulfills these
sufficiently, it is concluded that currently no failure model is suitable to be used in the
envisioned use case of dynamically composed systems.
These findings are summarized and discussed in Section 2.3.

2.1. State of the Art in Run-Time Safety Assessment
The discussion on IEC 61508 in Section 1.2.2 brought not only challenges regarding
dynamically composed systems to light but also clarified that safety has to be shown
at all levels of abstraction. In that regard, the ISO 26262 [13] standard distinguishes
between the functional (implementation-independent) and technical (implementation-
dependent) level. Although not all approaches can be unambiguously categorized into
one or the other level, the differentiation is used to structure the following subsections
where approaches to run-time safety assessment are reviewed. An overview is given in
Fig. 2.2. Next to the abstraction level, the system composition (static, dynamic) and
execution time of the safety assessment (design-time, run-time) are studied. Using this
classification the criteria from Section 1.3.1 are used to determine the applicability of

2.1. State of the Art in Run-Time Safety Assessment 57

the presented approaches.
For that, the next subsection reviews approaches targeting the functional level before
approaches of the technical level are presented.

2.1.1. Approaches at the Functional Level
At a functional level of system abstraction, a wide range of approaches to safety as-
sessment exist. Starting with traditional methods focusing on static system composi-
tions (FTA, FMEA) at design-time, recent developments in Model-Based Dependability
Analysis (MBDA) and efforts to shift safety assessment to a system’s run-time are dis-
cussed. Finally, approaches directly targeting run-time safety assessment methods are
presented.

FTA and FMEA As part of the IEC 61508 safety life cycle, safety assessment is
traditionally applied to statically composed systems at design-time, cf. Section 1.2.2.
Applicable already at HARA to identify relevant hazards and their associated risks,
Fault Tree Analysis (FTA) [22] and Failure Mode and Effect Analysis (FMEA) [23]
are common approaches for verifying that these risks have been successfully reduced
by implemented safety functions during safety assessment as well. They consider the
structure of the system in question to determine the origin and sequences of events
causing failures or undesired system states.
For that, FTA starts with an undesired system state or failure and traces it back
to its origin using Boolean logic. During this process, a tree structure of events is
generated. The leaves of the tree state the basic events potentially leading to the
considered failure. They can be associated with failure rates, which enables calculating
the overall probability of the considered failure to occur. Having appropriate safety
functions implemented, this overall failure rate associated with the occurrence of a
hazard should be tolerable such that the system can be deemed safe.
For that, however, not only the components and failure rates of a system have to be
available but also an analysis of events leading to a top-level failure or hazard. For
dynamically composed systems, the calculation of an overall failure rate from a given
FTA is possible at run-time in principle. However, deriving a fault tree as a result of
a dynamic system composition at run-time is not reported yet.
It is precisely this analysis, which prevents using FMEA at run-time as well. In con-
trast to FTA, FMEA is a bottom-up, inductive approach. Using the architecture of
the system in question, functional units, components, and subsystems are reviewed
regarding their failure modes. For each failure mode, their causes and effects on the
overall system are determined. Similarly to FTA, the approach can be combined with
failure rates of components to derive a quantitative analysis.
Although this allows integrating failure models of components, the analysis of causes
and effects is currently executed as brainstorming sessions of involved engineers. As
such, the process is flexible but unstructured and can not be automated as part of a run-
time safety assessment. Moreover, the process can not be evaluated to be functionally
correct.

58 2. State of the Art

Model-Based Dependability Analysis (MBDA) On that account, the field of Model-
Based Dependability Analysis (MBDA) aims at structuring not only the process of
safety analysis but of dependability engineering in general. Assuming a system is
designed with respect to models of its behavior, which are refined in an iterative process
to implement the required functionality, the central idea is to reuse the generated
models for dependability and safety analysis [42]. Thus, models of the system under
consideration are analyzed using predefined algorithms to generate artifacts, e.g. fault
trees, automatically. These are then used to calculate well-known failure rates and
other dependability metrics.
This does not only reduces the manual effort required to generate a fault tree but does
also increase the correctness of the approach as the generation process can be shown
to be functionally correct. On the other hand, the lack of integrating failure models
of shared data and descriptions of uncertainty hinders its application to dynamically
composed systems along with the fact that only analysis of statically composed systems
at design-time is targeted for now. However, the application of MBDA methods at run-
time is proposed for future work [42].

Runtime Certification The idea of reusing artifacts from the design-time of a system
at its run-time was formulated by Rushby [41] as well. They argue that the assurance
(or safety) case of a system should not only be used as a safety guarantee at its design-
time but provides opportunities for run-time analysis as well. In that endeavor, it
is proposed to construct an assurance case with assumptions, goals, arguments, and
elements of evidence to derive models that can be employed at run-time. They can be
used not only for monitoring and failure detection but also to analyze occurred failures
and synthesize corresponding recovery strategies. Through the explicit modeling of
safety requirements, the adherence of generated recovery strategies to the same can
be certified, which leads to the term “Runtime Certification” proposed by the authors.
This approach additionally enables reacting to failures unknown at design-time, as
these are analyzed at their occurrence at run-time.
As such, the approach does not only take a step towards run-time safety assessment but
also fulfills the central requirement of being able to certify the result of the assessment.
However, only models and information available already at design-time can be used,
which requires a statically composed system. Consequently, no shared data or a failure
model of its failure characteristics is supported.

Modular Safety Case An approach introducing the ability to dynamically integrate
new components is presented by Jaradat et al. [36]. Motivated by the needs of Industry
4.0 and Internet of Things (IoT) where flexible factories of the future have to integrate
new components of different suppliers frequently, the task of a system integrator to
compile a complete safety case becomes costly and time-intensive. Therefore, the
authors argue for a modular safety case allowing individual suppliers to contribute to
the overall safety case. For that, a contract-based scheme is proposed which allows a
supplier to explicitly state under which conditions or assumptions an element provides
certain guarantees with the specified confidence. However, as a system integrator has
to define the failure characteristics of the overall system in order to identify hazards
and assess their risk (see HARA in Section 1.2.2) the elements additionally have to
provide failure models. Identifying the challenge of completeness (cf. Challenge 1.2)

2.1. State of the Art in Run-Time Safety Assessment 59

of specifying the overall failure behavior, the approach targets dynamically composed
systems but is limited to design-time.
Compared to the previous approaches, however, this work explicitly states the need
for integrating failure models of not only shared data but of combined components in
general. On the other hand, no process for assessing the safety of the resulting system
is proposed such that the criterion of functional correctness can not be fulfilled.

Digital Dependability Identity (DDI) The challenge of sharing general dependability
information for providing modularity in safety has been addressed by Schneider et al.
[46] as well. They aim at formalizing dependability information to enable sharing the
same and propose Digital Dependability Identities (DDIs) in that regard.
A DDI encompasses all information that uniquely describes the dependability char-
acteristics, e.g. a failure model, of a component. For that, it is based on an open
meta-model that enables different stakeholders to follow their own development pro-
cesses but to derive DDIs that are exchangeable. The idea is that a component is
developed at design-time where models generating dependability-related information
are available. These are represented by a DDI which is certified and maintained during
the component’s lifetime. To bridge the gap to run-time dependability analysis, DDIs
contain machine-readable information and models that may be used during run-time
safety analysis. Therefore, DDIs are envisioned to support both, modular safety cases
of systems integrated at design-time and run-time safety assessment of dynamically
composed systems. However, no specific approach to the latter is described.

Conditional Safety Certificate (ConSert) In contrast, ConSerts, proposed by
Schneider and Trapp [38], are considered as an implementation for using DDIs to
certify the safety of a dynamically composed system at run-time [37]. ConSerts are
based on the idea of services and contracts, which can be dynamically composed to
generate top-level services. Similar to what is proposed in [36], ConSerts explicitly
state for each component the assumptions under which it was developed and the safety
demands that need to be fulfilled by the integrating environment to provide the stated
safety guarantees. At run-time, these assumptions, demands, and guarantees are ex-
changed and need to be verified before integrating components. This requires two
concepts.
Firstly, depending on the service that needs to be composed, additional Runtime Evi-
dence needs to be acquired. The authors mention the independence of services, which
can be evaluated only at run-time, as an example. However, one can think about an-
alyzing a shared failure model to generate such run-time evidence as well. Secondly,
functions that map a configuration of fulfilled/unfulfilled safety demands to a set of
safety guarantees that can be given. Although any function is possible, it is proposed
to use Boolean functions. With these functions, the safety of a specific configuration
of a dynamically composed system can be assessed at run-time. Moreover, the rigor-
ous checking of safety requirements enables to specify an algorithm whose functional
correctness can be shown at design-time and which certifies the validity of a specific
system combination at run-time.

Dynamic Safety Contract (DSC) Similar to ConSert, Müller and Liggesmeyer [39]
build upon the idea of contracts. They acknowledge that safety-related data needs to be

60 2. State of the Art

exchanged between systems to perform a run-time safety assessment of the dynamically
composed system. To exchange the relevant information, they propose qualitative
and quantitative safety contract modules called DSC . These state not only the safety
demands that a component has and guarantees that it provides but also variants of
these contracts. Comprising of inputs and output ports, each safety contract module
explicitly states its requirements. The inputs may be run-time knowledge from other
safety contract modules, which provides modularity, but also design-time knowledge,
such as safety certifications. The central idea is, that safety contract modules can be
combined to form required system services, such as Cooperative Adaptive Cruise Control
(CACC), the example given by the authors. For that, qualitative safety contracts allow
binary checking whether or not a functionality can be guaranteed, while quantitative
safety contracts facilitate gradual degradation through variants of the contract, for
instance, to increase the safe distance to a leading vehicle in case of low quality (shared)
data. Therefore, the approach does not only enable certifying a dynamic composition of
safety contracts at run-time but also explicitly allows predefined levels of performance
degradation. Depending on the quality of available data and modules, the level is
adjusted to maintain safety.

Safety Kernel and Level of Service (LoS) While the work of Müller and Ligges-
meyer [39] remains on a conceptual level, independent of specific implementations, the
KARYON project [40], [47] proposed a system architecture for safe cooperative func-
tions based on a safety kernel. Its task is to monitor the quality of data shared for
cooperative functionalities in order to adapt the system’s Level of Service (LoS) accord-
ingly. Thus, instead of disengaging from cooperative functionalities when encountering
reduced quality of sensory data, the performance of the functionality is reduced and
safety is thereby maintained.
For that, the approach builds on the validity concept [48] which abstracts a sensor
failure model to a scalar value informing an application about the confidence it can
have in an observation. At design-time, the concept allows assessing the quality of
data to be expected from a component while it enables using failure detectors and
filters to update this representation at run-time. Consequently, at run-time, each
component produces an output signal that is attributed with a validity value. This
run-time representation is evaluated by the safety kernel, whose functional correctness
is proven at design-time already. The kernel uses a rule-based system to adjust the LoS
of the system, which eventually reduces performance but maintains safety. Depending
on the chosen LoS , components providing cooperative functionality may be available
or deemed unsafe. Assuming that cooperative functionality is possible only in higher
LoS , the lower (and lowest) levels are restricted to non-cooperative functionalities that
require inputs/outputs ensuring safety based on local components only.
Opposed to other approaches of the functional level, the concept of LoS does not
directly provide complete modularity. Instead, it is assumed that the described system
architecture is implemented in all systems participating in a cooperative maneuver.
This, however, enables proving the safety kernel’s functional correctness already at
design-time, which ultimately provides confidence that shared data is used only when
it is safe. In contrast, for the approach to work shared data has to be attributed with
validity statements. As these are based on sensor failure models, their interpretation
may be ambiguous, which endangers the validity of the result of the run-time safety

2.1. State of the Art in Run-Time Safety Assessment 61

assessment. Nevertheless, a prototypical implementation of the safety kernel in real
hardware could be presented [40], which supports the conceptual idea.

Failure Semantics In its core, the safety kernel aims at comparing the quality of
shared data with what is tolerated by the application under consideration. A sim-
ilar idea is presented by Jaeger, Brade, and Zug [29]. The approach defines failure
semantics from two perspectives: sensor-specific and application-specific. From a sen-
sor’s perspective, failure semantics describe the failure characteristics that are to be
anticipated. From an application’s perspective, a failure semantics states the tolerable
failure characteristics. Based on a ranking, a matching of failure semantics is provided
to dynamically decide on whether an application can tolerate the failure characteristics
of a sensor or not. Although this takes upon the idea of comparing what is provided
with what is required, a proof-of-concept evaluation is missing.

In summary, independently of the specific approach (failure semantics, DDI , Con-
Sert, modular safety case or LoS), the presented concepts build upon the same ideas.
Explicitly and unambiguously modeled information about the quality of data has to
be shared between systems to enable cooperative functionalities and enable run-time
safety assessment. Regarding the latter, two main approaches are identified. On the
one hand, contract-based approaches are presented that promise truly open systems
but require extensive efforts in modeling all required dependability information. On
the other hand, the KARYON project proposed a system architecture based on the
validity concept and a safety kernel that enables safe performance degradation in case
of reduced sensor data quality at the expense of flexibility.
Although a prototypical implementation is presented in the latter case, both approaches
remain on a functional level and refer to the fact that run-time evidence is required to fi-
nalize the run-time safety assessment. Accordingly, in the next section approaches aim-
ing at providing safety assessment functionality at a technical level are reviewed.

2.1.2. Approaches at the Technical Level
In accordance with IEC 61508 and other safety standards, safety has to be shown
at all system abstraction levels. Moreover, approaches to run-time safety assessment
targeting the functional level were shown to rely on evidence generated by the technical
level.
At this level, safety is addressed with respect to the state space of a control system
under consideration. From that, two nonexclusive perspectives arise. On the one hand,
safety can be provided in terms of stability of the control system as it shows that its
behavior is predictable. On the other hand, safety can be shown by matching safety
requirements to the states of the control system and showing that only states fulfilling
the requirements are reachable. As reachability is closely related to stability, both
aspects are addressed with regard to stability analysis of control systems. Therefore,
in this subsection, approaches from this field are reviewed regarding their potential
contribution to a run-time safety assessment method.

62 2. State of the Art

Reachability Analysis One of such stability analysis methods is Reachability Analysis.
It is used by Kianfar, Falcone, and Fredriksson [43], for instance, who consider the
exemplary scenarios of Adaptive Cruise Control (ACC) and CACC . During the CACC
scenario, the vehicles are assumed to share their acceleration information. Within both
scenarios, the safety of participating vehicles is maintained as long as their distance
is greater than zero, that is, no collision occurs. In the endeavor of guaranteeing
this, Kianfar, Falcone, and Fredriksson [43] use reachability analysis and invariant set
theory.
Firstly, the authors assume a set of initial states. These define the distances the
vehicles may have at the beginning of the driving scenarios. By simulating the vehicles
using their kinematic model the set of all states the system may evolve to over time
is determined. This forward reachability analysis allows differentiating between states
resulting in collisions and collision-free states. As a consequence, the minimal safe
distance to keep between both vehicles for maintaining their safety is determined.
Using backward reachability, where one asks what initial states a system might have
been in to arrive at a given set of states, a maximal asymptotic safe set is calculated
under the consideration of the previously defined minimum safe distance. This set
comprises only states for which the system is guaranteed to stay within the set for all
times. Given that this set does contain only states fulfilling the safety requirement,
the safety of the system is guaranteed.
With this approach, the authors show that the safety of a system using shared data can
be guaranteed. However, failures and uncertainties impairing the quality of the data
are not considered. Furthermore, the analysis is performed only at design-time.

Control Barrier Function (CBF) In contrast, Cheng et al. [49] apply CBFs to guar-
antee the safety of a system during Reinforcement Learning (RL), that is, at the sys-
tem’s run-time.
RL generally aims to solve the optimal control problem, originated in classical control
theory, through machine learning and direct interaction with the system in question.
The key idea is that taking an action u at a system state x produces a reward signal
from the controlled system that informs about the appropriateness of the chosen action.
Leveraging this signal as a feedback mechanism, RL aims at optimizing a control policy
u = π(x) to maximize the cumulative reward over time. For that, phases of explo-
ration (learning about the controlled system through random actions) and exploitation
(applying currently optimal policy to maximize reward) alternate [50].
When directly executed on a physical system, for instance on a mobile robot, the
exploration phase poses a safety threat to the system and its surroundings due to the
random actions taken. Therefore, Cheng et al. [49] propose to use CBFs to provide a
safety layer. A CBF can be considered as a cost function that drastically increases for
unsafe states. It thereby encodes safety requirements.
Depending on the structure of the specified CBF , a controller adhering to the encoded
safety requirements can be synthesized by solving the corresponding minimization prob-
lem. Cheng et al. [49] refer to these as CBF controllers. They are used to shield unsafe
control actions during exploration and leveraged to guide the learning process during
RL.
With this approach, the authors show that safety can be assessed at run-time using
appropriate cost functions (CBF in this case). Furthermore, the process can be shown

2.1. State of the Art in Run-Time Safety Assessment 63

to be functionally correct, that is, it can be shown that the controller synthesized by
minimizing the CBF maintains the safety of the system. However, neither a run-time
certification is provided nor the integration of shared data or an analysis of its failure
model.

Region of Attraction (RoA) Estimation Using Control Lyapunov Function (CLF)
Similar to the usage of CBF as a cost function to assess safety, the stability of a given
controller can be analyzed using a Control Lyapunov Function (CLF). With such a
function, an RoA for the controller under consideration can be estimated. The RoA
is a set of states for which the controller is guaranteed to provide stabilizing control
actions. For that, it is shown that at each state in the RoA, the CLF is minimized by
the chosen control action [45]. The idea is visualized schematically in Fig. 2.3.
As a prerequisite to calculating a RoA, a continuous-time system model given as a
system of Ordinary Differential Equations (ODEs) and a controller π of the control
system in question are required, cf. Eqs. (2.1) and (2.2).

ẋ(t) =
∂x

∂t
= f(x(t),u(t)) (2.1)

u(t) = π(x(t)) (2.2)

For the sake of simplicity, the time index t will be omitted in further equations. Addi-
tionally, a CLF encoding the distance to the control goal is required. It is a monoton-
ically increasing, continuously differentiable function V (x) : X → R≥0 with a global
minimum of V (x = 0) = 0. Similar to a CBF , it can be interpreted as a cost function
that the controller aims to minimize over time. Intuitively, the set of states surround-
ing the global minimum for which the controller succeeds in this task is the RoA.
Lemma 2.1 formalizes this idea [32, Lemma 1].

Lemma 2.1. The origin of the dynamics in Eq. (2.1) is asymptotically stable within a
level set, V(c) = {x ∈ X |V (x) ≤ c} with c ∈ R>0 and if ∀x ∈ V(c):

V̇ (x) =
∂V (x)

∂t
=
∂V (x)

∂x
· ∂x
∂t

=
∂V (x)

∂x
· f(x,u) < 0 (2.3)

According to this lemma, a non-empty set V(c) is provided if the given controller π is
able to asymptotically stabilize the system. Essentially, it means that at every state
x ∈ V(c) it can be shown that the system is driven closer to the stability point and
therefore the gradient over time is negative, V̇ (x) < 0.
As this statement is directly derived from the gradient of the chosen CLF , its correct-
ness is influenced by the function’s appropriateness to reflect stability. Constructing a
suitable CLF , however, is a challenging task. As no one-fits-it-all approach could be
defined yet, it is a field of active research [44] and requires expert knowledge.
While Lemma 2.1 is defined on a continuous state space, checking the gradients of all
states for determining the RoA is intractable. To solve this issue, Berkenkamp et al.
[45] propose using Lipschitz continuity [32, Definition 1].

64 2. State of the Art

V̇ (x)

x

V
(x

)
/

V̇
(x

)
V (x)
V̇ (x)

c

V(c)

Fig. 2.3.: Estimating Region of Attraction (RoA) by maximizing c of Lemma 2.1.

Definition 2.1 (Lipschitz Continuity)
A function α(x) : A → B is called Lipschitz continuous if there exists a constant
L ∈ R≥0 for all x1,x2 ∈ A such that:

‖ α(x1)− α(x2) ‖≤ L · ‖ x1 − x2 ‖ (2.4)

If L exists, it is referred to as a Lipschitz constant of the function α(x). Intuitively,
it can be considered as an upper limit for the gradient of the function. Building upon
that, a function is called locally Lipschitz continuous if one can find Lipschitz constants
that are valid only for subsets of its domain.
Assuming that the gradient function V̇ (x) is (locally) Lipschitz continuous with
a Lipschitz constant LV̇ , Eq. (2.3) can be refined for a discrete state space Xτ ,
cf. Eq. (2.5).

V̇ (x) < −LV̇ · τ (2.5)

Fulfilling this condition implies that the gradient of the CLF will evolve over time τ at
most to a value V̇ (x) < 0. As this still matches the original requirement in Lemma 2.1,
the stability of the system under consideration is guaranteed despite discretizing the
state space. With this refinement, the Region of Attraction (RoA) for a system Eq. (2.1)
controlled according to the policy π is estimated by maximizing c of the level set V(c)
with respect to Lemma 2.1 and Eq. (2.5). This process is visualized in Fig. 2.3 where
a control policy is assumed that successfully generates negative gradients over time for
the chosen CLF , that is, where V̇ (x) < 0 for each x.

Region of Attraction (RoA) in Safe Reinforcement Learning (Safe RL) The guar-
antee provided by the concept of RoA, that is, asymptotic stability of the examined con-
troller, combined with its applicability to general control systems enable Berkenkamp
et al. [45] to use the same in Safe Reinforcement Learning (Safe RL). Although it is
commonly applied at a controller’s design-time, the authors show that an application
at run-time is possible as well.

2.1. State of the Art in Run-Time Safety Assessment 65

In this case, however, the uncertainties affecting a system have to be considered as well.
Therefore, Berkenkamp et al. [45] and Berkenkamp et al. [51] consider Umodel(x,u) as
the distribution of uncertainties and apply the concept to the changed system model
presented in Eq. (2.6).

ẋ = f(x,u) + Umodel(x,u) (2.6)

It describes not only the state change ẋ depending on the chosen control actions but
also a model uncertainty Umodel(x,u).
As Umodel is a random distribution, however, the resulting gradient ẋ is a random
distribution as well. To apply Eq. (2.5) for calculating an RoA nonetheless, the au-
thors convert the distribution to an interval and consider only the maximal gradient.
Thereby, the worst-case model uncertainty is assumed. If an RoA can be estimated
nonetheless, it is shown that the controller stabilizes the system for states inside the
resulting RoA.
Although this approach does not directly support analyzing a failure model of shared
data to perform a run-time safety assessment, it provides guarantees about the stability
of the system under consideration at run-time and allows specifying uncertainties.
However, these uncertainties are specified as a single distribution Umodel. In contrast,
versatile internal and external factors may contribute to the uncertainties affecting the
state change ẋ of a system. They range from external disturbances, such as weather
conditions, to impairments affecting sensors observing the system’s environment, to
internal uncertainties of model assumptions and parameters. Consequently, modeling
uncertainties by a single distribution contradicts the idea of flexibility and dynamic
integration as promised by dynamically composed systems.

In summary, approaches at the technical level address safety in two ways. Firstly,
stability is considered as one aspect of safety as it enables limiting the control system’s
trajectory. This is combined with the second aspect of safety, which is to map safety
requirements to the state space of a system in question. Then, by guaranteeing that
only states deemed safe are visited, the overall safety is guaranteed. Moreover, as these
guarantees are mathematically founded, functionally correct implementations for usage
during a run-time safety assessment are possible.
However, these approaches are commonly applied at design-time. Only limited ap-
proaches from the field of Safe RL aim at providing guarantees at run-time, for instance
using the idea of RoA. None of these approaches target dynamically composed systems
or allow analyzing a failure model of shared data.

2.1.3. Conclusions
The previous subsection presented approaches to run-time safety assessment targeting
the functional and technical level. An overview is given in Fig. 2.2.
At the functional level, the approaches of FTA and FMEA form the basis of the state of
the art. These approaches can only be applied to static system compositions at design-
time. In light of dynamically composed systems, the disadvantages and shortcomings
of these approaches were already addressed. The required shift of safety assessment
to run-time was addressed by Rushby [41] who proposed reusing system models gen-
erated at design-time to enable run-time certification. However, a dynamic system
composition is missing.

66 2. State of the Art

Contrarily, Jaradat et al. [36] focused on the modularity of safety cases which enables
the dynamic integration of new components and thereby forms a basis for dynamically
composed systems. Both ideas, a run-time safety assessment and a dynamic integration
of new system components, are required for dynamically composed systems. Therefore,
approaches such as ConSerts and DDI but also the concept of LoS are proposed. With
these approaches, run-time safety assessment is addressed at the functional level.
One requirement of these approaches is to interface with the technical level to provide
run-time evidence about the safety of a dynamically composed system. Consequently,
works targeting this level were reviewed as well. However, these were found to be
focusing on statically composed systems.
Most promising are approaches from the field of Safe RL, where, for instance, the
approach of RoA is shown to provide guarantees about the stability of a system at run-
time. It thereby satisfies the criterion of run-time certification and can be shown at
design-time to be functionally correct, cf. Section 1.3.1. However, the central criterion
of being applicable to dynamically composed systems, that is, being able of analyzing
failure models of shared data, is not fulfilled.
Therefore, while run-time safety assessment approaches targeting the functional level
can be found, approaches providing the run-time evidence required by these are missing
for the technical level.

2.2. State of the Art in Failure Modeling
In the endeavor of realizing a run-time safety assessment for dynamically composed
systems, the need for a failure model describing the failure characteristics of shared
data was identified in Section 1.3. Thus, in this section approaches to failure mod-
eling are reviewed. To clarify what a failure model is, however, the next subsection
starts with formally introducing its definition. Building upon that, Section 2.2.2, Sec-
tion 2.2.3, and Section 2.2.4 discuss approaches based on intervals, distributions, and
failure types respectively. Despite these differences, however, the approaches aim at
failures of sensors and sensory data. These are focused as sensors form the basis for the
environmental perception of autonomous systems. As such they are central sources of
uncertainty that either directly or indirectly influence failure characteristics of shared
data as well. The suitability of the presented models is discussed with respect to the
predefined criteria of Section 1.3.1.

2.2.1. The Definition of (Sensor) Failure Model
Before approaches to failure modeling can be discussed, it has to be defined what a
failure model is first. As specifically sensory data and its failure characteristics are
targeted in this work, the definition of a sensor and its failures is provided first.
A sensor is a device observing a continuous phenomenon e(t) ∈ Rm in the real-world and
converting it to a measurable, electrical signal. By generating a digital representation
of this signal with a sampling period of Ts, a sensor produces a discrete time series of
observations ok = e(k · Ts) with ok ∈ O ⊆ Rm, where k ∈ N0 is the discrete time index
and O is the set of possible observations provided by a sensor [52], [53].
However, the conversion process is typically disturbed by internal (e.g. power supply
when provided through battery) or external (e.g. weather conditions) factors [48].

2.2. State of the Art in Failure Modeling 67

0 0.5 1 0.25 0.75 1.25/0 0.5 1.0 0.25 0.75 1.25/0 0.5 1.0

·104

−30

−20

−10

0

ok = 21 cm ok = 31.5 cm ok = 43 cm ok = 51.5 cm ok = 56.5 cm

Time Step k

f
(k

,o
k
)

in
cm

Fig. 2.4.: Failure amplitudes according to Eq. (2.7) of a Sharp GP2D12 distance sensor for different
ground truth distances ok ∈ {21cm, 31.5cm, 43cm, 51.5cm, 56.5cm}. The figures is inspired by [7].

These result in random or systematic failures impairing the observation produced by
a sensor. Although systematic failures can be mitigated by properly calibrating a
sensor [54], random failures are challenging to predict. Therefore, instead of providing
the theoretically correct observation ok, the impaired observation ôk is produced. The
difference between both is the failure amplitude f(k,ok) which is a discrete time series
as well.

f(k,ok) = ôk − ok (2.7)

Fig. 2.4 shows exemplary time series of failure amplitudes of a Sharp GP2D12 in-
frared distance sensor. Note that the failure amplitudes are shown for different ground
truth distances ok ∈ {21cm, 31.5cm, 43cm, 51.5cm, 56.5cm} and shown in one plot for
simplicity.
As one can see, the magnitude of f(k, ok) varies with the ground truth distance ok.
Similar to such value-correlations, failure amplitudes are reported to be possibly time-
correlated as well [55], [56]. This is observed for distance information provided by 3D
depth cameras [56], for instance. Due to these correlations, failure amplitudes f(k,ok)
are considered a function of time k and the ground truth observation ok.
Moreover, the failure amplitudes and their correlations resemble the internal and ex-
ternal disturbances influencing the conversion process of the sensor. Therefore, they
resemble the sensor’s failure characteristics. The task of a failure model is to describe
exactly these. It is therefore defined as follows.
Definition 2.2 ((Sensor) Failure Model)

A failure model is a representation of a sensor’s failure characteristics describing
the inaccuracy and imprecision to be expected from its observations.

Definition 2.2 provides a data-driven definition of a sensor failure model focusing on the
observable consequences of a sensor failing to provide a sufficient adequate observation
of a phenomenon.
It has to be noted that despite Definition 2.2 focusing on sensors, corresponding models
might be applicable to shared data as well. On the one hand, shared data can be sensory

68 2. State of the Art

Tab. 2.1.: Qualitative assessment of the fulfillment of the criteria discussed in Section 1.3.1 by the
interval-based failure modeling approaches.

Approach Clarity Compara-
bility

Generality Coverage Confidence

Static
Intervals [58],

[59]

Value-
Correlated

Intervals [59]

Uncertainty
Intervals [60]

GUM [61]

Legend: – not fulfilled, – partially fulfilled, – fulfilled

data. On the other hand, shared data may stem from processing sensory data. In this
case, the concept of virtual sensors [57] applies and enables considering the data as
sensory data as well. Therefore, not only low-level data such as distance measurements
are addressed but also processed and abstracted data.
Having a definition of a failure model in place, different types of models are reviewed
next.

2.2.2. Interval-Based Failure Modeling
Due to the random nature of sensor failures, modeling them is a challenging task. The
most simplistic approach is to state a lower and upper bound of f(k,ok). Approaches
using such interval-based failure models are reviewed in this subsection. An overview,
as well as the fulfillment of the predefined criteria by the considered approaches, is
given in Table 2.1.
A common document for the specification of interval-based failure models are sensor
datasheets. For a long-range radar sensor, for instance, the accuracy of its distance
and velocity observations is given by ±0.1m and ±0.1 km s−1 respectively [58]. These
are an example of static intervals, where the range of f(k, ok) does not change. Its
interpretation is that the true value ok is with the interval [ôk−0.1m, ôk+0.1m]. While
this supports the clarity criterion defined in Section 1.3.1, it limits the fulfillment of the
coverage criterion. The bounds of the specified interval have to be chosen according
to the worst-case failure amplitudes. Therefore, a fine-grained representation of failure
characteristics or a detailed analysis of the same is not possible. This renders the
comparability criterion to be unfulfilled, as such a failure model does not provide
sufficient information to be compared with the application needs. Consequently, the
generality criterion is only partially fulfilled as, on the one hand, the representation
is application-independent, but, on the other hand, transformation to an application-
specific representation is limited.

2.2. State of the Art in Failure Modeling 69

Opposed to such a static interval, the failures of a laser range finder are modeled as a
mixture of a static interval (±0.03m for observations up to 1m) and a dynamic interval
(±3% of observation for ranges between [1m, 4.095m]) [59]. For the dynamic interval,
the range in which the true value ok is to be expected increases proportional to the
observation: ok ∈ [0.97 · ôk, 1.03 · ôk]. Therefore, the interval is value-correlated. This
provides an equally clear interpretation but suffers from the same limitations causing
the coverage, generality, and comparability criteria to be not or only partially fulfilled.
Moreover, as the representation for both variants boils down to lower and upper bounds
of f(k, ok), the confidence criterion is not fulfilled.
This is different for uncertainty intervals that are proposed by Moffat [60]. They define
the true value ok to lie in an interval ok ∈ [ôk −α, ôk +α] as well. However, α provides
the significance, that is, the probability of ok lying within the interval. For that, α can
be set to 2σ, where σ is the standard deviation expected in the observations ôk.
The considerations of Moffat [60] mainly influenced the “Guide to the Expression of
Uncertainty in Measurement” [61]. It distinguishes random (Type A) and systematic
(Type B) effects that introduce uncertainties into observations. For quantifying the
uncertainties, multiple, independent test series are conducted. For each series, the
mean value is calculated, resulting in one mean value per independent test. From
that, the standard error is defined as the standard deviation of these mean values. As
it follows a Gaussian distribution according to the Central Limit Theorem [62], the
standard error can be used to derive a corresponding confidence interval as well, which
enables giving confidence in the described failure model.
In summary, interval-based failure models focus on simplifying the representation of
failure characteristics by providing only its bounds. Thereby, the coverage and com-
parability criteria can not be fulfilled, but the interpretation of the model is clear.
Generality can be only partially fulfilled as an interval representation is general, but
provides not sufficient information to transform it into an application-specific represen-
tation. Regarding the confidence criterion, only uncertainty intervals and the intervals
based on the standard error of observations enable its partial fulfillment. In parts,
both approaches build upon the distribution with which the failure amplitudes are
distributed in the provided intervals.
Central to the restrictions of the interval-based failure models, however, is the lim-
ited information provided. Considering, for instance, the failure amplitudes shown
in Fig. 2.4 it becomes clear that considering only the minimal and maximal value
of f(k, ok) is not sufficient to comprehend the overall characteristics. Therefore,
distribution-based approaches are reviewed next.

2.2.3. Distribution-Based Failure Modeling
To overcome the disadvantage of limited information when using interval-based failure
models, distribution-based models can be used. Table 2.2 lists the approaches exem-
plary reviewed in this section. It needs to be noted that this is a non-exhaustive list
with many more examples described in literature.
Within the body of research, approaches assuming zero-mean Gaussian distributions
for representing sensor failure characteristics are common. Elnahrawy and Nath [63],
for instance, build upon that assumption and propose a filter based on the Bayes’
theory to clean noisy sensor observations of wireless sensor networks. Assuming in-

70 2. State of the Art

Tab. 2.2.: Qualitative assessment of the fulfillment of the criteria discussed in Section 1.3.1 by the
distribution-based failure modeling approaches.

Approach Clarity Compara-
bility

Generality Coverage Confidence

Gaussian
Distribu-

tion [63]–[65]

His-
togram [66],

[67]

Descriptive
Variables [68]

Legend: – not fulfilled, – partially fulfilled, – fulfilled

dependence between consecutive sensor observations enables them to consider only a
single observation at each time step k. The corrected sensor observation is provided
by applying Eq. (2.8).

P (ok|ôk) =
P (ôk|ok) · P (ok)

P (ôk)
(2.8)

Assuming ôk to be the noisy sensor observation, the authors require three distributions.
Firstly, P (ok) represents the probability of the true value being ok. This is captured in a
process model. Secondly, P (ôk) represents the distribution of noise observations. This
is given by the failure model of the sensor. Thirdly, P (ok|ôk) represents the probability
of ok being the true value given the current observation. The approach is evaluated on
data provided by temperature sensors.
The assumption that noisy observations are Gaussian distributed clarifies the inter-
pretation of the failure model and increases its comparability to be partially fulfilled
as it now supports fine-grained analysis. This additionally enables transforming the
distribution in application-specific representations, e.g. by reducing it to an interval.
However, the assumption of sensor failures being Gaussian distributed limits the failure
characteristics representable by this approach, which renders the coverage criterion to
be unfulfilled. Similarly, no further measures of confidence that the Gaussian distribu-
tion matches the true failure characteristics are provided, which causes the associated
criterion to be unfulfilled as well.
Nevertheless, for statically composed systems, the mathematical characteristics of
Gaussian distributions often compensate for their lack of modeling true failure char-
acteristics. Therefore, they are used, e.g. for Kalman filters [64], [65] to integrate and
filter observations in an uncertainty-aware manner.
Contrarily, Cooper, Raquet, and Patton [66] use histograms to describe the failure
characteristics of a Light Detection and Ranging (LiDAR). They aim at quantifying
the observation failures of a Hokuyo UST-20LX in different contextual situations. For
that, the sensor is brought into varying distances to an observation target. For these
distances, the surface material, the target’s color, and the angular orientation of the

2.2. State of the Art in Failure Modeling 71

5 15 25 35

−10

−5

0

5
OffsetNoise

Outlier

Time Step k

f
(k

,o
k
)

in
cm

Fig. 2.5.: Temporal patterns within series of failure amplitudes f(k, ok) produced by a Sharp GP2D12
infrared distance sensor.

sensor towards the target were varied. By capturing the true distance using a motion
capturing system with a high resolution, ground truth data (ok) were available so
that failure amplitudes (f(k,ok)) could be calculated, cf. Eq. (2.7). Despite fitting
Gaussian distributions, the authors additionally provide histograms to represent the
failure characteristics. The interpretation of such a histogram is clear as it provides
the failure characteristics in a non-parametric way. This supports detailed analysis
that can provide application-specific representations. Moreover, the data reflects the
true failure characteristics by directly providing samples, which enables assessing the
confidence an application can have in the model.
In contrast, for dynamically composed systems where a failure model has to be com-
municated, a more compressed representation is favorable. One option is to calculate
descriptive variables from a histogram first and share them instead. Dasika et al. [68],
for instance, use box and whisker plots to describe the failure characteristics of a Li-
DAR sensor. Similar to the work presented before, they aim at analyzing the failure
characteristics of the sensor with respect to different contextual situations. For that,
the authors mount a LiDAR sensor on a mechanical testbed that moves it with varying
velocities horizontally. Arranging the surface observed by the sensor to yield different
but predefined heights, the sensor’s ability to provide correct observations at different
velocities is analyzed. For that, the distribution of observation failures is described by
their mean, 0.25/0.5/0.75 quantiles, minimal, and maximal failure amplitude f(k,ok).
The interpretation of these variables is clear, however, the representation of failure char-
acteristics and consequently the level of detail of analysis of the same is limited (e.g.
considering multi-modal or multi-variate distributions). Similarly to interval-based ap-
proaches, no additional confidence in the correctness of the represented characteristics
can be given.
The increased information provided when using distributions as failure models sup-
ports the fulfillment of the comparability criterion when compared to interval-based
approaches. Thus, the coverage criterion is supported as well. Nevertheless, using
distributions may not be sufficient to describe the characteristics of a sensor.
Firstly, when considering the example of the Sharp sensor once again, assuming a Gaus-

72 2. State of the Art

Tab. 2.3.: Qualitative assessment of the fulfillment of the criteria discussed in Section 1.3.1 by the
failure-type-based failure modeling approaches.

Approach Clarity Compara-
bility

Generality Coverage Confidence

Ni et al. [69]

Zug, Dietrich,
and Kaiser

[55]

Jäger et al.
[27]

Muhammed
and Shaikh

[70]

Fagbemi,
Perhinschi,

and Al-Sinbol
[71]

Legend: – not fulfilled, – partially fulfilled, – fulfilled

sian distribution does not provide an appropriate match of the failure characteristics,
cf. Fig. 2.4 [7]. On the one hand, the distribution of failure amplitudes does not follow
a Gaussian distribution. On the other hand, the magnitude of failure amplitudes is
value-correlated, which is not represented by such a model.
Secondly, distribution-bases failure models do not enable representing temporal pat-
terns. The need for representing them is visualized in Fig. 2.5 where Offset patterns (a
constant plateau), Noise (subsequent minor failure amplitudes of varying magnitude),
and Outlier (a separated failure amplitude of increased magnitude) can be distin-
guished. Failure models expressing failure characteristics in terms of these patterns are
failure-type-based failure models and are reviewed in the next subsection.

2.2.4. Failure-Type-Based Failure Modeling
Interval-based or distribution-based failure models are limited regarding the failure
characteristics they can represent. In parts, this is because individual aspects of a
failure characteristics are generalized. For instance, temporal patterns evolving sys-
tematically in failure amplitudes can not be represented. To overcome this restriction
and describe failure characteristics more thoroughly, failure-type-based failure models
are described in literature. Table 2.3 lists exemplary approaches.
To clarify this modeling approach, a failure type is defined as follows.
Definition 2.3 (Failure Type)

A failure type is a description or representation of a distinct property of a compo-
nent’s failure characteristics.

2.2. State of the Art in Failure Modeling 73

In other words, the idea is to represent a failure model in terms of a collection of failure
types, each describing a distinctive aspect of the overall failure characteristics. In the
end, a failure model is nothing but a set of failure types.
Ni et al. [69], for instance, define eight failure types common to sensor networks. The
failure types range from Spike and Outlier to Noise, which is defined as “random
unwanted variation in data”. After defining all failure types linguistically, they relate
them to possible, physical causes such as battery depletion or sensor age. Afterward,
they propose analytic, signal, and stochastic metrics based on which detection and
filtering algorithms may be implemented. They exemplify their propositions using data
sets from sensors observing chemicals, humidity, temperature, and light intensity.
Due to their linguistic definition, the failure types and the resulting failure model
can not be interpreted unambiguously, which renders the clarity criterion unfulfilled.
This also affects the fulfillment of the comparability and generality criteria. While
the approach is general and allows to derive application-specific representations, the
insufficient clarity imposes the challenge of retaining the correct information in the
process and may result in misinterpretation. Moreover, no confidence in the correctness
of the failure model is provided. In contrast, the approach analyzes the causes of sensor
failures in detail, which means that the coverage of failure characteristics is high.
Although defined linguistically as well, Zug, Dietrich, and Kaiser [55] present a failure
model comprising 14 failure types for which a qualitative visual representation is pro-
vided. The described failure types range from data failures, such as Noise, Outliers,
and Stuck-ats to fixed and variable Delays. While data failures affect only the value of
a sensor observation, delays affect their timely delivery by the sensor. The modeling
of these failures increases the generality and renders the criterion to be fulfilled.
Using the introduced failure model, Jäger et al. [27] discuss different features from
signal processing (e.g. Signal-to-Noise Ratio or Variance) that can be used to train a
Time-Delay Neural Network (TDNN) for detecting the failure types in sensor data. To
train the Artificial Neural Network (ANN), four out of 14 failure types were selected to
generate training data through simulation. Afterward, failure injection and simulation
are used to assess the detection performance. The overarching goal is to show that by
using learning-based methods, the process for tuning sensor failure detection methods
can be automated partially.
On the one hand, the approach increases the fulfillment of the clarity criterion as
mathematical descriptions of the selected failure types are provided. These are re-
quired for simulating the failure types. On the other hand, only four failure types are
taken into account, which limits the coverage and thereby affects the generality and
comparability.
With the goal of reviewing concepts for fault detection and isolation in wireless sensor
networks, Muhammed and Shaikh [70] present a failure model comprising six failure
types. They consider Offsets, Gain failures, Stuck-at, Out-of-Bounds, Spike, and data
loss and provide mathematical descriptions. Offset, Gain, and Stuck-at failures, for
instance, are represented by appropriate parameterization of Eq. (2.9).

ôk = α + β · ok + η (2.9)

Here, α is an additive offset while β allows modeling gain failures. η represents the noise
affecting an observations. Similar modeling approaches are provided for the remaining
failure types.

74 2. State of the Art

Such a mathematical definition of failure types is the key to clear failure models. In
contrast to linguistic definitions, they can be interpreted unambiguously. Moreover,
the failure types are represented application-independent but can be transformed, e.g.
through sampling, to application-dependent representations. This flexibility also allows
for fine-grained analysis of a failure model during safety assessment. However, the set
of failure types is restricted, which affects the fulfillment of the coverage criterion.
Furthermore, no confidence in the correctness of the represented failure characteristics
is provided.

Another field of research where mathematical definitions of failure types are mandatory
is fault injection. Fagbemi, Perhinschi, and Al-Sinbol [71], for instance, leverage the
idea in their fault injection and simulation tool targeting unmanned air systems. They
propose a failure model comprising 8 failure types. These range from Noise failures,
represented as a Gaussian distribution, to Dropout and Drift failures. For injecting the
defined failure types a predefined hierarchy is given. This means that the effect of, for
instance, a Bias, which introduces a constant offset, can be imposed by a Saturation
failure, but not vice versa. On the one hand, this further clarifies the interpretation
of the failure model, but, on the other hand, restricts the failure characteristics that it
can represent. Similarly, with its goal of targeting unmanned air systems, the failure
model is application-dependent which renders the generality requirement to be partially
fulfilled.

2.2.5. Conclusions

In the endeavor of providing a run-time safety assessment method, the need for a suit-
able failure model describing the failure characteristics of shared data motivated to
review existing approaches. For that, failure models targeting sensory data were fo-
cused. These, despite considering three categories of failure modeling approaches, only
partially fulfill the predefined criteria, cf. Section 1.3.1. While interval and distribution-
based failure models lack coverage and therefore do not fulfill the comparability and
generality criteria, failure-type-based failure models lack clarity. The majority ([27],
[55], [69]) of these approaches define failure types only linguistically. This renders the
failure models unsuited to be shared in dynamically composed systems as their in-
terpretation is ambiguous. Thus, the result of a run-time safety assessment could be
incorrect and ultimately endanger the overall system’s safety.

Approaches defining failure types mathematically ([70], [71]) overcome this challenge
but are often defined with respect to a certain application, e.g. fault injection and
simulation of unmanned air systems [71]. This limits their ability to represent failure
characteristics and thereby renders the coverage criterion to be only partially fulfilled.
Finally, non of the approaches provide a measure of confidence, that is, a value or meta-
information providing confidence that the modeled failure characteristics match what
is to be expected in reality. While significance levels of interval-based failure models
can be interpreted as confidence values [60], [61], they are not explicitly focused on and
therefore fulfill the criterion only partially.

2.3. Conclusions from the State of the Art 75

2.3. Conclusions from the State of the Art
According to Objective 1.1 and Objective 1.2, approaches from corresponding fields
have been reviewed. Section 2.1 focused on run-time safety assessment and showed that
approaches such as Conditional Safety Certificate (ConSert) and Level of Service (LoS)
fulfill the criteria defined in Section 1.3.1. However, they target only the functional
abstraction level and assume that evidence supporting the claim for safety is generated
by the technical level as well. As can be seen in Fig. 2.2, a suitable approach to provide
such evidence for dynamically composed systems is missing. Works providing safety
guarantees at the technical level either focus on design-time analysis or require a static
system composition. The approach of using RoA to guarantee safety during RL, for
instance, shows that safety assessment at run-time is possible, but lacks the ability of
specifying failure characteristics of shared data. Thus, approaches specifically targeting
dynamically composed systems are missing.
Similarly, the need for a suitable failure model to describe failure characteristics of
shared data became clear when reviewing corresponding approaches in Section 2.2.
The criterion of clarity, that is, the ability to unambiguously interpret a failure model
when shared in dynamically composed systems, was fulfilled only by approaches that
lack coverage and generality.
Consequently, a failure model focusing on clarity but fulfilling all predefined crite-
ria is required. Based on such a generic failure model, a run-time safety assessment
that enables analyzing the quality of shared data to provide safety guarantees has to
be found. Both of these objectives are therefore addressed in the following chapters
respectively.

77

3. Generic Failure Model

Dynamically Composed System

Intended EUC

Concept &
Scope Definition

...

Safety Assessment
- Static Elements -

Safety Assessment
- Shared Data -

Operation

Design-
Time
Run-
Time

Shared Data

Modeling Failure
Characteristics

Failure Model
Quality Assessment

Integration Step

Chapter 3

Fig. 3.1.: Simplified safety process from Fig. 1.9 showing the components addressed in this chapter.

In search of approaches fulfilling Objective 1.2, the last chapter reviewed state-of-
the-art failure modeling approaches. While partial fulfillment of the required criteria
could be shown for some approaches, none of the presented failure models are suit-
able for dynamically composed systems. Therefore, in this chapter, the Generic Fail-
ure Model (GFM), initially proposed by Jäger, Zug, and Casimiro [7], is introduced,
cf. Fig. 3.1.
The failure model focuses on clarity to prevent ambiguous interpretation but reuses
concepts from the state of the art to fulfill the remaining criteria. Its definition, which
will be discussed in Section 3.1, provides generality and coverage by building upon
the idea of failure types while mathematical definitions of these guarantee clarity. By
presenting an approach to transform a GFM to an interval-based representation in
Section 3.2, the fulfillment of the comparability criterion is shown.
In [7], the authors additionally propose a processing chain for extracting a GFM from
a given series of failure amplitudes, which underlines the applicability of the failure
model. In this pursuit, the authors adopted evolutionary algorithms to enable flexi-
bility. The entailed disadvantage of having to split the identification process of failure
types into two stages is overcome in this work by presenting an alternative processing
chain in Section 3.3. A single stage based on the Continuous Wavelet Transformation

78 3. Generic Failure Model

Section
3.1.3

Section
3.1.2

Section
3.1.1

Section
3.1.4

Generic Failure Model (GFM)

Failure Type
F1

Failure Type
Fn

Failure Type
FN

.

.
State

sn(k,ok)

Activation
an(k,ok)

Deactivation
dn(k,ok)

Failure Amplitudes
fn(k,ok)

Stochastic
scln(k,ok)

Deterministic
pn(tn)

Distribution
yan(k,ok)

Distribution
ydn(k,ok)

Distribution
yscln(k,ok)

Polynomials
pσan

(k,ok),
pQan

(k,ok),
pµan

(k,ok)

Polynomials
pσdn

(k,ok),
pQdn

(k,ok),
pµdn

(k,ok)

Polynomials
pn(tn)

Polynomials
pσscln

(k,ok),
pQscln

(k,ok),
pµscln

(k,ok)

Fig. 3.2.: Hierarchical overview on the Generic Failure Model (GFM) motivated by Jäger, Zug, and
Casimiro [7].

(CWT) and gradient descent is proposed. Moreover, an additional stage leveraging the
transformation of a GFM to its interval-based representation to calculate confidence
values is described. These values provide means to assess the correctness of the gen-
erated failure model with respect to the failure amplitudes specified as inputs to the
processing chain.
Using both, the GFM and the presented processing chain, Section 3.4 provides a pre-
liminary evaluation by means of artificial data. It will not only be shown that the
GFM is capable of representing versatile failure characteristics but also the processing
chain’s ability to extract the same from given time series data.
Finally, Section 3.5 concludes this chapter by summarizing its contents and discussing
the central findings of the evaluation.

3.1. Defining the Generic Failure Model
The central goal of this section is to define the GFM which shall fulfill Objective 1.2.
For that, the failure amplitudes f(k,ok) (cf. Eq. (2.7)) form the starting point. It is
presumed that these resemble the failure characteristics of shared data that need to
be modeled. They are assumed to be a function of time k and value ok as they are
generally considered to be time- and/or value-correlated [53], [55], [68].
The envisioned failure model capable of representing these correlations is schematically
depicted in Fig. 3.2. Additionally, the sections in which the corresponding components
of the failure model are explained in detail are referenced.

3.1. Defining the Generic Failure Model 79

Building on the concept of failure types, a GFM is nothing but a set of failure types
FM = {F1, . . . , FN}. It represents a failure characteristics as a composition of the
effect fFn(k,ok) of these failure types, cf. Eq. (3.1) [7].

f(k,ok) =
N∑

n=1

fFn(k,ok) =
N∑

n=1

sn(k,ok) · fn(k,ok)︸ ︷︷ ︸
n-th Failure Type (Fn)

(3.1)

For that, each failure type consists of a state function sn(k,ok) : R × Rm → {0, 1}
and a failure amplitudes function fn(k,ok) : R× Rm → Rm. While the state function
merely describes at which point in time a failure type is active, a failure type’s failure
amplitudes describe the actual effect it has on the overall failure amplitudes. For
that, a failure type encompasses a failure pattern pn(tn) describing the shape of failure
amplitudes it introduces over time as well as a scaling scln(k,ok).
In contrast to the failure pattern, which is deterministic, the scaling scln(k,ok) is a
distribution that is time- and value correlated. Similarly to the failure amplitudes of a
failure type, its state function sn(k,ok) consists of an activation distribution an(k,ok)
and a deactivation distribution dn(k,ok), both of which are time- and value-correlated
as well. These correlations are represented separately by corresponding scaling (σ) and
shifting (µ) function such that the actual distribution (Q) is assumed to be static. The
resulting functions are represented by polynomials.
Thus, in the endeavor of defining the generic failure model, the concept of a time-
and value-correlated random distribution is introduced first in the next subsection.
This provides the basis on which the representation of a failure type’s failure am-
plitudes fn(k,ok) is defined in Section 3.1.2. Similarly, the concept of a time- and
value-correlated random distribution is reused to model a failure type’s activation and
deactivation for representing its state function in Section 3.1.3. While this comple-
ments the definition of a single failure type and thereby the definition of the GFM ,
an approach for representing the individual functions in terms of mathematical expres-
sions is required. In that endeavor, Section 3.1.4 discusses the usage of polynomials to
support the modeling of a wide range of failure characteristics for fulfilling the coverage
criterion and to maintain clarity of the approach. Whether or not this is achieved is
discussed with respect to the predefined criteria in a finalizing subsection.

3.1.1. Time- and Value-Correlated Random Distribution
In literature, two aspects of failure amplitudes are repeatedly reported. On the one
hand, they occur with a stochastic nature. On the other hand, they are correlated
with time k and value ok. The purpose of the time- and value-correlated random
distribution, which shall be introduced in this subsection, is to represent both.
In that endeavor, the Z-score normalization [72] is utilized cf. Eq. (3.2).

Y ′ =
Y − µY

σY
(3.2)

The Z-score normalization assumes a random variable Y with mean µY and standard
deviation σY . By subtracting the mean and dividing by σY , the random variable is
normalized to have zero mean and a standard deviation of one.

80 3. Generic Failure Model

In this work, the mean and standard deviation are assumed to be functions of time k
and value ok. By inverting Eq. (3.2) and rewriting it using the assumptions of µY and
σY being functions, the random variable Y can be represented as follows.

Y = σY (k, ok) · Y ′ + µY (k,ok) (3.3)

This representation enables distinguishing between deterministic correlations due to
time k and value ok and stochastic magnitudes captured by the uncorrelated distribu-
tion Y ′. To support representing arbitrary distributions and thereby to support the
fulfillment of the coverage criterion, Y ′ = QY (z) is represented as an Inverse Cumu-
lative Distribution Function (ICDF), which is also called a quantile function [73]. In
simulations, this representation can be used to generate random values of an arbitrary
distribution from a uniformly distributed random variable z ∈ U(0, 1). To reflect this
way of representing Y ′, Eq. (3.3) can be rewritten as shown in Eq. (3.4).

y(k, ok) = σY (k, ok) ·QY (z) + µY (k, ok) (3.4)

Using a quantile function, Eq. (3.4) enables sampling the time- and value-correlated
random distribution1. Firstly, a random value distributed according to Y ′ is generated
by sampling z ∈ U(0, 1) and evaluating the quantile function QY (z). Secondly, the
value is scaled and shifted by σY (k,ok) and µY (k,ok) to introduce time- and value-
correlations.
On the one hand, the use of a quantile function facilitates representing arbitrary distri-
butions, which supports fulfilling the coverage criterion. On the other hand, it causes
a challenge for representing multi-dimensional distributions.
A quantile function requires the cumulative distribution function of a random variable
to be bijective, that is, invertible. This is the case for one-dimensional distributions
as the probability P (Y ≤ y) can be unambiguously mapped to a single value of y.
Therefore, QY (z) = Q−1

Y (y) and QY (y) = P (Y ≤ y). In contrast, if y ∈ Rm>1 multiple
vectors can be mapped to the same probability, which means that QY(y) can not be
inverted. This is caused by the fact that no natural ordering for elements of multi-
dimensional spaces (m > 1) exist [75], [76].
One approach to address this problem is proposed by Liu, Parelius, and Singh [77].
They use statistical depth functions (e.g. the Mahalanobis depth) and define quan-
tiles as their superlevel sets. The mean of the represented distribution obtains the
highest function value while values of reduced likeliness are having lower function val-
ues. Therefore, the function value can be interpreted similarly as the probability of
an element with respect to the modeled distribution. Nevertheless, statistical depth-
functions can not be inverted, which prohibits generating values from the underlying
distribution and therefore renders the approach unsuitable in this context.
In contrast, [78] consider vectors z ∈ [0, 1]m to resemble the probability of a multi-
dimensional random value. Based on norm minimization, they realize a unique mapping
[0, 1]m ⇒ Rm. However, the interpretation of ‖z‖ as a probability does not hold for
m > 1 [75].
Another approach to multi-dimensional quantile functions stems from the field of sim-
ulation. The approach of standard construction [79], [80] utilizes the indices of the

1The use of a quantile function also turns the time- and value-correlated random distribution into a
generative model [74]

3.1. Defining the Generic Failure Model 81

0 10 20 30 40 50 60 70

0

2

sclSpike(k, ok) = 3
∀k ∈ [18, 35)

sclSpike(k, ok) = 1.5
∀k ∈ [51, 75)

Time Step k

f S
p

ik
e
(k

,o
k
)

0 0.5 1
−1

0
1

Time tSpike

p
S

p
ik

e
(t

S
p

ik
e
)

Fig. 3.3.: Example of a Spike failure type with two occurrences. Despite the differences in its instan-
tiations, the failure pattern of the failure type is static, as indicated by the lower diagram. The figure
is motivated by Jäger, Zug, and Casimiro [7].

dimensions as a natural ordering and was used to represent multi-dimensional quantile
functions in Jäger et al. [31]. Assuming Y = [Y1 . . . Ym]

T to be a random vector in
Rm and z = [z1 . . . zm]

T ∈ [0, 1]m, an arbitrary distribution of QY(z) can be sampled
as follows [79]:

y1(z1) = Q(Y1)(z1) (3.5)
y2(z1, z2) = Q(Y2|Y1=y1(z1))(z2) (3.6)

. . . (3.7)
ym(z1, . . . , zm) = Q(Ym−1|∩d−1

j=1Yj=yj(z1,...,zj))
(zb) (3.8)

Here, Q(Yi|...)(z) denotes the uni-variate quantile function of the marginal distribution
of the i-th component given that all components j < i have values y1, · · · , yj. Thus,
a dependency structure based on the chosen ordering of dimensions is imposed on the
actual distribution of the random vector. Note that, opposed to the previous approach,
the values z1, . . . , zm retain their interpretation as probabilities. This underlines the
fulfillment of the clarity criterion while employing the standard construction enables the
representation of multi-dimensional distributions and therefore addresses the coverage
criterion.

3.1.2. A Failure Type’s Failure Amplitudes
The defined time- and value-correlated random distribution enables the representation
of stochastic parts of failure types. These are present in its state function as well as
its failure amplitudes. In this subsection, the latter is addressed. Note that the final
representation of the individual functions of each time- and value-correlated random
distribution is discussed in Section 3.1.4.
The failure amplitudes fn(k,ok) of a failure type describe a distinct property of the
overall failure characteristics of a sensor or shared data. In literature, it is described

82 3. Generic Failure Model

that this property may be systematic or random. Moreover, as reported by Zug,
Dietrich, and Kaiser [55], for instance, temporal patterns with random scaling can be
observed as well. The representation of a failure type’s failure amplitudes takes up on
that observation and comprises two properties: its deterministic failure pattern pn(tn)
and a stochastic scaling scln(k,ok), cf. Eq. (3.9).

fn(k, ok) = scln(k,ok)︸ ︷︷ ︸
stochastic

· pn(tn)︸ ︷︷ ︸
deterministic

(3.9)

While the failure pattern models the temporal behavior introduced by the failure type,
the stochastic scaling represents the randomness in magnitude with which the pattern
may occur.
An exemplary illustration of how both parts of a failure type may manifest in the
failure amplitudes fn(k,ok) is shown in Fig. 3.3. In this example, the failure type is
named FSpike for the sake of argumentation. Its pattern pSpike(tSpike) ∈ [−1, 1] with
tSpike ∈ [0, 1] shown in the lower diagram of the figure models the shape of the failure
amplitudes.
As indicated in Fig. 3.3, a failure type’s failure pattern is normalized in two ways.
Firstly, the values are normalized over time (tn ∈ [0, 1]). This allows to dilate and
compress the pattern by sampling pn(tn) accordingly. The specific length of a failure
type’s occurrence is modeled by its state-function sn(k,ok), which will be discussed in
the next subsection.
Secondly, the pattern is normalized in its value domain (pn(tn) ∈ [−1, 1]) as it
represents only the shape of the introduced failure amplitudes but does not represent
a specific instance.
For that, the failure pattern is scaled according to scln(k,ok), which is random in its
nature. Therefore, scln(k,ok) is represented by a time- and value-correlated random
distribution as introduced in the last paragraph. Using Eq. (3.4) to replace scln(k,ok)
in Eq. (3.9) yields Eq. (3.10).

fn(k,ok) = [σfn(k,ok) ·Qfn(z) + µfn(k,ok)]︸ ︷︷ ︸
stochastic

· pn(tn)︸ ︷︷ ︸
deterministic

(3.10)

This model for representing the failure amplitudes of a failure type enables flexibility
and thereby supports fulfilling the coverage criterion. The scaling sclspike(k, ok) of the
example shown in Fig. 3.3, for instance, can be modeled in two ways. Firstly, the scaling
of both occurrences may be purely random, which can be represented by a suitable
quantile function Qfspike(z) and constant values for σfspike(k, ok) = 1 and µfspike(k, ok) =
0. Secondly, the scaling may be predefined by time- and/or value-correlations. In that
case, the quantile function and standard deviation could be constant (e.g. Qfspike(z) =
1, σfspike(k, ok) = 1) and the mean would represent the scaling.
Note that these are only two ways of modeling the scaling of the failure type in this
example. Other approaches, as well as mixtures of these, are possible.

3.1.3. A Failure Type’s State Function
A failure type’s failure amplitudes describe how a failure type contributes to the overall
failure characteristics when it is active. Whether or not a failure type is active, on the

3.1. Defining the Generic Failure Model 83

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0

1

2

3

sSpike(k, ok) = 0
∀k ∈

[k0 = 0, k1 = 18)

sSpike(k, ok) = 0
∀k ∈

[k2 = 35, k3 = 51)

sSpike(k, ok) = 1
∀k ∈

[k1 = 18, k2 = 35)

sSpike(k, ok) = 1
∀k ∈

[k3 = 51, k4 = 75)

aSpike(k, ok)
TBF

dSpike(k, ok)
TtR

aSpike(k, ok)
TBF

dSpike(k, ok)
TtR

Time Step k

f S
p

ik
e
(k

,o
k
)

Fig. 3.4.: Schematic illustration of the components of a failure type’s state function by means of
an exemplary Spike failure type with two occurrences. The figure is motivated by Jäger, Zug, and
Casimiro [7].

other hand, is modeled by the failure types state function sn(k,ok), which will be
discussed in this subsection.
For that, the example of the Spike failure type of the previous subsection is considered
once again in Fig. 3.4. In the adapted figure it can be seen that the failure type
is active (sSpike(k, ok) = 1) for fSpike(k, ok) 6= 0 and inactive (sSpike(k, ok) = 0) for
fSpike(k, ok) = 0. Moreover, the first occurrence of the failure type lasts for 17 time
units, corresponding to sSpike(k, ok) = 1,∀k ∈ [18, 35), while the second occurrence
lasts for 24 time units (k ∈ [51, 75)). This illustrates the model’s assumption that
a failure type may occur with varying durations. Similarly, the time intervals during
which the failure type is not active, in this case with lengths of 18 time units (k ∈ [0, 18))
and 16 time units (k ∈ [35, 51)), vary as well.
To facilitate representing these variations, the activation and deactivation of a failure
type are modeled independently. For the sake of argumentation, one can use an anal-
ogy from the field of reliability engineering to explain the activation and deactivation
distribution [81]. As the activation of a failure type denotes the time between two
consecutive occurrences, that is, between two consecutive failure instances, it can be
thought of as the distribution of Time Between Failure (TBF). On the other hand, the
deactivation of a failure type denotes the time for which a failure instance is active, that
is, the time until the failure becomes inactive. Therefore, it defines the Time to Repair
(TtR). Both concepts are mapped to the corresponding intervals in Fig. 3.4.
From the distribution of TBF and TtR in this figure, one can see not only that they need
to be modeled independently but also that they may vary stochastically. Therefore, the
approach of time- and value-correlated random distributions is used once again. Here,
an(k,ok) is defined to represent the TBF , while dn(k,ok) represents the TtR.

an(k,ok) = σa(k,ok) ·Qa(z) + µa(k,ok) (3.11)
dn(k,ok) = σd(k,ok) ·Qd(z) + µd(k,ok) (3.12)

84 3. Generic Failure Model

0 0.5 1 0.25 0.75 1.25/0 0.5 1.0 0.25 0.75 1.25/0 0.5 1.0

·104

−30

−20

−10

0

ok = 21 cm ok = 31.5 cm ok = 43 cm ok = 51.5 cm ok = 56.5 cm

Time Step k

f
(k

,o
k
)

in
cm

Fig. 3.5.: Failure amplitudes simulated by the GFM of the Sharp GP2D12 as presented in [7].

The state-function sn(k,ok) is defined by combining Eq. (3.11) and Eq. (3.12). For
that, the fact that both functions define disjoint intervals is leveraged:

sn(k, ok) =

 0, k ∈ [k2i, k2i+1), ∀i ∈ N0,

1, k ∈ [k2i+1, k2i+2), ∀i ∈ N0,
(3.13)

with the starting condition of k0 = 0 and

kj =

 kj−1 + an(kj−1,okj−1
), j = 1, 3, 5, ...,

kj−1 + dn(kj−1,okj−1
), j = 2, 4, 6, ...

(3.14)

Here, the sub-scripted time steps kj define the border of the intervals of Eq. (3.13).
The output of the state-function sSpike(k, ok) of the exemplary failure type FSpike is
stated in Fig. 3.4 in accordance with the activation function aSpike(k, ok) and deacti-
vation function dSpike(k, ok).

3.1.4. Polynomial Representation of a Failure Type
The core components of each failure type are its failure pattern and three time- and
value-correlated random distributions representing its TBF , TtR, and random scaling.
Each of these components is defined in terms of functions that need to be represented.
To fulfill the clarity criterion, systems sharing failure models must agree on a common
function approximation scheme that is mathematically defined. However, for choosing
an appropriate approach, the coverage criterion has to be taken into account as well. It
dictates employing a function approximation scheme that facilitates the representation
of a wide range of failure characteristics.
From that perspective, polynomials are well suited as the Stone–Weierstrass theorem
states that any continuous function defined on a closed interval can be approximated
arbitrarily close by polynomials of the form of Eq. (3.15)[82]. It needs to be noted that

3.1. Defining the Generic Failure Model 85

here, p denotes a general polynomial and is not to be confused with a failure type’s
failure pattern pn.

p(x) =
D∑
j=0

ωj · xj (3.15)

Depending on the values of the parameters ωj and the polynomial degree D, the rep-
resented function changes. In essence, the Stone–Weierstrass theorem states that by
increasing the polynomial degree D, the difference between the function represented
by a polynomial and the function that is to be represented can be reduced to arbi-
trarily small values. Therefore, polynomials can be considered as universal function
approximation schemes.
Neural networks inherit this property from polynomials [83]. Similar to polynomials,
neural networks are defined mathematical functions whose structure is inspired by the
inner workings of brains in humans and animals. So-called neurons use the weighted
sum of their inputs to determine their activation using a non-linear activation function.
The calculated output is passed to successive neurons or considered the output of the
network. As such, the number of neurons and their arrangement in layers determine
the expressiveness of the network. Similar to polynomials, the function represented
by the neural network is determined by the parameters, that is, the weights of each
neuron.
Although applicable to Multi Layer Perceptron (MLP) in general, a special form suit-
able for function approximation are Radial Basis Function (RBF) networks [84]. They
were used in Jäger, Zug, and Casimiro [7] to represent the failure type functions and
shown to be effective for modeling failures of an infrared distance sensor, cf. Fig. 3.5.
However, two disadvantages come with neural networks. Firstly, determining its pa-
rameters is challenging. The procedure, often referred to as training, is an iterative
approach. Given an appropriate loss function, e.g. the Sum of Squared Errors (SSE),
gradient descent is used to minimize this function and thereby find appropriate pa-
rameter values [85]. However, as this optimization problem is non-convex, finding a
global minimum is NP-hard, which is why state-of-the-art algorithms find only a local
minimum instead [86]. Secondly, the parameters of the neural network can not be inter-
preted or adapted easily. This contradicts the fulfillment of the clarity criterion.
In contrast, interpreting the parameters of a polynomial is not as challenging as in-
terpreting the parameters of a neural network. As this not only enables experts to
manually adjust polynomials but also allows them to assess the suitability of the fitted
function, they are used to represent the functions of a GFM in this work.
In this endeavor, multi-variate and multi-response polynomial regression is employed
where a polynomial is a function G : Rn → Rm where n denotes the number of
independent variables and m denotes the number of response variables. Given the
order of the polynomial as D ∈ N≥1 again, each response variable pr is represented
as [31]:

pr(x) = ω0 +
n∑

i=1

D−(i−1)∑
d=1

∑
c∈Ci

ωl ·
∏
j∈c

xdj (3.16)

with n̂ = {i|i ∈ N≥1 ∧ i ≤ n} being the set of indices of the independent variables and
Ci =

(
n̂
i

)
denoting the set of their i-combinations. l is merely an index to distinguish

the scalar parameters ωl ∈ Ω of the polynomial.

86 3. Generic Failure Model

3.1.5. Discussion on the Fulfillment of the Predefined Criteria
The definition of the function approximation scheme to use for representing the indi-
vidual functions concludes the definition of the GFM . As such, at a qualitative level,
the suitability of the failure model for usage in a dynamically composed system with
regard to the predefined criteria shall be discussed in this subsection.

Clarity The clarity criterion asks for an unambiguous interpretation of the failure
model, which is provided for different reasons. Firstly, all functions are repre-
sented by mathematical equations enabling an automated interpretation. Sec-
ondly, each function has a specific purpose and meaning. The failure pattern
describes the temporal behavior introduced by a failure type. Its scaling distri-
bution models the magnitude of a single instance. The activation represents the
time between two consecutive occurrences while the deactivation states the dura-
tion for which a failure type is active. Moreover, the time- and value-correlated
random distribution forming the basis for these distributions enables representing
the normalized distribution as a quantile function while using functions to rep-
resent time- and value-correlated mean and standard deviations. Thirdly, each
function of a single failure type is represented as a polynomial. This enables en-
gineers to interpret the weights and manually design failure types. Due to these
reasons, clarity is supported by the definition of a failure type and thereby by the
GFM as well.

Coverage The coverage criterion asks for the ability to represent versatile failure char-
acteristics. For its fulfillment, the failure model takes upon the approach of fail-
ure types. Using these, complex failure characteristics can be decomposed into
separate failure types, each representing a distinct part of the overall characteris-
tics. Additionally, each failure type can represent time- and value-correlations by
means of the introduced time- and value-correlated random distribution. This in
itself provides different approaches to modeling correlations. Finally, the usage
of polynomials enables to model arbitrarily complex functions (in theory) due to
the Stone–Weierstrass theorem [82].

However, it needs to be noted that polynomials are in practice prone to oscilla-
tions when used for extrapolation. As a result, fitting, for instance, the quantile
function for multi-dimensional data can be a challenge. Furthermore, the Stone-
Weierstrass theorem requires a closed interval, which is not given for functions
defined on time k.

Comparability To fulfill this criterion, the failure model has to support various levels
of granularity. For that, the failure model can be evaluated in different ways.
Firstly, as the failure model is generative, it can be directly used for simulation
purposes. Using Monte-Carlo simulations, for instance, the number of simulations
may be used to define different levels of granularity. Moreover, the severity of
injected failures can be controlled by using not uniform values z ∈ Um(0, 1) to
evaluate quantile functions but by increasing the likeliness to sample values close
to 0 or 1. In this way, events occurring only rarely otherwise can be favored.
Secondly, through the use of quantile functions, the minimal and maximal failure
amplitudes introduced by each failure type can be determined directly. This

3.2. Converting a Generic Failure Model to an Interval 87

supports calculating intervals restricting the range of possible failure amplitudes
of a failure type.

Generality Generality asks for a representation that is application-independent but
can be transformed into an application-dependent representation. The GFM in
general is designed to be application-independent. Furthermore, due to the dif-
ferent levels of granularity at which the model can be analyzed, it can be trans-
formed into application-specific representations as well. Therefore, this criterion
is fulfilled as well.

Confidence Opposed to the previously discussed criteria, the confidence criterion is not
addressed directly by the GFM . On the contrary, the use of polynomials enables
representing a wide range of functions and correlations but does not provide an
inherent mechanism to assess the goodness of fit. Therefore, this criterion is not
fulfilled for now.

According to this discussion, the fulfillment of most criteria could be shown. However,
on the one hand, the claim of providing different levels of granularity at which a
GFM can be analyzed and its ability to be transformed into an application-specific
representation has yet to be shown. On the other hand, the confidence criterion could
not be shown to be fulfilled yet. In prerequisite to supporting the claim of granularity
of analysis, transformability, and for defining a confidence measure, the next section
discusses how a GFM can be transformed to an interval-based representation stating
only the minimal and maximal failure amplitudes to expect.

3.2. Converting a Generic Failure Model to an Interval
The GFM defined in the last section was shown to fulfill most of the criteria defined
in Section 1.3.1, two of which being comparability and generality. These ask for the
ability to analyze a failure model at different levels of granularity and the ability to
convert it into a (possibly) application-specific representation. In the endeavor of
underlining that these criteria are met, one way of converting a GFM into an interval
is presented in this section. On the one hand, intervals are shown in Section 2.2.2
to be a widely used approach to representing failure characteristics as well. On the
other hand, the conversion of a GFM to an interval representation forms the basis for
defining a confidence value in Section 3.3.3.
To convert a GFM into an interval, it is leveraged that it is nothing but a set of failure
types. Therefore, the overall interval IFM is calculated according to Eq. (3.17).

IFM(K,O) =
N∑

n=1

IFn(K,O) (3.17)

As the failure characteristics represented by the failure model FM comprise time- and
value-correlations, the generated interval IFM does to. However, here K is the set or
range of time steps and O is the set or range of observations for which the interval is
valid, that is, the range of correlations covered by the interval.

88 3. Generic Failure Model

The overall interval IFM(K,O) is constructed by summing over the intervals IFn(K,O)
of the individual failure types, which are given by Eq. (3.18)

IFn(K,O) =

[
min

k∈K,ok∈O
(fn(k,ok)), max

k∈K,ok∈O
(fn(k,ok))

]
(3.18)

Thus, the minimal and maximal failure amplitudes possible for a given time horizon K
and range of observations O have to be determined for each failure type. For that, two
aspects of the failure type have to be determined. Firstly, the minimal and maximal
failure amplitude it may generate with respect to the consider time- and value domain.
Secondly, whether or not the failure type will be active within the same.
According to Section 3.1, both depend on the values of the respective time- and value-
correlated random distributions. Therefore, the next subsection generally introduces
the approach to calculating the interval of possible values of such a random distribution
before Section 3.2.2 finalizes the calculation of a failure model’s interval of failure
amplitudes by defining the calculation of a failure type’s interval IFn .

3.2.1. Converting a Time- and Value-Correlated Random
Distribution

A mandatory prerequisite for converting a failure type to an interval representation
is the transformation of a time- and value-correlated random distribution (cf. Sec-
tion 3.1.1) into the same. In accordance with its definition in Section 3.1.1, this means
that its individual functions have to be transformed into intervals first before these can
be combined to obtain the distribution’s overall interval.
In this endeavor, the mean and standard deviation functions have to be evaluated with
respect to the given time horizon K and range of observations O to obtain their respec-
tive minimal and maximal function values forming the required intervals. Similarly,
the distribution’s quantile function has to be evaluated to obtain the range of possible
distribution values.
As all of these functions are represented by polynomials, a general strategy to find their
minimal and maximal function values depending on a (sub-)set of their inputs has to
be defined first. This strategy can then be applied to the quantile function, the mean
function, and the standard deviation function.
Accordingly, the next paragraph discusses a sampling-based approach to extracting
the interval of possible values for Lipschitz continuous functions (see Definition 2.1 of
Lipschitz continuity). Here a sampling-based strategy is used to limit the requirements
on the functions of the GFM . Having the strategy in place, calculating the interval of
values from the distribution’s quantile function is presented before the evaluation of
the mean and standard deviation functions is considered.

Sampling-based Interval Reduction Using Lipschitz Continuity

Central to converting a GFM to an interval is the estimation of minimal and maximal
function values depending on a set of valid inputs. More specifically, as the GFM is to
be used in a run-time safety assessment, it is necessary to guarantee that the determined
interval either matches the exact values or overestimates the range. Having the criterion
of comparability and generality in mind, a sampling-based strategy is chosen here. It

3.2. Converting a Generic Failure Model to an Interval 89

−4 −2 0 2 4

-1

0

1

x

f
(x

)=
si

n
(x

)

xi

f(xi)
L · xs

2

L · xs

2

xs

2
xs

2

maxxi∈Xs

(
f(xi) + Lf · xs

2
)

minxi∈Xs

(
f(xi) − Lf · xs

2
)

Fig. 3.6.: Sampling-based interval calculation of Lipschitz continuous function.

allows analyzing the GFM at various levels of granularity by adjusting the step size xs
with which a function is sampled. Moreover, it is application-independent.
The sampling-based approach is visualized in Fig. 3.6 and described by Eq. (3.19). For
the sake of simplicity, only the one-dimensional case is discussed here. However, the
concept can be directly extended to the multi-dimensional case.

If (X) =
[
min
xi∈Xs

(
f(xi)− Lf ·

xs
2

)
,max
xi∈Xs

(
f(xi) + Lf ·

xs
2

)]
(3.19)

Assuming a Lipschitz continuous function f(x) : X → Y (see Definition 2.1 of Lip-
schitz continuity) and its Lipschitz constant Lf , the interval bounding the minimal
and maximal values of f(x) can be calculated by sampling the function discretely at
xi ∈ Xs ⊆ X, where it is assumed that the steps xi are distributed equidistantly ac-
cording to the step size xs. At each point xi, the function value f(xi) is calculated.
Using the Lipschitz constant Lf , which can be thought of as the maximal gradient
of the function, the range of possible function values for the neighborhood of xs is
determined by adding and subtracting the value of Lf · 0.5 · xs. As Lf is the upper
limit of the gradient, multiplying it with half of the step size means that the gradient
is “followed” to the left and right to calculate the minimal and maximal values. As the
true gradient of f(x) can be only equal to or smaller than Lf , the real function values
have to be contained in the resulting interval. Therefore, by considering the Lipschitz
constant, it is guaranteed that the value f(xi)±Lf · 0.5 · xs is the smallest or greatest
function value for x ∈ [xi − xs · 0.5, xi + xs · 0.5]. By searching for the minimal and
maximal value over each xi ∈ Xs, the overall minimal and maximal function values of
f(x) are found or at least guaranteed to be overestimated.
Note that the Lipschitz constant Lf can be either global or local. In the latter, the
Lipschitz constant can only be used for input values for which it is valid.
A drawback of this approach is the estimation of a function’s Lipschitz constant. In
literature, one distinguishes white-box approaches leveraging knowledge about the spe-
cific function and black-box approaches assuming no knowledge about the same [87].
In this work, the local Lipschitz constant of a function is calculated by sampling the
function f(x) at xi ∈ Xs and determining the gradient using the central difference
method Eq. (3.20).

Lf = max
xi∈Xs

∥∥∥∥f(xi + ε)− f(xi − ε)
2ε

∥∥∥∥ (3.20)

90 3. Generic Failure Model

Although this provides a close estimate, it can not be guaranteed that Lf is indeed a
valid Lipschitz constant of the considered function f . Therefore, alternative approaches
(preferably providing guarantees) should be investigated in future work.

Interval Calculation for Quantile Function

Having a general strategy for determining the interval of a function’s values given a
range of input values in place enables realizing the calculation of an overall interval for
a time- and value-correlated random distribution. For that, the first step of extracting
an interval of values from its quantile function is addressed in this paragraph.
Recalling that the quantile function is the inverse of a cumulative distribution function
it becomes apparent that a confidence interval can be calculated directly for the one-
dimensional case, cf. Eq. (3.21).

IQY
(α) =

[
QY (

α

2
), QY (1−

α

2
)
]

(3.21)

The confidence interval IQY
(α) defines the minimal and maximal value an associated

random variable Y may take with the given significance α.

P (QY (0.5α) ≤ Y ≤ QY (1− 0.5α)) = 1− α (3.22)

The probability as given in Eq. (3.22) is also called the confidence level of the confidence
interval.
In contrast to the one-dimensional case, the quantile functions used in the GFM are
multi-dimensional and use the approach of standard construction, cf. Eq. (3.8). While
the same principle can be used for the first dimension, analytically calculating the
interval for the second dimension results in Eqs. (3.23) to (3.26).

F(Y1)(y1) = Q−1
(Y1)

(z1) (3.23)
F(Y2|Y1=y1)(y2) = Q−1

(Y2|Y1=y1)
(z1) (3.24)

FY2(y2) =

∫ ∞

−∞
FY1(y1)F(Y2|Y1=y1)(y2)dy1 (3.25)

IQY2
(α) =

[
F−1
Y2

(α/2), F−1
Y2

(1− α/2)
]

(3.26)

As one can see, the individual quantile functions of the first and second dimensions
need to be inverted, combined, integrated and the resulting integral has to be inverted
again. Thus, applying the analytic solution is not possible as polynomials used to
represent the quantile function are not invertible in general. Instead, the sampling-
based extraction of an interval of the quantile function as described in the previous
paragraph is used. For that, the multi-dimensional quantile function QY(z) is sampled
on z ∈ [0.5·β, 1−0.5·β]m with a step size zs equal in each dimension. The significance β
is calculated from α. The calculation presumes independence between them dimensions
as dependencies are already respected in the definition of the multi-dimensional quantile
function. Q(Y2|Y1=y1)(z1), for instance, represents the quantile function of Y2 for the case
of Y1 = y1, which already encodes dependency.

3.2. Converting a Generic Failure Model to an Interval 91

The calculation is shown exemplarily for the two-dimensional case in Eqs. (3.27)
to (3.33).

P (YL1 ≤ Y1 ≤ YU1 ∧ YL2 ≤ Y2 ≤ YU2) = 1− α (3.27)
P (YL1 ≤ Y1 ≤ YU1) · P (YL2 ≤ Y2 ≤ YU2) = 1− α (3.28)

P (YL1 ≤ Y1 ≤ YU1) = PY1 (3.29)
P (YL2 ≤ Y2 ≤ YU2) = PY2 (3.30)

PY1 · PY2 = 1− α (3.31)
PY1 · PY2 = (1− β)2 = 1− α (3.32)

β = 1− m=2
√
(1− α) (3.33)

Here, YL1 and YL2 denote the lower bounds of the interval IQY1
(α) and IQY2

(α) re-
spectively. Similarly, YU1 and YU2 denote the upper bounds of the respective dimen-
sions.
Note that due to the use of Lipschitz constants entailed by employing the sampling-
based strategy to extract the interval from the quantile function, the equality in
Eq. (3.27) does not hold. Thus, despite being based on the idea of confidence in-
tervals, the interval extracted from the quantile function is not a confidence interval.
However, it is guaranteed that Eq. (3.34) holds.

P

(
m∧
i=1

Yi ∈ IQYi
(α)

)
≥ 1− α (3.34)

Interval Calculation Considering Time- and Value-Correlations

Using the approach of the previous paragraph facilitates extracting an interval from
a multi-dimensional quantile function. The time- and value-correlated random dis-
tribution defined in Section 3.1.1, however, additionally defines mean and standard
deviation functions to model correlations. Thus, to determine the interval for the
correlated distribution, these have to be taken into account as well.
In this endeavor, the sampling-based strategy presented in Section 3.2.1 is reused
to determine the minimal and maximal scaling and shift values, cf. Eqs. (3.35)
and (3.36)

Iµ(K,O) =

[
min

k∈K,ok∈O
(µY (k,ok)) , max

k∈K,ok∈O
(µY (k,ok))

]
(3.35)

Iσ(K,O) =

[
min

k∈K,ok∈O
(σY (k,ok)) , max

k∈K,ok∈O
(σY (k,ok))

]
(3.36)

With these, interval arithmetic [88] can be used to calculate the final result,
cf. Eq. (3.37).

IY (K,O, α) = IσY
(K,O) · IQY

(α) + IµY
(K,O) (3.37)

In accordance with Eq. (3.4), the interval extracted from the distribution’s quan-
tile function is scaled by the interval derived from the standard deviation function
σY (k,ok) and finally shifted according to the interval of mean values extracted from
µY (k,ok).

92 3. Generic Failure Model

Note that by specifying K and O, the interval calculated from a time- and value-
correlated random distribution is either valid for a time horizon and range of observa-
tions or, in case both sets contain a single value, for a specific point in time k and a
single observation ok. Therefore, the approach supports analyzing the failure model at
various levels of granularity and thereby underlines the fulfillment of the comparability
criterion by the GFM .

3.2.2. A Failure Type’s Interval
As the concept of a time- and value-correlated random distribution is used repeatedly
to construct a failure type, it is central to extracting its interval of possible failure
amplitudes as well. Thus, using the approach presented in the previous section the
calculation of a failure type’s interval can be defined.
Corresponding to Eq. (3.1), intervals of the state function sn(k,ok) and the failure
amplitudes fn(k,ok) have to be extracted such that Eq. (3.38) can be applied.

IFn(K,O) = Isn(K,O) · Ifn(K,O) (3.38)

Both aspects are described in the following paragraphs. While the first addresses the
extraction of an interval from a failure type’s failure amplitudes function, the second
addresses the determination of an interval from a failure type’s state function.

Extracting an Interval of a Failure Type’s Failure Amplitudes

Two components have to be considered when determining the interval of possible fail-
ure amplitudes for a failure type, its failure pattern pn(tn) and the scaling thereof
scln(k,ok), cf. Eq. (3.9).
By using the sampling-based strategy to evaluate the failure type’s pattern pn(tn)
on the time interval tn ∈ [0, 1] the range of normalized failure amplitudes Ipn can
be calculated. Similarly, the approach for obtaining an interval from a time- and
value-correlated random distribution as discussed in Section 3.2.1 facilitates extracting
Iscln(K,O) from the scaling distribution. In accordance with Eq. (3.9), both intervals
are multiplied to obtain the interval of possible failure amplitudes introduced by the
n-th failure type, cf. Eq. (3.39).

Ifn(K,O) = Ipn([0, 1]) · Iscln(K,O) (3.39)

Extracting an Interval of a Failure type’s State Function

Whether or not the failure amplitudes stated by Ifn(K,O) are actually contributing
to the overall failure characteristics depends on whether or not the failure type will be
active. For that, the failure type’s state function sn(k,ok) has to be evaluated. This
is done in two steps. Firstly, intervals for the activation function an(k,ok) and deacti-
vation function dn(k,ok) are determined and combined to generate the likeliness of a
failure type being active. Secondly, the likeliness is mapped to an interval representing
the activation state of the considered failure type over K and O.

3.2. Converting a Generic Failure Model to an Interval 93

0
P

1

γ
2

γ
2

Iact

1
Iact

2Iact
Iact

Iact

3

Fig. 3.7.: Using γ to map the activation interval Iact to the resulting state function interval Isn .

Determining the Likeliness of Activation To obtain the likeliness of a failure
type being active, the functions an(k,ok) and dn(k,ok) are evaluated for generat-
ing the respective intervals Ian(K,O) and Idn(K,O) in a first step, cf. Eqs. (3.40)
and (3.41).

Ian(K,O) =

[
amin = min

k∈K,ok∈O
(an(k,ok)), amax = max

k∈K,ok∈O
(an(k,ok))

]
(3.40)

Idn(K,O) =

[
dmin = min

k∈K,ok∈O
(dn(k,ok)), dmax = max

k∈K,ok∈O
(dn(k,ok))

]
(3.41)

In a second step, the duration of activations (Idn), as well as the time between two
activations (Ian), need to be combined, cf. Eq. (3.42).

Iact =
[
Pmin =

dmin

dmin + amax

, Pmax =
dmax

dmax + amin

]
(3.42)

The idea is to calculate the proportion of the time a failure type is active to the overall
length of a period, that is, the time the failure type is active and inactive. Correspond-
ingly, for the minimal likeliness, the shortest possible duration dmin is considered along
with the maximal time between two occurrences amax. For the maximal likeliness, on
the other hand, the longest duration dmax is combined with the minimal time between
two occurrences amin. Finally, Iact states the likeliness of the failure being active.

Determining the Activation State of a Failure Type The interval Iact needs to be
mapped to an interval representing the activation state of the failure type to generate
Isn(K,O). For that, three cases need to be distinguished. These are visualized in
Fig. 3.7.

n1 The failure type is always inactive In this case, the failure type does not intro-
duce any failure amplitudes. Therefore, the resulting interval has to be empty,
that is, Isn(K,O) = [0, 0].

n2 The failure type is always active In this case the interval Ifn(K,O) already
states the range of possible failure amplitudes. The interval resulting from the
state function is Isn(K,O) = [1, 1].

n3 The failure type may be active or inactive In this case, the failure type may
produce failure amplitudes as described by the interval Ifn(K,O) or does not
introduce failure amplitudes. To reflect this, the interval resulting from the state
function is Isn(K,O) = [0, 1].

94 3. Generic Failure Model

Identifying
Failure Types
Section 3.3.1

Parameterizing
Failure Types
Section 3.3.2

Calculating
Confidence

Section 3.3.3

f(k,ok)

ôk

ok

 FM = {F1, . . . , FN}
CFM

Fig. 3.8.: Overview of the proposed processing chain for generating a GFM from time series of failure
amplitudes.

In the endeavor of generating the corresponding interval Isn(K,O), the interval stat-
ing the likeliness of the failure type being active is analyzed according to Eqs. (3.43)
to (3.45).

snmin
=

{
1 Pmin ≥ 1.0− γ

2.0

0 otherwise
(3.43)

snmax =

{
0 Pmax ≤ γ

2.0

1 otherwise
(3.44)

Isn(K,O) = [snmin
, snmax] (3.45)

Here γ is a confidence value defining the threshold that has to be exceeded or undercut
to consider a failure type being active or inactive respectively. The idea of this mapping
is visualized in Fig. 3.7. The figure displays three positions at which the borders
of Iact can be with regard to γ. In 1 , Pmin and Pmax are smaller than 0.5 · γ.
Therefore, the first case applies, the failure type is considered to be always inactive
and Isn(K,O) = [0, 0] is assumed. Contrarily, in 2 Pmin and Pmax are greater than 1−
0.5·γ. Consequently, it is assumed that the failure type is always active and Isn(K,O) =
[1, 1] results. For any combination in between these two cases, as exemplary visualized
in 3 , the failure type has to be assumed to be active and inactive for the given ranges
of K and O and therefore Isn(K,O) = [0, 1] is assumed.
Using the interval extracted from a failure type’s state function, its overall interval is
defined according to Eq. (3.38). Finally, the overall failure amplitudes of the GFM is
nothing but the sum over the intervals defined by each failure type, cf. Eq. (3.17).

3.3. Processing Chain for Generating Generic Failure
Models

The Generic Failure Model (GFM) introduced in Section 3.1 has yet to be shown ap-
plicable to modeling failure characteristics. Moreover, as required by the confidence
criterion, a measure facilitating to assess the confidence an application can have in
the correctness of the failure characteristics represented by a GFM has yet to be de-
fined.

3.3. Processing Chain for Generating Generic Failure Models 95

Inner Loop

Searching for
Failure Type
Candidate FC

Accepting
Candidate FC?

Removing
Occurrences
of FC from

f(k, ok)

f(k, ok)

FMidentified

FC

Yes

f̂(k, ok)

No

Generate
Pattern pn(tn)

Identify
Occurrences O

Assess Pattern
pn(tn)

Optimize
Pattern pn(tn) Finish?

No

Yes

FC

Outer Loop

Fig. 3.9.: Iterative process for identifying failure types.

In this endeavor, this section proposes a processing chain that (i) identifies failure types
in a given series of failure amplitudes f(k, ok), (ii) generates a GFM to represent the
failure characteristics, and (iii) calculates a confidence value with respect to the initial
failure amplitudes. As such, the stages described in this work substantially correct and
extend the processing chain introduced in [7]. The individual stages are visualized in
Fig. 3.8 and the associated sections are referenced.
Correspondingly, the next subsection describes an approach for identifying failure types
in a given time series of failure amplitudes. The prototypical failure types are param-
eterized in the second stage, during which the polynomials modeling a failure type’s
individual functions are fitted. In the last stage, the generated failure model FM is
converted to an interval-based representation as described in Section 3.2 to calculate a
final confidence value expressing its quality.

3.3.1. Identifying Failure Types

Given a time series of failure amplitudes f(k,ok)
2, the first stage of the processing

chain aims at identifying candidates of failure types. For that, an iterative process
encompassing an inner and outer loop is proposed, cf. Fig. 3.9.
The inner loop realizes a search for a failure type candidate FC on the given failure
amplitudes f(k,ok). To that end, it starts with generating a random failure pattern
pn(tn) by randomizing the weights Ω of a polynomial. Identifying its occurrences

2The processing chain is capable of handling sets of time series as well. For the sake of simplicity,
the text refers to only a single time series.

96 3. Generic Failure Model

in f(k,ok), assessing the pattern pn(tn), and optimizing it accordingly results in an
iterative process at whose end a candidate FC is produced.
This candidate is examined by the outer loop to either accept or reject it. In the
former case, the initial failure amplitudes f(k,ok) are updated to prepare for the next
iteration while the process is stopped in the latter case.
Both, the inner and outer loops, are discussed in detail in the next subsections.

Generating Failure Type Candidates - Inner Loop

The goal of the inner loop is to generate a failure type candidate FC . For that, a
failure pattern pn(tn) has to be generated, optimized, and its occurrences within the
given failure amplitudes f(k,ok) have to be found. The corresponding phases of the
inner loop are described below, cf. Fig. 3.9.

Generate Pattern pn(tn) The first step of the inner loop prepares its iterations. In
accordance with the inner loop’s goal of identifying a failure type’s failure pattern,
this step starts with generating a polynomial and randomizing its set of weights Ω to
values ω ∈ [−1, 1]. The polynomial is then considered to represent the failure pattern
pn(tn)(cf. Eq. (3.16)) is to be optimized regarding its occurrences in f(k,ok).

Identifying Occurrences O The randomly initialized failure pattern represents the
central component of the failure type candidate to be produced. In the endeavor of
assessing and optimizing it, its occurrences within the failure amplitudes have to be
identified first. More specifically, for the failure pattern pn(tn) it needs to be known at
which time Ks an occurrence starts, for which duration Kn the failure type is active,
and with which scaling scl the pattern occurs. This shall result in a set of occurrences
O = {O1 = (Ks, Kn, scl), O2, . . .} of the considered failure pattern pn(tn).
In the endeavor of identifying the occurrences in f(k,ok), that is, identifying the param-
eters Ks and Kn for each occurrence, the Continuous Wavelet Transformation (CWT)
is used [89].
In general, the CWT calculates the correlation of a signal x(t) with a shorter signal,
called wavelet, ψ(t) [89]. It is defined as follows.

X(a, b) =
1

|a|1/2

∫ ∞

−∞
x(t)ψ

(
t− b
a

)
dt (3.46)

Here ψ(t−b
a
) is the complex conjugate of the mother wavelet. It is the base function

which is scaled, by parameter a, and translated, by parameter b, to generate daugh-
ter wavelets. These are convoluted with the signal x(t) to obtain the transformed
X(a, b).
Fig. 3.10 shows an exemplary signal (Fig. 3.10a) which is transformed using the Ricker
Wavelet (Fig. 3.10b). The result of the transformation is a matrix, which can be
displayed as a heat map and is called a scalogram, cf. Fig. 3.10c. Its highest (and
lowest) values indicate the time step (b) and duration (a) with which the Ricker Wavelet
matches the signal x(t) best.
Assuming f(k,ok) to be the signal x(t) and pn(tn) the wavelet whose occurrences one is
interested in, the parameter b would state the start of an identified occurrence Ks and

3.3. Processing Chain for Generating Generic Failure Models 97

0 50 100 150 200

−1

−0.5

0

0.5

Time kn / t

f
(k

,o
k
)

/
x

(t
)

−1 −0.5 0 0.5 1

−0.1

0

0.1

0.2

Time tn / t

p
n
(t

n
)

/
ψ

(t
)

(a) Exemplary signal to be transformed by CWT . (b) Ricker Wavelet used to transform the signal.

0 100 165

10
13

20

Translation b

Sc
al

e
a

−4

−2

0

2

4

0 100 141

10
13

20

Translation Ks

Sc
al

e
K

n

0

1

2

3

4

(c) CWT of signal according to Eq. (3.46). The scale a
and translation b achieving the maximal correlation value
is highlighted at (b = 165, a = 13).

(d) Scalogram according to Eq. (3.47) used to identify oc-
currences of failure pattern. The scale Kn and translation
Ks achieving the maximal correlation value is highlighted
at (b = 141, a = 13).

Fig. 3.10.: Scalogram according to Eq. (3.47) used to identify occurrences of failure pattern.

the parameter a the duration Kn of the same. With this in mind, Eq. (3.46) is adapted
to match the task of identifying occurrences of a failure pattern, cf. Eq. (3.47).

X(Kn, Ks) =

∣∣∣∣∣ 1

|Kn|1/2
∞∑

k=−∞

f(k, ok)pn

(
k −Ks

Kn

)∣∣∣∣∣ (3.47)

Here, the signal of which the scalogram is to be calculated are the failure amplitudes
f(k, ok) while the mother wavelet is represented by the failure pattern pn(tn). In
contrast to the CWT as defined in Eq. (3.46), however, the absolute value of the
discretized correlation is considered. The reason is that the original CWT indicates
negative and positive correlations of the wavelet with the signal by correspondingly
signed values of X(a, b). These stem from the sign of the signal and wavelet functions.
In case of the failure pattern pn(tn) being the wavelet, the sign will be accounted
for later by its scaling scl. Therefore, as one is interested in finding the maximal
correlation independently of the signs, the absolute value is considered. The difference
between both when searching for the maximal correlation value is clarified by comparing
Fig. 3.10c and Fig. 3.10d. While the maximal correlation value of the signed CWT can
be found at b = 165 with a value of 4.19, the maximal absolute correlation is found at
Ks = 141 with a value of 5.02.
The produced scalogram is then featuring maximal values at scales Kn and translations
Ks where the failure pattern pn(tn) matches the failure amplitudes f(k,ok) best. To

98 3. Generic Failure Model

identify the individual occurrences, these maximal correlations are searched for and
Kn and Ks are extracted in such a way that the resulting occurrences On ∈ O do not
overlap.
Note that the description provided here considers the one-dimensional case. For ap-
plying the same procedure to multi-dimensional data, the scalogram is calculated and
summed for each dimension before occurrences are identified.
After identifying the temporal parameter for the occurrences of a failure pattern pn(tn),
its scaling value scl (cf. Eq. (3.9)) at each occurrence On has to be determined as well.
For that, for each time step Ks of occurrence On where the pattern occurs with duration
Kn a scaling value scl that maximizes the overlapping area of the failure pattern with
the failure amplitudes f(k,ok), k ∈ [Ks, Ks +Kn] has to be found. This is achieved by
minimizing Eq. (3.48).

r(Ks, Kn) =

∑Ks+Kn

k=Ks
|f(k,ok)− p(k−Ks

Kn
) · scl|∑Ks+Kn

k=Ks
|f(k,ok)|

(3.48)

Here the absolute difference between the failure amplitudes and the scaled failure pat-
tern is summed to obtain the area of failure amplitudes remaining after removing what
is modeled by the pattern. Dividing it by the initial area of failure amplitudes pro-
vides a measure of reduction accomplished by the failure pattern at the occurrence
when using a scaling value scl. By iteratively choosing different scl values a sequential
search is realized with which the optimal scaling is found. The procedure is repeated
for all time steps Ks with duration Kn identified by the CWT approach before. As a
result, a failure type candidate FC now comprises a failure pattern pn(tn) and a set of
occurrences O = {O1 = (Ks, Kn, scl), O2, . . .}

Assessing a Failure Pattern pn(tn) The set of occurrences identified for a failure
pattern by the previous phase is used to assess the same regarding its suitability to form
a failure type candidate FC . For that, a cost function is defined, cf. Eq. (3.49).

c(O, pn(tn)) =
∑
On∈O

Kn(On)∑
k=Ks(On)

[
f(k,ok)− pn

(
k −Ks

Kn(On)

)
· scl(On)

]2
(3.49)

Note that Ks(On), Kn(On), scl(On) denote the starting time step Ks, duration Kn, and
scaling value scl of the n-th occurrence On. Similar as before, the cost function assesses
the overall reduction that is achieved by a failure type candidate by subtracting the
scaled occurrences of the failure pattern from the given failure amplitudes. Considering
all iterations of the inner loop, the failure type candidate producing the minimum cost
c(O, pn(tn)) is saved and returned when the process is finished.

Finishing the Process As depicted in Fig. 3.9, the assessment of a failure pattern
according to its occurrences is used to decide on whether or not to continue the inner
loop. For that, two conditions are checked.
Firstly, the loop is terminated if the predefined number of iterations IIdentification is
exceeded. At that point, it is assumed that no significant improvements are made.
Secondly, the loop is terminated if the iteration at which the best candidate was ob-
served is Ibest iterations ago. This similarly ensures that the loop is terminated if no
significant improvements are made.

3.3. Processing Chain for Generating Generic Failure Models 99

Optimizing the Failure Pattern pn(tn) If the process is not finished, the failure
pattern is optimized to better fit the failure amplitudes at its identified occurrences.
This means that the weights Ω of the polynomial representing the failure pattern have
to be adjusted such that Eq. (3.49) is to be minimized. In this endeavor, Stochastic
Gradient Descent (SGD) is used in this work.
SGD is a technique for optimizing non-convex objective functions. It is commonly used,
for instance, in training neural networks but is not limited to this type of functions [90].
The central idea is to repeatedly evaluate a cost function for calculating its gradients
regarding the parameters of the used model and update the model parameter according
to the gradients. With this iterative approach, the model parameters are successively
optimized.
Here, the failure pattern pn(tn) with its parameters Ω is the model which is to be opti-
mized according to the cost function Eq. (3.49). Therefore, in this step, the gradients
of the cost function are calculated and used for updating the failure pattern’s weights.
More specifically, automatic differentiation [91] is employed to obtain the gradients
which are used to update the weights according to the AMSGrad update rule [92].
This rule was empirically shown to improve the performance of the SGD algorithm in
general, other update rules could be used as well.

The result of the inner loop is the failure type candidate FC encompassing a failure pat-
tern pn(tn) as well as its identified occurrences O. Whether or not the resulting failure
type is accepted to the identified failure model FMidentified, however, is determined in
the second step of the outer loop.

Decomposing Failure Amplitudes - Outer Loop

The inner loop for identifying failure types produced a failure type candidate FC , which
simultaneously addresses the first step of the outer loop. This loop, however, has to
to decide on whether or not the candidate is acceptable and, if so, prepare the next
iteration by removing the occurrences of the accepted failure type from the failure
amplitudes to produce f̂(k,ok).

Accepting a Failure Type Candidate While the decision to accept or reject a can-
didate can be based on various aspects, two are focused on in this work. Firstly, the
number of occurrences has to suffice, cf. Eq. (3.50).

|O| ≥ NO (3.50)

By requiring a number of at least NO occurrences, the next stage of the processing
chain is prepared. In contrast to the failure pattern pn(tn), the remaining functions of
the failure type are not represented as polynomials yet. To determine their parameters
in the next stage of the processing chain, sufficient samples, e.g. for the time between
two consecutive occurrences, have to be available. This is ensured by Eq. (3.50).

100 3. Generic Failure Model

−20
−10

0
10

f
(k

,o
k
)

−20
−10

0
10

f F
C

(k
,o

k
)

0 200 400 600 800 1,000 1,200 1,400
−20
−10

0
10

Time kn

f̂
(k

,o
k
)

Fig. 3.11.: Exemplary visualization of removing occurrences of a failure type candidate FC to generate
updated failure amplitudes f̂(k, ok), which become f(k, ok) in the iterative process of identifying failure
types. For the sake of visualization, one-dimensional data is considered here.

The second condition ensures that the candidate matches the given failure amplitudes
sufficiently. For that, the failure amplitudes of a failure type candidate are recon-
structed as described by Eq. (3.51).

fFC
(k,ok) = 0, @On ∈ O s.t. k ∈ [Ks(On), Ks(On) +Kn(On)]

scl(On) · pn
(

k−Ks(On)
Kn(On)

)
, On ∈ O s.t. k ∈ [Ks(On), Ks(On) +Kn(On)]

(3.51)

With these failure amplitudes in place, the second condition is given by Eq. (3.52).

K∑
k

|f(k,ok)− fFC
(k,ok)| ≤

K∑
k

|f(k,ok)| (3.52)

Here K denotes the number of time steps in f(k,ok). This condition requires a failure
type candidate to minimize the overall area of failure amplitudes. It ensures that each
failure type in the final failure model describes a sufficiently relevant property of the
overall failure characteristics.

Removing Occurrences If the failure type candidate FC generated by the inner loop
fulfills the conditions listed in the previous paragraph, it is added to the preliminary
failure model. To enable searching for another candidate focusing on currently un-
described failure amplitudes, however, the occurrences of the accepted failure type
have to be removed.
The idea is visualized in Fig. 3.11. The upper diagram shows the initial failure ampli-
tudes f(k, ok) passed to the first stage of the processing chain. From these, the failure
type candidate comprising a failure pattern pn(tn) and its occurrences were identified.
By applying Eq. (3.51) these are used to construct fFC

(k, ok), which is shown in the
second diagram. Subtracting these reconstructed failure amplitudes that are described
by the accepted failure type from the initial failure amplitudes f(k, ok) generates the
updated failure amplitudes f̂(k, ok) as shown in the lower diagram. These contain

3.3. Processing Chain for Generating Generic Failure Models 101

0 100 200 300 400 500 600

0

20

40

60

80

100

120

140

160

30

350

KW

OW KS

OS

Ô(k, ok) =
{
q ∈ O

∣∣∣∣Ks(q) ∈
[
k − KW

2
, k +

KW

2

]
∧ ok(q) ∈

[
ok −

OW

2
, ok +

OW

2

]}
(3.53)

Time k

o k
Reference Data ok

Occurrences of Failure Type Fn

Fig. 3.12.: Sliding window approach for identifying time- and value-correlations in the occurrences
On ∈ O of a single failure type FC ∈ FMI .

only failure amplitudes not considered by any of the previously accepted failure types.
Therefore, the next iteration of the identification process is executed using these up-
dated failure amplitudes.
Once the remaining failure amplitudes are sufficiently low, that is

∑
|f(k,ok)|≤ Afmin

or the failure type candidate produced by the inner loop is not accepted, the identifi-
cation process is stopped and the identified failure model FMidentified is passed to the
second stage of the processing chain.

3.3.2. Parameterizing Failure Types
The failure model FMidentified produced by the last stage consists of failure type
candidates, each represented by a failure pattern pn(tn) and a set of occurrences O.
These are used in this stage to parameterize each failure type. This means that the
polynomials used to represent the time- and value-correlated random distributions
an(k,ok) (TBF), dn(k,ok) (TtR), and scln(k,ok) (the scaling distribution) have to
be fitted. As each of these is represented by a time- and value-correlated random
distribution, which in turn requires three functions to be represented, a total of nine
polynomials need to be fitted for each identified failure type.
In this endeavor, the first step is to generate training data representing the function
to be modeled by a polynomial. The second step employs polynomial regression to
calculate the optimal set of parameters Ω from the training data such that the resulting
polynomial represents the required function.

102 3. Generic Failure Model

To obtain the training data comprising the input values (k,ok) and the output values
of the function to be represented, a sliding window approach is used. The approach
is visualized in Fig. 3.12 using artificial data generated for the sake of argumentation.
For the failure type candidate FC under consideration, the occurrences On ∈ O are
associated with the reference signal ok. Then a window covering Kw time steps and
spanning OW in the value domain is defined. This window is shifted along the time
axis with a step size of KS and along the value axis with step size OS.
In Fig. 3.12 a single position of the window centered around k = 350 and ok = 30 is
exemplarily highlighted. Indicated by the different colors, only the occurrences that are
within the current window (circles filled black) are considered to form Ô, cf. Eq. (3.53).
The remaining occurrences outside the current window (circles filled white) are not
considered.
Ô is the basis on which the training data is calculated. To calculate the Time to Repair
(TtR), for instance, the mean, standard deviation, and normalized values of Kn(On)
are calculated, cf. Eqs. (3.54) to (3.56)

µ̂d(k,ok) =
1

|Ô|

∑
On∈Ô

Kn(On) (3.54)

σ̂d(k,ok) =

√√√√ 1

|Ô|

∑
On∈Ô

(Kn(On)− µ̂d(k,ok))2 (3.55)

Ô′
d(k,ok) =

{
Kn(On)− µ̂d(k,ok)

σ̂d(k,ok)

∣∣∣∣∀On ∈ Ô
}

(3.56)

While Eq. (3.54) and Eq. (3.55) consider the duration for which an occurrence is active
to calculate the corresponding mean and standard deviation, Eq. (3.56) uses these
values to normalize the durations Kn(On). The intention is the following.
In contrast to the mean and standard deviation, which directly represent a single
data point within the training data for the corresponding polynomials, the quantile
function representing the normalized distribution is assumed to be constant for all
occurrences. Therefore, while the mean and standard deviation are time- and value-
correlated, meaning that their values depend on the occurrences within the current
window, the normalized distribution should remain the same across all windows of the
sliding window approach. Correspondingly, to obtain the training data for the normal-
ized distribution, the normalized duration values are collected for all windows.
Similar to the deactivation, the training data for the activation distribution, that is, for
the Time Between Failure (TBF) is calculated according to Eqs. (3.57) to (3.59).

µ̂a(k,ok) =
1

|Ô|

∑
On∈Ô

(Ks(On+1)−Ks(On)−Kn(On)) (3.57)

σ̂a(k,ok) =

√√√√ 1

|Ô|

∑
On∈Ô

((Ks(On+1)−Ks(On)−Kn(On))− µ̂a(k,ok))
2 (3.58)

Ô′
a(k,ok) =

{
(Ks(On+1)−Ks(On)−Kn(On))− µ̂a(k,ok)

σ̂a(k,ok)

∣∣∣∣ ∀On ∈ Ô
}

(3.59)

Opposed to the deactivation, here the starting time steps Ks of two consecutive oc-
currences On are considered together. Assuming that On+1 is the direct successor of

3.3. Processing Chain for Generating Generic Failure Models 103

0 200 400 600 800 1,000 1,200 1,400

−50

0

50

dI

Time kn

f
(k

,o
k
)

f(k, ok) IFM,α1,γ1

IFM,α2,γ2 IFM,α3,γ3

α, γ dI

α1, γ1 · · ·
α2, γ2 · · ·
α3, γ3 · · ·

Fig. 3.13.: Calculating confidence values for GFM by extracting an interval and comparing its borders
to the initial failure amplitudes.

On with respect to time, subtracting the starting time step Ks(On) and the duration
Kn(On) results in the time between those consecutive occurrences. Again, the mean
and standard deviation is calculated before the individual values are normalized.
The scaling values of the failure types occurrences are processed similar to the duration
values, cf. Eqs. (3.60) to (3.62).

µ̂scl(k,ok) =
1

|Ô|

∑
On∈Ô

scl(On) (3.60)

σ̂scl(k,ok) =

√√√√ 1

|Ô|

∑
On∈Ô

(scl(On)− µ̂scl(k,ok))2 (3.61)

Ô′
scl(k,ok) =

{
scl(On)− µ̂scl(k,ok)

σ̂scl(k,ok)

∣∣∣∣ ∀On ∈ Ô
}

(3.62)

Finally, generating the mean and standard deviation values for all windows of the slid-
ing window and considering (k,ok) at the center of the windows as the function’s inputs,
the training data for each polynomial is generated. Using the Sum of Squared Errors
(SSE) as a cost function, finding the optimal weights of the polynomials is achieved by
solving a linear equation. Here the Housholder QR decomposition is used.
Applying the procedure for each failure type candidate in FMidentified produces param-
eterized failure types Fn, which form the final failure model FM = {F1, . . . , FN}

3.3.3. Confidence Calculation
The parameterized failure model FM produced by the last stage resembles the final
failure model already. However, until now, the quality of the generated model is not
assessed. Moreover, as a confidence measure for the failure model has yet to be defined
to fulfill the corresponding criterion, this section introduces the same.
The central goal of the envisioned confidence measure is to provide information to
assess whether or not a failure model covers all relevant aspects of a represented failure
characteristics. In that way, an application or system can reason about the suitability
of a shared failure model with respect to its own safety. Especially with respect to
sensory data, but also with respect to continuous data in general, this means that

104 3. Generic Failure Model

the maximal and minimal failure amplitudes have to be considered. As these can be
extracted from a GFM using the approach presented in Section 3.2, the goal is to build
upon this interval representation.
The conceptual idea is depicted in Fig. 3.13. Given the failure model FM and the
initial failure amplitudes f(k,ok), intervals IFM,α,γ are extracted for different values
of α and γ, as well as the sets K and O which specify the time and value domain the
intervals are valid for. While versatile combinations for K and O are possible, this
work focuses on sets covering all initial failure amplitudes for the sake of simplicity.
Where needed, these are specified with more detail. Using Eqs. (3.63) to (3.66), the
failure amplitudes used to generate the failure model are compared to the bounds of
intervals and the minimal distance is determined. For comparison reasons, this distance
is normalized by the range of the interval under consideration. This enables taking the
minimum value of all dimensions in case of multi-dimensional failure amplitudes.

IL = min(IFM,α,γ) (3.63)
IU = max(IFM,α,γ) (3.64)

range(IFM,α,γ) = IU − IL (3.65)

dI(f(k,ok), α, γ) = mink∈K,ok∈O

(
min(IU − f(k,ok), f(k,ok)− IL)

range(IFM,α,γ)

)
(3.66)

While Eqs. (3.63) and (3.64) merely extract the lower, respective upper bound of the
interval, Eq. (3.65) uses these to calculate the range covered by the interval. Eq. (3.66)
defines the final confidence value depending on the interval under consideration as well
as the failure amplitudes the interval is valid for. Specifying the confidence value for
different α and γ values as indicated by Fig. 3.13 and the table therein, enables an
application to assess the impact of changing these values has on the extracted interval.
This enables applications to adjust these values with regard to their required safety
performance level.

3.4. Exemplary Application to Artificial Failure Characteristics 105

3.4. Exemplary Application to Artificial Failure
Characteristics

The previous sections introduced the concept of a Generic Failure Model (GFM) and
a processing chain for extracting the same from a given set of failure amplitudes. In
this section, these concepts are investigated by an exemplary application to artificial,
one-dimensional failure characteristics. This serves four goals.

1. By manually designing a GFM to represent the artificial failure characteristics,
the meaning of individual functions of a failure type is clarified and the fulfillment
of the clarity criterion is underlined (Section 3.4.1).

2. Showing that failure characteristics reported in the literature can be represented
underlines furthermore the fulfillment of the coverage criterion.

3. Using the exact knowledge of the manually designed failure model, failure ampli-
tudes are simulated and the ability of the proposed processing chain to generate a
failure model is shown (Sections 3.4.2 to 3.4.4). The extracted failure model can
further be compared with the original failure model to assess the performance of
the individual steps of the processing chain.

4. The modeling performance of the GFM is compared to state-of-the-art approaches
(Section 3.4.5).

Following these goals, the next subsection introduces the manually designed failure
models, before the following subsections discuss the individual stages of the processing
chain and its ability to retain the original failure models from simulated failure ampli-
tudes. Finally, the extracted failure models are compared to state-of-the-art approaches
for time series and failure modeling in Section 3.4.5.

3.4.1. Generating the Artificial Data Set – Manually Designing
GFMs

The clarity criterion on GFM stems from the need of sharing a failure model between
dynamically composed systems where it is of paramount importance that its interpre-
tation is clear to ensure safety. In pursuit of this criterion, the GFM is designed using
mathematical functions and polynomials. This results in an additional advantage for
experts and engineers required to specify a failure model. It can not only be designed
using the proposed processing chain but also by manually specifying the parameters of
a GFM .
This is leveraged in this subsection where failure types, repeatedly reported in the
literature but commonly defined only linguistically, are modeled manually. An overview
of the considered failure types and their definitions is given in Table 3.1. For the Noise,
Outlier, and Spike failure type, the definitions provided by Ni et al. [69] are considered.
The Offset failure type considered here is known by varying names in the literature.
It is defined as a Calibration failure in [69] or as Intermittent Offset or simply Offset
in [93]. Due to this inconsistency, the latter name is used here.
Additionally to the aforementioned types, the Artificial failure type is listed. This type
can be thought of as a special variant of the Spike failure type. It is used only in

106 3. Generic Failure Model

Tab. 3.1.: Linguistic definitions of the considered failure types.

Failure Type Definition

Noise [69] Sensor values experience unexpectedly high variation or noise.

Outlier [69] Isolated data point or sensor unexpectedly distant from model.

Offset [69],
[93]

Sensor reports values that are offset from the ground truth.

Spike [69] Multiple data points with a much greater than expected rate of
change.

Artificial A variant of the spike failure type considered only in this work to
support the evaluation.

this evaluation to further analyze the capabilities and restrictions of (i) the GFM and
(ii) the processing chain. To focus on this evaluation’s goals, only one-dimensional data
is considered here despite the GFM s ability to model multi-dimensional data, which
was shown already in [31] and will be further discussed in Chapter 5.
In the endeavor of designing the failure types, the next subsection focuses on their
failure patterns while the following subsection discusses their respective time- and
value-correlated random distributions representing their scaling, activation, and de-
activation distributions. Finally, the last subsection discusses the simulation of the
failure models generated from the individual failure types which provides the artifi-
cial failure amplitudes. To these, the processing chain will be applied in the following
sections.

Failure Patterns

Central to the definition of the individual failure types are their failure patterns pn(tn).
In accordance with the definitions in Table 3.1, the patterns are represented by poly-
nomials, which are sampled over tn ∈ [0, 1] and visualized in Fig. 3.14.
The definitions of Noise and Outlier state that, in the former case, sensor values expe-
rience high variations or, in the latter case, are unexpectedly distant from model. In
both cases, however, sensor values are affected independently, meaning that no tempo-
ral pattern can be observed. Correspondingly, a constant “1” is considered here and
represented by a polynomial of degree 0.
The failure pattern of the Offset failure type is modeled in the same way. In contrast
to Noise and Outlier, however, it is expected that this failure pattern indeed affects
multiple consecutive sensor values but with the same failure amplitude. Therefore, a
constant is used here as well.
The Spike failure type, is defined with respect to its rate of change. Similar to the
Offset failure type, multiple sensor values are affected, but the magnitude is changing.
Therefore, the pattern is represented by a polynomial with degree 7 and was fitted to
match the Probability Density Function (PDF) of a Gaussian distribution to resemble
a bell-like shape.

3.4. Exemplary Application to Artificial Failure Characteristics 107

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
N

o
is

e
(t

n
)/

p
O

u
tl

ie
r
(t

n
)

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
O

f
f

s
e
t
(t

n
)

(a) FNoise / FOutlier (b) FOffset

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
S

p
ik

e
(t

n
)

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
A

r
ti

f
ic

ia
l(

t n
)

(c) FSpike (d) FArtificial

Fig. 3.14.: Failure patterns of the failure types considered in Table 3.1.

The failure patterns are, until now, restricted to the value domain of pn ∈ [0, 1].
Contrarily, a failure pattern is allowed to have values between -1 and 1, cf. Section 3.1.2.
Therefore, the additional failure type called Artificial is added, cf. Fig. 3.14d. Its
pattern resembles the Ricker Wavelet and is modeled by a polynomial of degree 15.

Time- and Value-Correlated Random Distributions

While the failure pattern of each failure type defines its deterministic part, the scaling
of the pattern, as well as the failure type’s activation and deactivation, are represented
by time- and value correlated random distributions, cf. Section 3.1.1. The param-
eterization of these distributions is discussed in this subsection. An overview of the
distribution serving as templates for this paramterization is provided in Table 3.2.
As stated by the table, the underlying distributions are either a Gaussian distribu-
tion N(0, 1) or a uniform distribution U(0, 1). While the former is represented by a
polynomial of degree 3 (cf. Fig. 3.15a), the latter requires only a polynomial of degree
1 to represent the quantile function Quniform(z) = 0 + 1 · z. As described in Sec-
tion 3.1.1, these distributions are scaled and shifted according to µ and σ functions
which potentially introduce time- and value-correlations.
For representing the scaling distribution of the Offset failure type, for instance, the
Gaussian distribution is scaled by a standard deviation increasing in relation to ok.
While this means that µsclOffset

(k, ok) = 0 is represented by a polynomial of degree
0, the standard deviation σsclOffset

= 10 + 1 · ok, is a polynomial of degree 1. In
contrast, the failure type’s activation and deactivation distributions are not time- or

108 3. Generic Failure Model

Tab. 3.2.: Template distributions used to generate the time- and value-correlated distributions of the
modeled failure types

Failure Type Scaling Activation Deactivation

Offset N(0, 10 + ok) N(100, 25) U(15, 50)

Spike N(0, 5) N(100, 25) N(35, 0.5 + 0.01 · k)

Artificial U(7.5, 15) N(70 + 0.5 · k, 10) N(35, 5)

Noise QNoise

(µ = 0, σ = 1 + 4 · ok)
0 1

0 0.5 1

−2

0

2

z

Q
(z

)

−1 0 1 2

0

5

ok

σ
s
c
l F

N
o

i
s

e

(a) Quantile Function of Gaussian Distribution Repre-
sented by a Polynomial of degree 3.

(b) Standard deviation σNoise(k, ok) of the Noise’s scaling
function visualized for k = 750.

0 500 1,000 1,500
0

5

10

15

Time kn

σ
d

F
S

p
i
k

e

0 500 1,000 1,500
0

200

400

600

800

Time kn

µ
a

F
A

r
t

i
f

i
c

i
a

l

(c) Standard deviation σSpike(k, ok) of deactivation func-
tion of spike failure type visualized for ok = 0.5.

(d) Mean µArtificial(k, ok) of activation function of arti-
ficial failure type visualized for ok = 0.5.

Fig. 3.15.: Sampled polynomials representing time- and value-correlations in the modeled failure
types.

3.4. Exemplary Application to Artificial Failure Characteristics 109

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

−4

−2

0

2

4

z

Q
N

o
is

e
(z

)

Fig. 3.16.: Quantile function of Noise failure type incorporating Outliers.

value-correlated. Therefore, the respective µ and σ functions are constants representing
the mean and standard deviations stated in Table 3.2.
The Spike failure type, however, is modeled to have occurrences with increasing length
over time. For that, the deactivation distribution representing its TtR is Gaus-
sian with an increasing standard deviation. The sampled polynomial is visualized
in Fig. 3.15c.
Regarding the Artificial failure type, only its activation distribution is time-correlated.
This time, the mean value of its time between failure increases over time which means
that its number of occurrences decreases. Again a linear correlation is assumed, as can
be seen in Fig. 3.15d.
In contrast to the remaining failure types, Noise is defined to be always active but
affect only single time steps. For that, the quantile function of the activation and
deactivation distributions are set to zero (Qa/d(z) = 0). The mean functions are
used to model the constants, that is, the duration of a single occurrence is set to one
time step (dNoise(k, ok) = 1) while the time between two occurrences is set to zero
(aNoise(k, ok) = 0).
Moreover, the Noise failure type is additionally used to represent the Outlier failure
type as well. To that end, the ability of a quantile function to represent arbitrary dis-
tributions is leveraged. It enables to impose a Gaussian distribution (for representing
the Noise scaling) with a custom distribution adding high values that are only rarely
occurring. The resulting quantile function represented by a polynomial of degree 18 is
visualized in Fig. 3.16. By mapping approximately all values for 0.05 ≤ z ≤ 0.95 to
a value close to zero, small Noise amplitudes are represented with a high probability.
Contrarily, the remaining values of z are mapped to high amplitudes that are occurring
with a low probability. These encode the Outlier amplitudes. Simulating failure ampli-
tudes from the failure type shows that it simultaneously represents Noise and Outlier,
cf. Fig. 3.17a.

Generating the Artificial Data Set

In the endeavor of evaluating the proposed processing chain, time series of failure am-
plitudes, on which it can operate, are required. For that, this subsection starts by
defining distinct failure models as sets of the manually defined failure types. After
defining a reference signal required to evaluate modeled value-correlations, the simula-
tion procedure is described. Examples of the generated failure amplitudes are discussed
to conclude this subsection.

110 3. Generic Failure Model

Tab. 3.3.: Mapping the sets of considered failure types to labels of failure models.

Failure
Model Failure Types Failure

Model Failure Types

FM{N} {FNoise} FM{O,A} {FOffset, FArtificial}

FM{O} {FOffset} FM{S,A} {FSpike, FArtificial}

FM{S} {FSpike} FM{N,S,O} {FNoise, FSpike, FOffset}

FM{A} {FArtificial} FM{N,O,A} {FNoise, FOffset, FArtificial}

FM{N,O} {FNoise, FOffset} FM{N,S,A} {FNoise, FSpike, FArtificial}

FM{N,S} {FNoise, FSpike} FM{S,O,A} {FSpike, FOffset, FArtificial}

FM{N,A} {FNoise, FArtificial} FM{N,S,O,A}
{FNoise,FSpike,

FOffset,FArtificial}
FM{S,O} {FSpike, FOffset}

The previously defined failure types described distinct failure amplitudes. By combin-
ing them, varying failure characteristics can be represented. This supports the analysis
of the processing chain, for which failure amplitudes are to be generated. Therefore,
all combinations of the presented failure types are considered. Starting from failure
models having only one failure type, all failure models having two, three, and four fail-
ure types are considered. Consequently, the evaluation is based on 15 different failure
models which are listed in Table 3.3.
To simulate the failure models, a reference signal ok is needed to evaluate the de-
fined value-correlations. For the sake of simplicity, a sinus curve is used here
cf. Eq. (3.67).

ok = 3 ·

(
sin(k

75
)

2
+ 0.5

)
− 1 (3.67)

The sinus is sampled with a frequency of 0.013Hz and is scaled to be in the interval of
ok ∈ [−2, 1]. This enables evaluating positive and negative value-correlations.
The simulation process uses both, time k and the defined reference signal ok, to sample
the failure model and generate failure amplitudes f(k, ok). More specifically, the com-
positional characteristic of the GFM is leveraged (cf. Eq. (3.1)) which allows sampling
each failure type independently to generate fFn(k, ok) and superimpose theses to obtain
the overall failure amplitudes f(k, ok).
Therefore, the simulation of each failure type starts with evaluating its activation
distribution an(k, ok) using k, ok, and a random value of z ∈ [0, 1]. The result states
the time between failure, that is, the time step Ks = k + an(k, ok) at which the failure
type becomes active. When the failure type becomes active, the scaling distribution
scln(Ks, ok) is sampled equally to generate the scaling with which the failure pattern
occurs. Additionally, the deactivation distribution is sampled to determine the duration
Kn = dn(Ks, ok) for which the failure will be active. Once the failure type reaches the
time step k = Ks +Kn at which it becomes inactive, the procedure is repeated.
In essence, this cycle produces occurrences On of the failure type in question. From

3.4. Exemplary Application to Artificial Failure Characteristics 111

0 200 400 600 800 1,000 1,200 1,400 1,600

−20

0

20

Time k

f F
N

o
i
s

e
(k

,o
k
)

(a) Exemplary Time Series of Simulated Noise Failure Type.

0 200 400 600 800 1,000 1,200 1,400 1,600
−1

0

1

2

Time k

o k

(b) Reference of Exemplary Time Series.

Fig. 3.17.: Failure amplitudes and reference signal for Noise failure type.

that set, Eq. (3.51) is used to construct the simulated failure amplitudes fFn(k, ok),
from which the overall failure amplitudes f(k, ok) are generated by summing over all
failure types, cf. Eq. (3.1).
For each of the failure models listed in Table 3.3, this simulation is repeated 6 times,
each comprising 1500 time steps. In that way, time- and value-correlated effects are
sampled multiple times which shall support the identification and parameterization
process executed by the processing chain.
Fig. 3.18 shows exemplary time series of the simulated failure amplitudes. Starting
with FM{A} comprising only the Artificial failure type (cf. Fig. 3.18a), the reader can
see that not only the complex shape is injected and scaled as modeled but also that the
TBF , according to the modeled time-correlation, increases. While the time between
two consecutive occurrences of the failure time is close to 100 in the beginning, it is
increasing to approximately 700 in the end of the shown time series.
Similarly, the value-correlated scaling of Noise failures becomes apparent by comparing
the reference signal in Fig. 3.17b with the corresponding failure amplitudes simulated
using FM{N} shown in Fig. 3.17a. The amplitudes increase with the minimal and
maximal values of the sinus curve.
In contrast to these examples, the correlations modeled by the Spike and Offset failure
are not as obvious as they affect the standard deviation of the respective distributions.
In Fig. 3.18b a series of failure amplitudes of FM{S} is shown. While the temporal
pattern of the Spike failure is clearly visible, the increase in the standard deviation of
the failure type’s activation is subtle. Similarly, the effect of the increased standard

112 3. Generic Failure Model

0 500 1,000 1,500

0

10

Time k

f F
M

{
A

}

(a) Failure amplitudes simulated using the failure model
FM{A} comprising only the Artificial failure type.

0 500 1,000 1,500

−5

0

5

Time k

f F
M

{
S

}

(b) Failure amplitudes simulated using the failure model
FM{S} comprising only the Spike failure type.

0 500 1,000 1,500

−10

0

10

Time k

f F
M

{
O

}

(c) Failure amplitudes simulated using the failure model
FM{O} comprising only the Offset failure type.

0 500 1,000 1,500
−20

0

20

Time k

f F
M

{
N

,S
,O

,A
}

(d) Failure amplitudes simulated using the failure model
FM{N,S,O,A}.

Fig. 3.18.: Exemplary time series of failure amplitudes of selected failure models.

deviation in the scaling distribution of the Offset failure type is minor but observable,
cf. Fig. 3.18c. Finally, Fig. 3.18d shows the failure amplitudes as simulated by the
failure model FM{N,S,O,A}, which encompasses all failure types.
These figures underline that the GFM can be parameterized manually to represent fail-
ure characteristics reported in the literature. Furthermore, this shows that an intuitive
interpretation of the individual components is possible and supports the fulfillment of
the clarity criterion.

3.4.2. Identifying Failure Types
The failure amplitudes generated by simulating the manually designed failure models
serve, together with the reference signal, as the input to the processing chain. As
depicted in Fig. 3.8, its first stage aims at identifying failure type candidates comprising
a failure pattern pn and its occurrences Ôn. In the endeavor of evaluating this process,
the next subsection discusses the parameterization of this stage before the following
subsection examines its output.
For that three aspects are discussed. Firstly, the optimization process for identifying
and adjusting the failure patterns pn(tn) is analyzed using the example of the Spike
failure type. Secondly, the failure patterns generated by the processing chain are
compared to the original patterns. Thirdly, the injected occurrences On are compared
to the occurrences Ôn generated during the simulation of the failure model.

3.4. Exemplary Application to Artificial Failure Characteristics 113

Tab. 3.4.: Parameterization of the identification stage of the proposed processing chain.

Parameter Value Description

NO 1 Number of occurrences a failure type must have at least to
be accepted.

Kn [14, 56] Durations, that is, scale values of CWT (cf. Eq. (3.47)) with
which the occurrences of a failure pattern are searched for.

D 5 Degree of the polynomial representing the failure pattern of
an identified failure type.

IIdentification 106 Maximal number of iterations for optimizing a failure pat-
tern.

η −5−5 Learning rate used by AMSGrad during gradient descent for
optimizing a failure pattern.

Npn 32 Number of failure patterns optimized in parallel.

Note that, during this evaluation, the set Ôn denotes the occurrences of the n-the failure
type identified by the processing chain while the set On denotes the occurrences of the
same failure type as produced during simulation, that is, from which the original sets of
failure amplitudes were generated. Similarly, ˆFM will denote failure models generated
by the processing chain while FM will indicate the original, manually modeled failure
models.

Parameterization

To underline the general applicability of the processing chain for extracting failure mod-
els, the parameters chosen for the identification step of failure types are the same for all
failure models. An overview of the most central parameters is given in Table 3.4
The first stage identifies failure types by searching for occurrences of length Kn ∈
[14, 56] of failure patterns represented by polynomials of degree 5. For the sake of
simplicity, these parameters are set in accordance with the manually designed failure
types. The range of length values is chosen with respect to the deactivation distribu-
tions of the modeled failure types. Similarly, the polynomial degree for representing
failure patterns is chosen in accordance with the Spike failure type (D = 5). While
the polynomial is, therefore, able to represent Noise, Offset, and Spike failures, the
pattern of the Artificial failure type has to be approximated. Therefore, the degree is
a trade-off between the complexity of the anticipated failure patterns.
For a failure type to be accepted, its pattern has to occur at least once. To that end,
the pattern is optimized within up to IIdentification = 106 iterations, where a learning
rate of −5−5 is applied. As the approach of SGD is known to potentially result in local
optima [90], a total of Npn = 32 failure patterns are optimized in parallel while only
the best according to Eq. (3.49) is considered as a candidate FC .

114 3. Generic Failure Model

0 0.5 1
−1

−0.5

0

0.5

1

tn

p
S

p
ik

e

(a) Optimizing pSpike(tn) using a single polynomial.

0 0.5 1
−1

−0.5

0

0.5

1

tn

p
S

p
ik

e

(b) Optimizing pSpike(tn) using multiple polynomials in
parallel.

Fig. 3.19.: Visualizing the optimization process of single and parallel polynomials. The green curve
shows the randomly initialized polynomial while the red curve depicts the optimized pattern. Poly-
nomials obtained in between are colored gray where darker gray refers to polynomials later in the
process.

Results

Using the parameters of Table 3.4, the first stage of the processing chain employs two
nested loops to find failure patterns and identify a failure type candidate, cf. Sec-
tion 3.3.1.
The inner loop employs SGD to optimize randomly initialized failure patterns. The
process is visualized exemplarily in Fig. 3.19. It compares the optimization process of a
single polynomial (Fig. 3.19a) with the same approach considering multiple polynomials
in parallel (Fig. 3.19b). In both figures, the initial polynomial is depicted by a green
curve while the best polynomial (according to Eq. (3.49)) obtained during optimization
is colored red. The gray-colored lines in between correspond to new, best polynomials
generated during the process. Light-gray-colored curves refer to polynomials early in
the process while dark-gray-colored curves show polynomials closer to the end.
Considering Fig. 3.19a first, one can see that the initial polynomial is nothing but a
decreasing linear that does not resemble a Spike pattern. During gradient descent,
the parameters of the polynomials are adjusted such that the end of the curve is bent
upwards. Thereby, the adjustment towards an inverted bell-like shape is observable.
Note that the sign does not affect how well the pattern matches the failure amplitudes
as it is compensated for by the scaling value scl. Despite the continuous optimization,
only a local optimum is reached.
This becomes clear when comparing Fig. 3.19a with Fig. 3.19b. For the latter, mul-
tiple polynomials are optimized in parallel while only the best polynomial regarding
Eq. (3.49) of each iteration is visualized. Moreover, in each iteration half of the poly-
nomials achieving the worst scores are reinitialized with random parameters, which
additionally introduces randomness and thereby counteracts the problem of local op-
tima.
Although the best initial polynomial again resembles almost a linear curve (green),
fewer iterations are needed to obtain better failure patterns. During these, the curve
switches between positive and negative values. Moreover, clear, distinct curves are

3.4. Exemplary Application to Artificial Failure Characteristics 115

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
S

p
ik

e
(t

n
)

(a) Original Spike failure pattern.

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
1(

t n
)

(b) Identified Spike failure pattern. The mean absolute
error over all time steps is 0.2.

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
A

r
ti

f
ic

ia
l(

t n
)

(c) Original Artificial Failure Pattern

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
1(

t n
)

(d) Identified Artificial failure pattern. The mean absolute
error over all time steps is 0.6.

Fig. 3.20.: Comparing exemplary manually designed and automatically identified failure patterns.

observable which indicates that not a single polynomial was found to be the best
during optimization, but multiple polynomials replaced each other as the best.
The parallel version requires only 436 candidates to achieve a Spike pattern compared
to 4430 polynomials produced by the none parallel procedure, which further underlines
that the parallel version is more efficient in finding suitable failure patterns.
As one can see in Fig. 3.20a and Fig. 3.20b, the procedure generates a close match
between the original and the identified spike failure pattern for failure amplitudes
simulated using FM{S}. The Mean Absolute Error (MAE) is 0.2, cf. Eq. (3.68).

MAE(poriginal, pidentified) =
1

Kn

Kn∑
kn=0

∣∣∣∣poriginal(knKn

)− pidentified(
kn
Kn

)

∣∣∣∣ (3.68)

To calculate the value, both patterns are sampled for Kn = 100 time steps.
In contrast to the Spike failure pattern, the Artificial pattern can not be identified with
such accuracy, cf. Figs. 3.20c and 3.20d. Using the failure amplitudes generated from
FM{A}, a failure pattern with an MAE of 0.6 is generated. The reason is twofold.
Firstly, the chosen degree of 5 is not sufficient to represent the complex failure pattern,
which is originally represented by a polynomial of degree 15. Secondly, the increased
complexity causes the optimization process to be more susceptible to terminating in a
local optimum.

116 3. Generic Failure Model

As one can see in Fig. 3.20d, approximately the first half of the original failure pattern
is identified. From that point on, adjusting the pattern to represent the Artificial
failure pattern in its entirety would require decreasing the overall score firstly.
In contrast to the Spike and Artificial failure pattern, the patterns of Noise and Offset
could be identified with errors of 0 and 0.01 respectively. Due to these low values and
as the patterns are constant zeros, no figure is shown here.
Similar results are observable when comparing the failure patterns identified for
FM{N,S,O,A}. The failure amplitudes of this failure model comprise all failure types.
Due to the imposition of multiple failure types, the individual patterns are occluded,
which hinders their identification. Nevertheless, close approximations can be found, as
shown in Fig. 3.21.
To compare the pattern, the original and identified patterns were matched based on
their MAE values, cf. Eq. (3.68). Using these, the Offset pattern was matched with the
first failure type F1, the Spike failure type was matched with the second failure type
F2, the Artificial failure type was matched with F3 , and Noise was matched with F4.
Note that the order F1, . . . , F4 is the order in which the inner loop of the identification
stage proposed the failure type candidates.
Compared to the previously identified patterns in Fig. 3.20d, the pattern associated
with the Artificial failure type resembles the original more closely. This is due to the
random initialization and indicates that more iterations or an increased number of
parallel polynomials might result in better approximations.
Next to the actual failure pattern, the first stage of the processing chain additionally
identifies its set of occurrences Ôn. Similar to the failure patterns, the occurrences can
be compared to the occurrences On generated by the initial simulation as well. For
that, three metrics are applied.
Firstly, the ratio of identified occurrences to original occurrences is calculated for ob-
taining a general overview, cf. Eq. (3.69).

rO =

∣∣∣Ôn

∣∣∣
|On|

(3.69)

For the n-th failure type, the number of occurrences identified by the processing chain
is divided by the number of occurrences used during simulation to generate the failure
amplitudes.
Secondly, the temporal aspect of a failure type’s occurrence is assessed by calculat-
ing the mean, temporal overlap of identified and original occurrences, cf. Eqs. (3.70)
to (3.73).

I∩(Ô, O) =
[
Ks(Ô), Ks(Ô) +Kn(Ô)

]
∩
[
Ks(O), Ks(O) +Kn(O)

]
(3.70)

d∩(Ô, O) =
max(I∩(Ô, O))−min(I∩(Ô, O))

Kn(O)
(3.71)

Ô ∪ O =
{
(Ô, O)

∣∣∣d∩(Ô, O) > 0, ∀Ô ∈ Ô,∀O ∈ O
}

(3.72)

µOverlap =
1∣∣∣Ô ∪ O∣∣∣

∑
(Ô,O)∈Ô∪O

d∪(Ô, O) (3.73)

For this, Eq. (3.70) is the interval obtained when intersecting the start and end time
steps of an original occurrence O with an identified occurrence Ô. Dividing the range

3.4. Exemplary Application to Artificial Failure Characteristics 117

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
O

f
f

s
e
t
(t

n
)

(a) Original Offset failure pattern.

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
1(

t n
)

(b) Identified Offset failure pattern with a MAE of 0.07.

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
S

p
ik

e
(t

n
)

(c) Original Spike failure pattern.

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
2(

t n
)

(d) Identified Spike failure pattern with a MAE of 0.26.

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
A

r
ti

f
ic

ia
l(

t n
)

(e) Original Artificial failure pattern.

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
3(

t n
)

(f) Identified Offset failure pattern with a MAE of 0.5.

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
N

o
is

e
(t

n
)/

p
O

u
tl

ie
r
(t

n
)

(g) Original Noise failure pattern.

0 0.5 1
−1

−0.5

0

0.5

1

Time tn

p
4(

t n
)

(h) Identified Noise failure pattern with a MAE of 0.0.

Fig. 3.21.: Comparison of original and identified failure patterns for failure model FM{N,S,O,A}.

118 3. Generic Failure Model

of this interval by the duration of the original occurrence (cf. Eq. (3.71)) determines
the ratio to which both overlap. Eq. (3.72) uses this to determine the combinations of
original and identified occurrences that actually overlap. Finally, µOverlap is calculated
as the mean of the overlap values of this set and thereby states the average overlap
achieved by the identified occurrences with the original occurrences. For the distance
d∩(Ô, O), as well as for the mean µOverlap, values close to one indicate that the orig-
inal and identified occurrences overlap closely while values close to zero indicate the
opposite.
Thirdly, the identified scaling value scl of an occurrence is assessed.

µscle =
1∣∣∣Ô ∪ O∣∣∣

∑
(Ô,O)∈Ô∪O

∣∣∣scl(Ô)− scl(O)∣∣∣
|scl(O)|

(3.74)

Eq. (3.74) uses the set of combined occurrences according to Eq. (3.72). It firstly
calculates the normalized scaling error for each occurrence and secondly determines
the mean over all scaling errors. As such, it states the relative difference between the
correct and identified scaling value3.
In summary, while the rO allows to generally assess whether or not the occurrences of
the individual failure types are identified, the mean of overlap values µOverlap focuses
on whether or not the start and end point (in time) are identified correctly. Lastly,
the µscle enables to discuss the identification of correct scaling values. The results are
shown in Table 3.54.
Starting with the failure models FM{N}, FM{S}, FM{O}, and FM{A}, one can see
that almost all occurrences can be identified. The scaling error is low across all four
models, but the mean of overlap values decreases. While the length of Noise and Offset
failures can be identified, the value decreases for Spike and Artificial failures featuring
more complex shaped failure patterns.
The consideration of an additional failure type, e.g. Noise, aggravates the identification
process, as can be seen by FM{N,S}. The value of rO drops drastically for the Spike
failure type while the overlap value decreases as well. Furthermore, the scaling error
increases for the Noise failure type. This is caused by the updating process of the
failure amplitudes f(k, ok) after the acceptance of a failure type, cf. Fig. 3.11. If the
length of a failure type’s occurrence is not identified correctly or the shape does not
sufficiently match the failure amplitudes, artifacts are introduced when removing the
identified occurrences. As Noise is generally identified last, all artifacts introduced by
previously identified failure types are captured by its occurrences. As a consequence,
the scaling values of these occurrences do not match the original scaling values.
Therefore, the same increase in the scaling error is observable for FM{N,A}. Apart from
that, the identification of the Artificial failure type is only disturbed by the Noise failure
regarding the length of the occurrences, not regarding the number of occurrences. This
implies that the identification of the Spike failure type is disturbed in general, as is
underlined by FM{S,O}. The reason for that is the generally reduced magnitude with
which a Spike failure occurs in the considered failure amplitudes, cf. Fig. 3.18b.

3The sign of the scaling value is considered in correspondence to the failure pattern. That means
that if the failure pattern is inverted compared to its original pattern, the scaling value is inverted
as well and taken into account during the calculation of Eq. (3.74)

4The results of all failure models are given in Table B.1 in the appendix.

3.4. Exemplary Application to Artificial Failure Characteristics 119

Tab. 3.5.: Comparing the occurrences of identified failure types. The original failure model is stated
in the most left column while the values of the applied metrics are summarizing the results obtained
for the failure type identified by the processing chain. For failure models comprising multiple failure
types, the individual evaluation values are stated for each failure type individually.

FM rO µOverlap µscle

FM{N} [1.00] [1.00] [0.00]

FM{O} [0.98] [0.99] [0.01]

FM{S} [0.97] [0.80] [0.08]

FM{A} [1.00] [0.49] [0.04]

FM{N,S} [1.00, 0.47] [1.00, 0.71] [8.40, 0.12]

FM{N,A} [1.00, 1.00] [1.00, 0.48] [47.44, 0.02]

FM{S,O} [0.63, 0.96] [0.50, 0.95] [2.88, 0.14]

FM{S,O,A} [0.93, 0.86, 1.00] [0.72, 0.35, 0.41] [1.15, 1.05, 1.18]

FM{N,S,O,A} [1.00, 0.15, 0.84, 0.76] [1.00, 0.48, 0.85, 0.46] [38.08, 0.50, 1.98,
0.39]

It is only for FM{S,O,A} that the number of occurrences identified for the Spike failure
type is at a higher level, while almost none of its occurrences are identified when
considering FM{N,S,O,A}. Nevertheless, FM{S,O,A} shows that even when imposed
by each other, it is possible to identify the individual failure types to some degree.
FM{N,S,O,A} on the other hand underlines that Noise is challenging the identification
process.
The evaluation of the first stage of the processing chain shows that by using the CWT -
based occurrence identification and the gradient descent based learning of failure pat-
terns, appropriate failure types can be identified.

3.4.3. Parameterizing Failure Types
The failure types identified in the first stage of the processing chain have to be repre-
sented in terms of parameters of corresponding polynomial functions. This parameter-
ization is calculated in the second stage of the processing chain, which is the subject
of this subsection. In the same manner as before, the parameterization of this stage is
introduced before the results are discussed. For that, the time- and value-correlations
manually designed for the original failure types are compared to what is represented
by the automatically generated failure model.

Parameterization

Next to the failure pattern, each failure type identified in the processing chain’s first
step is accompanied by a set of occurrences Ô. Using the reference signal ok, a sliding
window approach is applied to these occurrences to extract the mean, standard devia-

120 3. Generic Failure Model

Tab. 3.6.: Configuration for the parameterization stage of the proposed processing chain. Note that
the parameters for generating the Noise failure type’s differ to the parameters for generating the
remaining failure types.

Parameter Value Description

KW/KWNoise
750/50 Temporal width of the sliding window approach.

OW/OWNoise
1.5/0.0125 Width of the sliding window approach in the value do-

main.

KS/KSNoise
300/50 Temporal step size of the sliding window approach.

OS/OSNoise
0.3/0.0125 Step size of the sliding window approach in the value

domain.

DQscl
3 Degree of polynomial used to represent the quantile func-

tion of a failure type’s scaling distribution.

D 1 Degree of polynomial to represent other functions of a
failure types scaling, activation, and deactivation distri-
bution.

tion, and quantile function of the remaining time- and value-correlated random distri-
butions for the failure type in question. Considering these as training data, polynomials
are fitted to represent the corresponding functions. Table 3.6 lists the parameters used
in this example.
The KW and KS parameters state the temporal width of the window and the step
size used to slide the window over time. Correspondingly, OW and OS define the same
attributes for the window’s value domain.
One notices the difference between the Noise failure type and the remaining failure
types. This is due to the difference in the number of occurrences. The Noise failure
type is nothing but the last failure type identified during the first stage of the process-
ing chain. It assumes each non-zero failure amplitude in f̂(k, ok) as a single occurrence,
which causes, in this specific example, |ÔNoise|= 9000 occurrences. In contrast, failure
type’s identified through gradient descent reach a maximum of |Ô|= 218. Therefore,
while small windows suffice to generate significant mean and standard deviation val-
ues for the Noise failure type, the window size must be increased for other failure
types.
Similar to the window size, the stepping parameters KS and OS are adjusted. For
the Noise failure type, the values are set to match the width of the window such that
no overlapping windows are used during the process. Due to the increased number
of occurrences, this ensures that each occurrence is used only once. Contrarily, the
parameterization for other failure types is such that overlaps are explicitly generated.
This time, the overlap ensures that the overall number of windows is increased, which
means that the number of data points, to which the polynomials are fitted, is increased
as well. This shall support the training process.
Finally, polynomials of degree D = 1 are fitted to represent the functions as it is
known from the manually designed failure models that only linear correlations are to

3.4. Exemplary Application to Artificial Failure Characteristics 121

0 0.5 1
−5

0

5

z

Q
N

o
is

e
(z

)

−1 0 1 2

0

5

Value ok

σ
s
c
l

(a) The scaling distribution of the extracted Noise failure
type tends towards the original quantile function but fails
to integrate Outlier as can be seen from the overall reduces
spread [−5, 5].

(b) The Noise’s standard deviation shows almost no value-
correlation and remains on an overall limited value. The
function is visualized for k = 750.

0 500 1,000 1,500

2

4

6

8

Time k

σ
T

tR
F

S
p

i
k

e

0 500 1,000 1,500
180

200

220

240

260

Time k

µ
T

B
F

F
A

r
t

(c) The extracted standard deviation of the Spike’s deac-
tivation distribution shows a minor time-correlation. The
function is visualized for ok = 0.5.

(d) The mean of the Artificial’s TBF distribution shows
a minor decrease over time. The function is visualized for
ok = 0.5.

Fig. 3.22.: Mean and standard deviation function’s of the separately extracted failure types.

be expected. The quantile function of the scaling distributions, however, are fitted by
polynomials of degree DQscl

= 3 as the Offset and Spike failure type’s use a Gaussian
distribution and the Noise failure type even uses a custom quantile function.
With these parameters, the occurrences of the identified failure types are analyzed using
the sliding window approach and parameterized by fitting corresponding polynomials.
Thus, the failure models’ final representations are generated.

Results

For the sake of brevity and argumentation, only the failure models ˆFM{N}, ˆFM{S},
ˆFM{O}, and ˆFM{A} are considered here as they feature a single failure type for which

the identified and originally modeled failure pattern can be compared. In this endeavor,
Fig. 3.22 shows the correlations as generated by the processing chain. Comparing these
with the original correlations shown in Fig. 3.15 clarifies that this is a shortcoming of
the processing chain. Correlations are identified in general but do not match the orig-
inal correlations. While originally the mean of the activation µa(k, ok) of the Artificial
failure type is increasing over time (cf. Fig. 3.15d), the processing chain extracts a
decreasing trend (cf. Fig. 3.22d). Similarly, the scaling σscl(k, ok) of the original Noise
failure type is increasing proportionally to the value ok while standard deviation as
extracted by the processing chain remains at a constant level, cf. Fig. 3.22b. The trend

122 3. Generic Failure Model

provided for the standard deviation σd(k, ok) of the Spike’s deactivation distribution
(cf. Fig. 3.15c) is extracted correctly (cf. Fig. 3.22c). However, the function value is
increased in general and exhibits a steeper gradient. Finally, the quantile function
Qscl(z) of the scaling distribution of the Noise failure type is shown in Fig. 3.22a. It in-
dicates a distribution with rarely occurring extreme values. Nevertheless, compared to
the original quantile function (cf. Fig. 3.16) it fails to integrate Outliers as clearly.
On the one hand, these examples show that the processing chain is capable of identify-
ing time- and value correlations of the initial failure amplitudes f(k, ok). On the other
hand, these are not following the original correlations.
This, however, may not entail an incorrect failure model. In contrast, the GFM and
more specifically the employed concept of a time- and value-correlated random distri-
bution enables representing general trends in various ways. This entails that there is
not a unique representation for a single failure type, which renders comparing the corre-
lations of an identified failure type with its original version a challenging task. Thus, to
assess the degree to which the failure model represents the initial failure characteristics
of f(k, ok) the third stage is used.

3.4.4. Confidence Calculation
The failure models generated by the parameterization stage of the processing chain
aim at representing the initial failure characteristics. However, the degree to which
they succeed in this task is not stated yet. In this endeavor, Section 3.3.3 proposed a
confidence calculation based on the extraction of intervals. As this requires to show the
correct working of the interval calculation first, the next subsection uses a new set of
manually modeled failure types to examine the aspects of the interval calculation before
the following subsection applies the confidence calculation proposed in Section 3.3.3 to
the failure models obtained by the processing chain.

Verifying Calculation of Intervals

As the confidence value calculated in the last stage of the processing chain is based on
the extraction of intervals from a GFM , the approach has to be evaluated first. In this
endeavor, this section firstly defines a new set of failure types specifically designed to
highlight aspects of the interval extraction process. Secondly, Monte-Carlo simulation
is used to verify that the determined intervals are indeed met by failure amplitudes of
the corresponding failure types depending on the chosen α and γ values.

Failure Types and Failure Models The extraction of an interval IFM from a GFM
requires considering varying aspects. To facilitate examining these individually, as
well as in combination, a specific set of failure types is manually designed. Table 3.7
provides an overview of these and their definitions.
Firstly, Gaussian Noise is considered. Its scaling distribution is an uncorrelated Gaus-
sian distribution. This failure type thereby enables analyzing the gradually increasing
and decreasing range of extracted intervals depending solely on the value of α. Thus,
it facilitates examining the effect of this parameter on the transformation of a time-
and value-correlated random distribution to an interval.
Similarly, the γ parameter is used to differentiate the activation of a failure type as
either being always active, always inactive, or maybe active. To show the effect of

3.4. Exemplary Application to Artificial Failure Characteristics 123

Tab. 3.7.: Template distributions used to generate the time- and value-correlated distributions of the
modeled failure types.

Failure Type Scaling Activation Deactivation

Gaussian Noise N(0, 0.5) 0 1

Outlier QOutlier

(µ = 0, σ = 15 + 10 · ok)
N(750, 50) 1

Constant Positive
Offset 30 0 ∞

Constant Negative
Offset -30 0 ∞

Positive Spike 30 N(100, 25) N(35, 0.5 + 0.01 · k)

Negative Spike -30 N(100, 25) N(35, 0.5 + 0.01 · k)

varying this parameter, the Outlier failure type is added. Equal to the Gaussian Noise,
its deactivation is one. However, its activation distribution follows a Gaussian distri-
bution with a mean of 750 time steps and a standard deviation of 50. Therefore, the
failure type becomes active only rarely which allows examining the effect of considering
a failure type to be always inactive.
Moreover, the failure type features a custom quantile function and a linear correlated
standard deviation of σscl(k, ok) = 15 + 10 · ok. While the correlated scaling facilitates
showing that by limiting the time- and value domain for which an interval is valid, cor-
relation information can be partially maintained, the custom quantile function shown
in Fig. 3.23 underlines the ability to represent arbitrary distributions. However, due to
its approximation by a polynomial of degree 5, the actual quantile function does not
follow the targeted distribution.
Finally, the positive and negative Spike and Offset failures are considered to examine
the feature of cancellation. As the interval of a failure model is nothing but the sum of
the individual failure type’s intervals, adverse intervals may cancel out each other, e.g.
for constant positive and negative Offsets. However, for that, their occurrences have
to be aligned timely, which is not the case for positive and negative Spike failures, as
will be shown.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−4

−2

0

2

4

z ∈ U(0, 1)

Q
O

u
tl

ie
r
(z

)

Polynomial
Training Data

Fig. 3.23.: Comparing targeted and represented quantile function for scaling distribution of Outlier
failure type.

124 3. Generic Failure Model

Tab. 3.8.: Mapping the sets of considered failure types to labels of the associated failure models for
evaluating the calculation of confidence values.

Failure
Model Failure Types Failure

Model Failure Types

FMI{O} {FOutlier} FMI{PO} {FConstant Positive Offset}

FMI{N} {FGaussian Noise} FMI{NS,O} {FNegative Spike, FOutlier}

FMI{NS} {FNegative Spike} FMI{PS,O} {FPositive Spike, FOutlier}

FMI{PS} {FPositive Spike} FMI{PS,NS} {FPositive Spike, FNegative Spike}

FMI{NO} {FConstant Negative Offset} FMI{NO,PO}

{FConstant Negative Offset,
FConstant Positive Offset}

To evaluate these impositions of individual failure types, they are combined to form
the failure models considered in this evaluation. They are listed in Table 3.8.

Examining and Evaluating Calculated Intervals For the defined failure models, the
described approach for extracting intervals can be applied. In that endeavor, the time
and value domain at which these shall be valid have to be defined. Here, the sinusoidal
reference signal described in Eq. (3.67) is used for a time domain of k ∈ [0, 1500]
again.
As the defined failure models are not time-correlated, the intervals are extracted for
K = [0, 1500], that is, the entire time domain. Contrarily, the value domain of the
reference signal is ok ∈ [−1, 2]. As a consequence of the discrete stepping, Eq. (3.67)
produces a non-continuous reference signal with a discretization of Os = 1.7−6. Here,
this discretization is used for calculating the intervals, which means that a separate
interval is calculated for each time step (O(ok) = [ok−0.85−6, ok+0.85−6]). This allows
following value-correlations closely. Lastly, the parameters α and γ have to be defined.
For the sake of argumentation, two values are considered. Firstly, intervals for α = γ =
1.0 are determined. These are expected to cover the modeled failure characteristics,
that is, no failure amplitude outside this interval should occur. Secondly, intervals
for α = γ = 0.75 are calculated where failure amplitudes outside these are to be
expected.
To evaluate these expectations, the failure models from which the intervals are derived
are simulated 30 times using the procedure described in Section 3.4.1. Using the
obtained failure amplitudes, the confidence values are calculated.
The results are shown in Table 3.9 for α = γ = 1.0 and in Table 3.10 for α = γ = 0.75.
For evaluating the intervals, three metrics are listed.
Firstly, the average ratio of failure amplitudes outside their corresponding intervals is
given, cf. Eq. (3.75).

µf /∈I =
|{fk,ok ∈ F|fk,ok /∈ IFM(K,O(ok))}|

|F|
(3.75)

In this equation, F denotes the set of all failure amplitudes obtained by simulating
the respective failure model FMI . While the numerator describes the set of failure

3.4. Exemplary Application to Artificial Failure Characteristics 125

Tab. 3.9.: Results of verifying intervals for α = γ = 1.0.

Failure Model µf /∈I dI range(IFMI
)

FMI{O} 0 0.48 8.5e+03

FMI{N} 0 0.047 2.8

FMI{NS} 0 0.019 29

FMI{PS} 0 0.019 29

FMI{NO} 0 0 0

FMI{PO} 0 0 0

FMI{NS,O} 0 0.49 8.6e+03

FMI{PS,O} 0 0.49 8.6e+03

FMI{PS,NS} 0 0.012 58

FMI{NO,PO} 0 0 0

Tab. 3.10.: Results of verifying intervals for α = γ = 0.75.

Failure Model µf /∈I dI range(IFMI
)

FMI{O} 0.00098 -1.2e+27 0

FMI{N} 0.2 -0.38 1.4

FMI{NS} 0 0.019 29

FMI{PS} 0 0.019 29

FMI{NO} 0 0 0

FMI{PO} 0 0 0

FMI{NS,O} 0.00064 -4.1 29

FMI{PS,O} 0.00084 -4.1 29

FMI{PS,NS} 0 0.012 58

FMI{NO,PO} 0 0 0

126 3. Generic Failure Model

0 500 1,000 1,500

−1

0

1

Time k

f
(k

,o
k
)

fFMI{N}
(k, ok) IFMI{N}

(0.75)

(a) Reducing the values for α = β = γ to 0.75 reduces
the interval IQscl

of the failure model FMI{N} such that
failure amplitudes are outside the overall interval.

0 500 1,000 1,500
0

10

20

30

Time k

f
(k

,o
k
)

fFMI{P S}
(k, ok) IFMI{P S}

(0.75)

(b) A reduction of α = β = γ to 0.75 does not affect
the interval of the failure model FMI{PS} as the scaling is
constant and the comprised failure type is still considered
active and inactive.

0 500 1,000 1,500

−20

0

20

Time k

f
(k

,o
k
)

fFMI{NS,O}
(k, ok) IFMI{NS,O}

(0.75)

(c) For α = β = γ = 0.75 the Outlier failure type contained
in FMI{NS,O} is considered to always be inactive. There-
fore, only the interval of the Spike failure type is considered
and occurrences of the Outlier failure type may cause fail-
ure amplitudes outside the interval.

0 500 1,000 1,500

−4,000

0

4,000

Time k

f
(k

,o
k
)

fFMI{O}
(k, ok) IFMI{O}

(1.0)

(d) Due to the high degree of the Outlier’s quantile func-
tion in FMI{O} , the Lipschitz constant required for de-
termining the interval is high, causing an overestimation of
the failure amplitudes for α = β = γ = 1.0. The value-
correlations in the failure type’s σscl function are visible in
the correspondingly changing interval borders.

Fig. 3.24.: Comparing determined interval borders with failure amplitudes of corresponding failure
models.

amplitudes that are outside their corresponding intervals, the denominator states the
overall number of failure amplitudes, that is, 4.5 · 104. In other words, if this ratio is
greater than zero, failure amplitudes outside the extracted intervals are observed.
The second column states the minimal distance to the interval borders and is given in
Eq. (3.66).
Finally, for reference, the maximal range of the calculated intervals is given in the third
column.
As expected, Table 3.9 shows that the average ratio µf /∈I is indeed for all failure models
zero. Therefore, no failure amplitudes outside the calculated intervals are observed.
Moreover, only small distances dI are obtained for failure models FMI{N}-FMI{PO}

and FMI{PS,NS}-FMI{NO,PO} . These indicate that the intervals are close to the sim-
ulated failure amplitudes and are thereby not drastically overestimated. Contrar-
ily, these value are increased for failure models comprising the Outlier failure type
(FMI{O} ,FMI{NS,O} ,FMI{PS,O}). Implied by the increased range value and as shown

3.4. Exemplary Application to Artificial Failure Characteristics 127

in Fig. 3.24d, the interval extracted from this failure type is drastically overestimat-
ing the actual failure amplitudes, which range between f(k, ok) ∈ [−20, 140]. The
reason for this overestimation is the Lipschitz constant LQscl

= 39.7 of the scaling
distribution’s quantile function combined with a step size of KS = 167 in the time
domain. Firstly, the Lipschitz constant causes the interval of the quantile function to
be [−4.9, 4.9], which overestimates the true interval (cf. Fig. 3.23). Secondly, the fail-
ure type’s linear value-correlated scaling function σscl(k, ok) has a Lipschitz constant of
Lσscl

= 10.0 which is multiplied by 0.5 ·KS to generate the upper and lower bound of
the function’s interval, cf. Section 3.2.1. As both intervals are multiplied, the resulting
interval strongly overestimates the true failure amplitudes. This problem affects the
intervals IFMI{O}

,IFMI{NS,O}
,IFMI{PS,O}

.
To counteract the effect, either the step size KS has to be reduced or the Lipschitz
constant of the employed functions.
On the other hand, Fig. 3.24d shows that the high resolution of Os = 1.7−6 used to
discretize the value domain resulted in fine-grained intervals which follow the value-
correlation of the failure type’s standard deviation closely. The sinusoidal curve is a
direct consequence of the chosen reference signal.
In contrast to the Outlier failure type, the range values stated for failure models
FMI{NO} , FMI{PO} , and FMI{NO,PO} are zero. This has two reasons. In case of
FMI{NO} and FMI{PO} , the failure amplitudes are constant ±30, which means that
there is no variation resulting in an interval having only one value. For FMI{NO,PO} ,
the reason is different. The failure model combines the negative and positive variants
of the constant Offsets. Due to the summation in Eq. (3.17), the failure amplitudes
cancel each other out. This is possible only because both failure types are constantly
active.
In contrast, failure model FMI{PS,NS} combines positive and negative Spikes. While
both are scaled exactly complementary to each other, it can not be guaranteed that
both are always active at the same time. Therefore, the range of the resulting interval
doubles and the failure types can not cancel out each other.
Reducing the values for α and γ to 0.75 produces the results listed in Table 3.10. In
contrast to the previous intervals, mean values µf /∈I greater than zero are now observed.
This is due to the reduced range of the calculated intervals.
For instance, the interval extracted from the Gaussian Noise (FMI{N}) is reduced in
its range because of its quantile function. As α = 0.75, only a smaller portion of the
represented scaling distribution is considered, resulting in an interval that does not
cover all simulated failure amplitudes, cf. Fig. 3.24a.
For failure model FMI{NS,O} , the reason for failure amplitudes outside its interval is the
Outlier, cf. Fig. 3.24c. The reduced value for γ causes the assumption that the Outlier
is always inactive. Therefore, its interval is zero. Contrarily, the failure type occurs
and imposes the Spike failure type, causing a failure amplitude outside the interval.
As a result, the minimal distance dI is negative and therefore provides an additional
indication.
Nevertheless, these failure amplitudes outside of their respective intervals were ex-
pected, which underlines that the extraction of intervals from GFM works properly.
Therefore, confidence values for the failure models generated by the processing chain
can be calculated next.

128 3. Generic Failure Model

Tab. 3.11.: Confidence values according to Eq. (3.66) for α, γ ∈ [1.0, 0.75, 0.5].

Failure Model dI(α = γ = 1.0) dI(α = γ = 0.75) dI(α = γ = 0.5)

ˆFM{N} -2.7 -11 -14
ˆFM{O} 0.47 0.45 0.43
ˆFM{S} 0.41 0.38 0.32
ˆFM{A} 0.23 0.2 0.17
ˆFM{N,O} 0.45 0.43 0.4
ˆFM{N,S} 0.3 0.28 0.26
ˆFM{N,A} 0.1 -0.0026 -0.07
ˆFM{S,O} 0.41 0.3 0.047
ˆFM{O,A} 0.42 0.43 0.44
ˆFM{S,A} 0.42 0.4 0.37
ˆFM{N,S,O} 0.45 0.45 0.44
ˆFM{N,O,A} 0.45 0.43 0.4
ˆFM{N,S,A} 0.4 0.38 0.36
ˆFM{S,O,A} 0.47 0.45 0.41
ˆFM{N,S,O,A} 0.45 0.44 0.44

Calculating Confidence Values for Generated Failure Models

Using the original failure amplitudes f(k, ok) from which the previous two stages gen-
erated failure models, the last stage aims at providing a confidence value stating to
which degree the original failure characteristics are described. With this, the confidence
criterion will be addressed.
In this endeavor, this paragraph assumes values of α, γ ∈ [1.0, 0.75, 0.5] to calculate
the minimal distance to the interval borders of the generated failure models. Similar
as before, a time horizon of K = 1500 time steps, that is, the entire length of the
time series is considered, while the value domain is discretized with Os = 1.7−6, which
results in O(ok) = [ok− 0.85−6, ok +0.85−6]. The results are shown in Table 3.11.
As one can see, the minimal distance dI generally remains on a high level for most
failure models and falls below 0.3 only for some failure models even for α = γ = 0.5.
This indicates an overall high distance to the interval borders. On the one hand, this
means that the initial failure characteristics are completely covered by those failure
types. On the other hand, the range of failure amplitudes is overestimated when
extracting intervals from the corresponding GFM .
In contrast, the minimal distance of ˆFM{N}, which contains only the Noise failure
type, is not covering all failure amplitudes, even at α = γ = 1.0. The reason can
be seen in Fig. 3.25 where, on the left-hand side, the original failure amplitudes are

3.4. Exemplary Application to Artificial Failure Characteristics 129

0 500 1,000 1,500
−10

0

10

20

Time k

f
(k

,o
k
)

fFM{N}(k, ok)
I ˆFM{N}

(α = γ = 1.0)

(a) Despite using α = γ = 1.0, failure amplitudes of the
Noise failure are not included in the interval. This is caused
by the Outlier failure amplitudes, that are not represented
in the automatically generated failure model.

0 500 1,000 1,500
−10

0

10

20

Time k

f
(k

,o
k
)

f ˆFM{N}
(k, ok)

(b) A simulation of the generated Noise failure type
shows that Outliers are not modeled. In contrast, value-
correlations similar to the original failure amplitudes can
be observed.

Fig. 3.25.: Comparing determined interval borders with failure amplitudes of corresponding failure
models.

0 200 400 600 800 1,000 1,200 1,400 1,600
−200

−100

0

100

200

Time k

f
(k

,o
k
)

fFM{S,O}(k, ok)
I ˆFM{S,O}

(α = γ = 1.0)
I ˆFM{S,O}

(α = γ = 0.75)
I ˆFM{S,O}

(α = γ = 0.5)

Fig. 3.26.: The intervals extracted from the automatically generated failure model successfully cover
the range of failure amplitudes for FM{S,O}.

shown together with the interval calculated from the extracted failure model. On the
right-hand side, failure amplitudes simulated according to the extracted failure model
are shown. It illustrates the expectation formualted with respect to Fig. 3.22a. The
failure type captures small Noise and its value-correlation, but extreme values are
not represented. As such, it fails at representing the Outlier failure type originally
integrated into the Noise failure type. Thus, the extracted interval is not sufficient to
cover the corresponding failure amplitudes contained in the training data.
The same reason applies for ˆFM{N,A} where the original failure amplitudes comprise
not only Noise with Outliers but also occurrences of the Artificial failure type. While
the extracted failure model covers the original failure amplitudes when considering
α = γ = 1.0, it fails to provide the same for reduced values of α, γ ∈ [0.75, 0.5].
The effect of reducing these values is observable by other failure models as well, as the
overall minimal distance to the interval borders is decreasing correspondingly. This
gradient is especially steep for ˆFM{S,O}, cf. Fig. 3.26. The reason for the steep gradient
is depicted in Fig. 3.27. The quantile functions Q̂scl(z) of the scaling distributions of
the extracted failure types show similarities with a quantile function of a Gaussian
distribution (cf. Fig. 3.15a) and react therefore on changes of the α parameter. A
reduced value causes the intervals to collapse accordingly.

130 3. Generic Failure Model

0 0.5 1
−4

−2

0

2

4

z

Q̂
F

1
,s

c
l

I α
=

1.
0

I α
=

0.
75

I α
=

0.
5

(a) Quantile function of the first failure type.

0 0.5 1
−4

−2

0

2

4

z

Q̂
F

2
,s

c
l

I α
=

1.
0

I α
=

0.
75

I α
=

0.
5

(b) Quantile function of the second failure type.

Fig. 3.27.: Quantile functions of scaling distributions of the failure types of the extracted failure model
FM7. The intervals for levels of α ∈ [1.0, 0.75, 0.5] are visualized as well.

0 200 400 600 800 1,000 1,200 1,400 1,600
−20

0

20

40

Time k

f
(k

,o
k
)

forg(k, ok)
I(α = γ = 1.0)
I(α = γ = 0.75)
I(α = γ = 0.5)

Fig. 3.28.: The intervals extracted from the automatically generated failure model successfully cover
the range of failure amplitudes for FM4.

On the other hand, a disadvantage of using polynomials to represent quantile functions
can be seen as well. The quantile function of the second failure type (cf. Fig. 3.27b)
is decreasing for values of z ∈ [0.34, 0.64]. This violates the requirement of a quantile
function to be always increasing.
Nevertheless, the initial intervals are overestimating the actual failure amplitudes,
which is caused by increased Lipschitz constants similar to the Outlier failure type
described in the previous section.
On the other hand, the example of ˆFM{A} shows that estimations closer to the actual
failure amplitudes are possible as well. While the interval shrinks in response to the
adjusted values of α and γ, it does not overestimate the failure amplitudes as severely
as ˆFM{N,A}.
In summary, the confidence values in Table 3.11 underline that the processing chain
is capable of extracting failure models from given failure amplitudes. These, however,
should be inspected, e.g. using the confidence values, regarding their actual coverage
of the failure characteristics to represent. In the case of ˆFM{N} for instance, the
interpretation of each polynomial and each failure type might be leveraged to man-
ually adjust their parameters for mitigating the over- or underestimation of failure
characteristics.

3.4. Exemplary Application to Artificial Failure Characteristics 131

3.4.5. Comparison to State-of-the-Art Models
The confidence values provided by the processing chain allow assessing the coverage
of the failure characteristics represented by the produced models with respect to the
initial failure amplitudes they are extracted from. This, however, does not address the
performance aspect of the failure model, that is, how well the failure characteristics
are represented. In the endeavor of assessing this, this section focuses on a comparison
of the GFM to exemplary modeling techniques from the state of the art. For that,
the next subsection introduces the considered comparison models while the following
subsection describes the employed comparison metric. Finally, the results are presented
and discussed.

Considered Models

For comparing the modeling performance of the generated failure models, exemplary
state-of-the-art techniques are considered. For that, the following paragraphs introduce
not only the selected models but also describe the employed procedure to find their
respective parameters and simulate time series of failure amplitudes.
With respect to the reviewed categories of failure modeling approaches, the first para-
graph discusses uniform and Gaussian distributions. While the former is an interpre-
tation of an interval-based modeling approach, where a uniform distribution of failure
amplitudes between minimal and maximal failure amplitudes is assumed, the latter
is an approach from the category of the distribution-based models. As both of these
approaches are not capable of representing time- and value-correlations, a Long-Short
Term Memory (LSTM) network (a kind of Artificial Neural Network (ANN) specifi-
cally suited for time series analysis) is considered as well. In contrast to a GFM , an
LSTM is a discriminative model that represents or predicts only the most likely failure
amplitude and not its possible distribution. Therefore, a Gaussian Process capable of
additionally representing the (co-)variance is considered as well.

Uniform Distribution A uniform distribution describes failure characteristics only by
their minimal and maximal failure amplitudes observed. It assumes that the remaining
failure amplitudes are distributed uniformly between those limits.
Accordingly, given time series of failure amplitudes f(k, ok), the model is trained
by searching for the minimal and maximal failure amplitudes fmax and fmin respec-
tively. Based on that, time series of the same are simulated by drawing random val-
ues z from a uniform distribution and scaling them to be in the interval [fmin, fmax],
cf. Eq. (3.76).

f(k, ok) = z · (fmax − fmin) + fmin with z ∈ U(0, 1) (3.76)

As such, each time step of the failure amplitudes is considered independent. This means
that neither time- nor value-correlations can be represented by this model.

Gaussian Distribution Opposed to the uniform distribution, the Gaussian distribu-
tion assumes that values close to its mean are more likely to occur. It represents failure
amplitudes according to Eq. (3.77).

f(k, ok) ∼ N(µf , σf) (3.77)

132 3. Generic Failure Model

Similar to the uniform distribution, each time step is considered to be indepen-
dent of each other which does not allow the model to represent any time- or value-
correlations.
Training the model requires only to determine the mean values µf and the standard de-
viation σf of all failure amplitudes f(k, ok). Then, simulating the model for generating
time series of f(k, ok) is achieved by drawing samples from the represented distribution
at each time step independently.

Long-Short Term Memory (LSTM) Network Opposed to both of the previous
approaches, LSTM networks are capable of representing time- and value correlations.
This type of neural network has recurrent connections that enable it to maintain an
internal state or context representation. The output provided by an LSTM network
does not only depend on its current input but also its history of inputs. This facilitates
the network to contextualize its inputs and support its decision-making when applied to
sequences. With these characteristics, LSTM networks are commonly used for speech
recognition [94] or time series analysis [95].
In the context of failure modeling, it enables representing time- and value-correlations.
For that, the model used in this work has a single LSTM layer with 20 cells followed by
a single linear layer with 20 neurons. For training the model a vanilla SGD algorithm
with a learning rate of α = 0.01 and the MAE as a loss function is used. The weights
are updated for 50 epochs.

f(k, ok) = lstm(k, ok) (3.78)

During training, the network is presented with the current time index k as well as the
value of the reference signal ok, which are the same inputs as presented to the GFM
models, cf. Eq. (3.78). Correspondingly, for simulating a time series of f(k, ok) given
an LSTM network, the reference signal ok is used together with the time index k as an
input to the network.

Gaussian Process Lastly, a Gaussian Process (GP) is considered. A Gaussian Pro-
cess (GP) [96] shares the advantage of the GFM . It is able to represent the mean as
well as the (co-)variance of failure amplitudes at each time step. The central assump-
tion is that the stochastic process to be modeled can be represented as a multi-variate
Gaussian distribution, cf. Eq. (3.79).y

y∗

 ∼ N

µ(y),
K KT

∗

K∗ K∗∗

 (3.79)

with

K =

k(x1, x1) k(x1, x2) · · · k(x1, xn)

...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 (3.80)

Opposed to the previous models, a GP model does not need to be fitted in the sense
that a vector of model parameters needs to be determined. Instead, training samples
of inputs (y = [y1, y2, . . . , yn]) and outputs (x = [x1, x2, . . . , xn]) are used to directly
construct the mean µy and the covariance matrix (K). For the latter, a covariance

3.4. Exemplary Application to Artificial Failure Characteristics 133

function, also called a kernel, is chosen, which states the believed correlation between
two inputs x1 and x2.

k(x1, x2) = σ2
fe

−(x1−x2)
2

2l2 + σ2
nδ(x1, x2) (3.81)

The idea of this kernel is to state the belief that input values x1,x2 that are close in
the input space will have similar function values while values for x1,x2 that are far
apart are likely to have different function values. To state this belief, this work uses
the kernel of Eq. (3.81) with l2 = e2.0, σ2

f = 1, σ2
n = e0.5. The kernel combines a radial

basis function kernel (first part of the sum), with a Noise assumption (second part of
the sum)5.
Similar to the kernel, a function determining the mean µ(y) can be specified. However,
in this work, a constant zero is assumed. Note that this does not mean that the
predictive mean is zero as well, as can be seen in Eq. (3.82).
Using the covariance function, the model can be trained by determining the overall
covariance K from the training data. The remaining elements, that is y∗, K∗, K∗∗, K

T
∗

are determined when predicting failure amplitudes.
For that, the given input x∗ (ok and k in the case of modeling failures) is firstly
used to generate the matrix K∗ = [k(x∗, x1), k(x∗, x2), . . . , k(x∗, xn)] and the element
K∗∗ = k(x∗, x∗). Secondly, a prediction is made by leveraging the Bayes theorem, which
allows transforming the marginal distribution given in Eq. (3.79) into the conditional
distribution Eq. (3.82).

y∗|y ∼ N(K∗K
−1y, K∗∗ −K∗K

−1KT
∗) (3.82)

Eq. (3.82) enables not only to predict the failure amplitude having the highest proba-
bility but also the corresponding variance.

f(k, ok) ∼ N(y∗, K∗∗ −K∗K
−1KT

∗) (3.83)

Therefore, simulating a time series of failure amplitudes using a GP model is done by
sampling from the given distribution, cf. Eq. (3.83)

Evaluation Metric

The presented types of models approach representing time series in different ways
and can therefore not be compared directly. Instead, the stochastic nature of failure
amplitudes is leveraged, which enables interpreting each model as a random variable.
The goal is to compare the distribution of these random variables. In that endeavor,
the random variables are sampled, that is, failure amplitudes are generated, and the
resulting sample sets are compared.
In other words, each model is simulated Nsim times to generate failure amplitudes
f(k, ok). The set of generated series of failure amplitudes then represents the distribu-
tion of the random variable, that is, the model.
Comparing the models therefore boils down to comparing their sets of simulated failure
amplitudes. For that, the Wasserstein distance (more specifically the Earth Mover’s
Distance (EMD)) can be employed as a distance metric [97]. Its application, howerver,

5See [96] for more information on combining kernel

134 3. Generic Failure Model

−4 −2 0 2 4

0

1

τmax

k

f
(o

k
,k

)

f1(k)
f2(k)

(a) Using cross-correlation of function f1 and f2 to align
them in time.

−4 −2 0 2 4

0

1

d(f1∗f2)

dMSE

k

f
(o

k
,k

)

f1(k)
f2(k)

(b) Difference between using cross-correlation and Mean
Squared Error (MSE) to compare functions. The cross-
correlation d(f1∗f2) takes only time steps into account at
which both functions are not zero. The MSE can consider
all time steps but does not reflect temporal pattern.

Fig. 3.29.: Elements taken into account to form the ground distance.

is twofold. Firstly, a ground distance used to compare individual samples of each
distribution has to be defined. Building on that, the Wasserstein distance can be
applied.
Correspondingly, the next paragraph introduces a measure for comparing two time
series of failure amplitudes with each other (the ground distance) before the following
paragraph discusses its usage in the calculation of the Wasserstein distance.

Comparing Time-Series of Failure Amplitudes The first step in applying the
Wasserstein distance is to specify an underlying distance measure that compares two
samples of the considered random variables. In this case, failure amplitudes fFM(k, ok)
of the original failure model and failure amplitudes f ˆFM(k, ok) of a comparison model
are considered.
At this point, it is known that these signals comprise stochastic and deterministic parts.
As a consequence, it is not sufficient to either compare solely stochastic moments of two
signals as this would neglect the presence of temporal patterns or to compare signals
directly time step by time step as this neglects the stochastic aspects. To address this
challenge, a distance metric based on the cross-correlation (addressing the stochastic
part) and the well-known Mean Squared Error (MSE) is defined.
The idea is visualized in Fig. 3.29. On the one hand, temporal patterns are anticipated
in the signals. However, their occurrences are random causing varying times between
two consecutive patterns. To address this randomness, the best temporal alignment of
two signals f1 and f2 are calculated using cross-correlation in a first step cf. Fig. 3.29a.
The cross-correlation of two signals is the area of the combination of both signals with
respect to a displacement τ , cf. Eq. (3.84).

(f1(k) ∗ f2(k))(τ) =
∑

f1(k) · f2(k + τ) (3.84)

τmax = argmax
τ∈K

((f1 ∗ f2)(τ)) (3.85)

By calculating the cross-correlation and determining the value of τ that maximizes it
(cf. Eq. (3.85)), a temporal offset, by which one signal has to be shifted for optimal

3.4. Exemplary Application to Artificial Failure Characteristics 135

correlation with the other, can be found. As this shift already represents a difference
in both signals, it is used as the first part of the ground distance, cf. Eq. (3.86).

dτ = 0.5 ·
(
K
2
− τmax

)2
K2

4

+ 0.5 (3.86)

Here, K denotes the length of both signals (equal length of f1 and f2 is assumed as
both will be simulations of corresponding failure models). dτ is therefore a value in
[0.5, 1] where 0.5 represents an offset of τmax = 0 and 1.0 represents a maximal offset
of τmax = K

2
.

In a second step, the difference of the aligned signals f̂1 and f̂2 is calculated using the
MSE , cf. Eq. (3.87).

dmse(f̂1, f̂2) =
1

K̂

∑
k∈[0,K̂]

(
f̂1(k)− f̂2(k)

)2
(3.87)

K̂ denotes the adjusted length of both signals, that is, the remaining time steps at
which both signals overlap after temporally aligning them. The idea of choosing
MSE is depicted in Fig. 3.29b. The figure shows the aligned signals and highlights
the area between them. Indicated by the vertical dashed lines, a cost d(f1∗f2) based
on the correlation of both signals would focus on time steps at which both are non-
zero. This is caused by the multiplicative combination of both signals. This, however,
neglects possible differences at other time steps. In contrast, the MSE takes these
time steps into account as well and is therefore used here. Combining both produces
the ground distance used for applying the Wasserstein distance in the following para-
graph,cf. Eq. (3.88).

dw(f1, f2) = dmse(f̂1, f̂2) · dτ (τmax) (3.88)

Earth Mover’s Distance (EMD) Having a ground distance dw(f1, f2) to compare
two samples with each other, the Earth Mover’s Distance (EMD) can be applied to
calculate the distance between two sample setsM1 = {(wf11

, f11), . . . , (wf1Nsim
, f1Nsim

)}
and M2 = {(wf21

, f21), . . . , (wf2Nsim
, f2Nsim

)} obtained from their models M1 and M2.
Essentially, it measures the minimal cost required to transform the distribution of one
into the other. While wf1i

and wf2j
represent the weight of each sample, f1i and f2j

are the samples, that is, the simulated time series of failure amplitudes in this case. To
transform M1 into M2, the weights have to be transported to match the corresponding
weights of the target distribution. Therefore, the weights wf2i

can also be seen as
demands that have to be fulfilled by supplies provided by wf1j

.
Due to this analogy, the problem of calculating the EMD is often associated with the
problem of optimal transportation and can be depicted as a directed graph Fig. 3.30.
The set of suppliersM1 is the samples of the first model where the weight determines
the capacity of supplies. The set of demands M2 is the samples of the second model
where the weight determines the requested supplies. To move supply from sample i
to sample j the distance between both samples has to be overcome. This distance is
given by the ground distance dw(f1, f2) defined in the previous paragraph.

136 3. Generic Failure Model

wf1i=1

wf1i=2

wf1i=3

wf2j=1

wf2j=2

wf2j=3

M1 M2di,j = dw(f1i
, f2j

)

Fig. 3.30.: Visualizing the problem of calculating EMD as a directed graph connecting demands with
supplies. The weight of each sample is indicated by the size of the nodes. Figure motivated by [97].

The EMD is calculated by finding the minimum cost flow of the directed graph. As the
weight of each sample is equal to 1

Nsim
, this boils down to selecting the edges fulfilling

all demands with minimal accumulated costs. Mathematically, this is a minimization
problem, Eq. (3.89) [97].

min
∑

i∈{1,...,|M1|}

∑
j∈{1,...,|M2|}

wi,jdw(f1i , f2j) (3.89)

subject to the constraints:

wi,j ≥ 0 i ∈ {1, . . . , |M1|}, j ∈ {1, . . . , |M2|} (3.90)∑
i∈{1,...,|M1|}

wi,j = wf2j
j ∈ {1, . . . , |M2|} (3.91)

∑
j∈{1,...,|M2|}

wi,j ≤ wf1i
i ∈ {1, . . . , |M1|} (3.92)

The task is to find a flow W = [wi,j] such that the costs are minimal (cf. Eq. (3.89)).
This is constrained such that

1. supply is transferred only from suppliers to demanders (cf. Eq. (3.90)),

2. all demands are fulfilled (cf. Eq. (3.91)),

3. and the capacity of what can be supplied is not exceeded (cf. Eq. (3.92)).

By solving the minimization problem, a minimal cost flow is produced. This
is used to calculate the final EMD as the work normalized by the total flow,
cf. Eq. (3.93) [97].

EMD(M1,M2) =

∑
i∈{1,...,|M1|}

∑
j∈{1,...,|M2|}wi,jdw(f1i , f2j)∑

i∈{1,...,|M1|}
∑

j∈{1,...,|M2|}wi,j

(3.93)

3.4. Exemplary Application to Artificial Failure Characteristics 137

Tab. 3.12.: Comparing failure models generated by the processing chain with state-of-the-art modeling
techniques. The gray-colored cells indicate the minimal values achieved by the approaches of the
respective row.

Failure
Model EMDGFM EMDGP EMDLSTM EMDGaussian EMDUniform

FM{N} 0.002 0.002 0.003 0.003 0.155

FM{O} 0.022 0.042 0.050 0.055 0.161

FM{S} 0.007 0.013 0.017 0.022 0.157

FM{A} 0.006 0.007 0.008 0.012 0.127

FM{N,O} 0.011 0.023 0.026 0.029 0.132

FM{N,S} 0.003 0.004 0.005 0.006 0.157

FM{N,A} 0.004 0.003 0.004 0.006 0.156

FM{S,O} 0.022 0.039 0.050 0.052 0.147

FM{O,A} 0.020 0.036 0.044 0.050 0.172

FM{S,A} 0.012 0.013 0.016 0.019 0.135

FM{N,S,O} 0.015 0.022 0.030 0.034 0.165

FM{N,O,A} 0.013 0.022 0.028 0.035 0.144

FM{N,S,A} 0.005 0.005 0.006 0.008 0.152

FM{S,O,A} 0.019 0.038 0.044 0.050 0.150

FM{N,S,O,A} 0.015 0.023 0.028 0.030 0.143

Results and Discussions

To compare the considered models using the presented metric, each model was simu-
lated for Nsim = 250 times with K = 1500 time steps and using the sinusoidal reference
signal. Then, each of the 250 time series of failure amplitudes of the manually designed
model was compared to each of the 250 time series of failure amplitudes of a comparison
model (the extracted GFM , GP, LSTM , Gaussian distribution, uniform distribution)
using the distance metric Eq. (3.88). This results in a 250 × 250 distance matrix for
each considered comparison model from which the EMD is calculated. The final dis-
tances between the original failure model and each comparison model are stated in
Table 3.12.
As expected when reviewing the state of the art on failure modeling approaches, Gaus-
sian and Uniform models are advantageous due to their simplicity but neglect time-
and value correlations causing an overall reduced performance. The reason is twofold
and can be seen, for instance, by comparing the failure amplitudes simulated by both
models aiming at representing FM{N}, cf. Fig. 3.31. The original failure amplitudes
include value-correlations and Outlier (cf. Fig. 3.25a). Neither the Gaussian distribu-
tion nor the uniform distribution are capable of representing correlations and therefore

138 3. Generic Failure Model

0 500 1,000 1,500
−10

0

10

20

Time k

f
(k

,o
k
)

(a) As the uniform distribution assumes equal probability
for all failure amplitudes between the observed minimum
and maximum, a more sever characteristics is represented.
Moreover, time- and value-correlations are not described.

0 500 1,000 1,500
−10

0

10

20

Time k

f
(k

,o
k
)

(b) The range of failure amplitudes represented by the
Gaussian distribution is comparable to the original failure
model but time- and value-correlations are missing.

Fig. 3.31.: Simulation of ˆFM{N} as represented by the Gaussian and Uniform failure model.

fail at simulating those. Moreover, in the case of the uniform distribution, equal oc-
currence probability for all failure amplitudes is presumed. Therefore, the Outliers
of the original failure amplitudes cause the overestimation of the occurrence of high
failure amplitudes. Consequently, the MSE between the simulations of the uniform
distribution and the manually designed failure model is increased.
In contrast, the GP model does not suffer from these problems and achieves the second
best results. For its representation of the failure model FM{N,A}, it obtains the best
evaluation value. This is as the GP performs well when representing uncertainties. An
example of original failure amplitudes is shown in Fig. 3.32a. As one can see, Noise
prevails while short occurrences of the Artificial failure type introduce deterministic
patterns only temporarily. In Fig. 3.33a one can see that the corresponding GP model
successfully represents the Noise as uncertainty and succeeds in simulating Artificial-
like patterns at the beginning of the time series. However, similar to the GFM shown
in Fig. 3.32b, the GP model fails at modeling Outlier occurrences.
Another disadvantage of the GP model becomes apparent when comparing two con-
secutive simulations, cf. Fig. 3.33. The model directly depends on observed failure
amplitudes and represents uncertainty as the remaining variance. By providing a fail-
ure amplitude for each reference value and each time step, the remaining variance is
small. As a result, simulations do not show relevant variations. On the other hand,
this could be counteracted by choosing appropriate kernel functions and kernel param-
eters.
The LSTM experiences similar problems. It achieves acceptable performance values
regarding the employed evaluation metric, but examining exemplary simulations reveals
its shortcomings for modeling stochastics. As one can see in Fig. 3.34d, only a constant
value is modeled. This is because the occurrence of specific failure amplitudes (the
desired output of the network) does not directly depend on the time k and reference
ok, which are the inputs to the network. As discussed during the review of state-of-the-
art models, this relation can be deterministic but is often reported to be stochastic.
Therefore, correlations that can be learned by the network are not available. As a
consequence, the model’s parameters are adapted during training such that the error

3.4. Exemplary Application to Artificial Failure Characteristics 139

0 200 400 600 800 1,000 1,200 1,400
−20

−10

0

10

20

Time k

f
(k

,o
k
)

(a) Original failure amplitudes as simulated by the manually designed failure model FM{N,A}.

0 200 400 600 800 1,000 1,200 1,400
−20

−10

0

10

20

Time k

f
(k

,o
k
)

(b) While Outlier failure amplitudes are not covered by the generated GFM , value-correlations of Noise occurrences
are represented. Similarly, the Artificial failure pattern is appropriately approximated which results in a comparable
range of failure amplitudes.

Fig. 3.32.: Comparing the model ˆFM{N,A} represented as a GFM with the original failure amplitudes.

0 500 1,000 1,500
−20

−10

0

10

20

Time k

f
(k

,o
k
)

(a) Simulation one.

0 500 1,000 1,500
−20

−10

0

10

20

Time k

f
(k

,o
k
)

(b) Simulation two.

Fig. 3.33.: Two simulations of FM{A} using the GP model. Only limited variations are observable
between consecutive simulations as the remaining variance is limited due to the high number of training
data points.

140 3. Generic Failure Model

0 200 400 600 800 1,000 1,200 1,400
−20

0

20

Time k

f
(k

,o
k
)

(a) Failure amplitudes simulated by the original failure model.

0 200 400 600 800 1,000 1,200 1,400
−20

0

20

Time k

f
(k

,o
k
)

(b) Failure amplitudes simulated by the extracted GFM model. Different failure patterns are successfully identified
and simulated. Noise is not represented, which matches the original failure model.

0 500 1,000 1,500
−20

0

20

Time k

f
(k

,o
k
)

(c) Failure amplitudes simulated by the GP model. As re-
maining uncertainties are represented, Noise is introduced
in simulations as well.

0 500 1,000 1,500
−20

0

20

Time k

f
(k

,o
k
)

(d) Failure amplitudes simulated by the LSTM model. As
correlations between the inputs and outputs are missing,
only a constant is represented by the network.

Fig. 3.34.: Comparing simulations of FM{S,O,A} obtained using the corresponding GFM , GP, and
LSTM model with the original failure amplitudes.

3.5. Summary 141

is minimal on average, that is, a constant close to zero.
Opposed to the LSTM , the GFM successfully identifies the patterns and models their
stochastic occurrences, cf. Fig. 3.34b. Although specific patterns, such as Offsets and
the Artificial pattern, can not be identified perfectly, approximations that resemble
the overall signal are modeled. Moreover, similar to the original failure amplitudes
shown in Fig. 3.34a, the simulations provided by the extracted failure model do not
exhibit Noise failures, cf. Fig. 3.34b. The GP model, on the other hand, does represent
remaining uncertainties as a variance causing Noise failures to be simulated.
This underlines the overall evaluation given in Table 3.12. The GP, LSTM , and GFM
models provide close approximations of the failure characteristics regarding the em-
ployed distance measure. However, only the GFM successfully represents variations in
these failure characteristics and thereby achieves the overall best distance values.
It needs to be noted that a single parameterization was used to generate the failure
models here. The performance of individual failure models could be improved by using
parameterizations adjusted to the individual datasets.
Jäger et al. [31], for instance, identified the failure characteristics of a lane detection
algorithm and compared the modeling performance of a GFM with an LSTM similarly
to the evaluation presented here. They showed that in this use case the LSTM could
provide similar performance to the employed GFM model.

3.5. Summary
In the endeavor of fulfilling Objective 1.2, this chapter introduced the concept of a
Generic Failure Model (GFM). According to the predefined criteria, it enables to rep-
resent failure characteristics of shared data unambiguously by using a mathematical
representation. Building upon the idea that a failure model is nothing but a set of fail-
ure types, each of these is represented by a deterministic failure pattern and a scaling,
activation, and deactivation distribution. To represent time- and value-correlations,
each of these distributions comprises not only a normalized quantile function but also
mean and standard deviation functions stating the distribution’s dependency on the
current time k and value ok. Finally, each of the defined functions is approximated by
a polynomial.
After a discussion of the fulfillment of the predefined criteria, where it was noted
that the confidence criterion was yet to be fulfilled, the conversion of a GFM to an
interval-based representation was introduced. This underlines not only the fulfillment
of the comparability criterion but also lays the ground for the definition of a confidence
measure. For that, a processing chain facilitating the automatic extraction of a GFM
from given failure amplitudes was presented. In its last stage, a confidence measure was
defined which converts the extracted GFM to an interval and measures the minimal
distance between the original failure amplitudes and the interval borders. Thereby, the
confidence states to what extent the observed failure characteristics is covered.
To evaluate both aspects, the GFM and the proposed processing chain, an artificial
set of failure models were designed. Simulating these produced failure amplitudes from
which a GFM could be extracted by means of the processing chain. Finally, the mod-
eling performance of the GFM could be compared to state-of-the-art approaches.
The evaluation, therefore, showed that (i) due to its clarity, it is possible to manually
design failure types, (ii) due to the processing chain, it is possible to automatically

142 3. Generic Failure Model

extract suitable failure models from given failure amplitudes, (iii) and the modeling
performance of the GFM is advantageous to state-of-the-art models when it comes to
representing stochastic signals with limited correlations to independent variables.

145

4. Region of Safety

Operation

Dynamically Composed System

Intended EUC

Concept &
Scope Definition

...

Safety Assessment
- Static Elements -

Safety Assessment
- Shared Data -

Operation

Design-
Time
Run-
Time

Shared Data

Modeling Failure
Characteristics

Failure Model
Quality Assessment

Integration Step

Chapter 3

Chapter 4

Fig. 4.1.: Simplified safety process from Fig. 1.9 showing the components addressed in this chapter.

The definition of the GFM addressed Objective 1.2 and is, therefore, a mandatory pre-
requisite in this work’s overall goal to guarantee the safety of a dynamically composed
system when using shared data, cf. Fig. 4.1. In this endeavor, the focus of this chapter
is on fulfilling Objective 1.1.
Taking the criteria defined in Section 1.3.1 into account, an approach capable of ana-
lyzing a failure model of shared data at a system’s run-time to provide guarantees on
whether or not a safety function adheres to its required performance when using shared
data is in question. Moreover, the approach has to be designed in such a way that it
can be shown at design-time that the decision provided at run-time is functionally
correct.
In Section 2.1.3 it was noted that these approaches can be found at a functional level
but are missing for a technical level. At this level, the approach of Region of Attraction
(RoA) is most promising as it was shown in the literature to provide safety guarantees
during reinforcement learning. Thereby, it fulfills the criteria of run-time certification
and functional correctness. Building upon the concept’s ability to be executed at
a system’s run-time, as it was shown in [45] already, allows focusing on the central
criterion of assessing failure models of shared data, which is not satisfied yet.

146 4. Region of Safety

On the one hand, this is because general system models do neither assume shared data
nor failures thereof. On the other hand, the requirements on RoA are overly strict and
can not be met when dealing with uncertainties1 such as failures of shared data.
Thus, this chapter builds upon the idea of RoA and extends it to the concept of
Region of Safety (RoS). For that, Section 4.1 introduces an extended system model
that facilitates specifying versatile sources of uncertainty and most importantly failures
of shared data. This enables taking these into account during RoA estimation as well.
A corresponding evaluation at the beginning of Section 4.2 shows the shortcomings of
RoA when handling uncertainties and motivates that its overly restrictive requirements
on stability are not necessary for guaranteeing safety. Therefore the section extends
the concept and introduces RoS where the focus is shifted from stability to safety. To
illustrate the approach, the example of the inverted pendulum is introduced and used
for evaluating the concept in Section 4.3. The chapter is concluded with a summary
in Section 4.4.

4.1. Explicitly Modeling Uncertainties for Dynamically
Composed Systems

Common approaches to estimating RoA do not consider uncertainties [98]. Neither
regarding the system model nor regarding obtained and processed (sensory) data.
To be applicable to safe reinforcement learning, Berkenkamp et al. [45] assume an initial
system model which is extended with a model of uncertainty Umodel, cf. Eq. (2.6). The
idea is that a design-time model neglects or oversimplifies real-world influences. This
results in differences between the behavior of the controlled system in the real-world
and the model used by the controller. Learning these differences and modeling them
using Umodel at run-time enables representing these uncertainties.
However, they are presumed to be deterministic (for instance, result from linearizing
the system model). In contrast, failures of shared data are presumably stochastic,
which contradicts this modeling approach. Moreover, shared data are only one source
of uncertainty. Others, for instance failures of internal sensors or disturbances of the
system’s environment, have to be taken into consideration during a safety assessment
as well. More specifically, each of these sources has to be represented independently to
allow evaluating different combinations. In the end, the combination of a failure model
of shared data with the remaining sources of uncertainty has to be evaluated during a
run-time safety assessment. Therefore, in this section an extended system model that
separately addresses different sources of uncertainty is presented.

1The term “uncertainty” is used here to address the general concept of being not certain about a
value or parameter. Therefore, failures of sensors or shared data are assumed to be one aspect of
uncertainty, but disturbances originating in a system’s environment or an actuator’s inability to
execute a given command precisely are other aspects as well.

4.1. Explicitly Modeling Uncertainties for Dynamically Composed Systems 147

Controller

Internal Sensors

Shared Data

Actuator

Environment

EUshared

EUsensors

EUmodel EUactuator

EUdist

Fig. 4.2.: Defining sources of uncertainty using an abstract control loop.

In that endeavor, the abstract control loop is considered again and five sources of uncer-
tainty are allocated to its elements, cf. Fig. 4.2. They are mathematically represented
within the extended system model in Eqs. (4.1) to (4.7).

ẋ(t) = f ∗
π(x(t)) = f(x(t), û(t)) + Umodel(x(t), û(t), t) + Udist(x(t), t) (4.1)

û(t) = Uactuator(u(t), t) (4.2)
u(t) = π(ôi(t), ôs(t)) (4.3)

ôi(t) = oi(t) + Usensor(oi(t), t) (4.4)
oi(t) = si(x(t)) (4.5)

ôs(t) = os(t) + Ushared(os(t), t) (4.6)
os(t) = ss(x(t)) (4.7)

In its center it is assumed that a system is given as a system of ODEs, that is ẋ =
f(x,u). It describes the state change ẋ over time given the control actions u ∈ Rm

for each state x ∈ Rn. As described, for instance, by Berkenkamp et al. [45] this
deterministic model may not represent the real world due to uncertainties regarding
its parameters or due to linearizing it. Therefore, the actual state change ẋ is not only
provided by the system model but is also imposed by model uncertainties Umodel. They
describe the difference between the assumption the controller makes on the system
under control and the actual real-world system.
Next to model uncertainties, disturbances Udist originated in the environment of a
system may introduce uncertainty regarding the actual state change. Consider, for
instance, frontal gusts at stormy weather which influence the velocity of a vehicle or
surface conditions that change the friction of wheels on the ground. Such uncertain-
ties may depend on the current state of the system but can be of random nature
as well. Opposed to model uncertainties, however, they are external to the system,
cf. Fig. 4.2.
While both, the model uncertainty Umodel and disturbances Udist, directly influence the
state change (cf. Eq. (4.1)), actuator faults cf. Eq. (4.2) are posing an indirect source
of uncertainty. For instance, actuator faults may cause a loss of effectiveness, stuck
failures, or complete failure [99], [100]. Another example of actuator uncertainties
can be saturation. It describes an actuator’s inability to follow the target action u
due to physical constraints. The set of failures affecting a system’s actuators can be
modeled using Uactuator, which causes the control action u to be transformed into û,
cf. Eq. (4.2).

148 4. Region of Safety

The initial control actions u in turn are provided by the system’s control policy.
This policy evaluates provided observations to determine an appropriate action u,
cf. Eq. (4.3).
For dynamically composed systems, these observations may be provided by internal
sensors si or shared data ss. While internal sensors provide observations oi, shared
data provides external observations os. From a modeling perspective, both of which
are observations of the current state x(t), cf. Eqs. (4.5) and (4.7). Therefore, shared
data may be considered as an external sensor to a system as well.
As discussed in Chapter 2, observations provided by internal sensors and shared data,
are subject to failures. Therefore, the theoretically correct observations oi and os

are imposed by failures Usensor(oi(t), t) and Ushared(oi(t), t). These can be time- and
value-correlated.
As sensors and shared data provide observations on which the controller can calculate
control actions, the control loop is closed.
In summary, five sources of uncertainty (Umodel, Udist, Uactuator, Usensor, and Ushared) are
identified and can be addressed separately in the given system model. To reflect their
stochastic nature, they are considered to be random variables. A consequence of this
assumption is that the differential equation becomes a Stochastic Differential Equation
(SDE)[101], that is, the state change ẋ is a random variable itself.

4.2. Regions of Safety for Dynamically Composed
Systems

The extended system model presented in the last section enables not only to apply the
approach of RoA for analyzing the effect of failures of shared data on a controller’s
stability but also the effect of other sources of uncertainty.
For assessing the stability of a controller, the approach of RoA builds on Lemma 2.1.
It states that, given a suitable Control Lyapunov Function (CLF), the RoA is a set
of states for which a controller is guaranteed to provide stabilizing control actions
that drive the system under consideration closer to the targeted stability point. This
guarantee of asymptotic stability requires that the action calculated by a controller
always minimizes the value of the CLF . However, this requirement may not be met by
a system under consideration in presence of uncertainty.
To exemplify this, the next subsection firstly introduces the use of intervals to enable
estimating a controller’s RoA when dealing with uncertainty before the methodology
is applied to the inverted pendulum problem where only sensor failures are considered.
It can be observed that even minor uncertainties render the requirement of an RoA to
be unfulfilled. Through simulation, on the other hand, it can be seen that the system
remains at safe states nonetheless. Motivated by that, Section 4.2.2 extends the idea
of RoA and introduces the concept of RoS . This concept relaxes the initial requirement
on stability and focuses on showing that a controller only chooses actions such that the
system under consideration does not leave a set of safe states, an RoS . Finally, the last
subsection discusses how this approach addresses the criteria defined in Section 1.3.1
and thereby fulfills Objective 1.1.

4.2. Regions of Safety for Dynamically Composed Systems 149

4.2.1. Estimating Regions of Attraction in Presence of Uncertainty
The goal of this subsection is to examine the effect uncertainties have on estimating a
controller’s RoA. For that, Lemma 2.1 is to be applied to the problem of the inverted
pendulum. However, as the uncertainties are represented by random variables, the
state change ẋ predicted by the system model is a random variable itself. As this
causes the gradient of the CLF (V̇ (x)) to be a random variable as well, Eq. (2.5)
(requirement of RoA) can not be evaluated directly. It is an inequality comparing a
scalar with a threshold.
Consequently, the next paragraph briefly describes how the random variable V̇ (x) is
converted to an interval and used to apply the concept of RoA in presence of uncer-
tainty. Having this prerequisite in place, the problem of the inverted pendulum is
introduced before the RoA of its controller is determined and discussed. The effect
of uncertainties on the resulting RoA is analyzed and compared to simulations of the
system.

Using Intervals for Estimating Regions of Attraction

The introduced system model f ∗
π(x) defined the random variables Umodel, Udist, Uactuator,

Usensor, and Ushared for representing different sources of uncertainty, cf. Eqs. (4.1)
to (4.7). According to this changed system model, the central requirement for RoA
stated in Eq. (2.5) is updated to Eq. (4.8).

V̇ (x) =
∂V (x)

∂t
=
∂V (x)

∂x
· ∂x
∂t

=
∂V (x)

∂x
· f ∗

π(x) < −LV̇ · τ (4.8)

Here it can be seen that if ∂x/∂t becomes a random variable, V̇ (x) becomes a random
variable as well. As a consequence, the requirement of Eq. (4.8) may hold with a certain
probability, which is given by the gradients Cumulative Distribution Function (CDF).
Therefore, Eq. (4.8) can be rewritten as follows.

P (V̇ (x) < −LV̇ · τ) ≥ PRoA (4.9)

The probability of the gradient V̇ (x) being less than the threshold −LV̇ ·τ has to exceed
a predefined probability of PRoA. It essentially states how certain one can be about
the controller being able to minimize the CLF at state x. This directly relates to the
likeliness of the controller being able to stabilize the system, that is, driving it closer
to the stability point. Considering this as the safety function to be carried out by the
controller, PRoA reflects the safety performance the controller is required to provide.
Therefore, the value has to be set in accordance with applicable safety standards, for
instance the IEC 61508 and its SILs, [20].
However, as noted in Challenge 1.3, specifying the required safety performance of
a component using shared data is challenging due to the missing knowledge about
the failure characteristics at design-time. Although being possibly overly restrictive,
one can take up on the argumentation in Section 1.3 and require the highest safety
performance. This results in PRoA = 1 and entails that all values of the distribution of
V̇ (x) have to be less than the threshold. This is used to simplify Eq. (4.9) and derive
Eq. (4.10).

max(V̇ (x)) < −LV̇ · τ (4.10)

150 4. Region of Safety

Motor M

Θ
l

m

g

u

Fig. 4.3.: Schematic representation of the inverted pendulum system.

Instead of knowing about the distribution of V̇ (x) it is sufficient to determine its
maximal value, which is the upper bound of the distribution’s interval of values (V̇ (x) ∈
IV̇ (x) = [min(V̇ (x)),max(V̇ (x))]). Thus, evaluating the fulfillment of Eq. (4.10) at a
given state x requires to determine IV̇ (x).
This means that not the entire distribution has to be determined but only the interval
from which the maximal value will be known. On the one hand, this simplifies the
calculation. On the other hand, this means that the worst-case uncertainties are always
assumed.
In the endeavor of determining the interval, two options are available. Firstly, interval
arithmetic can be used, [102]. Starting with the sources of uncertainties from which
the initial intervals have to be extracted (e.g. confidence intervals of the specified
distributions), interval arithmetic can be used to track them through the system model
and ultimately provide IV̇ (x). While this is computationally inexpensive as it requires to
evaluate the system model at state x only once, the dependency problem [103] of interval
arithmetic causes IV̇ (x) to overestimate the actual range of V̇ (x). As a consequence,
Eq. (4.10) might be incorrectly evaluated as unfulfilled.
A second option is a sampling-based approach, where the initial intervals are tracked
through the system model by evaluating it at different points. This work uses a
mixture of both. While the initial intervals of failure amplitudes of sensory and
shared data are tracked to obtain the interval of state changes using a sampling-based
method (cf. Eq. (4.1)), the final interval of IV̇ (x) is obtained through interval arithmetic
(cf. Eq. (4.10)). In that way, computational efficiency and the effect of the dependency
problem are balanced.

The Inverted Pendulum

With the adaptation of the previous paragraph, systems having different sources of
uncertainty can be analyzed and their RoA can be estimated. In the endeavor of
examining the effect of uncertainties on the estimated RoA, the inverted pendulum is
considered here, cf. Fig. 4.3. It is a recurring example in control theory that appears
in different versions in the literature, e.g. mounted on a mobile cart [104]–[106] or a
quadrotor aerial vehicle [107].
This work assumes a simplified version where a pole of length l with mass m is mounted
on a motor which allows applying a torque u to the pole. The control goal for π is

4.2. Regions of Safety for Dynamically Composed Systems 151

Tab. 4.1.: Parameters of the inverted pendulum.

Parameter Value Description

l 0.5m Length of the pole

m 0.15 kg Mass of the pendulum located at the poles end

µfriction 0.05N Friction at the poles mounting point

g 9.81m s−2 Standard gravity constant

ppendulum 5.0 P-Gain of the P-controller

to balance the pole in an upright position for which a maximal deviation of |Θ|≤
0.75 rad has to be maintained. This top-level safety goal stems from the limitation
of the considered motor, which can exert a maximal torque sufficient to counteract
gravitational forces only for those angles. Greater angles will therefore result in the
pendulum falling, which has to be prevented. The dynamics of the system is given by
Eq. (4.11) and its parameters are listed in Table 4.1.

Θ̈(t) =
mglsin(Θ(t))− µΘ̇(t) + u(t)

ml2
(4.11)

Eq. (4.11) states the acceleration of the pendulum’s angle depending on the current
control input u(t) = π(x(t)) where x = [Θ Θ̇]T ∈ X ⊆ R2 is the current state. The
control input is provided according to Eq. (4.12).

π(x) = π(Θ, Θ̇) = −ppendulum · (Θ + Θ̇) (4.12)

Although more complex control strategies are possible, a P-controller is considered here
for the sake of simplicity. The controller reacts linearly to the sum of the pendulum’s
angle and angular velocity. It generates the effect that the calculated control action
takes the current movement of the pendulum into account. For instance, a negative
angle is counteracted by an already positive velocity, which means that the pendulum’s
movement towards the stability point is respected for calculating the corresponding
control action. Conversely, a negative angle paired with a negative angular velocity
indicates that the displacement is increasing and therefore increases the reaction of the
controller.
The control action provided by the controller is, however, imposed by the actuator
failure model, cf. Eq. (4.2). Here, it describes the motor’s inability to exert a torque
greater than 0.5N, cf. Eq. (4.13).

Uactuator(u(t), t) = max(min(u(t), 0.5),−0.5) (4.13)

This inability is modeled as a saturation and limits û(t) ∈ [−0.5N, 0.5N].
Apart from the actuator failure model, no model uncertainties or disturbances are
considered. For the sake of this example, only observation failures of internal sensors,
that is, Usensor are considered. As their effect on calculating an RoA is the subject of
the next paragraph, they are not defined here.

152 4. Region of Safety

−2 0 2 −5
0

50

50

Θ
Θ̇

V
(x

)

0

20

40

60

−2 0 2

−5

0

5

Θ

Θ̇

20

40

60

(a) 3D plot of Vpendulum(x). (b) Heatmap of Vpendulum(x)

Fig. 4.4.: Visualizing the CLF for estimating the RoA of the inverted pendulum controller.

However, for determining an RoA, a suitable CLF is missing. Although multiple can-
didates will be evaluated in Section 4.3, a first candidate is introduced here already to
motivate the discussion, cf. Eq. (4.14).

Vpendulum(x) = wΘ ·Θ2 + wcomb · (Θ + Θ̇)2 (4.14)

Following the idea of a cost function, the squared value of Θ is considered to form a
function that is monotonically increasing in each direction from the global minimum
at x = 0. Additionally, the squared of the additive combination of the angle Θ and
the pendulum’s angular velocity Θ̇ is considered again. Similar to its use for defining
the control policy, the combination is used here to assess the displacement combined
with the moving direction. A moving direction bringing the pendulum closer to the
origin is favorable over a moving direction increasing the displacement. The final CLF
function Vpendulum(x) is displayed in Fig. 4.4.

The Effect of Uncertainty on Estimating Regions of Attraction

The previously introduced problem of the inverted pendulum shall be used to exem-
plify the effect of considering uncertainties during estimating a controller’s RoA. In
this endeavor, this subsection firstly defines the sensor failures as the only source of
uncertainty considered here. Secondly, the approach of RoA is applied and the results
are discussed.
Although the extended system model presented in Section 4.1 facilitates defining a
failure model for shared data, only internal sensors that fully observe the state space
(si(x) = x) are assumed for this scenario. Thus, the model of shared data provides
an empty set of observations, that is, ss(x) = ∅, cf. Eqs. (4.5) and (4.7). Moreover, it
is assumed that only observations provided by internal sensors are subject to uncer-
tainties. For the sake of simplicity, it is assumed that the Noise failure type described
in Section 3.4.1 models the failure characteristics of these. The failure type is ex-
tended to two-dimensional data by presuming independence between both dimensions,
cf. Eq. (4.15).

UsensorN ∼ QNoise (µ = 02×1,Σ = I2×2 · 0.0125) (4.15)

4.2. Regions of Safety for Dynamically Composed Systems 153

Tab. 4.2.: Definition of the state space considered for the inverted pendulum.

Parameter Interval Discretization

Θ [−π rad, π rad] ΘS = 0.025 rad

Θ̇ [−3π rad s−1, 3π rad s−1] Θ̇S = 0.025 rad s−1

t [0 s, 10 s] τ = 0.025 s

Note that, in contrast to the one-dimensional case, no time- or value-correlation is
assumed here.
Having the uncertainties affecting the system defined, the corresponding RoA can be
estimated. For that, the state space and its discretization as listed in Table 4.2 are
assumed. While the range of Θ from −π rad to π rad fully describes its possible values,
the limits of the angular velocity Θ̇ are estimated from the system configuration. Using
an energy-based approach, the maximal velocity of the pendulum during falling from
Θ = 0 to Θ = −π can be calculated. To ensure coverage of all relevant states, this
velocity is rounded up to ±3π rad s−1. Finally, for simulating the pendulum and con-
verting the employed GFMs to intervals a time horizon of T = 10 s is considered. All
three dimensions (Θ,Θ̇, and t) are discretized using 0.025 which balances computational
effort with the resolution of the state space.
For each state x, intervals of the considered sensor failure model are extracted using
the approach of Section 3.2. The intervals cover the time horizon T as well as the
value domain Ix = [x − 0.0125,x + 0.0125]. Therefore, by considering all states over
the considered state space, the extracted intervals cover the continuous range of states.
Based on these intervals, the maximal gradient max(V̇ (x)) is calculated and evaluated
according to Eq. (4.10).

−2 0 2

−2

0

2

Θ

Θ̇

False
True

(a) Considering the ideal case of no uncertainties.

−2 0 2

−2

0

2

Θ

Θ̇

False
True

(b) Considering Noise failures affecting sensor observa-
tions of Θ and Θ̇.

Fig. 4.5.: Categorizing states of the inverted pendulum problem according to their fulfillment of
Eq. (4.10).

154 4. Region of Safety

0 2.5 5 7.5 10

−0.2

0

0.2

t

Θ
,Θ̇

Θ̇
Θ

−2 0 2

−2

0

2

Θ

Θ̇

(a) Visualization of Θ and Θ̇ over time t. (b) States of the inverted pendulum during simulation.

Fig. 4.6.: Simulation of inverted pendulum with Noise sensor failure.

Whether or not a state fulfills the requirement is illustrated in Fig. 4.5. White areas
correspond to states violating the requirement and blue areas indicate the opposite.
While Fig. 4.5a considers the ideal case, that is, no uncertainties affecting the inverted
pendulum, Fig. 4.5b uses Eq. (4.15) to model sensor failures.
In general, one can see that, according to the estimated RoA, the controller is able
to stabilize the pendulum for angles of approx. Θ = ±0.5 rad. In case the angular
velocity counteracts the displacement, greater angles are possible as well. In contrast,
at states at which the angular velocity increases the displacement, stabilization can
not be provided and the corresponding states are colored white.
Thus, as blue states surround the stability point at x = [0 0]T , the area is eligible to
be an RoA. However, as one can see in Fig. 4.5a already, only seven states (highlighted
by the red circle) centered at the stability point do not fulfill Eq. (4.10). Therefore,
Lemma 2.1, which requires all states of an RoA to fulfill Eq. (4.10), can not be satisfied
and no RoA can be estimated. Similarly, when considering Noise failures in Fig. 4.5b,
the region of states not fulfilling Eq. (4.10) increases and thereby prevents estimating
a valid RoA as well.
In both cases, the states for which Eq. (4.10) is not satisfied entail that asymptotic
stability can not be guaranteed, that is, that the pendulum is always moving towards
the stability point.
This, however, is not required for safety. Instead, the system needs to be guaranteed
to not enter states violating safety requirements. In the case of the pendulum, this
means that states with |Θ|≥ 0.75 rad should not be entered. This requirement differs
from asymptotic stability. While asymptotic stability requires that the system always
moves towards the stability point (also when in safe states), safety requires only that
a set of safe states is not left.
In fact, simulating the inverted pendulum underlines this assumption, cf. Fig. 4.6.
In Fig. 4.6a one can see that the angle stabilizes at approx. Θ = −0.05 rad.
Moreover, the pendulum does not leave the region of Θ ∈ [−0.063 rad, 0 rad] and
Θ̇ ∈ [−0.24 rad s−1, 0.25 rad s−1], which can also be seen in Fig. 4.6b. Therefore, the
inverted pendulum does not to leave the set of safe states and consequently does not
violate its safety requirement despite its controller being confronted with observation
failures.

4.2. Regions of Safety for Dynamically Composed Systems 155

max(V̇ (x))
sup{max(V̇ (x))|x ∈ Bx,r} · τ

x

V
(x

) cmax

cmin

HV (cmin, cmax)HV (cmin, cmax)

V(cmax)

Fig. 4.7.: Schematic representation of requirements for hull states and uncertain states comprising a
Region of Safety (RoS).

4.2.2. Introducing the Concept of Region of Safety
The previous subsection showed that the requirement of asymptotic stability as posed
by RoA is overly restrictive when it comes to safety. Instead, the idea of showing that
a system will not leave its set of safe states emerged. In the endeavor of formalizing
this idea to address Objective 1.1, that is, to propose a run-time safety assessment
method satisfying the predefined criteria of Section 1.3.1, the next paragraph builds
on Lemma 2.1 and introduces the concept of RoS . Afterward, an algorithmic approach
for estimating a controller’s RoS is presented.

The Theorem of Region of Safety

Simulating the inverted pendulum indicated that asymptotic stability is not required
to show that a system remains within a safe set of states. Instead, it is sufficient to
guarantee that the controller emits actions driving the system into the inner region of
the safe set for states at its border.
In other words, it needs to be shown that the controller will always choose a control
action such that the system remains in the safe set when it is close to leaving it and that
the system will not leave the safe set without passing such stabilizing states. These
two requirements are formalized in the following theorem, which builds upon the idea
of RoA. An initial version of the theorem was stated in Jäger et al. [32].

Theorem 4.1 (Region of Safety) Let f ∗
π(x) be a controlled, stochastic system

according to Eq. (4.1). Let V (x) be the system’s Control Lyapunov Function (CLF)
defined on the state space X and LV̇ the Lipschitz constant of its gradient function.
Furthermore, let Bx,r = {p ∈ X |d(x, p) ≤ r} be the local neighborhood of a state
x with respect to a distance metric d(x, p) and distance r = max({xs ∈ Xs}) on a
discrete state space Xτ ⊆ Rm with discretization XS ∈ Rm

>0. With the bounded level
set HV (cmin, cmax) = {x ∈ Xτ |V (x) ≤ cmax ∧ V (x) ≥ cmin} defined on the discrete
state space, a system is said to be safe according to the specified CLF for all states
x ∈ V(cmax) = {x ∈ X |V (x) ≤ cmax} and an initial state x0 ∈ V(cmax) if

max(V̇ (x)) < −LV̇ · τ ∀x ∈ HV (cmin, cmax) (4.16)
V (x) + sup{max(V̇ (x))|x ∈ Bx,r} · τ < cmax ∀x ∈ {x ∈ Xτ |V (x) < cmin} (4.17)

156 4. Region of Safety

As V (x) is guaranteed to be differentiable due to its definition (cf. Section 2.1.2), LV̇

exist. Based on that the theorem formalizes the previously linguistically expressed re-
quirements by defining Eq. (4.16) and Eq. (4.17). Fig. 4.7 visualizes the theorem.
Eq. (4.16) adopts the condition of Eq. (4.10) for guaranteeing asymptotic stability of
the system for states surrounding the stability point. Thus, this condition is called the
RoA condition in the following. Note that not all but only states in HV (cmin, cmax)
have to satisfy the condition. These states are also referred to as stabilizing states and
are colored blue (if not stated otherwise) in diagrams, for instance as in Fig. 4.5. The
existence of these states facilitates guaranteeing that the controller chooses appropriate
actions u to drive the system into the center of the region towards the stability point.
Therefore, they prevent the system from leaving the RoS .
As it was shown in the previous section, however, this condition can not be fulfilled
by states close to the stability point when considering uncertainties. For those states,
that is, states having a CLF value of V (x) < cmin, stability is uncertain, which is
why they are also referred to as uncertain states. While it can not be shown that
the controller will drive the system closer to its stability point for those states, it can
be shown that the controller mitigates the effect of uncertainties and that the system
evolves to stabilizing states at maximum. This is formalized in Eq. (4.17)2. It leverages
the maximal gradient of the CLF to guarantee that its function value will be less than
V (x) < cmax after the time horizon τ .
For that, the supremum is determined locally, that is, on the neighborhood Bx,r of
state x according to the distance metric d. It, therefore, encodes the locally expected
uncertainties and the resulting maximal gradient. Following this gradient over time τ
guarantees that the system either remains in the region of uncertain states or is driven
to the region of stabilizing states (indicated by the end of the arrow in Fig. 4.7). As it
is guaranteed that the system will be driven towards the stability point at those states,
it is guaranteed that the system does not leave its Region of Safety (RoS).
As a consequence of both conditions, assuming a system starts with a state x0 ∈
V(cmax), it may alternate between stabilizing and uncertain states, but is guaranteed
to never leave the set V(cmax).
Another consequence of the theorem is that it essentially divides the state space into
safe and unsafe states by defining cmax according to a CLF . From a safety perspective,
the CLF can therefore be interpreted as an abstract measure of risk. It evaluates a
given state x and assigns an abstract risk value which increases towards states that
violate safety requirements. However, as the components of probability of an event and
its consequences are not as clearly stated as required by the definition of risk provided
by the IEC 61508 (cf. Definition 1.7), it is referred to as criticality in the following.
Nevertheless, for a CLF to inform about the criticality of a state with respect to the
safety of a system, monotonicity is not required. While the function should, in general,
be increasing, to reflect increased criticality of states, it would be overly restrictive to
require the same for the entire function. As such, for estimating an RoS the employed
CLF is not required to provide monotonicity in the following.
It needs to be noted that this contradicts the definition of a CLF in the literature, for
instance [45]. In contrast, the requirement for a single global minimum which is at the
targeted stability point remains.

2Here the theorem is corrected compared to Jäger et al. [32]

4.2. Regions of Safety for Dynamically Composed Systems 157

Algorithmic Estimation of a Region of Safety

Algorithm 1 Pseudo-code for estimating a controller’s RoS according to Theorem 4.1.
1: function EstimateRoS(Xτ , τ , V (x), λc)
2: cmax ← maxx∈Xτ (V (x))
3: cmin ← cmax · (1.0− λc)
4: while (cmax > 0) do
5: XRoS ← {x ∈ Xτ |V (x) ≤ cmax}
6: for all x ∈ XRoS do
7: if (V (x) ≥ cmin) ∧ (max(V̇ (x)) ≥ −LV̇ · τ) then . See Eq. (4.16)
8: XRoS ← ∅
9: if (V (x) < cmin) ∧ (V (x) + sup{max(V̇ (x))|x ∈ Bx,r} · τ > cmax) then

10: XRoS ← ∅ . See Eq. (4.17)
11: if (XRoS 6= ∅) then
12: return XRoS

13: cmax ← cmin

14: cmin ← cmax · (1.0− λc)
15: return ∅

The theorem introduced in the last paragraph defined the requirements that have to be
fulfilled by a set of states to form a controller’s RoS . For estimating the same according
to a given system model, the theorem is transformed into an algorithm in pseudo-code,
cf. Algorithm 1. Similar to the theorem, an initial version of this algorithm was given
in Jäger et al. [32] but is adjusted to the changed theorem here.
Following Theorem 4.1, the algorithm aims at estimating the maximal set of states
satisfying Eqs. (4.16) and (4.17). It, therefore, requires the system model f ∗

π(x), the
CLF V (x), the discrete state space Xτ , and the time constant τ as inputs.
Additionally, the algorithm defines the parameters λc for deriving the values of cmax

and cmin. While cmax is initialized as the maximal CLF value over the specified state
space, cmin has to be set to differentiate between stabilizing and uncertain states. For
that, λc is used. Depending on the shape of the used CLF , λc can be seen as a measure
for the ratio between stabilizing and uncertain states. The higher its value, the more
stabilizing states are required to form the RoS .
After initializing cmax and cmin, the set XRoS forming an RoS candidate is generated.
Each of its states is checked to either fulfill Eq. (4.16) or Eq. (4.17) depending on its
CLF value. If all states adhere to their respective conditions, the set is shown to be
an RoS and is returned by the algorithm. Otherwise, cmax and cmin are reduced to
generate the next candidate. This procedure is repeated until either a valid RoS is
found or cmax is zero, in which case the empty set is returned to indicate that no RoS
could be found.
Note that, the calculation of the required Lipschitz constants, as well as of the supre-
mum of the maximal gradient of V (x), the sampling-based approach as described in
Section 3.2.1 is used within this work.

158 4. Region of Safety

4.2.3. Discussion on the Fulfillment of the Predefined Criteria
In this section, the concept of Region of Safety (RoS) is introduced as an approach to
fulfilling Objective 1.1, that is, providing run-time safety assessment for using shared
data in safety-critical control systems. To be applicable in that sense, Section 1.3.1
defined criteria to be fulfilled by a suitable approach.
The most important criterion asks for the ability to analyze a failure model of shared
data and is satisfied by the presented approach through the usage of the proposed
system model (cf. Section 4.1). It facilitates specifying a failure model of shared data
independently from other sources of uncertainty but allows analyzing them in combi-
nation.
For this analysis, the concept of RoS is proposed. It builds upon the idea of RoA
but respects the uncertainty introduced by, for instance, failures of shared data. The
algorithm introduced together with Theorem 4.1 facilitates estimating a controller’s
RoS at run-time. It either provides a set of states for which it is guaranteed that the
system will not leave the set or returns the empty set. While in the former case it
is shown that safety will be maintained when using the shared data, the usage has
to be rejected for the latter. It is precisely this binary decision which the Run-Time
Certification criterion asks for and which is thereby fulfilled by the approach.
Moreover, the guarantee for safety is based on the definition of a Control Lyapunov
Function (CLF), which can interpreted as a measure of risk here. This function is
defined at the system’s design-time and does not directly depend on the failure char-
acteristics of (shared) data. This enables an in-depth analysis of the CLF function
already at design-time where it can be shown that the function appropriately assesses
the risk each state poses to the safety of the overall system. At run-time, this function is
not changed or adjusted, but only evaluated regarding its value and gradient to reflect
the implications entailed by uncertainties, for instance, of shared data. By showing
that a set of states generates gradients fulfilling the conditions of Theorem 4.1, it is as-
sessed whether or not the employed controller, that is, the safety function, sufficiently
reduces the risk, that is, adheres to its assigned safety performance.
Thus, while the CLF is key to performing a safety assessment at run-time, its definition
and the algorithm for evaluating it can be examined at design-time to guarantee func-
tional correctness. This renders the corresponding criterion of Functional Correctness
to be fulfilled by the approach as well.

4.3. Evaluating the Concept of Region of Safety
The discussion on the predefined criteria underlined the applicability of the concept
of RoS qualitatively. This shall be complemented by a quantitative evaluation in this
section.
In this endeavor, the next subsection revisits the inverted pendulum to introduce the
scenario and the considered uncertainties. Based on these considerations, Section 4.3.2
starts with designing a suitable CLF for the system in question. Examining the RoS for
different candidates shows that the guarantee provided by Theorem 4.1 directly depends
on the suitability of the chosen function. However, the value of λc, the parameter to be
defined for applying Algorithm 1 for estimating RoS , affects the results and its validity
as well. Therefore, the effect of this parameter and an approach on how to choose it are

4.3. Evaluating the Concept of Region of Safety 159

Tab. 4.3.: Parameterization of failure types considered to form varying failure models for examining
the estimation of RoS of the inverted pendulum.

Failure Type Scaling Activation Deactivation

Noise QNoise

(µ = 0, σ = 0.005)
0 1

Positive Spike 0.025 ·max(0,Θ, Θ̇) + 0.01 · t N(1.35, 0.15) N(0.75, 0.08)

Negative Spike −0.025 ·max(0,Θ, Θ̇)− 0.01 · t N(1.35, 0.15) N(0.75, 0.08)

Constant Positive
Offset

0.025 0 ∞

Constant Negative
Offset

−0.025 0 ∞

Offset N(0, 0.025) N(7.5, 0.15) N(0.75, 0.08)

analyzed in Section 4.3.3. Finally, both of these investigations prepare for evaluating
the effect of the considered uncertainties on the resulting RoS in Section 4.3.1. It will
be shown that the estimated set of states is not left by the pendulum when confronted
with the specified failure characteristics, which underlines not only the concept but
facilitates using it as a run-time safety assessment method in dynamically composed
systems and thereby fulfills Objective 1.1.

4.3.1. Defining the Scenario and Considered Uncertainties

For evaluating the concept of RoS the example of the inverted pendulum introduced
in Section 4.2.1 is revisited. To examine the effect of different uncertainties, how-
ever, additional failure characteristics for Usensor are defined. Similar to the previous
chapter, Table 4.3 lists the considered failure types and their template distributions
from which varying failure models are to be defined. For the sake of simplicity, both
dimensions, that is, failure amplitudes of Θ and Θ̇, are assumed to be of the same mag-
nitude. Therefore, it is refrained from stating the parameterization for each dimension
individually.
For representing the failure models and failure types, the concept of GFM is used.
This allows reusing the definitions provided in Section 3.4.1 and Section 3.4.4. The
Noise failure type, for instance, leverages the already defined quantile function which
incorporated Outliers (cf. Fig. 3.16). On the other hand, no value-correlations are con-
sidered this time. These are considered for the Spike failure types whose failure pattern
remains the same, cf. Fig. 3.14c. Similar to the evaluation of the interval extraction
method (cf. Section 3.4.4), two versions with complementary scaling distributions are
considered. However, only positive values of Θ and Θ̇ are affected while the magnitude
is time- and value-correlated at the same time. This shall enable examining whether
or not these correlations are reflected in the resulting RoS .
Following a similar idea, constant positive and negative Offsets are considered again.
As shown in Section 3.4.4, the individual failure types should cause uncertainties within

160 4. Region of Safety

Tab. 4.4.: Failure models considered for the inverted pendulum scenario.

Failure
Model Failure Types Failure

Model Failure Types

FM{N} {FNoise} FM{O} {FOffset}

FM{NO} {FNegative Offset} FM{N,O} {FNoise, FOffset}

FM{PO} {FPositive Offset} FM{PO,NO} {FPositive Offset, FNegative Offset}

FM{NS} {FNegative Spike} FM{PS,NS} {FPositive Spike, FNegative Spike}

FM{PS} {FPositive Spike} FM{N,PO,NO}
{FNoise ,FPositive Offset,

FNegative Offset}

the resulting RoS while they are expected to cancel out each other when considered in
combination.
Finally, the Offset failure type resembles an uncorrelated version of the Offset failure
type presented in Section 3.4.1. In contrast to the other failure types, its scaling values
are Gaussian distributed with a standard deviation of 0.025 and are therefore not
deterministic.
The individual failure types are grouped into different failure models which are listed
in Table 4.4.
Next to considering the failure types separately, the combination of Noise and Offset
failure types are taken into account to analyze the effect of increased failure amplitudes.
The combination of constant positive and negative Offsets, however, facilitates exam-
ining the assumption that failure types cancel each other out. It is assumed that the
same is not true for Spike failure types in correspondence to the results of Section 3.4.4.
Finally, FM{N,PO,NO} should provide the same results as considering only the Noise
failure type and is therefore used to ensure consistency within the results.

4.3.2. Designing a Control Lyapunov Function
With the definition of the failure models that are to be considered for estimating
different RoS , the scenario and the system model are defined. Based on this, the CLF
has to be defined before Algorithm 1 can be applied to estimate an RoS .
In the context of RoS , the CLF assesses the criticality of a state x with respect to
the safety of the system under consideration. For that, the function has to be positive
semi-definite and continuously differentiable with a global minimum at V (x0) = 0
where x0 = [0 0]T . It is assumed that the risk posed to the system’s safety is minimal
at this point while criticality increases relative to the distance to this point.
Consequently, a controller intends to drive the system closer to its stability point and
thereby minimizes the function over time. This is leveraged by Theorem 4.1, which
builds upon the correspondingly negative gradient of a specified CLF . As this directly
relates to the decision on whether or not a set of states is deemed safe, the CLF
ultimately encodes safety constraints to be fulfilled by the system. Therefore, choosing
an appropriate function at design-time is mandatory for being able to guarantee safety
at run-time.

4.3. Evaluating the Concept of Region of Safety 161

In this endeavor, this subsection investigates the effect different Lyapunov function
candidates have on the estimation of RoS and derives aspects that have to be considered
when designing an appropriate CLF . For that, the next paragraph discusses candidate
functions that are evaluated regarding their suitability in the following paragraph.

Control Lyapunov Function Candidates

Designing an appropriate CLF is an active field of research where no general method
exists yet [44]. Therefore, two different options are considered here from which 9
candidates are derived, cf. Table 4.5.
On the one hand, an approach using the energy within the system as a measure of
criticality is used. Similar approaches were reported to result in appropriate CLFs,
for instance in [108]. On the other hand, the distance of a state x from the targeted
stability point x0 can be interpreted as a measure of criticality. Hence, distance-based
function candidates are considered as well.
The idea of energy-based CLF is that a system is stable if it reaches a point of minimum
energy. At that point, energy has to be provided for the system to leave the stability
point and therefore the system will naturally return to its stability point once the
additional energy is not provided.
Using this thinking, a CLF candidate for the inverted pendulum can be designed by
considering its potential and kinetic energy, cf. Eqs. (4.18) to (4.20).

Ekin =
1

2
ml2Θ̇2 (4.18)

Epot = mgl · cos(Θ) (4.19)

V9(Θ, Θ̇) =
1

2
ml2Θ̇2 +mgl(1− cos(Θ)) (4.20)

The kinetic energy of the inverted pendulum is given by Eq. (4.18) and solely depends
on the angular velocity Θ̇. It increases when the pendulum is in motion but has
its global minimum at Θ̇ = 0 rad s−1. Additionally, the potential energy is given by
Eq. (4.19). Using the cosine of Θ and multiplying it with the length of the pendulum
provides the height of the pendulum. Consequently, the potential energy has a global
minimum at Θ = −π rad and a maximum at Θ = 0 rad. For that reason, the cosine
value is inverted and shifted in Eq. (4.20). On the one hand, this ensures that the
global minimum is at x = x0 = [Θ = 0 rad Θ̇ = 0 rad s−1]T . On the other hand, it
underlines that designing an appropriate CLF depends on the system at hand and can
not be considered as an isolated activity.
The resulting function is visualized in Fig. 4.8. It combines both energies to measure the
criticality of a state by the amount of energy in the system it relates to3. Furthermore,
the function is continuously differentiable and positive semi-definite and thereby fulfills
the mathematical requirements of a CLF .
The manual adaptations required by the energy-based approach were necessary to
define the CLF candidate in such a way that the function value is increasing relative
to the distance of state x from the envisioned stability point x0. To investigate this
direction of designing CLF functions, Eq. (4.21) is considered next.

V (Θ, Θ̇) = wΘΘ
2 + wΘ̇Θ̇

2 + wΘ+Θ̇(Θ + Θ̇)2 (4.21)
3Energy is written italic here to state the fact that the final value does not state the actual energy

but is only based on the concepts of energy.

162 4. Region of Safety

Tab. 4.5.: Configurations of CLF candidates.

ID wΘ wΘ̇ wΘ+Θ̇ ID wΘ wΘ̇ wΘ+Θ̇

m1 1.0 0.0 0.0 m5 2.0 0.0 1.0m2 0.0 1.0 0.0 m6 2.0 1.0 1.0m3 0.0 0.0 1.0 m7 1.0 0.0 0.2m4 2.0 1.0 0.0 m8 3.0 0.0 0.2

m9 1
2
ml2Θ̇2 +mgl(1− cos(Θ))

−2 0 2 −5
0

50

2

Θ
Θ̇

V
9(

x)

0

1

2

3

−2 0 2

−5

0

5

Θ

Θ̇

0

1

2

3

(a) Surface plot of the energy-based CLF . (b) Heatmap of the energy-based CLF .

Fig. 4.8.: Plotting the function value of the energy-based CLF candidate k9 .

Similar as before, the function has a global minimum at x0 while its value is mono-
tonically increasing in each direction from that point, which ensures that the function
is positive semi-definite. Furthermore, the function is three times differentiable and
thereby Lipschitz continuous, which is a requirement to apply Theorem 4.1.
Apart from these mathematical requirements, the CLF builds upon the idea of Eu-
clidean distance (the square root is not taken to simplify the expression) to express the
criticality of a state. Taking the central safety requirement of the pendulum remaining
in an upward position into account, the criticality of states increases with their value
of Θ. For that, the squared value of Θ is used.
However, not only the angle but also the angular velocity has to be considered. In
general, high angular velocities cause the pendulum to leave its equilibrium state.
Therefore, as before, the squared value of Θ̇ is added as well.
Finally, as discussed for the control strategy in Section 4.2.1 already, angular velocities
can lower or increase the criticality of a state depending on the current angle. A
state having a positive displacement (Θ ≥ 0 rad) but a negative angular velocity (Θ̇ ≤
0 rad s−1) is less critical than a positive displacement combined with a positive angular
velocity (or vice versa). This fact is assessed by the last element of the function,
(Θ + Θ̇)2.
Each of these aspects is weighted by their corresponding coefficients (wΘ, wΘ̇, and

4.3. Evaluating the Concept of Region of Safety 163

wΘ+Θ̇). Using these, different versions of this function can be analyzed. The variations
considered here are stated in Table 4.5.
While configurations 1-3 are chosen to analyze the effect of the individual components
of the Lyapunov function candidate, configurations 4-6 are used to compare the effect
of including the combinations of Θ and Θ̇. Finally, configurations 7 and 8 optimize
the weights. Configuration 9 resembles the CLF obtained using the energy approach
in Eq. (4.20).

Evaluating Control Lyapunov Functions

The defined CLF candidates shall be evaluated regarding their appropriateness for
estimating the RoS of the inverted pendulum. As this requires taking multiple per-
spectives into consideration, the employed evaluation procedure and applied metrics
are described in the next paragraph before the results stated in Table 4.6 are dis-
cussed.

Procedure To evaluate the presented candidates, they are used to estimate RoS ac-
cording to Algorithm 1. For that, no uncertainties were considered and the parameter
λc was set to 0.7. It was refrained from assuming uncertainties at this point to examine
the implications of different CLF . Furthermore, this enables using a conservative value
for λc. Note that a value of λc = 1.0 is not possible as this would effectively turn the
RoS estimation into an RoA estimation, for which it was shown in Section 4.2.1 that
no valid sets are found.
To assess the resulting RoS , different aspects are considered. First and foremost, the
question of whether or not a system is correctly classified as safe has to be answered. In
that endeavor, each state x ∈ V̂(cmax) is considered as a starting state for a simulation
of the inverted pendulum. Using the Runge-Kutta method with orders 4/5 [109], the
system Eq. (4.1) is solved with a maximal time step of τ = 0.025 s while the time step
is adapted to maintain an integration error of 10−6. Opposed to that, the control policy
is sampled with an exact period of τ = 0.025 s to emulate real-time constraints. For
each time step, it is checked whether the safety requirement is maintained (|Θ|≤ π

2
).

If the system violates the requirement at any time step, the RoS associated with the
starting state is considered unsafe, resulting in a False value in the right most column
of Table 4.6.
However, an RoS should not only enable maintaining safety but also guarantee that the
system does not leave the corresponding set of states. For that, the maximal distance
dV̂(cmax)

(Euclidean distance) from this set is calculated during simulation. Due to the
discretization of the state space, distances of dV̂(cmax)

≤
√
2 · 0.0252 · 0.5 = 0.0177 are

acceptable. Distances greater than this threshold, however, indicate that the guarantee
is violated.
Both of these metrics analyze the resulting RoS regarding the safety aspects. In con-
trast, the performance aspect, that is, how well the true RoS is estimated, has to be
considered as well. For that, the following three metrics are applied, cf. Eqs. (4.22)
to (4.24).

rXτ =

∣∣∣V̂(cmax)
∣∣∣

|Xτ |
(4.22)

164 4. Region of Safety

−2 0 2

−5

0

5

Θ

Θ̇
False

True

Fig. 4.9.: True RoS of the inverted pendulum when assuming no uncertainties. This set was found
through simulation. Each of the considered states was considered as a starting state for simulating the
inverted pendulum with the considered control policy. Only if the pendulum remained in an upright
position, the state was accepted as part of the RoS .

Eq. (4.22) defines rXτ as the ratio of the number of states in the estimated RoS V̂(cmax)
to the overall number of states. In that way, the relative size can be assessed.
While it is favorable to cover as many states as possible, it remains a question of safety.
Therefore, the estimated RoS has to be compared to the set of states for which the
system is truly safe. For that, the true RoS is determined by assuming each state x
of the state space Xτ as a starting state for the simulation. If the control policy is
able to drive the inverted pendulum to the targeted stability point, the starting state
is considered as part of the true RoS V(cmax).
The result is shown in Fig. 4.9. As the motor can apply only a limited torque on the
inverted pendulum, displacements of approx. |Θ|≥ 0.8 rad can be counteracted only if
the pendulum is already in a motion directed towards the stability point.

rV(cmax) =

∣∣∣V̂(cmax) ∩ V(cmax)
∣∣∣

|V(cmax)|
(4.23)

Based on the true RoS , Eq. (4.23) defines rV(cmax) as the ratio of states of the estimated
RoS V̂(cmax) that are within the true RoS over the overall number of states in the true
RoS . This enables assessing how conservative the estimation of RoS is. In general, the
goal is to cover as many states of the true RoS as possible, that is, achieve a value of
rV(cmax) close to one.

r/∈V(cmax) =

∣∣∣{x|x ∈ V̂(cmax) ∧ x /∈ V (cmax)
}∣∣∣

|V(cmax)|
(4.24)

Eq. (4.24) complements the examination of the estimated and true RoS by defining
r/∈V(cmax) as the ratio of states that are within the estimated RoS but not within the
true RoS over the number of states in the true RoS . As any value greater than zero
indicates that the estimated RoS contains states from which the inverted pendulum
will not return to its stability point but possibly violate its safety requirement, zero is
the value to be aimed at for this metric.

4.3. Evaluating the Concept of Region of Safety 165

Tab. 4.6.: Evaluation of CLF candidates.

ID rXτ rV(cmax) r/∈V(cmax) max(dV̂(cmax)
) Is Safe?

m1 0.00000 0.00000 0.00000 0.00000 Falsem2 1.00000 1.00000 5.33524 0.00942 Falsem3 0.00000 0.00000 0.00000 0.00000 Falsem4 0.00000 0.00000 0.00000 0.00000 Falsem5 0.00000 0.00000 0.00000 0.00000 Falsem6 0.00000 0.00000 0.00000 0.00000 Falsem7 0.03146 0.19929 0.00000 0.01516 Truem8 0.02802 0.17751 0.00000 0.00052 Truem9 0.00012 0.00077 0.00000 0.12811 True

−2.5 0 2.5

−5
0
5

Θ

Θ̇

False
True

(a) Results for candidate i1 .

−2.5 0 2.5

−5
0
5

Θ

Θ̇
False

True

(b) Results for candidate i3 .

−2.5 0 2.5

−5
0
5

Θ

Θ̇

False
True

(c) Results for candidate i6 .

Fig. 4.10.: Fulfillment of the RoA condition (cf. Eq. (4.16)) by candidates k1 , k3 , and k6 .

Results With the aforementioned method, each of the proposed CLF candidates is
evaluated. The results are listed in Table 4.6.
The candidates m1 , m3 , m4 , m5 , and m6 do not allow estimating an RoS . This is
caused by the controller’s inability to minimize the corresponding functions over time.
As a consequence, no connected set of states forming a valid hull HV (cmin, cmax) can
be found. This is illustrated in Fig. 4.10 which exemplarily shows the fulfillment of the
RoA condition (cf. Eq. (4.16)) by the individual states of the state space. In the case of
candidate m1 , which assesses only the squared displacement Θ, negative gradients of
the CLF can be obtained only for states having angular velocities driving the inverted
pendulum towards the stability point. Thus, according to this estimate, the control
policy does not affect the stability of the inverted pendulum.
This is caused by a missing indirection. While the controller determines a torque u
which results in an increased or decreased value for Θ̇, the CLF takes only Θ into
account. Therefore, the effect the control policy has is not reflected in the gradient. As

166 4. Region of Safety

−2 0 2 −5
0

50

50

Θ Θ̇

V
(x

)

0

20

40

60

80

−2.5 0 2.5

−5

0

5

Θ

Θ̇

False
True

(a) Surface of the CLF . (b) Fulfillment of the RoA condition by the states.

Fig. 4.11.: Visualization of CLF candidate k2 .

a consequence, states not fulfilling the RoA condition are within each possible set of
hull states HV (cmin, cmax) and thereby prevent the estimation of an RoS . Thereby, this
example underlines that the CLF and the applied control policy have to be aligned
with each other, that is, consider the same state space and state changes.

The described phenomenon is observable for m3 and m6 as well. For candidatem3 , the white area indicating states not fulfilling the condition divides the blue area
completely. As a consequence no level set of the CLF can be found to form the set
of stabilizing states as it will always contain states not fulfilling the RoA condition.
While the white areas forming around |Θ|∈ [0.7, 2.3] correctly identify states where
the torque that can be provided by the motor is not sufficient to stabilize the system,
a line of white states additionally divides the state space, crossing the origin. This
line indicates Θ + Θ̇ = 0, which is precisely the error the control policy acts on,
cf. Eq. (4.12). As only a simplistic P-controller was chosen, no control action is applied
when the inverted pendulum is at those states, which entails that the gravitational force
is not counteracted. Consequently, the inverted pendulum moves downwards, resulting
in V̇ (x) > 0. Although mitigated by candidate m6 , the same reason applies.

In contrast to these candidates, CLF m2 considers the entire state space as the con-
troller’s RoS , as indicated by the value of rXτ . While this entails that all states of the
true RoS are within the estimated RoS , unsafe states are included as well. It has to
be noted that the distance dV̂(cmax)

indicates that the pendulum leaves the estimated
RoS as the simulation is not restricted to the defined state space.
As a consequence of considering the entire state space as the estimated RoS , the sys-
tem’s safety is not maintained during all simulations. The overestimation of the RoS is
caused by the CLF ’s focus on Θ̇, as can be seen in Fig. 4.11. Generally, the control pol-
icy aims at minimizing the angular velocity and therefore applies a conversely directed
torque. This suffices for high magnitudes of angular velocities to generate a negative
gradient on the CLF , cf. Fig. 4.11b. However, for states where the angular velocity is
already zero, the control policy determines a torque increasing the velocity in order to
bring the pendulum towards an angle of Θ = 0. This goal is not reflected in candidate

4.3. Evaluating the Concept of Region of Safety 167

V̇ (x)

V̇ (x)

xV
(x

)
H

V

cmax

cmin

x1 x2x0

Fig. 4.12.: Visualizing the effect of an asymmetric CLF .

−2.5 0 2.5

−5

0

5

Θ

Θ̇

False
True

(a) Fulfillment of the RoA condition (cf. Eq. (4.16)) by
states according to CLF i9 .

−2.5 0 2.5

−5

0

5

Θ

Θ̇

False
True

(b) Fulfillment of the RoS condition (cf. Eq. (4.17)) by
states according to CLF i9 .

Fig. 4.13.: Visualization of CLF candidate k9 .

m2 , which causes the white area along Θ̇ approx. 0. This, however, does not prevent
an RoS to be estimated due to the asymmetry of the CLF , cf. Fig. 4.11a.
For the sake of the argument, the problem is illustrated by an exemplary curve consid-
ering only one dimension in Fig. 4.12. Note that this example has no relation to the
inverted pendulum but serves solely the purpose of illustrating the general problem.
The displayed function does not increase symmetrically when starting at x0. While it
increases drastically for values x ≤ x0 it increases only moderately for x ≥ x0. Ad-
ditionally, it is assumed that the employed control policy produces negative gradients
for states of the former case but can not minimize the function for states of the latter
case (see x1 and x2 respectively). Applying Algorithm 1 can result in an invalid RoS
as indicated by cmax and cmin. While the set of stabilizing states that form HV fulfill
Eq. (4.16), the system may evolves towards unsafe states when moving towards x ≥ x0.
In this sense, HV does not encompass all uncertain states as it does not form a closed,
convex hull around them (with respect to the state space).
Regarding m2 and the inverted pendulum, this is the case as only Θ̇ is considered by
the CLF but not Θ. As a consequence, stabilizing states are found for angular velocities
of high magnitudes, which enables the estimation of an RoS and causes uncertain states
to fulfill Eq. (4.17) due to the high value of cmax.
In contrast, only candidates m7 , m8 , and m9 enable estimating RoS that indeed

168 4. Region of Safety

−2.5 0 2.5

−5

0

5

Θ

Θ̇

False
True

(a) Fulfillment of the RoA condition (cf. Eq. (4.16)) by
states according to CLF i8 .

−2.5 0 2.5

−5

0

5

Θ

Θ̇

False
True

(b) Fulfillment of the RoS condition (cf. Eq. (4.17)) by
states according to CLF i8 .

Area of RoS

(c) Legend for RoS visualizations, e.g. Figs. 4.14a and 4.14b.

Fig. 4.14.: Visualization of CLF candidate k8 .

solely contain states for which the system’s safety is maintained. Candidate m9 pro-
duces the smallest set of states which covers 0.012% of the overall state space and
0.077% of the true RoS . Due to this small set, which covers states surrounding the
origin of the state space, the pendulum maintains the safety requirement in all simula-
tions. However, as indicated by dV̂(cmax)

= 0.12811 >> 0.017, during these simulations,
the pendulum leaves the estimated RoS and thereby violates the guarantee that shall
be provided. Similar to the previous example, the stabilizing states are found for in-
creased CLF values but do not encompass contained uncertain states completely. It
can be seen in Fig. 4.13b that white areas divide the state space. The estimation of the
invalid RoS is not prevented by the RoS condition either, due to the discretization of
the state space. However, increasing the discretization could prevent the estimation of
an RoS as the number of uncertain states would increase and the corresponding RoS
condition would not be fulfilled.
Therefore, candidates m7 and m8 remain. Both of them provide valid RoS . While
candidate m7 covers a greater number of states of the true RoS , its distance dV̂(cmax)

is increased. It does not exceed the threshold of 0.017, but due to its closeness, further
work focuses on candidate m8 . The fulfillment of the RoA and RoS conditions by the
corresponding states is visualized in Fig. 4.14. In contrast to the previous examples, the
area of blue states indicates that the fulfillment of the RoA condition is connected. This
enables forming a set of stabilizing states that encompasses the remaining uncertain
states surrounding the stability point.
For these uncertain states, Fig. 4.14b shows that the inverted pendulum will not evolve
to a state V (x) > cmax within a time horizon of τ as they fulfill the RoS condition.
Moreover, it can be seen that the blue area even extends beyond the estimated RoS ,
which is indicated by the gray overlay. This is a consequence of considering the maxi-

4.3. Evaluating the Concept of Region of Safety 169

mum gradient of the CLF in the RoS condition in Eq. (4.17), which can be negative.
The gradient is multiplied by the considered time horizon τ and added to the CLF
value at the considered state to compare the resulting value with cmax, cf. Eq. (4.17).
Given a negative gradient with a sufficient magnitude, the fulfillment of the RoS con-
dition for states outside the actual level set representing the RoS is possible. Thus,
these blue-colored states indicate that the controller is able to provide control actions
driving the system into the estimated RoS despite being outside of it. These are not
part of the RoS , however, as these or other states having the same CLF value are not
fulfilling the RoA condition.
Nevertheless, the fulfillment of the RoS condition by all uncertain states underline that
the inverted pendulum should always remain within the estimated RoS . This is further
supported by the value of dV̂(cmax)

, which is smaller than
√
2 · 0.0252 · 0.5 = 0.0177,

that is, half the euclidean distance of the chosen discretization. As such, it is shown
that the distance by which the inverted pendulum leaves the estimated RoS is caused
by the discretization of the state space.

4.3.3. Determining an Appropriate Value for λc
The last section discussed different CLF candidates and deemed m8 as most suitable.
Moreover, aspects that have to be taken into consideration while designing a CLF were
derived from invalid candidates. For instance, m2 underlined that asymmetric func-
tions may result in overestimating the RoS . This was visualized in Fig. 4.12, where it
was shown that the calculated set of stabilizing states misses encompassing the uncer-
tain states. Another solution, next to adjusting the CLF , is to adapt the parameter
of λc. For m2 , an increased value of λc would have prevented the estimation of a
RoS . Although the candidate would remain inappropriate for the inverted pendulum,
it motivates to examine the value of λc and how to set it.
In this endeavor, the next paragraph briefly discusses the procedure to evaluate the
effect of λc before the following paragraph discusses the results and determines the
correct value for the inverted pendulum.

Procedure For examining the effect of λc, the parameter is set to values λc ∈ [0, 1]
and RoS are estimated accordingly. For each RoS , six parameters are extracted.
To generate general indications on the validity of the estimated RoS , the result of the
simulation-based check of the safety requirement presented in the previous evaluation
is stated along with the maximal distance dV̂(cmax)

again. These parameters are com-
plemented with metrics to assess the set of hull states HV (cmin, cmax) calculated for
each RoS , cf. Eqs. (4.25) to (4.27) and (4.30).

rH =
|HV (cmin, cmax)|
|V̂(cmax)|

(4.25)

rH defined in Eq. (4.25) states the ratio of stabilizing states to the overall number
of states in the estimated RoS . It thereby allows assessing the quantity of stabilizing
states.

170 4. Region of Safety

xx1 x2 x3

cmax

cmin

dB(x)

B(x)

d = 0.025

d = 0.025

States outside RoS

Stabilizing States

Uncertain States

Fig. 4.15.: Schematic illustration of Eq. (4.29). The gray and black-colored circles indicate states of
the two-dimensional state space. While states colored black are associated to the considered set B(x),
gray-colored states are not considered by the same. Separated by the thresholds of cmin and cmax,
uncertain states, stabilizing states, and states outside the RoS are distinguished. Finally, the value of
dB(x) is nothing but the greatest distance of any state xn ∈ B(x) to x.

However, this is not sufficient to assess whether or not these states encompass the
uncertain states. For that, the parameters dHV

and dRoS are defined in Eq. (4.26) and
Eq. (4.27).

dHV
= max

x1,x2∈HV (cmin,cmax)
(‖x1 − x2‖) (4.26)

dHV
states the maximal distance between all stabilizing states. In case the stabilizing

states form a cluster encompassing only parts of the uncertain states, this distance is
reduced. To further assess this distance, dRoS is calculated.

dRoS = max
x1,x2∈V̂(cmax)

(‖x1 − x2‖) (4.27)

dRoS states the maximal distance between all states of the estimated RoS . In general,
the stabilizing states should form a hull surrounding the RoS . Thus, a valid value of
λc should entail dHV

= dRoS.
However, this does not allow assessing whether or not the stabilizing states in
HV (cmin, cmax) are sufficiently close to each other, that is, whether or not the con-
vex hull is closed.

B(x) = {x1,x2,x3|x1,x2,x3 ∈ HV (cmin, cmax)

∧‖x− x̂‖ ≥ ‖x1 − x̂‖ ≥ ‖x2 − x̂‖ ≥ ‖x3 − x̂‖
∀x̂ ∈ HV (cmin, cmax) \ {x1,x2,x3}}

(4.28)

dB(x) = max
x̂∈B(x)

(‖x− x̂‖) (4.29)

dmaxB = max
x∈HV (cmin,cmax)

(dB(x)) (4.30)

To assess this, the maximal distance to the three closest neighbors is calculated for each
state x in the set of hull states, cf. Eqs. (4.28) to (4.30). The principles of Eqs. (4.28)
and (4.29) are illustrated in Fig. 4.15.
The set B(x) contains nothing but the three stabilizing states x1,x2,x3 that are closest
to the state x in HV (cmin, cmax). Based on that, Eq. (4.29) determines the maximal

4.3. Evaluating the Concept of Region of Safety 171

distance between x and its three closest neighboring states. By determining the max-
imal value of these distances over all stabilizing states in Eq. (4.30) a value assessing
the connectivity of the stabilizing states is provided.
This value should be balanced in accordance with the discretization of the state space.
With regard to the inverted pendulum and taking the value discretization of 0.025 for Θ
and Θ̇ into account, the optimal value for dmaxB is 0.05, as visualized in Fig. 4.15.
This value indicates, that the neighboring states of each stabilizing state are forming
a line at maximum as the values of cmin and cmax are sufficiently close while the RoA
condition for each stabilizing state is fulfilled.
Values of dmaxB > 0.05, however, indicate that the stabilizing states are not sufficiently
connected, that is, the convex hull is not closed. This means that state trajectories
along which the system may leave the estimated RoS are possible, which violates the
guarantee an RoS shall provide.
On the other hand, values dmaxB < 0.05 indicate that the set of stabilizing states is
denser than required. This may occur if the range between cmin and cmax is increased
(e.g. by larger values of λc) such that the stabilizing states do not form a line of
singular states (as illustrated in Fig. 4.15) but form a line of two or more states. This
may result in overly restrictive RoS estimations.

Results Table 4.7 summarizes the results by stating the aforementioned metrics. The
first row states the values obtained for λc = 1.0. This value entails that all states within
the estimated RoS have to fulfill the RoA condition. As was shown in Section 4.2.1, this
is not the case for the inverted pendulum due to the simplicity of the employed control
policy and resulting uncertain states surrounding the stability point. Consequently, no
RoS is estimated.
In contrast, valid RoS are obtained for values λc ≤ 0.9. Both corresponding metrics,
the distance dV̂(cmax)

and the simulation-based safety check, return positive. Further-
more, as is to be expected, the number of states in the hull HV (cmin, cmax) reduces
in proportion to the specified value of λc. For values of λc ≥ 0.0125, the condition
dHV

= dRoS holds, meaning that the stabilizing states indeed encompass the estimated
RoS .
However, the stabilizing states are not sufficiently connected, as indicated by dmaxB =
0.50559. This can be seen in Fig. 4.16a as well where the stabilizing states are colored
red. At approx. |Θ|= 0.5 it becomes clear that the distances between these are
increased and thereby trajectories of the system leaving the RoS may be possible.
According to Table 4.7 the value of λc has to be increased to 0.1 for all stabilizing states
to be sufficiently connected. This is supported by Fig. 4.16b where the red-colored
stabilizing states successfully encompass all states of the estimated RoS . Moreover, by
comparing Fig. 4.16b and Fig. 4.16c it becomes clear that increasing λc to 0.2 is not
necessary here as it increases the number of states required to form HV (cmin, cmax).
Thereby, the estimation of RoS becomes overly restrictive. The same is underlined
by the value of dmaxB for λc = 0.2, which decreases to 0.03536 and thus supports this
conclusion. Consequently, for examining the effect of uncertainties on the estimation
of RoS a value of λc = 0.1 is applied.

172 4. Region of Safety

−1 −0.5 0 0.5 1

−2

0

2

Θ

Θ̇
False

True

(a) For λc = 0.0125, only two states are within the hull of
stabilizing states.

−1 −0.5 0 0.5 1

−2

0

2

Θ

Θ̇

False
True

(b) For λlyap = 0.1, the stabilizing states are forming a
hull surrounding the uncertain states.

−1 −0.5 0 0.5 1

−2

0

2

Θ

Θ̇

False
True

(c) For λlyap = 0.2, the stabilizing states are forming a
hull surrounding the uncertain states.

Stabilizing State Area of RoS

(d) Legend for RoS and stabilizing states visualizations, e.g. Figs. 4.16a to 4.16c.

Fig. 4.16.: Analysis of different values of λc. The blue area indicates states that fulfill the RoS
condition while the transparent, gray overlay illustrates the states of the estimated RoS . The red
states correspond to the set HV (cmin, cmax) of the respective RoS .

4.3. Evaluating the Concept of Region of Safety 173

Tab. 4.7.: Evaluating the effect of λc on the estimated RoS .

λc rH dHV
dRoS dmaxB max(dV̂(cmax)

) Is Safe?

1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 False

0.90000 0.89983 4.16473 4.16473 0.03536 0.00052 True

0.80000 0.80154 4.16473 4.16473 0.03536 0.00052 True

0.70000 0.70174 4.16473 4.16473 0.03536 0.00052 True

0.60000 0.60064 4.16473 4.16473 0.03536 0.00052 True

0.50000 0.49934 4.16473 4.16473 0.03536 0.00052 True

0.40000 0.40105 4.16473 4.16473 0.03536 0.00052 True

0.30000 0.30088 4.16473 4.16473 0.03536 0.00052 True

0.20000 0.20015 4.16473 4.16473 0.03536 0.00052 True

0.10000 0.09886 4.16473 4.16473 0.05000 0.00052 True

0.05000 0.05271 4.16473 4.16473 0.12748 0.00052 True

0.02500 0.02476 4.16473 4.16473 0.27613 0.00052 True

0.01250 0.01201 4.16473 4.16473 0.50559 0.00052 True

0.00625 0.00759 4.36212 4.36212 0.98011 0.00258 True

0.00000 0.00029 0.35089 4.76681 0.35089 0.00531 True

4.3.4. The Effect of Varying Sensor Failures on Regions of Safety
With the CLF function and the λc value defined, Algorithm 1 can be used to estimate
the RoS of the inverted pendulum in presence of uncertainties, which is the goal of this
subsection. As the uncertainties, more specifically, failure characteristics described in
Section 4.3.1 are represented by GFMs, however, appropriate values of α and γ need
to be determined before valid RoS can be estimated. Therefore, the next paragraph
applies the evaluation approach described in Section 3.4.4 to derive the appropriate
values before the effect of different uncertainties on the estimated RoS is discussed in
the following paragraph.

Determining the Values of α and γ

The representation of failure characteristics by a GFM provides detailed information
about the impairments to anticipate for sensor observations. To be applicable during
the estimation of RoS , however, intervals stating the minimal and maximal failure
amplitudes are required. Thus, the approach of Section 3.2 is applied to convert a
GFM to an interval valid for a given time horizon K and domain O.
While information about the time- and value-correlations of the failure characteristics

174 4. Region of Safety

Tab. 4.8.: Choosing α and γ values for interval calculation employed during RoS estimation.

Failure Model dI(α = γ = 1.0) dI(α = γ = 0.95) dI(α = γ = 0.75)

FMN 0.24 0.15 -0.13

FMO 0.076 0.032 -6.7e+23

FMNO 0 0 0

FMPO 0 0 0

FMNS 0.1 0.1 0.1

FMPS 0.1 0.1 0.1

represented by the GFM is lost during the conversion process, specifying K and O with
respect to the discretization of the state space Xs enables limiting the loss. Thus, for
estimating an RoS the domain O is set to [x−0.5Xs,x+0.5Xs] while K is set to cover
the considered time horizon (K = [0 s, 10.0 s] for the inverted pendulum). Although
information about possible time-correlations of failure amplitudes is therefore lost as
the entire time horizon has to be considered, value-correlations are retained depending
on the discretization of the state space.
Central to the conversion are the parameters α (Eq. (3.21)) and γ (Eq. (3.45)), which
determine the range of the extracted intervals. On the one hand, the greater the range
of the intervals, the more severe are the represented uncertainties which result in a
greater set of uncertain states in the estimated RoS . Therefore, from the perspective of
RoS , small intervals are favorable. On the other hand, the intervals have to represent
the minimal and maximal failure amplitudes that may occur and can therefore not
underestimate the range as this may result in an RoS not taking the required uncer-
tainties into account. These perspectives are balanced by adjusting the parameters α
and γ.
In the endeavor of determining the optimal value for the inverted pendulum and the
failure models defined in Section 4.3.1, intervals for each failure type are extracted for
values of α, γ ∈ {1.0, 0.95, 0.75} and compared to failure amplitudes observed during
simulation of these. Using the minimal distance to the interval borders (Eq. (3.66)), the
over- or underestimation of the actual failure amplitudes is assessed. Table 4.8 lists the
results. While the failure amplitudes of the positive and negative constant Offsets can
be determined precisely as they are purely deterministic, the intervals extracted from
positive and negative Spike failures are always overestimating their magnitude. This
is due to the time- and value-correlations of their scaling distribution which causes
non-zero Lipschitz constants during the sampling-based interval extraction. In con-
trast, the intermittent Offset and the Noise failure type comprise non-deterministic
scaling distributions. Therefore, by reducing the values of α and γ, the range of failure
amplitudes is reduced. For values of α = γ = 0.75, the interval underestimates their
magnitude, which means that values of α = γ = 0.95 have to be considered. As this
value balances the tightness of the extracted intervals with the safety aspect of overes-
timating the range of possible failure amplitudes, the value will be used for analyzing
the effect of different failure models on the estimation of RoS .

4.3. Evaluating the Concept of Region of Safety 175

Tab. 4.9.: Analyzing the effect of different failure models on the estimation of RoS .

Failure Model rXτ rH max(dV̂(cmax)
) Is Safe?

FM{N} 0.028 0.099 0.001 True

FM{O} 0.028 0.099 0.001 True

FM{N,O} 0.000 0.000 0.000 False

FM{NO} 0.028 0.099 0.000 True

FM{PO} 0.028 0.099 0.005 True

FM{NS} 0.028 0.099 0.001 True

FM{PS} 0.028 0.099 0.001 True

FM{NO,PO} 0.028 0.099 0.001 True

FM{NS,PS} 0.000 0.000 0.000 False

FM{N,NO,PO} 0.028 0.099 0.003 True

Analyzing Regions of Safety

With the values of α = γ = 0.95 set, the effect of the considered failure models (cf. Ta-
ble 4.4) on the estimated RoS can be examined. Similar as before, the next paragraph
describes the metrics employed for analyzing these while the following paragraph dis-
cusses the results.

Procedure The central idea of RoS is to estimate the set of states for which it can
be guaranteed that the system will adhere to its safety requirements and that it will
not leave this set. In the endeavor of evaluating whether or not this is the case for the
estimated RoS when considering the failure models, the simulation-based check of the
safety requirement is employed once again. This time, each state within the estimated
RoS was considered as a starting state of Nsim = 20 simulations. In this way, the
stochastic nature of the considered failure models is taken into account. Moreover,
the maximal distance max(dV̂(cmax)

) of states observed during these simulations to the
estimated RoS is calculated again. Finally, the ratios rH (cf. Eq. (4.25)) and rXτ

(cf. Eq. (4.22)) are reconsidered as well to assess the estimated RoS itself.

Results Table 4.9 states the obtained results according to these evaluation metrics.
Apart from FM{N,O} and FM{NS,PS}, RoS could be estimated successfully for the
controller when considering any of the failure models. Despite their modeled failure
characteristics affecting the simulated sensor observations, the safety requirement was
maintained during the simulation and the maximal distance max(dV̂(cmax)

) = 0.005 is
less than 0.0174 and thereby underlines that the pendulum indeed remained within

4
√
2 · 0.0252 · 0.5 = 0.017 is half of the Euclidean distance between to neighboring states in the

specified state space.

176 4. Region of Safety

−1 −0.5 0 0.5 1

−2

0

2

Θ

Θ̇

False
True

(a) Fulfillment of RoA condition when considering
FM{O}.

−1 −0.5 0 0.5 1

−2

0

2

Θ

Θ̇

False
True

(b) Fulfillment of RoS condition when considering
FM{O}.

Fig. 4.17.: Examining the effect of FM{O} on the fulfillment of the RoA and RoS condition at
individual states and the resulting RoS . The legend is given in Fig. 4.16d.

−0.5 0 0.5
−2

0

2

Θ

Θ̇

False
True

(a) FM{NO}

−0.5 0 0.5
−2

0

2

Θ

Θ̇
False

True

(b) FM{PS}

−0.5 0 0.5
−2

0

2

Θ

Θ̇

False
True

(c) FM{NS,PS}

Fig. 4.18.: Comparing the effect of failure models FM{NO}, FM{PS}, and FM{PS,NS} on the
fulfillment of the RoA condition and the estimated RoS . The legend is given in Fig. 4.16d.

the estimated RoS . Therefore, the guarantee provided by Theorem 4.1 is successfully
supported by the results.
The fulfillment of the RoA and RoS conditions obtained for the example of the inter-
mitten Offset (cf. Fig. 4.17) is in line with these results. Although Fig. 4.17a shows
that the controller is unable to provide stabilizing control actions for states surround-
ing the stability point, it is demonstrated by the fulfillment of the RoS condition
(cf. Fig. 4.17b) that the system will not leave the overall RoS . Therefore, estimating
the same is possible despite the uncertain states.
Similar to the CLF candidate m8 discussed in association with Fig. 4.14, the blue
area of states fulfilling the RoS condition extends beyond the estimated RoS .
Examining the examples of FM{NO}, FM{PS}, and FM{PS,NS} enables comparing
successful and unsuccessful estimations of RoS . In Fig. 4.18a, the effects of constant
negative Offsets are visualized regarding the fulfillment of the RoA condition. As one
can see, the area of uncertain states within the RoS is shifted only slightly. There-
fore, the direction of the magnitude of failure amplitudes does not seem to affect the
estimation of the RoS . However, comparing these results to FM{PS} shows that the

4.4. Summary 177

magnitude itself affects the region of uncertain states. The time- and value-correlations
of FM{PS} cause overall increased failure amplitudes which in turn cause the controller
to calculate inappropriate control actions for a greater set of states surrounding the
stability point. In other words, the area of uncertain states increases. Consequently, for
FM{NS,PS}, where the most severe failure amplitudes are to be expected, stability of
all states in HV (cmin, cmax) can not be shown anymore. Therefore, the RoA condition
of Theorem 4.1 is not fulfilled and no RoS can be estimated.
Moreover, from the comparison of FM{NO}, FM{PS}, and FM{PS,NS} it can be seen
that the considered failure models affect only states near the stability point but do
not affect the fulfillment of the RoA condition for states of approx. |Θ|≥ 0.45 rad.
This is caused by the control policy. Incorrect sensor observations implied by the
considered failure models cause the controller to calculate a control action based on an
incorrect error value (cf. Eqs. (4.3) and (4.12)). In the worst case, this means that the
control policy perceives a state x̂ which requires a less rigorous action than the actual
state x would require. In contrast, for states with approx. |Θ|≥ 0.45 rad, both, the
incorrectly perceived state x̂ and the actual state x require the maximal control action
for stabilizing the pendulum. Therefore, the sensor failures do not affect the calculated
control action.
This is precisely the reason why the values of rH and rXτ are either zero in case no RoS
could be estimated or 0.099 and 0.028 for all other failure models. If a sufficient set of
stabilizing states can be found, the estimated RoS is limited only by states for which
the pendulum can not be stabilized due to the limited torque provided by the motor,
not because of the considered sensor failures.
In summary, using Algorithm 1, RoS can be estimated for the inverted pendulum.
In case the failure characteristics described by the considered GFM are tolerable by
the employed control policy, the estimated RoS guarantees that the inverted pendulum
remains within the set of states while the algorithm returns the empty set if the specified
characteristics are not tolerable.

4.4. Summary
This chapter started in the endeavor of fulfilling Objective 1.1, which asks for a run-
time safety assessment method applicable to dynamically composed systems. For that,
it builds upon the discussion on approaches available in the literature, cf. Section 2.1.3.
While it was found that methods aiming at a system’s functional level are available,
the same are missing at a system’s technical level where shared data is processed to
derive control actions. Solely the approach of Region of Attraction (RoA) was found
to be applicable at run-time, but does not cover the use of shared data.
Serving as a starting point, the chapter firstly extended the system model to facilitate
representing different sources of uncertainty, cf. Section 4.1. Using this model for
a preliminary evaluation of the inverted pendulum problem revealed that estimating
a controller’s RoA is not possible while considering sensor failures. This is due to
its requirement of asymptotic stability which can not be satisfied for states near the
targeted stability point. However, safety does not require asymptotic stability but a
guarantee that a system does not evolve to an unsafe state.
With this shift of perspective in mind, Theorem 4.1 was proposed. Building upon the
idea of stabilizing states as provided by the concept of RoA, the theorem takes the

178 4. Region of Safety

possibility of states for which stability is uncertain into account. The provided Region
of Safety (RoS), therefore, guarantees that the system under consideration will not
leave the specified set of states under a given control policy and assumed uncertainties.
By utilizing the extended system model, not only failure characteristics of shared data
can be taken into account but also environmental disturbances, model uncertainties,
failures of internal sensors, and actuator failures. Therefore, varying combinations of
those variables can be examined as well. Finally, Algorithm 1 is presented as a means
of estimating an RoS .
The presented concept was analyzed qualitatively in a first step by reviewing it regard-
ing the predefined criteria of Section 1.3.1. In a second step, the already introduced
example of the inverted pendulum was used to evaluate it and examine the effect of
different uncertainties on estimated RoS .
The evaluation revealed challenges in setting up the estimation of RoS for a system
under consideration. Firstly, different aspects have to be taken into account while
constructing an appropriate CLF to assess the criticality of states. Not only does it
need to be ensured that all relevant parameters are reflected, but the CLF has to be
aligned with the employed control policy as well. For the inverted pendulum, this
means that the angular velocity Θ̇ has to be respected as it is the variable that is
influenced by the controller. Opposed to that, the main criterion for the system’s
safety is the pendulums angle Θ. Moreover, it was shown that the choice of λc, a
parameter of Algorithm 1, affects the validity of the estimated RoS as well.
Nevertheless, the evaluation showed that by constructing an appropriate CLF and
determining a valid value for λc, the safety of the system under consideration can be
assessed successfully. On the one hand, RoS were successfully estimated for failure
models stating failure characteristics tolerable by the defined control policy. On the
other hand, failure characteristics, for which the safety of the system could not be
shown with sufficient confidence, were rejected.
Therefore, by executing these calculations at run-time, a certification of whether or
not a safety function can adhere to its required safety performance is possible. This
underlines the fulfillment of the predefined criterion of Run-Time Certification. More-
over, the design of an appropriate CLF and the parameterization of the corresponding
algorithm are done at a system’s design-time. As such, sufficient confidence can be
gathered that the CLF reflects the criticality of states and is aligned with the em-
ployed control policy. In other words, the elements ultimately deciding on whether to
use shared data or not can be shown to be functionally correct at design-time such
that the result determined at run-time is valid. This fulfills the eponymous criterion
of functional correctness.
As the analysis of a shared failure model is facilitated by the extended system model,
it is shown that the concept of RoS satisfies the predefined criteria and fulfills Objec-
tive 1.1.

181

5. Evaluation and Integration

Operation

Dynamically Composed System

Intended EUC

Concept &
Scope Definition

...

Safety Assessment
- Static Elements -

Safety Assessment
- Shared Data -

Operation

Design-
Time
Run-
Time

Shared Data

Modeling Failure
Characteristics

Failure Model
Quality Assessment

Integration Step Chapter 5

Fig. 5.1.: Simplified safety process from Fig. 1.9 showing the objective addressed in this chapter.

The previous chapters introduced the main concepts of this thesis, the Generic Failure
Model (GFM) and Region of Safety (RoS). The former addresses Objective 1.2 and is
thereby a prerequisite for the fulfillment of Objective 1.1, which is addressed by the
latter. Together, both concepts shall enable a run-time safety assessment for handling
shared data in safety-critical control systems.
Opposed to this goal, the previous evaluations either focused only on the GFM (cf. Sec-
tion 3.4) or did not consider shared data (cf. Section 4.3). Thus, this chapter aims at
evaluating both concepts in combination, cf. Fig. 5.1. Specifically, it aims at (i) evalu-
ating RoS as a run-time safety assessment method in dynamically composed systems
where failure characteristics of shared data are represented by a GFM and (ii) connect-
ing both concepts to approaches providing run-time safety assessment at the functional
level, that is, to the idea of Level of Service (LoS).
For that, Section 5.1 takes upon the initial discussion in Chapter 1 and derives the use
case of a delivery robot navigating in a smart warehouse where it shares its position
data with a second robot to avoid collisions. This clarifies the allocation of concerns.
While the GFM will be used to represent failure characteristics of the shared data,
the concept of RoS will be used to examine the same for assessing whether or not the
employed collision avoidance policy tolerates the specified uncertainties and maintains

182 5. Evaluation and Integration

the robot’s safety. However, as a robot can (in 2D) bypass an obstacle either on its left
or on its right side, this policy has two stability points. This contradicts the application
of RoS , which supports only one stability point identified by the global minimum of the
applied CLF . Thus, a use-case-specific fusion strategy is proposed that considers the
RoS estimated for each stability point in separation and generates a fused RoS .
Afterward, the first step towards implementing the use case is to define the failure model
of shared data. Assuming that the robot’s position is provided by camera-based marker
detection, Section 5.2 discusses the setup used to obtain real-world observations ôk

along with reference data ok from which failure amplitudes f(k,ok) can be calculated.
These are examined by the processing chain presented in Section 3.3 to generate a
GFM , which is manually adjusted to improve its performance. The failure model is
then assumed to state the failure characteristics of shared data.
As such, it is used in Section 5.3 to estimate the RoS of the defined collision avoidance
policy. For that, a CLF applicable to both of its stability points is defined first. After-
ward, it is shown that the run-time safety assessment based on fused RoS successfully
enables maintaining the safety of the robots when sharing their position data. More-
over, it facilitates choosing an appropriate parameterization of the employed control
strategy at run-time to adapt to the provided quality of shared data. This is shown in
a final experiment which shows how the concept of RoS can be used to realize the idea
of LoS . Finally, the chapter is summarized and concluded in Section 5.4.

5.1. Multi-Robot Collision Avoidance – Reconsidering
the Smart Warehouse Use Case

In Section 1.1, the paradigm of Industry 4.0 was examined and its impact on stati-
cally composed systems (cf. Definition 1.1) becoming dynamically composed systems
(cf. Definition 1.2) was reviewed in light of currently employed safety processes. Re-
sulting in the objectives of this Thesis, the discussion evolved around the example of
a smart warehouse where mobile robots organize and manage the storage system. In-
stead of humans covering long distances to fulfill orders or replenish the warehouse’s
racks, mobile robots move the racks to dedicated picking or replenishing stations where
humans obtain or store items in the racks.
In the endeavor of further automating this process, the idea emerges to accept delivery
of goods to the warehouse by autonomous mobile robots as well. This entails, however,
that such a delivery robot temporarily integrates with the automated warehouse. It
may be dynamically instructed by the warehouse to place its goods at different goal
positions, depending on the type of transported goods and the current storage organi-
zation. While this is resource-efficient from the perspective of the warehouse, it requires
the delivery robot to safely operate in an area shared with other mobile robots. Most
importantly, it would be required that the robots do not collide with each other, which
could be supported by sharing their position data.
In accordance with IEC 61508, such a collision avoidance algorithm is considered a
safety function. More specifically, a safety function relying on shared data. As a
safety function, it has to be shown that it adheres to its assigned safety performance.
Following the discussion in Section 1.3, SIL 4 is assumed here.
Therefore, the use case of a collision avoidance controller employed for robots sharing

5.1. Multi-Robot Collision Avoidance 183

their position data precisely resembles the use case the concepts of this thesis were
designed for and is therefore used to evaluate the same.
For that, the assumptions made for the scenario are discussed in the next subsec-
tion before two experimental designs aligned with this chapter’s goals are derived in
Section 5.1.2. The first experiment, referred to as the circle scenario, is designed to
examine whether the RoS-based run-time safety assessment indeed facilitates maintain-
ing the safety of the dynamically composed system. The second experiment, referred
to as the navigation scenario, is designed according to the motivating use case and
shows that the idea of LoS can be realized by building on the concept of RoS . Having
the experiment in place, Section 5.1.3 introduces the kinematic model for the assumed
robots. Based on that, the control policy for driving a robot to its target position
while avoiding collisions is discussed in Section 5.1.4. It is complemented by a dis-
cussion on how to model assumptions made about the behavior of a second robot in
Section 5.1.5. Building upon the defined control policy, the section is concluded by
defining the use-case-specific strategy for fusing RoS estimated for separate stability
points.

5.1.1. Assumptions
For deriving the circle scenario and the navigation scenario, the presented use case
has to be refined. For that, assumptions about the scenarios, the robots, and the data
they share are made.
Firstly, the number of robots operating in a shared area is assumed to be exactly two
while up to five obstacles are assumed. The shape of both, robots and obstacles, is
abstracted to a circle of radius rs = 0.1m. The robots are assumed to have the same
platform and follow the same control and collision avoidance strategy, thus, they are
assumed to be identical.
While the obstacles are assumed to be static, that is, have a fixed position, the robots
are assumed to have holonomic drives enabling omnidirectional kinematics. Such kine-
matics are commonly used in mobile robotic platforms ([110], [111]) as they facilitate
the robot to rotate and move in any direction at any time.
As neither the obstacles nor the positions of the robots are known at design-time, it
is assumed that both are sensed at run-time. More specifically, each robot senses its
position and the position of the nearest obstacle using its internal sensors, which are
modeled using si(x), cf. Eq. (4.5). Contrarily, the position of the other robot is provided
by sharing the position data between the robots, that is, by shared data modeled by
ss(x), cf. Eq. (4.7).
Next to the continuously changing position data, the robots additionally are assumed
to share metadata about their maximal translational and rotational velocities, as well
as the distance both robots aim at maintaining to each other. These metadata inform
about the behavior of the robots when engaging in a collision avoidance maneuver and
enable modeling the same.
As these metadata do not represent changing information but describe the general
specification of the robotic system, it is assumed to be free of failures or uncertainties.
Similarly, it is assumed that observations provided by internal sensors are not affected
by any failure characteristics as well. This is as current system development and safety
processes (cf. Chapter 1) are capable of taking failure characteristics of static system

184 5. Evaluation and Integration

−25 250
XG in m

−25

25

0

Y
G

in
m 00

11
22

33
44

55
66 77 88 99 1122

E

A B

CD

11

22

−10 100
XG in m

−10

10

0

Y
G

in
m

(a) Schematic illustration of the circle scenario in which
two robots are placed on a virtual circle and assigned target
positions such that the trajectories intersect and collisions
are provoked.

(b) Schematic illustration of the navigation scenario where
two robots operate in a shared area with static obstacles.

Fig. 5.2.: Representations of the navigation and circle scenario.

components (i.e. internal sensors) into account and enable tuning processing chains
such that their remaining uncertainties are negligible with respect to the scope of this
work.
Contrarily, the central concepts to be evaluated in this chapter focus on shared
data. Thus, failure characteristics are assumed to affect position data shared between
robots.
Finally, it is assumed that robots do not intentionally share incorrect data, that is,
byzantine errors are excluded from these considerations [112]. This is as the focus
of this work is on safety and thereby excludes security considerations aiming at the
correctness and trustworthiness of shared data.

5.1.2. Design of the Circle and Navigation Scenarios
The previously formulated assumptions form the basis for the evaluation scenarios
of this chapter. Both are visualized in Fig. 5.2 and are aligned with the initially
formulated goals. While the circle scenario aims at evaluating whether or not a run-
time safety assessment can be realized using the concept of RoS , the navigation scenario
shall underline how the concept can be integrated with the state-of-the-art approach
of LoS . With these goals in mind, the following paragraphs briefly introduce both
scenarios.

The Circle Scenario

The central challenge addressed by this Thesis is to ensure safety despite using shared
data in safety functions. For that, the concepts of GFM and RoS are presented. With
regard to the use case discussed in this chapter, the safety function using shared data
is the collision avoidance strategy. Consequently, the first evaluation scenario, called

5.1. Multi-Robot Collision Avoidance 185

the circle scenario, aims at examining the effectiveness of the concepts in guaranteeing
the safety performance of this safety function.
For that, the scenario assumes two robots placed on a virtual circle, cf. Fig. 5.2a.
Each robot is assigned a target position at the opposite side such that their trajec-
tories intersect. By varying the starting positions of the robots, different incident
angles are provoked, facilitating the examination of different situations with potential
collisions.
According to the presented concepts, the controller’s RoS will be estimated with respect
to its parameters and the specified failure model of shared data. A non-empty, valid
RoS will indicate a safe parameterization while the estimation of an empty set indicates
unsafe parameters.
When parameterizing the collision avoidance strategies with values of Dmin deemed
safe by this RoS-based analysis, it is expected that collisions are successfully prevented.
Contrarily, by setting Dmin to values deemed unsafe, collisions are provoked and are
expected to be observed during simulation.

The Navigation Scenario

The circle scenario provides empirical evidence that the collision avoidance controller
indeed maintains the safety of the system when using shared data as long as a valid
RoS can be estimated. As the concept of RoS targets run-time safety assessment at the
technical level, that is, a safety function implemented as a control system, integration
with state-of-the-art approaches aiming at the functional level is the next step. To
underline that this is possible with the presented concept, the navigation scenario
aims at integrating the RoS estimation with the idea of LoS .
For that, the navigation scenario is motivated by the use case of the smart warehouse
and assumes two robots navigating in a shared area with static obstacles. As illustrated
in Fig. 5.2b, five obstacles (A-E) are considered. The robots are assigned random target
positions within the rectangular area, requiring them to prevent collisions with each
other and obstacles simultaneously. However, the robots are allowed to move outside
the area for this sake as well.
During simulation, different failure characteristics affecting the shared data are as-
sumed. In correspondence to these, the robots are required to adapt their minimal
distance Dmin to each other. This adaptation will be realized using the concept of
LoS .
Assuming different, predefined values for Dmin (each representing a single LoS), the
concept of RoS is used to analyze whether or not safety can be maintained for each
value. Then, depending on the failure model of the shared data, the minimal value for
Dmin, for which safety can be guaranteed, is chosen. Through simulation, it shall be
shown that the safety of the system is maintained when applying the lowest possible
value of Dmin for which a valid RoS can be estimated.

5.1.3. Kinematics
In the endeavor of executing the defined scenarios, the next step is the definition of a
system model in accordance with Eq. (4.1) for applying Algorithm 1 and estimating
RoS . For that, this section introduces the kinematics of the considered robots, that is,
f(x(t), û(t)) and Uactuator(u(t), t).

186 5. Evaluation and Integration

B
[xGB

= 5 yGB
= −5]T

[xEB
= −6.6 yEB

= 3]T

A

[xGA
= −3 yGA

= 7]T
[xEA

= 7.7 yEA
= −1.3]T

RR

ΘR = 2.62 rad
[xGR

= 3 yGR
= 2]T

[xER
= 0 yER

= 0]T

−10 100
XG in m

−10

10

0

Y
G

in
m

YE

XE

Fig. 5.3.: Defining global and local coordinate system of robots. The subscript G denotes coordinates
in the global coordinate system while the subscript E denotes coordinates in the local (ego) frame.

Starting with their movement in the global coordinate system (cf. Fig. 5.3) in the next
subsection, the kinematics describing the movement of obstacles in the local coordinate
system of a robot are introduced next. Stating the problem of collision avoidance in the
local coordinate system will not only simplify defining the collision avoidance strategy
but also the definition of a CLF and estimating an RoS respectively.

Global Kinematics

In accordance with the previously stated assumptions, the robots are assumed to have
omnidirectional kinematics. Different mechanics for achieving these are possible, for
instance using Mecanum wheels [113] in a three-wheeled robot [111]. However, the
dynamics and specific mechanics are not within the scope of this thesis. Therefore,
the robot is abstracted as a point mass in a 2D space, having a position of [xGR

, yGR
]T

in the global coordinate system and an orientation of ΘGR
Using the resulting state

definition xGR
= [xGR

yGR
ΘGR

]T , the kinematic model ẋGR
= f(x, û) for a robot is

given in Eqs. (5.1) to (5.3). Note that the subscript GR indicates that the position/state
change of the robot is given with respect to the global coordinate system.

ẋGR
= ûx (5.1)

ẏGR
= ûy (5.2)

Θ̇GR
= ûΘ (5.3)

By neglecting the specific dynamics entailed by the mechanical components of the robot
and focusing on its motions, the system model is simplified and takes only the control
actions û realized by the actuators into account.
Note that û represents only the actions that are actually realized by the actuators,
that is, the motion that could be achieved despite their inabilities, inaccuracies, and
imprecisions. In correspondence with Eq. (4.1), these are modeled by the failure model
of the employed actuators. Similar to the example of the inverted pendulum, the

5.1. Multi-Robot Collision Avoidance 187

actuator failure model Uactuator considered here limits the translational and rotational
velocities, cf. Eqs. (5.4) to (5.6).

ûx =

 ux

‖[ux uy]T ‖UTmax , for
∥∥[ux uy]T∥∥ ≥ UTmax

ux, else
(5.4)

ûy =

uy

‖[ux uy]T ‖UTmax , for
∥∥[ux uy]T∥∥ ≥ UTmax

uy, else
(5.5)

ûΘ = min(max(ûΘ,−URmax), URmax) (5.6)

In other words, the failure model represents a saturation of both velocities. While
the rotational velocity is saturated using a min-max operation (cf. Eq. (5.6)), the
translational velocity is saturated by scaling both directional scalars ux and uy. Thus,
the direction of the resulting translational vector is maintained but its magnitude is
limited by UTmax .

Local Kinematics

The previously defined kinematics state the motion of a robot considered as a point
mass in the global coordinate system. This allows simulating one or more robots and
their trajectories with respect to the employed control actions and is, therefore, a basic
requirement for evaluating the presented concepts.
However, in the endeavor of defining a collision avoidance policy with which the sim-
ulated robots can navigate safely, a change of perspective is helpful. More specifically,
as planning collision avoidance in the global coordinate system requires the control
policy to predict not only the movement of the robot but also the relative movement of
the obstacles in its vicinity, reformulating the problem in the robot’s local coordinate
system (also called the robot’s ego coordinate system) simplifies the task. The robot
is assumed to be at the coordinate system’s origin, that is, xER

= [xER
= 0 yER

= 0]T

while the obstacles are described by their position relative to the robot. Note that
now, the subscript ER indicates that the position of the robot is given with respect to
the local coordinate system.
For the sake of illustration, Fig. 5.3 compares both perspectives. For that, the po-
sition data of both obstacles A and B as well as of the robot R are stated for the
global coordinate system (subscript G) and for the local coordinate system (subscript
E).
For modeling the kinematics of the robot the changed perspective has to be taken into
account: the robot always remains in the origin of the coordinate system. Thus, instead
of stating the state change of the robot, the local kinematics state the change ẋEO

=
[ẋEO

ẏEO
]T of the position of the considered obstacle, cf. Eqs. (5.7) to (5.10).

ΘEO
= atan2(yEO

, xEO
) (5.7)

Θ̇EO
=
∥∥∥[xEO

yEO
]T
∥∥∥ ûΘ (5.8)

ẋEO
= − sin(ΘEO

)Θ̇EO
− ûx (5.9)

ẏEO
= cos(ΘEO

)Θ̇EO
− ûy (5.10)

Eq. (5.7) and Eq. (5.8) state the angle and angular velocity of the obstacle in relation
to the robot as a result of the robot’s rotation ûΘ. Based on these, Eq. (5.9) and

188 5. Evaluation and Integration

Tab. 5.1.: Overview of configuration parameters of the robots’ control policy.

Parameter Value Description

KP 2 P-Value for the P-controller of the goal-finding strategy

KC 2 P-Value for the P-controller keeping the robot on a circular
trajectory while driving around an obstacle

KO 1 P-Value for the P-controller keeping the distance between the
robot and the obstacle at Dmin

φ 0.75π Minimal Angle between the obstacle and goal before collision
avoidance can be disengaged

Dmin Minimal distance to keep between robot and obstacle during
collision avoidance

Eq. (5.10) derive the position change of the obstacle and take the movement of the
robot into account.
The first advantage of using the local coordinate system here is the reduction of the
state space. Instead of having three variables, only the position, that is, xE and yE are
required.

5.1.4. Control Policy

Based on the kinematics defined in the robot’s local coordinate system, the control
strategy for a single robot can be defined. It comprises a goal-finding strategy to reach
the robot’s goal position [xGg yGg ΘGg]

T and the collision avoidance strategy employed
for bypassing obstacles on the way, cf. Eq. (5.11).

u = π(ôi, ôs) =

 πgoal(ôi), if engaged = 0

πcollision(ôi, ôs), if engaged = 1
(5.11)

As indicated by the binary variable engaged ∈ {0, 1}, the overall control policy acts
according to the goal-finding strategy πgoal as long as collision avoidance is not engaged.
Consequently, in case an obstacle or other robot is within the robot’s vicinity, collision
avoidance πcollision is engaged.
To realize this switching as well as for calculating the control actions according to
both strategies, internal and external sensor observations, that is, ôi and ôs are re-
quired.
Correspondingly, the next subsection briefly describes the sensor models providing the
observations. Afterward, the goal-finding strategy and the collision avoidance strategies
are discussed.
Within this discussion, R1 denotes the ego robot, that is, the robot executing the
control policy, while R2 denotes the robot sharing its position data.

5.1. Multi-Robot Collision Avoidance 189

Sensor Model

Before the control policy can be defined, its inputs have to be specified. In this en-
deavor, the observations ôi and ôs need to be described.
Starting with the internal sensors, the previously formulated assumption is leveraged.
As the focus of this thesis is on shared data, a simplified model is assumed for the
robot’s internal sensor system. It directly provides position observations of the robot’s
nearest obstacle (xEOS

) as well as an estimate of the robot’s pose xR1 in the global
coordinate system, cf. Eq. (5.12).

oi = [xEOS
xGR

]T = [xEOS
yEOS

xGR1
yGR1

ΘGR1
]T = si(x) (5.12)

ôi = oi (5.13)

Moreover, it is assumed that these observations are perfect, that is, Usensor(o) = 0,
cf. Eq. (5.13).
In contrast, observations provided through shared data are assumed to be incorrect
and imprecise.

os = [xGR2
yGR2

]T = ss(x) (5.14)
ôs = os + Ushared(os, t) (5.15)

The information shared by the second robot is its position data xGR2
and yGR2

in
the global coordinate system. It is assumed that the failure model Ushared(os, t) is
shared along and analyzed during run-time safety assessment. The failure model in
this scenario will be discussed in detail in Section 5.2.

Goal-Finding Strategy

From a performance perspective, the overall goal of the robot at state xGR
is to navigate

to its goal position [xGg yGg ΘGg]
T . Depending on the environment and distance the

robot has to travel versatile algorithms can be employed for solving this task. One of
the first algorithms to be proposed was the so-called Bug algorithms [114]. Originated
in maze solving algorithms, they are rule-based algorithms to navigate a robot to its
target position without the need for a map of the environment. Motivated by these
algorithms, a P-controller is employed in this work, cf. Eqs. (5.16) to (5.18).xe

ye

 =

cos(ΘGR1
) − sin(ΘGR1

)

sin(ΘGR1
) cos(ΘGR1

)

 ·
xGg − xGR1

yGg − yGR1

 (5.16)

ux
uy

 =

xe
ye

 ·KP (5.17)

uΘ = (ΘGg −ΘGR1
) ·KP (5.18)

ugoal = [uxgoal
uygoal uΘgoal

]T = πgoal(oi) (5.19)

Using the position estimate xGR
provided by the internal sensors, the translational

difference between the robot’s current position and the goal position is calculated and
transformed into the local coordinate system, cf. Eq. (5.16). The error is then multiplied

190 5. Evaluation and Integration

O

Object

RR

dO < Dmin

RR
dO = Dmin

RR

dO = Dmin

Goal

φ ≥ 0.75 · π

1

2

3

Fig. 5.4.: Phases of the collision avoidance strategy.

by the P-Gain KP to derive the translational velocities ux and uy given in the local
coordinate system. Similarly, the difference in the current and targeted orientation is
combined with the P-Gain KP to obtain the rotational velocity uΘ. Together, these
velocities form the control action ugoal provided by the first part of the control policy,
the goal-finding strategy πgoal(ôi).

Collision Avoidance

The control actions ugoal provided by the goal-finding strategy are applicable only if
no obstacle is in the robot’s vicinity. Contrarily, the considered use case of a smart
warehouse, in which robots operate in a shared area, requires avoiding collision with
these as well as with obstacles. Therefore, a collision avoidance strategy πcollision has
to be defined, cf. Eq. (5.20).

ucollision = [ux uy uΘ]
T = πcollision(ôi, ôs) (5.20)

As this strategy has to prevent collisions with robots and obstacles alike, it starts with
examining internal sensor observations ôi and shared data ôs to determine the closest
object (robot or obstacle). In that endeavor, the shared position data of the robot is
transformed into the local coordinate system, cf. Eq. (5.21).

xER2
=

xER2

yER2

 =

cos(ΘGR1
) − sin(ΘGR1

)

sin(ΘGR1
) cos(ΘGR1

)

 ·
xGR2

− xGR1

yGR2
− yGR1

 (5.21)

Building upon the transformed position, the euclidean norm of the position vectors
xEOS

and xER2
is used for determining the closest object, Eq. (5.22).

xEO
=

 xEOS
, if ‖xEOS

‖ <
∥∥xER2

∥∥
xER2

, else
(5.22)

Acting only with respect to the closest object xEO
enables defining a simplified col-

lision avoidance strategy. For that, three different phases are distinguished and are
discussed in the following paragraphs. Fig. 5.4 provides an overview and references the
corresponding phases.

5.1. Multi-Robot Collision Avoidance 191

YE

XE

RRx01

Dmin + 2rs

(a) Turning right when the obstacle
is on the left side.

YE

XE

RR x02

Dmin + 2rs

(b) Turning left when the obstacle is
on the right side.

YE

XE

RR x02x01

(c) Uncertainty causing switching be-
tween turning directions.

Fig. 5.5.: Using the objects YEO
coordinate to decide the turning direction. When the value is close

to zero, failures affecting the position data may cause an incorrect turning direction.

Phase 1: Engaging Collision Avoidance The first phase starts with the decision on
engaging the collision avoidance. This decision is made based on the robot’s distance
to the obstacle dO, cf. Eqs. (5.23) and (5.24).

d =

xEO

yEO

−
cos(ΘGR1

) − sin(ΘGR1
)

sin(ΘGR1
) cos(ΘGR1

)

 ·
xGR1

yGR1

 (5.23)

dO = ‖d‖2 − 2rs (5.24)

As opposed to the obstacle’s position, which is provided in the robot’s local coordinate
system already, the robot’s position has to be transformed into the same before the
difference can be calculated. The final distance dO leverages the assumptions that
(i) obstacles and robots are of circular shape (ii) and have the same radius of rs.
If the distance dO is less than the minimal distance Dmin, the collision avoidance
applies, that is, engage = 1, cf. Eq. (5.11). Consequently, the control actions provided
by πgoal(oi) are overwritten in order to maintain the distance Dmin to the obstacle.
In that endeavor, the difference between the actual and the targeted distance is de-
termined. Using this error to scale the vector directed towards the object to avoid
results in control actions that cause the robot to move away or towards the object,
cf. Eq. (5.25). uxcollision

uycollision

 =
x̂EO

‖x̂EO
‖
·KO · (dO −Dmin) (5.25)

With this linear relation to the error dO, the control policy resembles a P-controller.
Besides the translational movement, the direction in which to turn has to be decided to
determine uΘ and prepare to bypass the object on a circular trajectory. For that, three
relevant situations are displayed in Fig. 5.5, where the object to bypass is considered
in the robot’s local coordinate system.
For the situations displayed in Fig. 5.5a and Fig. 5.5b the position of the object relative
to the robot is sufficient to decide on a turning direction. In case yEO

is positive, the
object is on the robot’s left side and the robot should turn right. Similarly, in case yEO

is negative, the object is on the robot’s right side and the robot should turn left.
However, considering the situation displayed in Fig. 5.5c where the object is in front
of the robot and its position data x̂s is impaired by observation failures, deciding on

192 5. Evaluation and Integration

a turning direction using the value of yEO
could result in an alternation. Deciding at

each time step whether to turn left or right could cause the robot to switch between
both options regularly and thereby (in the worst case) collide with the object.
To prevent this situation, the turning direction is fixed depending on the sign of yEO

when collision avoidance is engaged. That is, the first time dO is less than Dmin, the
sign of yEO

is used to determine the turning direction Ψ ∈ {−1, 1} which is not changed
until collision avoidance is disengaged in phase three.
Depending on the turning direction, the collision avoidance strategy aims at stabilizing
the coordinates of the object in the robot’s local coordinate system at x01 or x02 , that
is, on the left or right side of the robot. For that, the targeted angular velocity uΘ is
calculated according to Eq. (5.26).

uΘcollision
= atan2(−1.0 ·Ψ(Dmin + 2rs) · xEO

,Ψ(Dmin + 2rs) · yEO
) ·KO (5.26)

Once again, the radius of the robot and the object in question have to be taken into
account to determine the difference between the targeted orientation and the current
orientation of the robot relative to the object to bypass. Finally, the same gain param-
eter KO is used such that this control policy resembles a P-controller as well.

Phase 2: Bypassing the Object As a result of phase one, the distance between
the robot and the object to bypass is stabilized at dO = Dmin and the direction in
which to turn Ψ is determined. Thus, the object is brought into the stability point
x0 = xEO

= [xEO
= 0 yEO

= Ψ(Dmin + 2rs)]
T , that is, x01 or x02 .

The goal of the second phase is to maintain the stability point while bypassing the
object on a circular trajectory. For that, the robot moves forward with half of the
maximal linear speed UTmax while its angular velocity is calculated in accordance with
the trajectory to follow, cf. Eq. (5.29).

uxcollision
= 0.5 · UTmax (5.27)

uycollision = 0 (5.28)

uΘcollision
=

ux
Dmin + 2rs

+KC · (dO −Dmin) (5.29)

Note that the error in the distance to the object dO is considered again to stabilize
the same during phase two by applying a control strategy similar to a P-controller as
well.

Phase 3: Disengaging Collision Avoidance The first and second phases of the col-
lision avoidance strategy ensure that the robot bypasses the object on a circular tra-
jectory while maintaining a safe distance of dO = Dmin. To fulfill its actual goal, that
is, to navigate to its goal position, the collision avoidance has to be disengaged in a
safe manner. For that, the third phase of the collision avoidance strategy monitors
the corresponding attributes and finally decides on the disengagement. This decision
is based on two conditions. Firstly, the robot has to have a safe distance to the object,
that is, dO ≥ Dmin. Although this should be provided through phases one and two, the
condition could be unfulfilled at the beginning of the third phase due to the employed
P-controller. Its simplistic control strategy can cause uncertainties in maintaining the
control goal and thereby requires to monitor the condition before disengaging.

5.1. Multi-Robot Collision Avoidance 193

Secondly, the robot has to move away from the object. The second condition is fulfilled
when the angle φ between the vector of the velocities of the goal-finding strategy
utgoal = [uxgoal

uygoal]
T and the vector representing the object’s position in the robot’s

local coordinate system is greater or equal to 0.75·π, that is, Eq. (5.31) is fulfilled.

φ = |atan2(uxgoal
· yEO

− uygoal · xEO
, uxgoal

· xEO
+ uygoal · yEO

)| (5.30)
φ ≥ 0.75 · π (5.31)

Once the condition is fulfilled, the collision avoidance is disengaged, that is,
engaged = 0, cf. Eq. (5.11). This means that ugoal is returned by the control policy
π(ôi, ôs).

5.1.5. Intention Modeling by Model Uncertainty
The defined control policy enables robots to bypass objects with static positions, that
is, no movement. Opposed to that, the use case envisions areas shared by robots. Their
movement contradicts the model assumption made for designing the control policy and
results in a model uncertainty Umodel, cf. Eq. (4.1). This model uncertainty has to
be taken into account for assessing the safety of the control policy and is therefore
specified in this section. More precisely, as the safety will be assessed by estimating
and analyzing the controller’s RoS , the model uncertainty has to be specified such that
it applies to objects in general, that is, simultaneously to robots to be bypassed as well
as obstacles. Otherwise, an estimated RoS would be valid only for avoiding collisions
with either of them and subsequent distinctions between the objects to avoid collisions
with would be required.
As the approach for modeling the uncertainty therefore addresses objects in general,
that is, including robots, they have to be assumed to move in any direction. This
results in an uncertainty around their perceived position, which is indicated by the
light-gray area in Fig. 5.6. Note that the figure displays the idea for two different
quadrants to exemplify the idea while the estimation of RoS will assume only a single
object.
This light-gray area is initially associated with the center of the quadrants (dark-
gray-colored rectangle). It follows the assumptions of Section 5.1.1, which states that
robots are assumed to engage in collision avoidance as well and share corresponding
metadata.
Firstly, the robots share their maximal translational velocity vTmax , which is used to
determine the magnitude of uncertainty, that is, the size of the light-gray area in
Fig. 5.6. Secondly, the robots share the minimal distance Dmin they aim at maintaining
during collision avoidance. Using this value, the uncertainty can be restricted as an
object is likely to move away from the robot (denoted with R) once it undercuts this
distance. This assumption is expressed by fr, which limits the light-gray area in in
Fig. 5.6. Finally, the assumption has to be aligned with the actual position of the
object (dark-gray-colored circle). For that, the limited uncertainty is rotated by ν in
Fig. 5.6.
In the endeavor of formalizing the described uncertainty model Umodel, one starts with
defining the worst-case assumption using the maximal translational velocity vTmax ,
cf. Eq. (5.32).

w = −sgn(xEO
) · vTmax (5.32)

194 5. Evaluation and Integration

YE

XE

RR

w

fr

w

fr

ν

ν

D
m

in

−vTmax vTmax

−vTmax

vTmax

Fig. 5.6.: Limiting model uncertainty by making assumptions about the possible movements of an
object with which collisions are to be avoided. The robot R in the origin of the local coordinate
system aims at avoiding collisions with the object (dark-gray-colored circle). Two objects are shown
here solely to illustrate the principle regarding two different quadrants. For the object, its type
(obstacle or robot) decides whether it will move or not. Thus, an uncertainty about in which direct
the object will move relative to the robot R results and is indicated by the light-gray-colored area.
Starting at the center of the quadrant, the area is firstly limited in its extension towards the robot R
by assuming that, if the object is a robot, the robot will engage in collision avoidance and limit its
velocity towards R. Moreover, the area is aligned with the actual position of the object, that is, the
area is rotated according to the object’s position. This is indicated by ν.

Using the signum function on each element of the object’s position vector xEO
, it takes

the quadrant in which the object is relative to the robot into account and derives the
worst-case moving vector w for the object. The vector is illustrated in Fig. 5.6, starting
at the center of the quadrants. For aligning the worst-case assumption with the actual
direction of the object, the angular displacement ν is calculated according to Eq. (5.33)
and used to rotate w to obtain ŵ in Eq. (5.34).

ν = atan2(xEO
wy − yEO

wx,−wxxEO
− wyyEO

) (5.33)

w′ =

cos(ν) − sin(ν)

sin(ν) cos(ν)

 ·
wx

wy

 (5.34)

For now, the resulting vector w′ states that an object at xEO
may apply its maximal

translational velocity in any direction. To limit this worst-case uncertainty using the
assumptions detailed previously, a factor fr is calculated, cf. Eq. (5.35).

fr = max(min(1.0, 1− (Dmin − dO)), 0.0) (5.35)

ŵ =
w′

‖w′‖
· fr (5.36)

Assuming that the other robot is adhering to the minimal distance Dmin it communi-
cated, any distance dO undercutting this threshold results in a reduction in the maximal
translational velocity directed towards the coordinate system’s origin, that is, the robot
R. Here, a linear reduction is assumed. Moreover, by limiting fr to values between zero

5.1. Multi-Robot Collision Avoidance 195

and one, the worst-case assumption is at maximum restricted to no movement, meaning
that the case of the object being a static obstacle is always included.
Using the restricted worst-case assumption, the final intervals of possible translational
velocities are constructed, cf. Eqs. (5.37) to (5.41).

Wx = {ŵx,−sgn(ŵx) · vTmax} (5.37)
Imodelx = [min(Wx),max(Wx)] (5.38)

Wy = {ŵy,−sgn(ŵy) · vTmax} (5.39)
Imodely = [min(Wy),max(Wy)] (5.40)

Umodel =

Imodelx

Imodely

 (5.41)

At first, two sets stating the minimal and maximal translational velocity in xE and
yE are generated, cf. Eqs. (5.37) to (5.39). The signum function is used once again
to ensure that uncertainty originating in the movement of the object is restricted only
towards the robot, that is, towards the coordinate system’s origin. From both sets, the
minimal and maximal values are determined to form corresponding intervals. The final
uncertainty model Umodel assumes that the velocities specified by the intervals Imodelx

and Imodely are equally likely, that is, it assumes a uniform distribution.

5.1.6. Fusing Regions of Safety of Multiple Stability Points
The definition of the control policy, as well as the discussion on representing model
uncertainties for the presented use case, showed that two stability points exist. A
robot may bypass an object at its left or right side.
This, however, contradicts the estimation of RoS according to Algorithm 1, which
presumes a control system and a CLF with a single stability point. To overcome this
limitation and apply the concept of RoS to the collision avoidance strategy nonetheless,
this subsection aims at defining a fusion strategy. The individual RoS resulting from
applying Algorithm 1 to each stability point separately shall be fused to generate a
final RoS covering both stability points.
The approach for defining a use-case-specific fusion strategy is depicted schematically
in Fig. 5.7. In its center is the requirement of adhering to the criteria of Section 1.3.1.
More specifically, the criterion of Functional Correctness, which asks for the validity
of the run-time safety assessment’s result. While the evaluation using the inverted
pendulum showed that, if provided with an appropriate CLF , a controller’s RoS is
either valid or an empty set, the same property has to be maintained for the fused
RoS .
For that, the idea is to guarantee that the decision on the turning direction does
not influence the safety performance. In other words, the fusion strategy should only
provide an RoS if it includes both stability points. Thereby, it shall guarantee safety
for bypassing the object at both, its left and right side. Otherwise, an empty set shall
be returned.
From that idea, two cases are derived. Firstly, either the RoS associated with x01 or
x02 is an empty set. In this case, the fused RoS is the empty set as well.
Secondly, valid estimates are returned for both stability points, that is, one RoS en-
compassing x02 and another RoS encompassing x01 . This case is depicted in Fig. 5.7
and requires to examine the individual RoS more closely.

196 5. Evaluation and Integration

YE

XE

RR
x02x01

Vleft VrightxEOx̂EO

fmax

(a) Valid combination of individual RoS. The safety does
not depend on the turning direction chosen by the collision
avoidance controller as both individual RoS overlap suffi-
ciently at the critical decision point around yEO

= 0.

YE

XE

RR
x02x01

Vleft VrightxEOx̂EO

fmax

(b) Invalid combination of individual RoS. If the object to
bypass is sufficiently left or right of the robot, safety will
be maintained. If the object appears in front of the robot,
it can not be guaranteed that the robot reacts timely or
chooses the correct turning direction.

Fig. 5.7.: Visualization of a valid and invalid combination of RoS estimated for both stability points.

According to the initial idea, the fused RoS shall be valid for both turning directions.
This is to prevent the controller from choosing a single turning direction for which
safety can not be guaranteed. Consequently, the focus for fusing the RoS is on the
process of deciding the turning direction. As described in Section 5.1.4, this decision
depends on the sign of the yEO

coordinate of the object to avoid the collision with.
Thus, while failure amplitudes impairing the shared position data will not affect this
decision if yEO

is either sufficiently positive or negative, they may change the decision
if yEO

is close to zero, that is, when the object is in front of the robot.
The goal of the fusion strategy has to be to ensure that the incorrectly perceived object
does not cause the controller to choose an unsafe turning direction. This situation is
exemplarily displayed in Fig. 5.7b. While the object, denoted with os and depicted
with a dark-gray-colored circle, is at the robots right side, the failure amplitude fmax

may impair the shared data such that the robot perceives the object to be at position
ôs. This position, however, is at the robots left side and therefore causes the controller
to choose the corresponding turning direction.
A consequence of this decision is, that the RoS Vleft estimated for the stability point
x01 applies. In other words, the controller is guaranteed to safely bypass the object
only of the object’s true position os is within the estimated RoS associated with x01 .
For Fig. 5.7b, this is not the case as the dark-gray-colored circle is within the right RoS
Vright but not within the left RoS .
Contrarily, if both RoS , Vleft and Vright, would overlap such as depicted in Fig. 5.7a,
the controller would be guaranteed to provide safety for the robot nonetheless. In this
situation, the turning direction is still chosen incorrectly but as the true object position
os is now included in the left RoS , the safety is guaranteed.

5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model 197

This concept is formalized in Eq. (5.42), which states the fusion strategy applied
here.

Vfused(Vleft,Vright) =

Vleft ∪ Vright, for minyEO

∈Vleft
yEO
≥ min(Ifmax) ∧

maxyEO
∈Vright

yEO
≤ max(Ifmax)

∅, else
(5.42)

Consequently, if both RoS (Vleft and Vright) overlap with at least fmax (the maximal
failure amplitude to be expected according to the failure model of the shared data), the
fused RoS Vfused is formed by the union of the individual RoS . Otherwise, the empty
set is returned. For the sake of simplicity, the overlap is measured here by considering
the maximal/minimal y component for both RoS . This is sufficient for the considered
use case, but no general validity can be claimed.

5.2. Failure Modeling for Shared Data – A Marker
Detection Failure Model

The definition of the use case and the derived experimental scenarios as described in
the last section provide the ability to evaluate this thesis’ concepts. However, in its
center is the assumption that a failure model representing failure characteristics of
shared data is communicated to facilitate a run-time safety assessment. Within this
chapter’s use case, the shared data are position data of robots operating in a shared
area. Thus, in this section, a failure model for this data is to be designed. Moreover,
by designing a failure model the concept of GFM shall be evaluated as well. The goal
is therefore to underline the applicability of the GFM in representing real-world failure
characteristics and its ability to inform about the quality of the model using the defined
confidence values.
In this endeavor, it is assumed that the robots are localized using marker detec-
tion [115]. Correspondingly, the next subsection describes the setup employed for
acquiring observation and reference data. Section 5.2.2 builds upon that and discusses
the generation of an initial failure model using the proposed processing chain and the
manual adjustments made to optimize the result. Finally, Section 5.2.3 examines the
confidence values achieved by the model according to the last stage of the processing
chain.

5.2.1. Data Acquisition

For localizing robots in indoor environments different vision-based approaches have
been proposed. They either assume cameras mounted on the robots themselves or
static cameras installed in the robots’ environment [115]. The latter is assumed in this
work. The corresponding setup is described in the next subsection before the following
subsection discusses the procedure applied to obtain the required data.

198 5. Evaluation and Integration

(a) Camera mounted on the ceiling of the experiment area.

ψ

l

(b) Setup for measuring failures in detected marker posi-
tions.

Fig. 5.8.: Setup for acquiring reference and observation data of marker detection framework. A
camera was mounted under the ceiling (Fig. 5.8a) with which marker placed in a polar coordinate
system (Fig. 5.8b) could be detected. Manually measuring the exact position and comparing it to the
result of the marker detection framework provided the reference and observation data.

Setup

Corresponding to Section 3.3, reference data ok as well as observations ôk are required
to determine the failure amplitudes f(k,ok) from which the processing chain can ex-
tract a failure model. The employed setup is designed accordingly. It is visualized
in Fig. 5.8. As shown in Fig. 5.8a, the camera (Matrix Vision mvBlueCOUGAR-
X1012bG-POE-6211) was mounted on a gantry crane which allowed centering the
camera approximately 5m above the operation area in which two AprilTag2 [116]
marker of size 0.15m × 0.15m were placed. The camera was configured to provide
gray-scale images of size 2056px× 1504px, which means that each pixel covers an area
of 2.4mm× 2.6mm.
The placement of markers is shown in Fig. 5.8b. The markers were arranged such that
the first marker (lower left) denotes the coordinate system’s origin while the second
marker symbolizes the robot whose position is to be calculated. Using polar coordi-
nates, the true position of the second marker in relation to the first marker is known
exactly (see l and ψ in Fig. 5.8b). Together with the manually measured orientation,
this data forms the reference data ok. Additionally, the AprilTag2 framework is used
to localize both markers and obtain the position estimate ôk = [xGR

yGR
ΘGR

]T as
their difference, which forms the observation data.
To leverage the GFM ’s ability to represent time- and value-correlated failure char-
acteristics, reference and observation data of different positions and orientations are
required. For that, the first marker’s position and orientation (the origin of the coor-
dinate system) remained unchanged while only the second marker was moved. More
specifically, the marker was placed at 96 poses resulting from three different length
values l ∈ {1.1m , 2.19m, 3.32m}, four angles ψ ∈ {0° , 30°, 60°, 90°} and eight ori-
entations Θ ∈ {−180° , −135°, −90°, −45°, 0°, 45°, 90°, 135°}. At each poses, a time
series of 250 observations sampled with a frequency of 15Hz was acquired. Therefore,
an overall of 24.000 samples were obtained.

5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model 199

0 1 2 3

0

1

2

3

XG in m

Y
G

in
m

0 1 2 3

0

1

2

3

XG in m

Y
G

in
m

Absolute Mean |µfx,y(k,ok)| Standard Deviation σfx,y(k,ok)

0 5 10 15

1.4

1.45

1.5

1.55

Time t in s

f y
(k

,o
k
)

in
m

ok = [x = 1.1 m y = 0 m Θ = −180°]T

0 5 10 15

0.1

0.2

0.3

Time t in s

f y
(k

,o
k
)

in
m

ok = [x = 1.1 m y = 0 m Θ = 45°]T

Fig. 5.9.: Visualizing the failure characteristics of the marker detection framework. The upper plots
illustrate the magnitudes of the mean and standard deviations affecting the x and y components of
provided pose observations. The lower diagrams show two exemplary time series of failure amplitudes
in the y component obtained by subtracting the reference data from the marker detection observations,
cf. Eq. (2.7). From such time series, the mean and standard deviation values of the upper diagrams
are calculated.

Obtained Data

The acquired data is visualized in Fig. 5.9. Utilizing the polar coordinates from which
the reference data for the x and y components of the pose observations were calculated,
the mean and standard deviation of the failure amplitudes (obtained by subtracting
the reference data from the marker detection observations, cf. Eq. (2.7)) at these com-
ponents are shown. That is, at each pose, the ellipse’s magnitude in x or y directions
symbolizes the mean and standard deviation of the failure amplitudes that were im-
pairing the observations at that pose and over all eight orientations. Thus, each ellipse
represents 250 · 8 = 2000 samples.
In favor of the marker detection framework, mean and standard deviations values are
close to zero from some pose. Thus, to increase visibility, the sizes of the ellipses are
scaled by a factor of 2 and highlighted with red circles, if necessary.
Two exemplary time series of failure amplitudes affecting the y component are visual-
ized in the lower diagrams, each corresponding to a different Θ value but to the same
pose.
When examining the mean and standard deviation values displayed in Fig. 5.9, the
increased values at [x = 1.1m y = 0m]T are noticeable. Due to their difference to the

200 5. Evaluation and Integration

−2 0 2 4
0

0.2

0.4

Θ in rad

µ
f

Θ
(k

,o
k

)
in

ra
d

(a) Mean of failure amplitudes affecting the Θ component
of the marker detection results with respect to the reference
orientation.

−2 0 2 4
0

0.2

0.4

Θ in rad

σ
f

Θ
(k

,o
k

)
in

ra
d

(b) Standard deviation of failure amplitudes affecting the
Θ component of the marker detection results with respect
to the reference orientation.

Fig. 5.10.: The mean and standard deviation of failure amplitudes affecting the Θ component are
displayed depending on the reference value of Θ.

values observed at other positions, it is concluded that these indicate a changed failure
characteristic compared to the data’s overall characteristic. This is underlined by the
diagrams showing the failure amplitudes affecting the y component in the lower part of
the figure. While the left diagram visualizes failure amplitudes that can be described as
Noise, the right diagram shows failure amplitudes with an Offset of 1.4m and increasing
over time while imposed by similar Noise failures. Note that the increased failures occur
only for Θ = −180° while failures for Θ = 45° are at a level comparable to other marker
positions. As a consequence of these varying levels of failures at a single position, both,
the mean and standard deviation of failures are increased for the y component.
Two reasons for the occurrence of these observations are possible. Firstly, the specific
pose of [x = 1.1m y = 0m Θ = −180°]T could have triggered a fault in the software
which propagated through the marker detection framework and ultimately resulted
in incorrect pose estimations. This, however, should be a deterministic behavior and
should result in constant failures. In contrast, the observable Noise failures indicate
that external disturbances affected the process. At the time the observations were
made, clouds were blocking sunlight temporarily and caused the light conditions to
change, sometimes rapidly. It is, therefore, possible that at the time where these
samples were acquired, the sun might have shone directly into the hall and thereby
disturbed the marker detection.
From the perspective of a real-world application, the reasons for these increased failures
should be investigated in detail to stabilize marker detection and robot localization.
However, this is out of scope for this work. Contrarily, in the endeavor of evaluating
the concept of GFM , the changed failure characteristics are an opportunity to examine
the concept’s modeling performance.
Apart from position [x = 1.1m y = 0m]T , the mean and standard deviation values
vary only slightly. On the one hand, non-zero values of the mean indicate the presence
of Offset failures while the values of the standard deviation indicate Noise failures. On
the other hand, the limited variations in their magnitudes indicate that only minor
time- and value-correlations are to be expected.
These assumptions are underlined by Fig. 5.10 showing the mean and standard devia-

5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model 201

tion of failure amplitudes affecting the Θ component with respect to its ground truth
value1.
As one can see, the failure amplitudes are at a homogeneous level except for Θ = −π rad
which translates to [x = 1.1m y = 0m Θ = −180°]T . Thus, the increased values in
mean and standard deviation noticed for the x and y component are observable in Θ
as well.

5.2.2. Failure Model Generation
The initial analysis of the failure amplitudes impairing the marker detection observa-
tions indicate that three failure types are required for modeling the failure characteris-
tics: Noise, Offset, and an Offset of increased severity representing the changed failure
characteristics at [x = 1.1m y = 0m Θ = −180°]T . To simplify further descriptions,
the latter is termed Outlier-Offset. In the endeavor of designing a GFM compris-
ing these failure types, the next subsection discusses the application of the processing
chain presented in Section 3.3 for generating an initial model that is manually tuned
as described in the following subsection.

Designing an Initial Failure Model

The processing chain introduced in Section 3.3 takes the reference data ok and the
failure amplitudes f(k,ok) into account to extract a failure model. Here, the first two
stages are considered while the last stage, which assesses the quality of the generated
failure model, is applied in Section 5.2.3. Consequently, the next paragraph discusses
the identification stage used to obtain the failure pattern and their occurrences of the
failure types. The following paragraph describes the parameterization of these and
thereby the generation of the initial failure model.

Identification of Failure Types The first step for generating the initial failure model
is to identify the failure types. According to the initial analysis of the obtained data,
three failure types are to be identified. To that end, the process starts with the Outlier-
Offset, for which only failure amplitudes at [x = 1.1m y = 0m Θ = −180°]T are
considered. An offset-like failure type occurring only at that position is identified.
Its occurrence is removed to obtain the failure amplitudes f̂y1(k, ok) (cf. Fig. 5.11) in
which the second failure type can be identified. The occurrences of this failure type
resemble common Offsets and are identified for the remaining 95 poses.
By excluding its occurrences to obtain f̂y2(k, ok), the identification of the last failure
type is prepared. This failure type considers the remaining failure amplitudes as Noise
which means that each individual time step of f̂y2(k, ok) is considered as a separate
occurrence. As a consequence, removing these occurrences results in an empty set of
failure amplitudes and therefore concludes the identification process.
Fig. 5.11 illustrates the initial and updated failure amplitudes of the y component
during the identification process. The individual time series of failure amplitudes are

1A scatter plot associating the magnitudes of mean and standard deviation of the failure amplitudes
of the Θ component to the x,y positions can be found in Fig. C.1. It is not shown here as it requires
the magnitudes of failures in the Θ component, which have the unit of rad, to be displayed in a
scatter plot having units of m.

202 5. Evaluation and Integration

0

1

f y
(k

,o
k
)

−0.25
0

0.25
0.5

f̂ y
1
(k

,o
k
)

−0.2
0

0.2

Time t

f̂ y
2
(k

,o
k
)

Fig. 5.11.: Intermediate results during identification of the Noise, Offset, and Outlier-Offset failure
types. The time series obtained at each pose are concatenated to provide an overview on the data.
The beginning and end of each time series is indicated by a vertical line. Time labels are not given to
prevent giving rise to the impression of an ordering of the individual time series. The upper plot shows
the initial failures in y component. The second plot displays the failure amplitudes f̂y1

(k,ok) after
the first update, that is, after identifying and removing the occurrence of the Outlier-Offset failure
type. The lower plot displays the failure amplitudes f̂y2(k,ok) after the second update, that is after
identifying and removing the occurrence of the Outlier-Offset and common Offsets.

concatenated for all poses to generate an overview of the data. To prevent miscon-
ceptions, it is refrained from providing a common time index and opted for separating
individual time series by vertical bars.
As one can see, successively excluding the occurrences of the identified failure types
decreases the magnitude of failure amplitudes. This indicates the successful represen-
tation of failure amplitudes by these failure types.
The parameters used for the first stage of the processing chain are listed in Table 5.2.
Due to the Outlier-Offset, which has only a single occurrence, the minimal number of
occurrences for a failure type to be accepted is set to NO = 1. Moreover, the individual
time-series of failure amplitudes are determined from 250 consecutive observations
obtained at a frequency of 15Hz. Thus, the maximal length for a failure type to occur
with was set to Kn = 17 s, which slightly overestimates the time horizon. Finally, as
only Noise and Offset failure types are identified, only constants need to be represented

Tab. 5.2.: Parameterization of the identification stage of the processing chain for generating an initial
failure model.

Parameter Value Description

NO 1 Number of occurrences a failure type must have at least to
be accepted

Kn [0 s, 17 s] Durations, that is, scale values of CWT (cf. Eq. (3.47)) with
which the occurrences of a failure pattern are searched for

D 0 Degree of the polynomial representing the failure pattern
of an identified failure type

5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model 203

Tab. 5.3.: Configuration for the parameterization stage of the proposed processing chain. Note that
the parameters for generating the Noise failure type’s are different then the parameters for generating
the remaining failure types.

Parameter Value Description

Scaling Distribution

KW 17 s Temporal width of the sliding window.

OW

OWNoise

[0.15m 0.15m 0.15 rad]T

[1.5m 1.5m 1.5 rad]T
Width of the sliding window in the value
domain.

KS 17 s Temporal step size of the sliding window.

OS

OSNoise

[0.15m 0.15m 0.15 rad]T

[0.75m 0.75m 0.75 rad]T
Step size of the sliding window approach
in the value domain.

Activation and Deactivation Distribution

KW 17 s Temporal width of the sliding window.

OW [0.5m 0.5m π rad]T Width of the sliding window approach in
the value domain.

KS 17 s Temporal step size of the sliding window.

OS [0.5m 0.5m π rad]T Step size of the sliding window approach
in the value domain.

by the failure patterns. Therefore, the degree of the trained polynomials is set to
D = 0.
As a consequence, the information about the magnitude of failure amplitudes is rep-
resented solely in the scaling distribution of the individual failure types. These are
derived together with the activation and deactivation distributions during the next
stage of the processing chain.

Parameterizing Failure Types The goal of the parameterization stage is to extract
time- and value-correlations of the scaling, activation, and deactivation distributions
and represent these as polynomials. For that, the sliding window approach is employed
in a first step, cf. Section 3.3.2. Its configuration is stated in Table 5.3.
The first block denotes the width and step-sizes applied to extract the training data of
the scaling distributions while the second block states the same parameters for extract-
ing the training data of the activation and deactivation distributions. Despite these
individual parameters, the Noise failure type requires a specialized parameterization
and is therefore stated separately where applicable.
According to the initial analysis of the data and supported by Fig. 5.11, no time-
correlations are expected. Therefore, the temporal width KW of the sliding window
approach and the temporal step size KS are set to 17 s for all distributions. As this
overestimates the length of a single time series of failure amplitudes (16.6 s), the time

204 5. Evaluation and Integration

Tab. 5.4.: Overview of the degrees of the polynomials used to represent the individual failure types’
functions. The defined values are chosen as only minor time- and value-correlations are expected.
Moreover, increased complexity is anticipated only for the Noise’s quantile function. Gray color cells
indicate polynomials whose weights were manually adjusted after the generation of the initial failure
model.

Failure
Type Polynomial Scaling Activation Deactivation

Outlier-Offset
Distribution Q(z) 1 1 1

Scale σ(k,ok) 1 1 1

Shift µ(k,ok) 1 4 4

Offset
Distribution Q(z) 1 1 1

Scale σ(k,ok) 1 1 1

Shift µ(k,ok) 2 1 1

Noise
Distribution Q(z) 2 1 1

Scale σ(k,ok) 1 1 1

Shift µ(k,ok) 1 1 1

at which an occurrence of a failure type is identified is not relevant for its activation,
deactivation, or scaling value. Thus, no time-correlations are represented.
While, the second and third curves in Fig. 5.11 indicate no value-correlations as well,
slightly varying mean and standard deviations as shown in Fig. 5.9 contradict this
assumption. Therefore, regarding the scaling distribution, a fine resolution is provided
for the Offset and Outlier-Offset failure type by assuming a width of OW = 0.15
and a step size of OS = 0.15 for all dimensions. The values are chosen such that
the windows generated during the sliding window approach are not overlapping. In
that way, occurrences are considered only once, meaning that, for instance, an Offset
identified at one position is not influencing the extraction of correlations at another
position.
The parameterization for the Noise failure type differs in that the width parameters
are increased and the step size is chosen such that the windows are overlapping. This
is due to the assumption that the Noise failure type affects all positions with the same
magnitude. Therefore, the scaling values are assumed to follow the same distribution
for all positions.
The parameters applied to generate the training data for the activation and deactiva-
tion distributions are the same for all failure types. The width and step size parame-
ters of the value domain are motivated by the expectation of slight value-correlations.
However, as these are now influencing the activation and deactivation of the individual
failure types, the resolution is reduced for the sake of computational efficiency. Simi-
larly, no correlations are expected for Θ which is reflected by assuming OW = KS = π
for this component.
Using the presented parameters, the sliding window approach is applied as described in
Section 3.3.2 to generate training data for fitting polynomials to represent the failure
types’ individual functions. To that end, the degrees of the fitted polynomials need to

5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model 205

0

1

Time t

f y
(k

,o
k
)

in
m

(a) Initial failures of the marker detection framework in y
component.

0

1

Time t

f y
(k

,o
k
)

in
m

(b) Failure amplitudes in y component as simulated by
the initial GFM produced by the processing chain.

Fig. 5.12.: Comparing original and simulated failure amplitudes for y component.

be defined first.
The assumed values are listed in Table 5.4. The degrees of the polynomials are chosen
as a trade-off between minimal fitting errors and generalization performance.
For the Outlier-Offset, the scaling distribution does not require polynomials with higher
degrees as the failure type has only a single occurrence. Similarly, no quantile function
or scale function have to be represented for the activation or deactivation distribution.
Their shift functions, however, have to be represented by polynomials of degree four
to ensure that the failure type is only active at one pose.
For the Offset failure type, the degrees of all polynomials are set to one except for
the polynomial representing the mean (shift) of scaling values. This function is rep-
resented by a polynomial of degree two to enable representing the anticipated value-
correlations.
Contrarily, the randomness of the Noise failure type is assumed to be more complex,
but static across the different poses. Thus, the quantile function is represented by
a polynomial of degree two while only slight value-correlations are expected that are
representable by a polynomial of degree one.
Using the defined values, the polynomials were fitted according to the generated train-
ing data and thereby the initial failure model was designed.

Manual Tuning

Using the first and second stage of the processing chain, an initial failure model is
extracted from the obtained data. However, by simulating failure amplitudes using the
failure model, it can be seen that the quality of this model is not sufficient, cf. Fig. 5.12.
Consequently, in this subsections, adjustments of the initial failure model are described.
For that, the usage of polynomials for representing the failure model’s functions is lever-
age and their weights are manually optimized. The affected polynomials are marked
by the gray-colored cells in Table 5.4.
As can be seen in Fig. 5.12b, the overall magnitude of failure amplitudes is drastically
increased compared to the original failure amplitudes, cf. Fig. 5.12a. More specifically,
for the y component, the value is increased by approx. 1.5m, which is similar to the
value introduced by the Outlier-Offset (cf. Fig. 5.9). This indicates that the failure
type is always activated although it should be active only at pose [x = 1.1m y =

206 5. Evaluation and Integration

−6 −4 −2 0 2 4 6

·10−2

0

1

2
·106

y

µ
a
(k

,o
k
)

Fig. 5.13.: Shift (mean) function of the Outlier-Offset failure type’s activation distribution visualized
depending on y with x = 1.1m, Θ = −180°, and k = 0.0 s. By manually choosing the weights of the
polynomial, it is ensured that the failure type becomes active only for y = 0m as the time between
two occurrences increases drastically otherwise. The same pattern repeats for variations of x, Θ and
k.

−0.2

0

0.2

Time t

f Θ
(k

,o
k
)

in
ra

d

(a) Initial Failures in Θ

−0.2

0

0.2

Time t

f Θ
(k

,o
k
)

in
ra

d

(b) Failures in Θ simulated by the initial GFM produced
by the processing chain.

Fig. 5.14.: Comparing original and simulated failure amplitudes for Θ component.

0m Θ = −180°]T . Therefore, the first manual adjustment is applied to the mean
function µd(k,ok) of the failure type’s activation distribution. It represents the time
between two consecutive occurrences, which is not sufficiently high. Consequently, the
weights of the polynomial are adjusted such that the mean is close to zero only for the
specific pose of ok = [0m 1.1m −180°]T and drastically increases in each direction,
which results in high TBF values for all other poses. The adjusted polynomial is
visualized in Fig. 5.13 for x = 0m, y ∈ [−0.05m, 0.05m], Θ = −180°, and t = 0 s.
Next to the Outlier Offset, the Noise failure has to be adjusted manually. As can be
seen in Fig. 5.14 where the failure amplitudes simulated according to this failure type
are compared to the original failure amplitudes, its scaling does not match the failure
characteristics. To address this mismatch, the mean and standard deviation functions
of its scaling distribution are adjusted. More specifically, by optimizing the constant
values of the polynomials, the overall standard deviation is increased and the mean is
adjusted accordingly.

5.2. Failure Modeling for Shared Data – A Marker Detection Failure Model 207

0

1

2

Time t

f y
(k

,o
k
)

Fig. 5.15.: Simulated failure amplitudes of y component according to the final failure model.

Tab. 5.5.: Minimal distance to interval boarders for each dimension.

α = γ dIx(α, γ) dIy(α, γ) dIΘ(α, γ)

0.95 0.02 0.011 0.031

0.85 -0.001 0.0025 0.008

0.75 -0.025 -0.05 -0.02

0.65 -0.05 -0.11 -0.05

0.5 -0.11 -0.23 -0.11

With these adjustments, the final failure model representing the failure characteris-
tics of the shared data is generated. As can be seen by simulating the failure model
(cf. Fig. 5.15), it successfully represents the Noise and Offset failures varying at similar
levels while describing the changed failure characteristics at [x = 0m y = 1.1m Θ =
−180°]T via the specialized failure type.

5.2.3. Evaluating the Quality of the Failure Model
The last stage of the processing chain aims at assessing the quality of the designed
failure model by determining the normalized distance dI(f(k,ok), α, γ) in relation to the
original failure amplitudes, cf. Eq. (3.66). Here, the values of α, γ ∈ {0.95, 0.85, 0.75,
0.65, 0.5} are assumed. Furthermore, α = γ is assumed for the sake of simplicity. The
results are shown in Table 5.5, where the distance is stated for each dimension.
As it is to be expected, for values of α = γ = 0.95, the distance values are positive with
a minimal value of 0.011 for the y-Dimension. Therefore, the interval extracted from
the final failure model successfully covers all initial failure amplitudes, which indicates
that the failure characteristics are appropriately represented. Moreover, the maximal
distance is 0.031 for the Θ component, which indicates that the magnitude of failures
is matched and not drastically overestimated.
This is underlined by Fig. 5.16 where the initial failure amplitudes of the x and Θ
components are visualized together with the interval borders for α = γ = 0.95 and
α = γ = 0.5. In the former case, the initial failure amplitudes are always within

208 5. Evaluation and Integration

−0.5

0

0.5

1

Time t

f x
(k

,o
k
)

fx(k, ok)
IFM(0.95)
IFM(0.5)

(a) Intervals in X represented by manually adjusted GFM .

−0.5

0

0.5

1

Time t

f Θ
(k

,o
k
)

fΘ(k, ok)
IFM(0.95)
IFM(0.5)

(b) Intervals in Θ represented by manually adjusted GFM .

Fig. 5.16.: Intervals for α = {0.95, 0.5} for X and Θ dimension.

the interval borders. These are closer to the initial failure amplitudes for x while the
distance is increased for Θ. However, for α = γ = 0.5 failure amplitudes that are
not covered by the interval are observable. These are highlighted by red circles. For
instance, while Noise failures are not covered by the interval in case of the x component,
a negative Outlier occurs in the Θ component. This Outlier is precisely the reason for
the overall increased distance between the failure amplitudes and the interval borders
for this component and indicates that an additional failure type could result in a closer
approximation of the failure characteristics.
Nevertheless, the final failure model covers the original failure characteristics suffi-
ciently close for the envisioned experiments.

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 209

5.3. Safe Handling of Shared Data in a Collision
Avoidance Strategy

For this chapter’s use case, it is assumed that the position data shared between robots2

originate in the marker detection framework as described in the previous section.
Therefore, its failure model describes the failure characteristics of the shared data
and is consequently assumed to constitute Ushared(os, t) according to Eq. (4.1).
On the one hand, it thereby underlines the applicability of the GFM to model real-
world failure characteristics. On the other hand, it is a prerequisite for estimating
the RoS of the presented collision avoidance controller to assess whether or not it can
tolerate these.
In this endeavor, the next subsection describes the configuration for estimating an RoS
for the presented collision avoidance strategy. Firstly, a CLF for assessing the criti-
cality of states with respect to the safety requirement of collision avoidance is defined.
Secondly, as the CLF and collision avoidance is defined with respect to the robot’s local
coordinate system, a conversion of the shared failure model is presented. It enables
the failure model stated with respect to the global coordinate system to be converted
into the local coordinate system. With this conversion in place, all components of this
use case are defined, which allows to estimate the controller’s RoS in Section 5.3.2.
More specifically, to not only consider a single shared failure model but to enable
examining the effects of different failure models, the individual failure types of the
marker-detection failure model are combined to form four different failure models. For
each of these four failure models, the RoS estimation will provide evidence that the
controller’s configuration parameter Dmin can be varied, that is, decreased, depending
on the severity of the represented failure characteristics. Thus, using the circle scenario
in Section 5.3.3 it will be shown that the safety of the robots sharing their position
data is successfully maintained when applying the values Dmin guaranteed to be safe
by the RoS analysis. Furthermore, it will be shown that (i) no collision between robots
sharing their position data occurs despite the considered failure characteristics, (ii) that
the necessary value for Dmin is overestimated, and (iii) severely undercutting the value
indeed results in collisions. As this underlines the effectiveness of GFM to describe
failure characteristics and of RoS to analyze them as part of a run-time safety assess-
ment, Section 5.3.4 builds on that and briefly examines an approach of integrating the
concepts to implement the idea of Level of Service (LoS).

5.3.1. Configuration for Region of Safety Estimation
While defining the shared failure model completes the system model according to
Eq. (4.1) required for estimating RoS (the components are listed and referenced in
Table 5.6), a CLF for assessing the criticality of each state is missing. Thus, the next
subsection describes the envisioned CLF .
Opposed to the shared failure model, however, the CLF is defined using the robot’s
local coordinate system. This leverages the fact that this coordinate system states the
position of an object in relation to the robot, which simplifies not only calculating the
distance between both but also defining the CLF for the task of collision avoidance.

2Note that, in contrast to the previous discussion, only the x and y components of the marker-
detection-based pose estimation are used for the collision avoidance algorithm.

210 5. Evaluation and Integration

Tab. 5.6.: Overview of components of extended system model according to Eq. (4.1) defined for the
multi-robot use case. Unused components are marked with N.A..

Symbol Equation Symbol Equation

f ∗
π(x) Eqs. (5.7) to (5.10) Umodel(x,u, t) Eq. (5.41)

Udist(x, t) N.A. Uactuator(u, t) Eqs. (5.4) to (5.6)

π(ôi, ôs) Eq. (5.11) si(x) Eq. (5.12)

ss(x) Eq. (5.14) Usensor(o, t) N.A.

Ushared(o, t) Section 5.2

YE

XE

RR

Object

x01

dcircle

dtarget

Fig. 5.17.: Aspects of the CLF Vcollision(x) for estimating RoS for the collision avoidance controller.
Here, x01 is the considered stability point.

A disadvantage of this design choice, however, is the need for converting the shared
failure model to a representation matching the local coordinate system as well. The
corresponding procedure is described in the following subsection.

Control Lyapunov Function for Collision Avoidance

A valid CLF function applicable for estimating an RoS has to be continuously differ-
entiable, positive semi-definite, and has to have a unique global minimum at x0. It can
be thought of as a cost function informing about the criticality of a state x.
With regard to the use case of collision avoidance, the central criterion for criticality
is the distance of an object to the robot. This means that the relative position of an
object to the robot is important rather than the object’s global position. Therefore,
the robots’ local coordinate system is used to define the CLF here.
In that endeavor, two aspects are considered in Eq. (5.43) and are illustrated in
Fig. 5.17. Both of which are described in detail in the following paragraphs.

Vcollision(x) = Wcircle · Vcirlce +Wtarget · Vtarget (5.43)

First and foremost, the euclidean distance dO (cf. Eq. (5.24)) of an object to the
robot with respect to the minimal distance Dmin is considered. More specifically,

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 211

−2 −1 0 1 2 3 4 5

0

5

10

dcircle

V
c
ir

c
le

vcircle(dcircle)
vcircle(dcircle + c)

vcircle(dcircle + c) − vcircle(c)

Fig. 5.18.: Assessing the criticality of obstacle distance with respect to Dmin.

while distances dO > Dmin are only relevant for performance considerations, values
of dO < Dmin are safety-critical. As the value of Dmin essentially defines a circle
surrounding the robot R (cf. Fig. 5.17) this aspect is encoded in Vcircle.
The second aspect is the distance of an object from its target position x01 or x02 .
As dictated by the criteria of a valid CLF , only a single global minimum defined
by the targeted stability point is possible. In the case of collision avoidance, this
minimum is defined by the turning direction Ψ (from which x01 and x02 are derived)
determined during the first phase of the collision avoidance strategy, cf. Section 5.1.4.
Correspondingly, this aspect is encoded by Vtarget. Both aspects are defined in the
following paragraphs while the parameters for weighting both aspects are listed in
Table 5.7.

Defining Vcircle The first aspect Vcircle focuses on the difference between the distance
dO to its target value of Dmin. Consequently, as a first step, the distance dcircle is defined
(cf. Eq. (5.44)) and the initial value vcircle(dcircle) is derived (cf. Eq. (5.45)).

dcircle = dO −Dmin (5.44)

vcircle(dcircle) =

(
edcircle +

WVmax

1 + e−dcircle

)
(5.45)

Following the previously presented reasoning, the value of vcircle(dcircle) increases dras-
tically for negative values of dcircle, but converges to WVmax for positive values of dcircle.
It thereby reflects that distances of dO undercutting Dmin are safety-critical, but values
of dO > Dmin are performance-relevant. These can be seen in Fig. 5.18 as well.
Moreover, it can be seen that the value of vcircle(dcircle) is shifted. On the one hand,
the minimum is not at dcircle = 0, on the other hand, the curve does not achieve a
value of vcircle(dcircle) = 0. With respect to the CLF to be defined, this would result in
a global minimum at a position different to x01 or x02 . As the function can therefore
not be used for a CLF , these aspects are corrected by Eq. (5.46) and Eq. (5.47).

c = ln

(√
WVmax + 1

WVmax − 1

)
(5.46)

Vcircle = vcircle(dcircle + c)− vcircle(c) (5.47)

c is a correction factor to be added to the distance dcircle such that the minimum
of vcircle is at dcircle = 0. The factor is determined by taking the first derivative of

212 5. Evaluation and Integration

Tab. 5.7.: Parameters of the CLF for estimating RoS of the collision avoidance controller.

Parameter Value Description

Wcircle 200.0 Weighting of circle component Vcircle (cf. Eq. (5.47)).

Wtarget 5.0 Weighting of target component Vtarget (cf. Eq. (5.48)).

WVmax 5 Maximal value the circle component converges to when ob-
stacle is outside the circle (cf. Eq. (5.45)).

Eq. (5.45), setting it to zero and solving the equation. In Eq. (5.47), the offset at the
minimum of vcircle is removed to obtain the final value Vcircle. The curve is colored blue
in Fig. 5.18.

Defining Vtarget While Vcircle assesses the criticality of a state x with respect to the
robot’s distance to the obstacle, Vtarget aims at assessing the obstacle’s distance to its
target position within the local coordinate system. In that endeavor, the euclidean
distance of the obstacle from the target position is used, cf. Eq. (5.48).

Vtarget = ‖x− x0‖ (5.48)

Here, x0 ∈ {x01 ,x02} denotes the stability point depending on the turning direction
chosen in the first phase of the collision avoidance strategy. As a consequence, the
defined CLF can be applied to estimate an RoS for either one of these stability points
depending on its parameterization.

Parameters of the CLF Both elements, Vcircle and Vtarget, are weighted by their
corresponding factors (Wcircle, Wtarget) and summed to form the CLF for estimating
RoS of the collision avoidance strategy, cf. Eq. (5.43). The parameters are listed in
Table 5.7. They were determined using a similar procedure as described in Section 4.3.2,
which is omitted here for the sake of brevity.
As the aspect encoded by Vcircle focuses on the criticality of the state x, its weight
Wcircle is drastically increased compared to the weight Wtarget of Vtarget whose focus is
on the control performance. This shows that safety is the main attribute of concern and
is therefore in line with the objective of the envisioned run-time safety assessment.
Due to the increased value of Wcircle, the component Vcircle generates a circular shape
when considering the surface of the CLF in the two-dimensional state space. This
is shown in Fig. 5.19 where the CLF is visualized for both stability points. The
illustrations of their respective surfaces in Fig. 5.19a and Fig. 5.19b show that the
impact of Wtarget is minor. Thus, in Fig. 5.19c, where the value of the CLF considering
x01 is shown for XE = 0, two minima are visible in accordance with the stability
points x01 and x02 . The limited but existing effect of Wtarget, however, causes x01 to be
assigned a value of V (x01) = 0 while x02 is assigned a value of V (x02) = 0.026. This is
visible in Fig. 5.19d where a gray-colored line connects both stability points and thereby
visualizes the gradient generated by Vtarget which ultimately causes the difference in
the CLF values. Therefore, the requirement of a single minimum is maintained and a
valid CLF is defined.

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 213

−10 0
10 -10

-2
2

100

50

XE

YE

V
(x

)

20

40

60

(a) Visualization of the CLF parameterized with x01 .

−10 0
10 -10

-2
2

100

50

XE

YE

V
(x

)

20

40

60

(b) Visualization of the CLF parameterized with x02 .

−10010

0

20

40

60

80

YE in m

V
(x

)

(c) Visualization of the CLF parameterized with x01 but
considering only XE = 0.

−10010
−1

0

1

2

YE in m

V
(x

)

(d) Visualization of the CLF parameterized with x01 but
considering only XE = 0. The visualization is restricted to
YE ∈ [−1, 2] to show the increase of V (x) from x01 to x02 .

Fig. 5.19.: Visualization of the CLF configured with Dmin = 2.0m employed to estimate an RoS for
the collision avoidance controller.

Converting the Shared Failure Model

For defining the CLF , the local coordinate system was used. As a consequence, es-
timating an RoS for either of the stability points requires using the local coordinate
system as well. In contrast to this, the failure characteristics modeled by the shared
failure model build upon the approach of marker detection and therefore assume the
global coordinate system. Thus, for using it during the estimation of RoS , it has to be
converted.
For that, one has to take the perspectives of the different coordinate systems into
account. While the local coordinate system only states the spatial relation a robot
and an object have to each other, that is, their relative position, the global coordinate
system embeds this with respect to an independent point of reference, the origin of the
coordinate system.

214 5. Evaluation and Integration

YE

XE

YE

XE

R
1

R
1

A1
R

2
R

2

A2

−10 100
XG in m

−10

10

0

Y
G

in
m

XE in m

YE in m

4.2

4.2
R1,2R1,2

A1,2

Fig. 5.20.: The figure schematically illustrates how two distinct poses of a robot (R1 and R2) and an
object (A1 and A2) in the global coordinate system are mapped to the same position in the robot’s
local coordinate system (R1,2 and A1,2) during the transformation.

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 215

This gives rise to ambiguity. Multiple positions of a robot and an object are distinct
regarding the global coordinate system but are mapped to the same position in the
robot’s local coordinate system. This is illustrated in Fig. 5.20, where R1 and R2, as
well as A1 and A2, denote two positions of a robot and an object. Both positions are
mapped to the same position in the robot’s local coordinate system and can not be
distinguished anymore.
Thus, converting the failure model from the global to the local coordinate system has
to respect this change of perspective, more importantly, the resulting ambiguity. With
respect to the local coordinate system, the failure model has to represent all failure
characteristics possibly impairing a specific, relative position between the robot and
an object. The shared failure model specifying the failure characteristics in the global
coordinate system, however, models these depending on the specific location of the
object. In other words, as the shared failure model encodes value-correlations, the
failure characteristics depend on the global position of the object. Keeping in mind
that different, global positions may result in the same, local position, the minimal
and maximal failure amplitudes to anticipate for the entire considered (global) area
have to be determined to state the failure model with respect to the local coordinate
system.
More specifically, the maximal, absolute failure amplitude to anticipate for the x and y
component would have to be determined to form the converted failure model. However,
as this results in a symmetric failure model, the effect on the RoS estimates would be
similar for all considered failure characteristics, as will be shown in Section 5.3.2. For
the sake of analyzing the effects of varying failure characteristics on the estimation of
RoS , the minimal and maximal failure amplitudes are considered to form the converted
failure model, cf. Eqs. (5.49) and (5.51).

Ix(FMG) =

[
min

os∈Os,k∈K
(fx(k,os)) , max

os∈Os,k∈K
(fx(k,os))

]
(5.49)

Iy(FMG) =

[
min

os∈Os,k∈K
(fy(k,os)) , max

os∈Os,k∈K
(fy(k,os))

]
(5.50)

FME = [Ix(FMG) Iy(FMG)]
T (5.51)

Using the space of shared observations Os, that is, possible values shared by another
robot, and the time horizon K, the minimal and maximal failure amplitudes affecting
the x and y components are determined from the shared failure model FMG stating
the failure characteristics with respect to the global coordinate system. As a result,
the converted failure model FME states the minimal and maximal deviations to be
expected for these components for the shared operation area. Θ is not required any-
more, as the orientation of the robot to avoid the collision with is neither considered
for the collision avoidance strategy nor for the CLF .
A downside of this approach to converting the shared failure model is that encoded
time- and value-correlations are lost. In contrast, it would be possible to consider not
the entire shared operation area at once but to divide it into subareas. The same
conversion process could be applied for these smaller subareas and thereby enable
retaining the time- and value-correlations partially. However, this is out of the scope
of this thesis and is left for future work.

216 5. Evaluation and Integration

Tab. 5.8.: Definition of the state space considered for the robotic use case.

Parameter Interval Discretization

xEO
[−12m, 12m] xS = 0.25m

yEO
[−12m, 12m] yS = 0.25m

t [0 s, 17 s] τ = 0.07 s

Tab. 5.9.: Failure models derived from shared failure model to examine the effect of different levels
of uncertainty. The minimal distances Dmin are determined by applying the RoS analysis.

Failure Model Failure Types Dmin

FM{∅} ∅ 2.0m

FM{N} {FNoise} 3.0m

FM{N,O} {FNoise, FOffset} 4.5m

FM{N,O,OO} {FNoise, FOffset, FOutlier−Offset} 9.5m

5.3.2. Estimating Regions of Safety
Having the CLF and the fusion strategy defined, the RoS of the employed collision
avoidance controller can be estimated. For that, the next subsection discusses the
parameters assumed here before the results are discussed.

Parameters

Table 5.8 details the state space configuration Xτ and the considered time horizon K
used during RoS estimation. The limits of the local coordinate system are chosen such
that the robot can maintain a safe distance to the object that is to be bypassed even
when confronted with sever failure characteristics. The time horizon, on the other
hand, is chosen according to the length of samples used to extract the shared failure
model in Section 5.2. Similarly, for converting the shared failure model to intervals
stating the minimal and maximal failure amplitudes, α = γ = 0.95 was used according
to the confidence values stated in Table 5.5. For these, it is ensured that the true
failure characteristics are covered by the calculated intervals. Finally, using the same
procedure as in Section 4.3.3 the value of λc = 0.35 was determined.
Using these parameters, Algorithm 1 can be applied to estimate RoS . To analyze the
effect of different failure characteristics, the failure types of the shared failure model
are regrouped to form additional failure models, cf. Table 5.9. Next to FM{N,O,OO},
which is the shared failure model as described in Section 5.2, the failure model FM{N}
considering only the Noise failures and FM{N,O} considering the Noise and Offset
failures are assumed as these describe the prevailing failure characteristics. Finally,
considering FM{∅} enables examining the theoretic case of sharing ideal data without

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 217

uncertainty as well. The results are described in the following.

Results

Using the previously described parameters, an RoS for the collision avoidance con-
troller can be estimated with respect to each of the considered failure models. More
specifically, for each stability point an RoS is estimated and both are fused to generate
a final RoS according to Section 5.1.6. The final RoS informs about whether or not
the controller can maintain a safe distance to an object.
The main parameter of the control strategy influencing this decision is the minimal
distance Dmin. In the endeavor of determining the minimal value of Dmin resulting in
a valid RoS , distances starting at 10m down to 0.5m with a step size of 0.5m where
assumed. The minimal values resulting in non-empty RoS estimates are stated in Ta-
ble 5.9. As is to be expected, the required distance generally increases with the severity
of the assumed failure characteristics. Starting with Dmin = 2.0m when considering
no failures impairing the shared data, a maximum of Dmin = 9.5m is required for
the collision avoidance controller to handle the failure characteristics represented by
FM{N,O,OO}.
The RoS estimated for the individual configurations are examined in the following
paragraphs in detail.

Regions of Safety without Uncertainty To establish a baseline, the estimated RoS
for the ideal case, that is, FM{∅} are examined in this paragraph. As stated in
Table 5.9, the minimal distance for which a valid RoS can be obtained is Dmin =
2.0m.
The corresponding RoS estimated for x01 is shown in Fig. 5.21. Note that it does not
show the fused RoS . While the blue-colored states indicate the fulfillment of the RoA
or RoS condition respectively, white-colored states indicate the opposite.
Moreover, in Fig. 5.21a the transparently, gray-colored states visualize the actual RoS
which include the states of HV (cmin, cmax) colored red.
Keeping in mind that the states are visualized within the robot’s local coordinate
system, which means that the robot is always located in the origin, one can see that
these stabilizing states completely surround the robot. This means that the value of
λc is chosen appropriately. Furthermore, as required by Theorem 4.1, the stabilizing
states guarantee that the CLF is minimized over time at that positions. Thus, as
the chosen CLF utilizes dO as the central attribute for assessing a state’s criticality
(cf. Eq. (5.43)), it can be concluded that the controller successfully avoids collisions by
increasing the distance to the object.
For white-colored states, however, this can not be guaranteed. To ensure safety
nonetheless, the RoS condition has to apply. Its fulfillment is visualized in Fig. 5.21b,
where one can see that only states outside the estimated RoS are colored white. This
means that the system can not evolve to a state x with a value V (x) greater than cmax.
Considering that the maximal values of the chosen CLF occur for states x close to the
origin (cf. Fig. 5.19), this means that the system will not evolve to a state where the
distance between the robot and the obstacle becomes critical but at most to a state
where it is guaranteed by the stabilizing states that the controller will increase the
distance again.

218 5. Evaluation and Integration

−4−2024
−4

−2

0

2

4

YE in m

X
E

in
m

False
True

(a) Fulfillment of RoA condition, cf. Eq. (4.16).

−4−2024
−4

−2

0

2

4

YE in m

X
E

in
m

False
True

(b) Fulfillment of RoS condition, cf. Eq. (4.17).

Stabilizing State
RoA/RoS Condition Fulfilled RoA/RoS Condition Unfulfilled

Uncertainty State

(c) Legend for RoA and RoS illustrations, e.g. Figs. 5.21a and 5.21b.

Fig. 5.21.: Fulfillment of RoA and RoS condition by a subset of the considered state space for Dmin =
2.0m, x01 and FM{∅}.

Due to the centrality of the distance, the estimated RoS forms a circle around the
origin of the local coordinate system, as can be seen in Fig. 5.21. As a consequence of
this symmetry, the RoS estimated for x01 does not only include the stability point x02
as well but consists of the exactly same states as the RoS estimated for x02
On the one hand, it follows that the condition of Eq. (5.42) for fusing the RoS is
fulfilled and the fused RoS comprises the same states. On the other hand, it brings
the necessity of a fusion strategy into question.
To examine the latter in more detail, Fig. 5.22 clarifies the relation between the esti-
mated RoS and the defined CLF . Considering the case of XE = 0m, the figure displays
the values of the CLF with respect to YE. Additionally, the set of stabilizing states is
indicated by red-colored parts of the curve.
As one can see, these states are found for increased values of the CLF . At these states,
solely the distance between the robot and the object is assessed but the control goal
of bringing the object into position x01 is represented merely minimally. This is in
line with the goal of the run-time safety assessment, which asks only for the system’s
safety. On the other hand, as the RoS is defined as a level set of the CLF , it causes
Algorithm 1 to include the second stability point of x02 as well. While this does
not affect the provided guarantee of safety, it brings the applied fusion strategy into
question. More precisely, it indicates that a single RoS could be sufficient to guarantee
the safety of the second stability point as well. Contrarily, the requirement of having
a single, global minimum for defining a valid CLF caused the necessity for a fusion
strategy in the first place. Thus, these results indicate that this requirement on the
definition of a valid CLF should be investigated in detail in future work. In fact, it
is indicated that, for assessing safety, cost functions having multiple minima might be

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 219

-10x020x0110
0

20

40

60

80

HV

cmin

cmax

YE in m

V
(x

)

Fig. 5.22.: The figure visualizes the relation of the estimated RoS to the defined CLF by displaying
the function values for Dmin = 2.0m, x01 , and XE = 0m. The set of stabilizing states is indicated by
the gray-colored area and the red-colored part of the CLF ’s curve. Its negative gradients are indicated
by the arrows. As the resulting RoS is a level set of the CLF , it contains not only the global minimum
x01 but also the not considered stability point of x01 .

sufficient.
Nonetheless, the valid estimation of RoS for each stability point fulfills the condition
for fusing them and therefore results in an overall, valid RoS . This set includes all states
of the considered state space except states having dO < 0.35m. This is in line with
the sizes of the robot and the object, for which a radius of rs = 0.1m was assumed.
Consequently, any value dO ≤ 0.2m indicates a collision. As the considered state space
is discretized by xS = yS = 0.25m, a value of 0.35m is the closest possible estimation.
Therefore, the collision avoidance controller is guaranteed to be safe when configured
with Dmin = 2m and faced only with accurate observations.
In contrast, Fig. 5.23 shows the fulfillment of RoA condition for both stabilizing points
but when consideringDmin = 1.5m. Although only accurate observations are presumed
and states fulfilling the RoA condition are surrounding the origin as well, no RoS is
estimated. This is due to the value of λc. It causes not only states fulfilling the RoA
condition to be part of HV (cmin, cmax) but also states that do not fulfill the same.
Consequently, no RoS can be estimated. This indicates that, in this case, it would be
possible to reduce the value of λc without sacrificing safety such that a lower value of
Dmin could be found.

Noise In contrast to the previous scenario, the shared data are assumed to be affected
by failures. Therefore, in this paragraph, the effect of the modeled Noise failures is
examined by estimating RoS using FM{N}. It is converted to a uniform failure model
of U(−0.56, 0.51) affecting x and y components of shared data. Using the converted
failure model, RoS were estimated for different distance values, where Dmin = 3.0m
was found to be the smallest safe value.
Following the procedure of the previous paragraph, Fig. 5.24 shows the fulfillment of
the RoA and RoS condition of the individual states for Dmin = 3.0m. The effect of
the considered failure model is visible for states surrounding the origin. As one can
see, the area of states excluded from the RoS increases in relation to the severity of
the assumed failure characteristics.

220 5. Evaluation and Integration

−4−2024
−4

−2

0

2

4

YE in m

X
E

in
m

False
True

(a) Considering turning direction “left”, that is, stabilizing
state at x01 .

−4−2024
−4

−2

0

2

4

YE in m

X
E

in
m

False
True

(b) Considering turning direction “right”, that is, stabi-
lizing state at x02 .

Fig. 5.23.: Fulfillment of RoA condition by a subset of the considered state space for Dmin = 1.5m
and FM{∅}. Legend is given in Fig. 5.21c.

The minimal distance between the robot and the object according to the RoS is 1.12m,
that is, during operation, while the controller aims at maintaining a distance of Dmin =
3.0m, it is guaranteed that the distance dO does not undercut 1.12m due to failures of
shared data. Moreover, as one can see in Fig. 5.24a, the stabilizing states fully comprise
the origin. On the one hand, this underlines that λc is chosen appropriately once again.
On the other hand, it supports the idea of investigating CLFs having multiple, global
minima in future work.
Similar as before, considering a reduced value of Dmin = 2.5m does not allow to
estimate a valid RoS . Fig. 5.25 visualizes the fulfillment of the RoA condition by the
considered states for both stability points. Compared to Fig. 5.24a the set of states
fulfilling the RoA condition shrinks, which is caused by the reduction of Dmin itself.
Simultaneously, the set of uncertain states surrounding the stability point increases due
to the considered failure characteristics. These do not only cover the origin of the states
space anymore but occur in the vicinity of the considered stability point as well. This
phenomenon was observed for the inverted pendulum as well, cf. Section 4.2.1.
It originates in the (almost) symmetrical failure characteristics of U(−0.56, 0.51). Due
to their symmetry, the states not fulfilling the RoA condition evolves symmetrically as
well. Thus, when considering only the absolute, minimal failure amplitudes to convert
the failure model as discussed in Section 5.3.1, this phenomenon would have been
observed for all failure characteristics.
In contrast, here, a valid set of states forming HV (cmin, cmax) could be possible for x01

but not for x02 . As one can see, at approx. xEO
= 0.5, yEO

= 1.25 (highlighted by the
red circle in Fig. 5.25b), the RoA condition is not fulfilled, meaning that no valid set
HV (cmin, cmax) is possible. Consequently, no valid RoS can be estimated for x02 , which
entails that the fused RoS is the empty set as well.
The reason for the unfulfilled RoA condition at this specific state is the structure of the
CLF as well as the introduced uncertainty. In Fig. 5.25b the state x02 is assumed to
be the targeted stability point, that is, it is assumed that the decision on the turning

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 221

−4−2024
−4

−2

0

2

4

YE in m

X
E

in
m

False
True

(a) Fulfillment of RoA condition, cf. Eq. (4.16).

−4−2024
−4

−2

0

2

4

YE in m
X

E
in

m

False
True

(b) Fulfillment of RoS condition, cf. Eq. (4.17).

Fig. 5.24.: Fulfillment of RoA and RoS condition of states for Dmin = 3.0m, x02 , and when considering
FM{N}. Legend is given in Fig. 5.21c.

−4−2024
−4

−2

0

2

4

YE in m

X
E

in
m

False
True

(a) Fulfillment of Eq. (4.16) for Dmin = 2.5m when con-
sidering x01 .

−4−2024
−4

−2

0

2

4

YE in m

X
E

in
m

False
True

(b) Fulfillment of Eq. (4.16) for Dmin = 2.5m when con-
sidering x02 . The red circle highlights the state due to
which no RoS can be estimated as the RoA condition is
not fulfilled.

Fig. 5.25.: Comparison of RoA condition fulfillment when considering FM{N} and Dmin = 2.5m for
x01 and x02 . Legend is given in Fig. 5.21c.

222 5. Evaluation and Integration

−4−2024
−4

−2

0

2

4

YE in m

X
E

in
m

False
True

(a) Fulfillment of RoA condition, cf. Eq. (4.16).

−4−2024
−4

−2

0

2

4

YE in m

X
E

in
m

False
True

(b) Fulfillment of RoS condition , cf. Eq. (4.17).

Fig. 5.26.: Fulfillment of RoA and RoS condition of states when considering FM{N,O} for Dmin =
4.5m and x01 . Legend is given in Fig. 5.21c.

direction is made already. Consequently, the robot aims at maximizing the distance
to the object according to Eq. (5.44) while turning according to Eq. (5.26). However,
the minimal failure amplitude of −0.56m causes the controller to possibly observe the
state of the object in the range of xEO

∈ [−0.06m, 1.01m]. Therefore, the sign of the
x component switches, resulting in diverging turning directions and ultimately causing
the CLF to be maximized instead of being minimized in the worst case.
Increasing the minimal distance Dmin resolves the problem as the number of stabilizing
states increases, especially for greater values of dO. For these states, the weight of
Wcircle causes the CLF to be sufficiently minimized by solely moving away from the
object irrespectively of the chosen turning direction.
Nevertheless, the difference between x01 and x02 regarding their valid and invalid RoS
estimations presents a contrasting example to the formulated hypothesis of allowing
multiple global minima for a single CLF to circumvent the required fusion strategy. In
contrast to the previous example in which a valid RoS was estimated either for both
or none of the stability points, a distinction occurs in this case. This further motivates
examining this direction in future work.

Noise and Offsets Considering FM{N,O}, which additionally takes the Offset fail-
ure type into account, increases the inequality within the failure characteristics such
that the converted failure model is now U(−0.54, 1.01). As a consequence, the ful-
fillment of RoA condition is asymmetric with regard to the considered states as well,
cf. Fig. 5.26a.
Contrarily, the fulfillment of the RoS condition is not affected by this asymmetry,
cf. Fig. 5.26b. This is because the estimated RoS is a level set of the CLF . This
means, due to the high value of Wcircle, the CLF forms a circular pattern around
the origin, which causes the estimated RoS to form circularly around the origin as
well. As the RoS condition evaluates whether the function value of the CLF may
evolve to a value outside the RoS , the excluded states are inherently not fulfilling the
condition. Moreover, the stabilizing states, forming the border of the RoS , naturally

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 223

−10010

−10

0

10

YE

X
E

False
True

(a) Fulfillment of RoA condition of states for Dmin =
9.5m.

−10010

−10

0

10

YE

X
E

False
True

(b) Fulfillment of RoA condition of states for Dmin =
9.0m.

Fig. 5.27.: Comparing the fulfillment of RoA condition (cf. Eq. (4.16)) of states for FM{N,O,OO} and
x02 . Legend is given in Fig. 5.21c.

fulfill the condition as they guarantee that the function value is minimized. Thus, the
asymmetry affecting Fig. 5.26a caused by failure characteristics is not affecting the RoS
condition.

Noise, Offsets, and Outlier Offset Finally, the failure model FM{N,O,OO}, which
encompasses all failure types, is considered. For estimating the corresponding RoS ,
the failure model is converted to the uniform failure model of U(−0.54, 2.48) affecting
the x and y component. Due to the increased failure amplitudes, a distance of Dmin =
9.5m provides a valid RoS while Dmin = 9.0m does not. Although stabilizing states
surrounding the origin for Dmin = 9.0m, as can be seen in Fig. 5.27b, Algorithm 1
does return an empty set. This is due to the asymmetry introduced by the failure
characteristics, which contradicts the circular shape dictated by the CLF , as can be
seen in Fig. 5.27a. Further reducing Dmin, therefore, causes the set of stabilizing states
to either intersect with the outer or inner white area. In both cases, no valid set for
forming the hull of stabilizing states HV can be found as it would include states not
fulfilling the RoA condition.

5.3.3. Evaluation Using the Circle Scenario
The estimation of a valid RoS for different values of Dmin showed that the concepts of
GFM and RoS can be combined in such a way that different failure characteristics can
be analyzed as part of a run-time safety assessment. More specifically, for the assumed
failure characteristics, the minimal value of Dmin, which is deemed safe according to
the RoS analysis, was calculated and is stated in Table 5.9.
In this subsection, the validity of the decisions, that is, whether or not the determined
values of Dmin are indeed maintaining the safety of the system is evaluated.
For that, the circle scenario as described in Section 5.1.2 is simulated using the parame-
ters stated in Table 5.10. Taking the stochastic nature of the failure characteristics into

224 5. Evaluation and Integration

Tab. 5.10.: Parameters for simulating the circle scenario.

Parameter Value Description

Nsim 20 Number of simulations for each starting posi-
tion.

τ 0.07 s Control period of the controller.

Tsim 150.0 s Maximal duration of each simulation.

rcirlce 25m Radius of the virtual circle the starting posi-
tions of the robots are on.

Dmin [0.1m, 5.0m] ∪ 9.5m Control parameter determining the minimal
distance to keep to obstacles or other robots.

account, the scenario was simulated Nsim = 20 times for each starting state on a virtual
circle with rcircle = 25m. Each simulation covers a time horizon of Tsim = 150 s but is
stopped early if a collision is detected. In accordance with the previous estimation of
RoS , the controller’s control period is simulated with τ = 0.07 s.
To test not only the previously calculated values of Dmin as given in Table 5.9 but also
evaluate whether or not increased values are necessary or decreased values are possible,
the simulations were repeated for values of Dmin ∈ {[0.1m, 5.0m] ∪ 9.5m}. In other
words, by explicitly undercutting the values of Table 5.9 collisions are provoked.
For each simulation, the distance between both robots drobots is observed. Once this
value falls below zero, a collision is detected and the safety requirement is violated.
An overview of the results is given in Table 5.11. These are discussed next before the
results are examined in detail for each considered failure model.

Overview on Results

Table 5.11 summarizes the results of the simulations by stating the minimal observed
distance drobots for each of the considered failure characteristics and each value of Dmin.
Cells colored red highlight simulations resulting in collisions, that is, where safety is
violated. As one can see, these occur only for values of Dmin significantly lower than
what is deemed acceptable by the previous RoS analysis (cf. Table 5.9). Contrarily, the
minimally acceptable values are marked by gray-colored cells. For these, no collisions
are detected.
Generally, the observed distance drobots is falling below the targeted distance Dmin,
which is to be expected due to the employed P-controller. For FM{∅} this does not
result in any violation of the safety requirement. On the one hand, this means config-
ured with Dmin = 2.0m the controller will indeed maintain the safety of the system.
On the other hand, it indicates that this value could be reduced and shows therefore
the conservatism of the approach.
Similarly, when considering FM{N} negative values of drobots are found only for
Dmin = 0.1m while the run-time safety assessment guarantees safety only for val-
ues Dmin ≥ 3.0m. The correspondingly gray-colored cell in Table 5.11 states that a

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 225

Tab. 5.11.: The minimal distances observed during simulation when parameterizing the collision avoid-
ance controller with decreasing values of Dmin and confronting it with different failure characteristics.
Red-colored cells indicate simulations in which the safety requirement was violated. Gray-colored cells
indicate the results obtained when configuring the controller with minimal values of Dmin deemed
acceptable by the RoS analysis.

Dmin min(drobots)

FM{∅} FM{N} FM{N,O} FM{N,O,OO}

0.1 0.042 -0.0008 -0.0008 -0.0008

0.25 0.193 0.001 -0.0005 -0.0004

0.5 0.347 0.159 0.095 0.087

1.0 0.817 0.575 0.419 0.430

1.5 1.343 1.063 0.887 0.865

2.0 1.849 1.562 1.344 1.374

2.5 2.309 2.043 1.815 1.848

3.0 2.857 2.543 2.327 2.297

3.5 3.329 3.025 2.756 2.763

4.0 3.840 3.507 3.288 3.271

4.5 4.37 4.009 3.776 3.772

5.0 4.78 4.496 4.269 4.265

9.5 9.336 8.89 8.646 8.682

minimal distance of drobots = 1.849m is preserved at all times, which further supports
the RoS analysis providing this value.
For FM{N,O} and FM{N,O,OO} the pattern repeats. In both cases, it can be shown
that no collision occurs for the values of Dmin determined by the RoS analysis but
actual collisions occur only for values up to Dmin = 0.25m.
In contrast to the results obtained for FM{∅} and FM{N}, which undercut their re-
spective values of Dmin with varying magnitudes as a result of the increased failure
characteristics, FM{N,O} and FM{N,O,OO} exhibit values at a similar level. This indi-
cates that the additional failure type of Outlier-Offset does not has a distinct impact
on the results.
This can be observed in Fig. 5.28a as well. While the left diagram shows the ratio
of simulations maintaining safety over the overall number of simulations for distances
of Dmin ≤ 1.0m, the right diagram depicts the minimal distances of Table 5.11 with
respect to the configured value of Dmin. As one can see in the latter, the black and
blue curves showing the results of FM{N,O} and FM{N,O,OO} cover each other due to
the similar values.

226 5. Evaluation and Integration

0.1 0.25 0.5 1

0.7

0.8

0.9

1

Dmin in m

N
s

a
f

e

N
s

i
m

0 1 2 3 4 5
0

1

2

3

4

5

Dmin in m
m

in
(d

r
o

b
o

ts
)

in
m

FM{∅} FM{N}
FM{N,O} FM{N,O,OO}

(a) Left: overview of the ratio of simulations maintaining the safety requirement to the overall number of simulations.
Right: minimal distances between robots observed during the simulations for all considered values of Dmin.

0 1 2 3 4 5 6 7 8 9

0

0.5

1

Pos.
(Dmin = 0.1 m)

N
s

a
f

e

N
s

i
m

0 1 2 3 4 5 6 7 8 9

0.8

0.9

1

Pos.
(Dmin = 0.25 m)

N
s

a
f

e

N
s

i
m

(b) Illustrating the number of successful (safe) simulations over all simulations for all positions and distances Dmin =
0.1m (left) and Dmin = 0.25m (right).

Fig. 5.28.: Overview of results of circle scenario.

Tab. 5.12.: Ranges of failure amplitudes for the x and y component observed during simulations of
the circle scenario.

FM{∅} FM{N} FM{N,O} FM{N,O,OO}

x [0, 0] [−0.281, 0.346] [−0.295, 0.61] [−0.296, 0.61]

y [0, 0] [−0.323, 0.271] [−0.243, 0.75] [−0.247, 0.753]

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 227

The similarity of their results is originated in the activation of the individual fail-
ure types. Studying Table 5.12, which states the observed minimal and maximal
failure amplitudes for each failure model and over all simulations, reveals that the
ranges of FM{N,O} and FM{N,O,OO} are close to each other and thereby indicates
that the additional failure type Outlier-Offset is not activated. This is due to the
scarce occurrence of this failure type, which is limited to the specific position of
ok = [x = 1.1m y = 0m Θ = −180°]T , cf. Section 5.2.2. As a result, the failure type is
not activated during the simulations, causing the results of FM{N,O} and FM{N,O,OO}
to not vary due to their general failure characteristics but due to the specific failure
amplitudes sampled from the failure models during simulation.
The consequence can be observed in the left diagram of Fig. 5.28a as well. As both fail-
ure models impair the position data shared between robots during simulation similarly,
the ratios of simulations without collisions obtain similar values.
Assuming Dmin = 0.1m, one can see that FM{N} causes the minimal ratio of 0.64
safe simulations, which translates to 72 simulations ending with both robots colliding.
While FM{N,O} causes 65 collisions (a ratio of 0.675), the failure model FM{N,O,OO}
causes only 61 collisions (a ratio of 0.695). As the value of Dmin = 0.1m is covered
within the ranges of failure amplitudes for all of these three failure models (cf. Ta-
ble 5.12), the occurrence of collisions merely depends on the randomness with which
failure amplitudes are sampled from the failure models and the starting position of the
robots.
Especially the latter can be examined in Fig. 5.28b. For Dmin = 0.1m, collisions occur
only for starting positions 6,7,8, and 9. As can be seen in Fig. 5.2a, these positions
involve acute incident angles, that is, the robots are approaching laterally to each
other. If this is combined with increased failure models and the known overshoot
behavior [25] of the P-controller employed within the collision avoidance strategy, that
is, its inability to slowly approach the target distance but to undercut it, collisions of
both robots occur.
For Dmin = 0.25m, the likeliness of collisions is reduced. This is as the value of Dmin

is now closer to the absolute borders of the ranges of simulated failure amplitudes (
cf. Table 5.12), which means that failure amplitudes causing the controller to incorrectly
disengage the collision avoidance are less likely to occur. As a consequence, no collision
is observed for FM{N}, while FM{N,O} and FM{N,O,OO} exhibit similar ratios of safe
simulations again, cf. Fig. 5.28a. When considering the ratio with respect to the
starting positions (right diagram of Fig. 5.28b), the effect of the incident angle is
underlined once again.
While the incident angle resulting from starting positions 7 and 8 is such that collisions
occur, the robots are starting almost in parallel for position 9 which, combined with
the increased value of Dmin prevents collisions now. This is as the overshoot behavior
of the P-controller is mitigated by the lateral movement of the robots.
To examine these results in more detail, the following subsections address results for
individual failure models.

228 5. Evaluation and Integration

−40 −20 0 20 40
−40

−20

0

20

40

XG in m

Y
G

in
m

(a) Trajectories of both robots starting at position 4.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

XG in m

Y
G

in
m

(b) Trajectories of both robots starting at position 4. Only
the intersection of both trajectories is shown here.

Starting State Robot 2 Robot 1

(c) Legend for trajectory visualizations, e.g. Figs. 5.29a and 5.29b.

Fig. 5.29.: Exemplary results of a simulation of the circle scenario considering the failure model
FM{∅}, parameterizing the controller with Dmin = 0.1m, and assuming starting position 4. The
legend is given in Fig. 5.29c.

Results for FM{∅}

For examining the results of FM{∅} in detail, an exemplary simulation is visualized
in Fig. 5.29 and in Fig. 5.30. The former figure illustrates the trajectories for one
simulation of the circle scenario configured with starting position 4 and Dmin = 0.1m.
While the starting positions are indicated by red circles, the positions of robot 1 and
robot 2 are colored in gray and blue respectively. The latter figure visualizes the
corresponding distances drobots.
The minimal distance observed during this simulation is drobots = 0.042m, which shows
that the robots successfully avoid collisions with each other despite being placed on
intersecting paths. As envisioned, their trajectories intersect close to the origin, as
can be seen in Fig. 5.29b. Moreover, the trajectory of robot 1 shows minor deviations
indicating the collision avoidance maneuver. Its successful execution is indicated by
Fig. 5.30 where it can be seen that the distance drobots firstly decreases but does not
fall below zero and thereby states that no collision occurs.
At first, both robots are approaching each other resulting in decreasing values of drobots,
cf. Fig. 5.30a. Once the configured threshold of Dmin = 0.1m is undercut, collision
avoidance is engaged and the first phase applies. This is denoted by P. 1 in Fig. 5.30b.
Similarly, P. 2 and P. 3 refer to the second and third phases of the collision avoidance
strategy, cf. Section 5.1.4.
Agreeing with Table 5.11, the minimal value of drobots = 0.042m is reached during the
first phase as the implemented P-controller can not directly stop the movement of the
robot and therefore overshoots, a known behavior of P-controllers [25]. In contrast,
after reaching the minimal value, the controller provides control actions to retain a
distance of Dmin.

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 229

0 10 20 30
0

10

20

30

Time t in s

d
r

o
b
o

ts
in

m

(a) Temporal evolution of drobots shown only for the rel-
evant time horizon.

16 18 20 22 24

−0.3

−0.1
0

0.1

0.3 P. 1 P. 2
P. 3

Time t in s

d
r

o
b
o

ts
in

m

(b) Temporal evolution of drobots shown for the time hori-
zon where the collision avoidance is engaged. The gray-
colored line indicates the value of Dmin = 0.1m with which
the controller was configured. P. 1, P. 2, and P. 3 denote
the phases 1-3 of the collision avoidance strategy, cf. Sec-
tion 5.1.4.

Fig. 5.30.: Temporal evolution of drobots shown only for the relevant time horizon. The controller was
configured with Dmin = 0.1m and confronted with ideal observations, that is, FM{∅}. As a result,
the value of Dmin is undercut due to the usage of a P-controller, but the safety is maintained as drobots
is above 0 at all times.

Once Dmin is reached again, phase 2 starts, where both robots are bypassing each
other on a circular trajectory. In this phase, drobots remains stable at a value close to
Dmin. Here, no variations are seen as only ideal observations are assumed such that
the collision avoidance strategy can be followed perfectly.
Finally, after the robots bypassed each other, phase 3 is entered in which disengagement
is performed. For that, the conditions stated in Section 5.1.4 are monitored. Due to
the employed P-controller and the periodicity of τ = 0.07 s with which the collision
avoidance is performed, these are not directly met. Nevertheless, as no failures are
influencing the systems, only a period of 0.2 s is required to fulfill the conditions and
disengage the collision avoidance strategy. Thus, the robots aim at their respective
target positions and start moving away from each other.
The trajectories of both robots end at their assigned target positions which are 75m
from their starting positions.

Results for FM{N}

Opposed to the previous case, collisions are observed for Dmin = 0.1m when consider-
ing FM{N}. Fig. 5.31 illustrates an exemplary simulation where the robots started at
position 9. Thus, as shown in Fig. 5.31a their trajectories intersect with an acute inci-
dent angle. This means that deciding the turning direction, that is, deciding between
x01 and x02 is not affected by the failures of shared data. However, the target distance
of Dmin = 0.1m is smaller than the range of possible failure amplitudes (cf. Table 5.12),
which causes the controller to disengage collision avoidance despite the true distance
being less than Dmin. The goal-finding strategy then drives the robot towards its tar-
get position, which, by design, requires intersecting the other robot’s trajectory. This,
combined with the overshoot behavior of the P-controller employed by the collision
avoidance strategy, causes both robots to collide.

230 5. Evaluation and Integration

−10 0 10

0

10

20

XG in m

Y
G

in
m

−1 −0.5 0 0.5 1

-0.75

-0.25
0

0.25

0.75

XG in m
Y

G
in

m
(a) Trajectories of both robots starting at position 9. (b) Trajectories of both robots starting at position 9. Only

the intersection of both trajectories is shown here.

Fig. 5.31.: Exemplary results of a simulation of the circle scenario considering the failure model
FM{N}, parameterizing the controller with Dmin = 0.1m, and assuming starting position 9. The
legend is given in Fig. 5.29c. The value of Dmin = 0.1m severely undercuts the value of Dmin = 3.0m,
which is deemed as the minimal safe value according to the estimated RoS . Consequently, the robots
are colliding and the safety requirement is violated.

−40 −20 0 20 40

−40

−20

0

20

40

XG in m

Y
G

in
m

t = 10.8 s

t = 68.5 s

−20 0 20

−20

0

20

XG in m

Y
G

in
m

(a) Trajectories of both robots starting at position 9. (b) Trajectories of both robots starting at position 9. Only
the intersection of both trajectories is shown here. While
the robots are having similar y coordinates when collision
avoidance is engaged (dark-gray-colored circles), robot 2
progresses slower, allowing robot 1 to bypass it without
colliding. Consequently, when collision avoidance is dis-
engaged (green-colored circles), robot 2 progressed not as
far as robot 1.

Fig. 5.32.: Exemplary results of a simulation of the circle scenario considering the failure model
FM{N}, parameterizing the controller with Dmin = 3.0m, and assuming starting position 9. The
legend is given in Fig. 5.29c.

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 231

0 10.8 40 68.5 80

3
4

6

8

Time t in s

d
r

o
b
o

ts
in

m

0 20 40 60 80

0

0.5

1

1.5

Time t in s

v T
in

m
s−

1

(a) Temporal evolution of drobots during collision avoid-
ance.

(b) Velocities of both robots during collision avoidance.
The legend can be found in Fig. 5.33c. During collision
avoidance, both robots are moving with equal velocities. It
is only at its end that robot 2 reduces its velocity, which
enables robot 1 to bypass without colliding.

65 65.5 66 66.5 67 67.5 68 68.5 69 69.5 70

0

0.5

1

1.5

Time t in s

v T
in

m
s−

1

vR2
vR1

(c) Velocities of robots in the end of phase 2 and during phase 3 of collision avoidance. Robot 2 is moving with lower
velocities at times marked with red-colored ellipses causing it to fall behind robot 1 and thereby allowing it to bypass
without colliding.

Fig. 5.33.: Visualization of distance drobots and velocities of both robots during circle scenario. The
failure model FM{N} was considered while the controller was configured with Dmin = 3.0m. The
robots started at starting position 9.

This deficiency is resolved when increasing Dmin to 3.0m. As guaranteed by the es-
timated RoS , the robots maintain their safety and avoid collisions with each other.
Fig. 5.32 illustrates trajectories starting at the same position but with the increased
distance value.
While the starting position still provokes the robot’s trajectories to intersect with an
acute incident angle, the increased value of Dmin mitigates problem posed the overshoot
behavior of the P-controller. Thus, at t = 10.8 s, the distance between both robots
undercuts the threshold of Dmin = 3.0m at which point the collision avoidance is
engaged. This point is highlighted by a vertical, dashed line in Fig. 5.33a and by the
dark-gray-colored circles on the trajectories of both robots in Fig. 5.32b. As one can
see, both robots engage the collision avoidance strategy at similar YG values. From
that point on, both robots drive in parallel as a consequence of their goal to maintain
the configured distance and to bypass each other.
This point of equilibrium, however, is resolved by the failure amplitudes impairing
the data shared by the robots and their resulting movements. More specifically, as

232 5. Evaluation and Integration

displayed in Fig. 5.33b the randomness affecting the perceived distance between the
robots cause them to accelerate and decelerate unequally. Consequently, at the end
of the parallel movement (indicated by the red circle in Fig. 5.33b), robot 2 exhibits
decreased velocities. This period is depicted in Fig. 5.33c where red ellipses are high-
lighting the relevant sections. As can be seen, robot 2 (vR2) exhibits reduced velocity
values. These allow robot 1 to obtain a position in front of robot 2 and thereby bypass
it without a collision.
This situation is highlighted by green circles in Fig. 5.32b indicating the positions of
both robots at t = 68.5 s. Comparing the trajectories with the distance values drobots in
Fig. 5.33a, where the same time step is indicated by a vertical, dashed line, underlines
that the collision avoidance successfully prevented a collision and enabled both robots
to arrive at their assigned target positions.

Results for FM{N,O}

Adding the Offset failure increases the overall magnitude of failure amplitudes observed
during simulation, cf. Table 5.12. Consequently, collisions are observable for Dmin =
0.25m as well. Fig. 5.34 shows the trajectories of both robots starting at position 7.
The robots aim at their target positions which brings them on intersecting trajectories.
Due to the increased failure amplitudes, the distances they perceive to each other
are impaired such that collision avoidance is not engaged. Again, this phenomenon is
combined with the overshoot behavior of the P-controller and results in a collision.
Therefore, simulations assuming the same starting position but with an increased value
of Dmin = 4.5m show that collisions are successfully avoided, cf. Fig. 5.35. As discussed
in the previous example, the increased distance enables the P-controller of both robots
to stabilize their respective distance and maintain the safety requirement despite its
overshoot. Moreover, the incident angle, again, causes a period of equilibrium after
collision avoidance is engaged. During this period, the robots are driving in parallel
but exhibit different velocities, which ultimately enables robot 1 to bypass robot 2
safely.

Results for FM{N,O,OO}

The addition of the Outlier-Offset to the considered failure types changes the estimated
RoS as the theoretical range of failure amplitudes increases. However, when simulating
the circle scenario using FM{N,O,OO}, the failure type does not become active as it only
occurs at the specific global pose of [0m 1.1m −180°]T . Therefore, in simulation, the
robots behave as when considering the previous failure model.
It is important to note here that this is the very reason for why it is not sufficient to
simulate a system to prove its safety. It has to be shown that all relevant hazards (in
this case the occurrence of the Outlier-Offset failure type) are addressed, which is not
possible when coverage of the executed simulations can not be guaranteed. Contrar-
ily, the RoS-based analysis guarantees that all modeled failure characteristics and the
possible situations that they entail are considered.
Consequently, when configured with Dmin = 9.5m, the controller is guaranteed to
maintain the safety of the system. Fig. 5.36 shows a successful simulation for starting
position 0. Accordingly, both robots’ trajectories intersect at the origin of the global
coordinate system, where it can be seen that the robots decide to bypass each other on

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 233

−10 0 10

0

10

20

XG in m

Y
G

in
m

−1 −0.5 0 0.5 1

-0.75

-0.25
0

0.25

0.75

XG in m

Y
G

in
m

(a) Trajectories of both robots starting at position 7. (b) Trajectories of both robots starting at position 7. Only
the intersection of both trajectories is shown here.

Fig. 5.34.: Exemplary results of a simulation of the circle scenario considering FM{N,O}, Dmin =
0.25m, and assuming starting position 7. The legend is given in Fig. 5.29c.

−40 −20 0 20 40

−40

−20

0

20

40

XG in m

Y
G

in
m

t = 13.44 s

t = 74.1 s

−10 0 10 20

−10

0

10

XG in m

Y
G

in
m

(a) Trajectories of both robots starting at position 7. (b) Trajectories of both robots starting at position 7. Only
the intersection of both trajectories is shown here.

Fig. 5.35.: Exemplary results of a simulation of the circle scenario considering FM{N,O}, Dmin =
4.5m, and assuming starting position 7. The legend is given in Fig. 5.29c.

−50 0 50

−50

0

50

XG in m

Y
G

in
m

−10 0 10

−10

0

10

XG in m

Y
G

in
m

(a) Trajectories of both robots starting at position 0. (b) Trajectories of both robots starting at position 0. Only
the intersection of both trajectories is shown here.

Fig. 5.36.: Exemplary results of a simulation of the circle scenario considering FM{N,O,OO}, Dmin =
9.5m, and assuming starting position 0. The legend is given in Fig. 5.29c.

234 5. Evaluation and Integration

their right side, that is, using x02 as the stability point. This underlines that deciding on
a turning direction in phase 1 and retaining the decision until the object is successfully
bypassed prevents switching between both options, cf. Section 5.1.4.
Moreover, this example, as well as the previous examples, underlines two main results
from this evaluation. Firstly, it can be shown that the safety of the robots is maintained
during collision avoidance, which is in line with the guarantee provided by the RoS
analysis. Secondly, this analysis certified only increased values of Dmin as safe, which,
as indicated by this evaluation, is conservative. Thus, the conservatism of RoS-based
analysis should be addressed in future work.

5.3.4. Evaluation Using the Navigation Scenario
The circle scenario underlined that the concepts of GFM and RoS can be combined to
implement a run-time safety assessment for a safety function that uses shared data. It
provides a decision on whether the safety function will maintain its safety performance
when using the shared data. However, these concepts aim only at a system’s technical
level and are therefore application- and implementation-specific. Contrarily, safety has
to be shown for the entirety of a system, that is, considering its functional level as well.
At that level, Chapter 2 showed that approaches to run-time safety assessment already
exist. They require the technical level to provide safety information at run-time which
can be integrated with the functional level.
To underline that the concept of RoS is applicable for such integration, this section
aims at evaluating the same by means of an example. More specifically, the next
subsection sketches out an approach to using the estimation of RoS to analyze the
quality of shared data at run-time to select a suitable Level of Service (LoS) (initially
proposed by the KARYON project)[40], in this case, a suitable value of Dmin. The
approach is evaluated in the following subsection using the navigation scenario. It will
be shown that by adjusting the minimal distance the robots navigating in a shared
operation area with static obstacles successfully maintain safety and do not collide
with each other.

Conceptual Design

The KARYON project [40] addresses cooperative systems performing safety-critical
functionalities. To tackle the problems of guaranteeing the safety of a system arising
from uncertainties in shared data and increased complexities, a Kernel-based ARchi-
tecture for safetY-critical cONtrol (KARYON) is presented. Based on the idea that
a nominal system is designed with varying assumptions about its context situation,
different performance levels, so-called Level of Service (LoS), are provided. According
to their assumptions, these are proven safe at the system’s design-time.
The context assumptions may range, e.g. from weather conditions to the quality of
shared data. To specifically address the latter, the validity concept [48] is used. It
abstracts a predefined failure-type-based failure model to derive a scalar value informing
an application about the confidence it can have in a sensor observation or shared
data.
At run-time, available context information, such as the validity of current data, is
analyzed to derive the most appropriate LoS . For that, a safety manager, as part
of the safety kernel, compares the run-time safety information with design-time safety

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 235

Tab. 5.13.: Parameters for simulating the navigation scenario.

Parameter Value Description

Npos 10 Number of starting positions.

Nsim 20 Number of simulations for each starting position.

τ 0.07 s Control period of the controller.

Tsim 500.0 s Maximal duration of each simulation.

information by means of predefined rules and selects an LoS accordingly. Thus, instead
of restricting the system to worst-case assumptions and the corresponding minimal
performance level, the risk posed by the current context is analyzed at run-time and
the system performance is adjusted. As such, the approach assess the risk posed by
the system’s context at run-time, but relies on a safety assessment (prove of safety)
executed at design-time. It thereby addresses Challenge 1.3.
This reliance enables to successfully maintain safety for systems sharing their data if
they agreed on a common failure model before cooperation. However, as a consequence,
changing failure characteristics are not supported. As detailed in Chapter 1, supporting
the dynamic integration of shared data with varying failure characteristics necessitates
assessing safety at run-time.
As shown by previous chapters and sections, this is provided by the concept of GFM
and RoS . Assuming that the failure model of shared data is communicated, each avail-
able LoS can be analyzed by estimating its RoS . The result can be considered as
run-time safety information and used by the safety kernel to choose the appropriate
level. For instance, if the estimated RoS is not empty, the safety performance asso-
ciated with the analyzed level will be met and safety will be maintained. Choosing
the maximal level yielding a valid RoS allows adjusting performance while maintaining
safety.
Regarding the presented collision avoidance controller, the values of Dmin can be
thought of as different LoS with Dmin = 9.5m being the lowest and Dmin = 2.0m
being the highest level. Depending on the shared failure model, valid RoS are es-
timated only for levels corresponding to sufficiently high distance values. Moreover,
the distance values stated in Table 5.9 already map the shared failure model to the
appropriate level and are therefore used in this prototypical evaluation.

Evaluation Results of the Navigation Scenario

For evaluating the use-case-specific approach to integrating RoS and LoS , the naviga-
tion scenario described in Section 5.1.2 is used. By randomly generating Npos = 10
starting positions for two robots and simulating the scenario Nsim = 20 times for each
starting position, trajectories of 200 simulations are obtained. Each simulation covers
500.0 s during which a periodicity of τ = 0.07 s is assumed for the controller.
To simulate the effect of changing failure characteristics, the schedule shown in Ta-
ble 5.14 is assumed. During phases 1 and 5, no failure characteristics affecting the
shared data are assumed. In phase 2 Noise and Offsets are assumed while phase 3

236 5. Evaluation and Integration

Tab. 5.14.: Schedule for shared failure models to evaluate the integration of RoS and LoS .

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Time [0 s, 100 s] [100 s, 200 s] [200 s, 300 s] [300 s, 400 s] [400 s, 500 s]

Failure
Model FM{∅} FM{N,O} FM{N} FM{N,O,OO} FM{∅}

0 50 100 150 200 250 300 350 400 450 500
0

5

10 FM{∅} FM{N,O} FM{N} FM{N,O,OO} FM{∅}

t in s

m
in

(d
O

)
in

m

dO Dmin

Fig. 5.37.: Minimal distances between robots and obstacles obtained by simulating the navigation
scenario using starting position 0.

considers only Noise. Phase 4 presumes that shared data is affected by all failure
types.
In correspondence to the shared failure model assumed, the controller of the robots
are configured with the appropriate LoS , that is, the distances stated in Table 5.9.
The results can be seen in Fig. 5.37, where the minimal distance dO for both robots is
stated. This means that for any of the robots, the minimal distance dO is shown. The
currently active LoS is shown by the gray, dashed curve.
As one can see, in phases 1 and 5 the targeted distance Dmin is either met or exceeded
by dO. Contrarily, when considering non-empty failure characteristics, the targeted
minimal distance is undercut. However, the value never falls below zero, which means
that no collision occurs and safety is therefore maintained.
This is due to the successful bypassing of objects, which can be seen in the exemplary
trajectories visualized in Fig. 5.38 as well. Fig. 5.38a shows the trajectories correspond-
ing to the distance values stated in Fig. 5.37. The starting positions are marked by
red circles while the objects avoided by the robots are colored black.
In both trajectories, one can see that these objects are bypassed in circular trajectories
as envisioned by the second phase of the collision avoidance strategy, cf. Section 5.1.4.
Moreover, circular trajectories can be observed in other areas as well. For instance in
Fig. 5.38a at approx. [x = 8m y = −10m]T . The blue trajectory indicates that the
robot avoided a collision with the object and, subsequently, with the other robot. This
can be seen by the gray trajectory as well, which switches from a straight line to a
circular curve.

5.3. Safe Handling of Shared Data in a Collision Avoidance Strategy 237

−10 0 10

−10

0

10

XG

Y
G

(a) First simulation of two robots of the navigation sce-
nario starting at position 0. The legend is given in
Fig. 5.29c. An exemplary situation in which both robots
successfully avoided a collision with each other is high-
lighted by the red circle.

−10 0 10

−10

0

10

XG

Y
G

(b) Second simulation of two robots of the navigation
scenario starting at position 0. The legend is given in
Fig. 5.29c.

Fig. 5.38.: Exemplary trajectories of robots simulated in the navigation scenario.

Tab. 5.15.: Minimal distances observed over all simulations for each starting state.

Pos. 0 1 2 3 4

min(dO) 1.879m 1.868m 1.81m 1.842m 1.85m

Pos. 5 6 7 8 9

min(dO) 1.853m 1.846m 1.84m 1.827m 1.829m

Similar to these exemplary trajectories, the minimal distances observed over all simu-
lations show that no collisions occur, cf. Table 5.15. While the targeted distance Dmin

is undercut in general due to the employed P-controller, sufficient safety margins are
maintained due to the conservatism of the RoS approach. Therefore, it is shown that
safety is indeed maintained in each LoS .

238 5. Evaluation and Integration

5.4. Summary

The goals of this chapter were to evaluate the concepts of GFM and RoS regarding
their use in a run-time safety assessment method and to connect the approach to
state-of-the-art approaches targeting the functional level.
In that endeavor, the first step was to examine this work’s motivation to derive the
use case of collision avoidance in multi-robot scenarios. It was assumed that two
robots operating in the same area share their position data such that collisions can be
prevented. Moreover, it was assumed that static obstacles are present in the operation
area as well. Based on these assumptions, the experiments entitled the circle scenario
and the navigation scenario were designed.
With these in mind, the employed control strategy implemented by both robots was
described. As it comprised a collision avoidance strategy enabling to bypass obstacles
and robots alike, it clarified that the control strategy in question features two stability
points. An collision can be prevented by bypassing at an obstacle (or robots) left or
right side. This, however, contradicted the assumption posed by the estimation of
RoS , which considered only a single stability point. Thus, a use-case-specific fusion
strategy was defined to obtain a single RoS from the estimates of the individual stability
points.
In preparation of estimating the same, a failure model of the shared data was required.
For that, it was assumed that robots are localized by means of marker detection.
Consequently, in a real-world experiment data representing the failure characteristics of
the AprilTag2 [116] framework was obtained. It was used as an input to the processing
chain presented in Section 3.3 to automatically generate a preliminary failure model.
While this model’s performance was not sufficient for the envisioned use case, it required
only minor manual adjustments. On the one hand, this showed the applicability as well
as the limitations of the processing chain. On the other hand, the clarity of the GFM
was underlined which enabled optimizing the failure model’s weights manually. Finally,
the quality of the adjusted failure model was assessed and represented by means of the
defined confidence values, cf. Section 3.3.3. As these affirmed that the initial failure
characteristics are adequately represented, the GFMs ability of representing real-world,
multi-dimensional failure characteristics was underlined as well.
The individual failure types of the generated failure model were used to construct
different failure characteristics for evaluating the RoS concept regarding its applica-
bility as a run-time safety assessment method. Starting with these, the defined fusion
strategy was used to estimate RoS for the employed collision avoidance strategy. More-
over, by adjusting the target distance Dmin the controller aims at maintaining during
collision avoidance, the minimal supported distance could be determined. Depending
on the overall severity of the considered failure characteristics, this value ranged in
Dmin ∈ [2.0m, 9.5m].
To evaluate that the control strategy indeed prevents collisions when configured with
these values and despite the assumed failure characteristics, the circle scenario was
considered. In this scenario, two robots are placed on a virtual circle and assigned
target positions such that their trajectories intersect. Depending on their starting
positions, varying incident angles were provoked. By simulating the scenario with
varying failure characteristics it could be shown that no collisions occur when using
values certified by the estimated RoS . On the other hand, it could be observed that

5.4. Summary 239

collisions occur only for values of Dmin ≤ 0.25m. This underlined the conservatism of
the RoS approach.
Nevertheless, the circle scenario provided the basis on which the navigation scenario
built on. Its goal is to exemplify the integration of the concepts with state-of-the-art
approaches of run-time safety assessment targeting the functional level. For that, the
already determined values of Dmin were considered as LoS . At run-time, the shared
failure model can be analyzed using the RoS estimation to switch between these. Simu-
lations showed that this approach successfully maintains the safety of the systems.
Thereby, this chapter does not only show that the GFM and RoS can be combined to
fulfill Objective 1.1 but also that they can be integrated into state-of-the-art approaches
which supports their applicability and underlines their generality.

241

6. Conclusions and Future Work

Operation

Dynamically Composed System

Intended EUC

Concept &
Scope Definition

...

Safety Assessment
- Static Elements -

Safety Assessment
- Shared Data -

Operation

Design-
Time
Run-
Time

Shared Data

Modeling Failure
Characteristics

Failure Model
Quality Assessment

Integration Step

Generic Failure Model
(GFM) — Objective 1.2

Region of Safety
(RoS) — Objective 1.1

Fig. 6.1.: Simplified safety process from Fig. 1.9 associated with the concepts and objectives of this
thesis.

The previous chapter discussed the applicability of the presented concepts to dynam-
ically composed systems, specifically with respect to collision avoidance strategies of
autonomous mobile robots. It could be shown that Objective 1.1 and Objective 1.2
are fulfilled. To put this into perspective, this chapter firstly summarizes the contents
of this work that lead to these fulfillments in Section 6.1 before Section 6.2 states
limitations and derives possibilities for future work.
To provide an overview, the main concepts introduced by this thesis are associated with
the objectives that they fulfill and the initially proposed safety process in Fig. 6.1.

6.1. Summary
The flexibility provided by the emerging paradigms of Internet of Things (IoT) and
CPS combined with intelligent algorithms formed the basis of a profound industrial
transformation termed Industry 4.0. Starting with this perspective, Chapter 1 tries
to extend the applicability of these paradigms beyond individual industries. Lever-
aging the example of Smart Warehouses, a use case is defined in which autonomous
delivery systems may dynamically integrate with the infrastructure on site to navigate

242 6. Conclusions and Future Work

safely and, for instance, automate replenishing of storage systems. Arising from the
entailed flexibility, dynamically composed systems are defined as systems that dynam-
ically adapt their composition to available resources at run-time. As this entails that
data shared at run-time is used for potentially safety-critical applications within these
systems, safety is identified as one central challenge that has yet to be solved. In that
endeavor, the functional safety standard IEC 61508 [20] is considered an advocate for
prevailing safety standards and examined with respect to its application to dynamically
composed systems.
Caused by its general assumptions, which requires components and their characteristics
to be available already at design-time and which contradicts the idea of dynamically
composed systems, the analysis identified four central challenges, cf. challenges 1.1
to 1.4. Firstly, due to its openness, the Operational Design Domain (ODD) of a
dynamically composed system can not be fully specified as neither the number of
systems sharing their data nor their quality is available at design-time. Secondly, the
unavailable system components can not be considered during a design-time hazard
analysis, which brings its coverage into question. Thirdly, missing knowledge about
the failure characteristics of data shared between systems prevents assessing the risk
at design-time. Fourthly, the safety performance of a safety function using shared data
can not be assessed due to the missing failure characteristics as well.
Arguing that the first three challenges are (partially) addressed in the literature, the
fourth challenge is identified as unsolved and targeted by the presented work. In that
endeavor, it is argued that parts of the safety assessment have to be shifted into a
system’s run-time as it is only then that all required resources are available. More
specifically, two objectives for implementing a successful run-time safety assessment
are formulated. A failure model representing the failure characteristics is needed (Ob-
jective 1.2) which can be analyzed by a run-time safety assessment (Objective 1.1). For
both objectives, corresponding criteria for discussing their fulfillment are derived.
The objectives and the predefined criteria form the basis on which state-of-the-art ap-
proaches are reviewed in Chapter 2. At first, approaches to safety assessment were
reviewed. For that, they were categorized according to their targeted abstraction lev-
els. Derived from the prevailing safety standards [8], [13], the functional and tech-
nical abstraction level were considered. While the functional abstraction level com-
prises implementation-independent concepts, approaches of the technical level inte-
grate use case and application-dependent solutions. Correspondingly, at a functional
level, contract-based approaches are prevailing along with the approach of Level of Ser-
vice (LoS) and the idea of a safety kernel as presented by the KARYON project [47].
These address not only safety assessment but specifically ask for its execution at run-
time. Contrarily, at a technical level, such approaches can not be found. Focusing
on stability, only the estimation of Region of Attraction (RoA), which was shown to
provide stability guarantees at a system’s run-time, was found to facilitate similar func-
tionalities. Nevertheless, none of these approaches could fulfill all required predefined
criteria.
Similarly, with respect to Objective 1.2, techniques for (sensor) failure modeling were
reviewed and assessed according to the predefined criteria. While interval-based failure
models provide clear interpretation and unambiguous representation, their modeling
capabilities are limited. Similarly, distribution-based failure models were shown to be
insufficient in that regard as well. Only failure-type-based failure models, prevailing for

6.1. Summary 243

describing sensor failure characteristics, are considered sufficient to fulfill the coverage
criterion. On the other hand, these failure models are commonly defined linguistically
and are thereby ambiguous. Thus, no approach fulfilling all required predefined criteria
could be found either.
Consequently, Chapter 3 started with defining the Generic Failure Model (GFM) appli-
cable to dynamically composed systems. It thereby addressed Objective 1.2. For that,
a mathematically defined failure model is presented. It builds upon the idea of failure-
type-based failure models where each failure type is represented by a temporal failure
pattern, a stochastic scaling defining the magnitude of possible failure amplitudes, an
activation distribution, and a deactivation distribution. All of the three distributions
(scaling, activation, deactivation) are modeled by a time- and value-correlated ran-
dom distribution which applies deterministic shift- and scale functions to represent
correlations and uses a quantile function to represent the stochastic distribution of
values. Each of these functions is finally represented by a polynomial. While this
mathematical representation fulfills the central criterion of clarity, the use of multiple
failure types to represent failure characteristics enables the fulfillment of the coverage
criterion. Similarly, it was shown that the remaining predefined criteria are fulfilled as
well.
To automate and simplify the generation of a GFM , a processing chain was proposed.
It requires time series of failure amplitudes as well as reference data to extract and
parameterize a GFM representing the failure characteristics. For that, three stages
are executed. During the first stage, a Continuous Wavelet Transformation (CWT) is
employed to identify the occurrences of randomly generated failure patterns, which are
optimized in an iterative approach using gradient descent. During the second stage,
a sliding window approach is applied to extract training data for parameterizing the
individual failure types’ functions, that is, fit the corresponding polynomials. During
the final stage, the generated GFM is converted into an interval-based representation
which informs about the minimal and maximal failure amplitudes. By comparing these
to the initial data provided to the processing chain, confidence values stating the (over-
)approximation of the true failure characteristics are calculated. These are considered
as metadata and should be communicated along with the failure model to inform a
receiving application about the quality of the representation.
Both, the concept of the GFM as well as the presented processing chain were evaluated
using artificial, one-dimensional data. Next to the fulfillment of the predefined criteria,
it could be shown that failure characteristics repeatedly reported in the literature can
be modeled unambiguously using the GFM . Moreover, due to the clarity of the failure
model and the use of polynomials, these can be generated manually as well as by the
presented processing chain. Comparing the performance of the GFM to different state-
of-the-art approaches from the field of time series modeling furthermore revealed its
strength in representing stochastic time series. As such, the GFM fulfills Objective 1.2
and thereby provides a central prerequisite in the endeavor of guaranteeing safety when
using shared data in safety-critical control systems.
This is addressed by Objective 1.1. In the endeavor of fulfilling it, Chapter 4 builds
upon the idea of Region of Attraction (RoA), which was identified as a promising
approach in Chapter 2. However, to be applicable to dynamically composed systems,
an extended system model enabling to specify different sources of uncertainty was
required. Covering not only failure characteristics of shared data but also failures of

244 6. Conclusions and Future Work

internal sensor observations, model uncertainties, actuator failures, and environmental
disturbances facilitates a fine-grained definition of uncertainties while using a uniform
analysis technique.
For this, however, the estimation of RoA could not be used due to its insufficiency
in handling uncertainties. It was shown that even minor uncertainties prevented RoA
from being estimated.
As a consequence, Theorem 4.1 introduced the concept of Region of Safety (RoS).
Opposed to RoA, the concept focuses on safety, that is, guaranteeing that a system
will not evolve to unsafe states with a given control strategy. By additionally defining
Algorithm 1, RoS of systems could be estimated.
This was used in the preliminary evaluation of the concept, for which the example
of an inverted pendulum was examined. After discussing the challenges of defining
appropriate Control Lyapunov Function (CLF) candidates and setting the λc parameter
of Algorithm 1, simulations showed that, if a valid RoS can be estimated, the system
will maintain its safety and will not leave the specified RoS . Together with [45], where
it could be shown that the approach of RoA can be applied at run-time, the RoS was
shown to successfully enable a run-time safety assessment.
Nevertheless, the inverted pendulum did not consider shared data and was therefore not
a dynamically composed system. Therefore, Chapter 5 aimed at providing a holistic
evaluation for both concepts (GFM and RoS) as well as its integration with state-
of-the-art run-time safety assessment approaches targeting the functional level. With
these goals in mind, the initial discussion on smart warehousing was examined to
derive the use case of collision avoidance in multi-robot scenarios. Assuming that two
robots share an operating area in which they obtain their position data using a marker
detection framework, the safety function of collision avoidance had to be guaranteed
to meet its safety performance despite using these shared position data. On the one
hand, this entailed modeling of failure characteristics of a marker detection framework,
for which real-world data was used. It could be shown that the concept of GFM
provides a suitable model even for three-dimensional data (x,y,Θ). On the other hand,
bypassing an object during collision avoidance can be achieved by driving at its right
or left side. This dictates the existence of two stability points, which contradicts the
assumption of CLF and RoS that allow only a unique stability point to be examined
at a time. Therefore, a fusion strategy for combining two separate estimates of RoS
was defined.
With the fusion strategy in place, the RoS of the collision avoidance strategy could
be estimated. To examine the effects of varying failure characteristics, the individual
failure types of the failure model generated for the marker detection framework were
grouped to form four different failure models. Only by adjusting the target value of the
controller, valid RoS could be estimated for each of them. This means that the concept
successfully distinguishes between tolerable and intolerable failure characteristics.
These results were further examined in the circle scenario, which assumes that two
robots are placed at a virtual circle and configured with target positions in such a way
that their trajectories intersect at specific incident angles. Simulating this scenario for
varying target distances Dmin to keep by the collision avoidance controller showed that
safety was successfully maintained when configured with appropriate values. However,
the simulations also indicated that the distance Dmin could be further reduced, which
was not supported by the results of RoS .

6.2. Limitations and Future Work 245

Nevertheless, even the estimation of RoS resulted in varying values of Dmin depending
on the specified failure characteristics. As such, RoS can not only be used to deter-
mine whether or not a safety function will provide its safety performance when using
the shared data. In combination with the idea of LoS presented by the KARYON
project [40], [47], the performance can even be adjusted.
This was shown exemplarily by the navigation scenario. It simulated two robots in
a shared operation area which additionally featured static obstacles to be bypassed.
Within the area, the robots had to move to randomly assigned target positions while
avoiding collisions with obstacles or the other robot. Moreover, the quality of the
shared data was assumed to change according to a predefined schedule. Depending on
the changed failure characteristics, the minimal value of Dmin was determined using
the concept of RoS . Thus, over time, it could be shown that the distance had to
be increased for failure characteristics featuring failure amplitudes of high magnitude
while the distance could be reduced when assuming failure characteristics with failure
amplitudes of lower magnitude.
With this evaluation, it was not only shown that the concepts of GFM and RoS can
successfully be combined to realize a run-time safety assessment but also that they
can be integrated into state-of-the-art approaches targeting the functional abstraction
level. This is especially important as safety can not be guaranteed at a single level of
abstraction, but has to be proven at all abstraction levels.

6.2. Limitations and Future Work
Evaluating the concepts of GFM and RoS using the robotic scenario addressed the
applicability of the theoretical work presented in Chapter 3 and Chapter 4 to real-
world applications. However, it also brought focus on the limitations of the current
approaches. These are summarized and used to derive future work in this section.
According to the structure of this work, the next subsection discusses limitations re-
garding the GFM while shortcomings of the concept of RoS are discussed in the fol-
lowing subsection. Finally, general directions for future work on safety in dynamically
composed systems are discussed.

6.2.1. Limitations and Future Work on the Generic Failure Model
The representation of failure characteristics of a marker detection framework as dis-
cussed in Section 5.2 showed that the GFM is able to model multi-dimensional data but
simultaneously underlined existing shortcomings. Starting with limitations regarding
the GFM , the following paragraphs also cover shortcomings of the presented processing
chain and derive future work.

Representing Quantile Functions For using quantile functions to represent one and
multi-dimensional distributions, the GFM applies the approach of standard construc-
tion. This approach is independent of the actual data to be represented but presumes
an ordering of the modeled dimensions, cf. Eq. (3.8). When fitting polynomials to
model the quantile function, this structure has to be represented as well. This causes
inaccuracies when applied to high-dimensional data. The effect could be observed al-

246 6. Conclusions and Future Work

ready for low-dimensional data of a marker detection framework in Chapter 5 where
manual adjustments were necessary to increase the modeling performance.
Therefore, in future work, adequate experiments should firstly investigate the hypoth-
esized origin of these inaccuracies, that is, the quantile function, and secondly research
possible alternatives.
From that, criteria to be fulfilled by appropriate function approximation schemes can be
derived such that increased fitting performance of quantile functions may be obtained.
These criteria could encompass mathematical requirements. For instance, in the one-
dimensional case, the quantile function is an increasing function. Contrarily, the current
usage of polynomials does not respect this requirement. Thus, the fitted polynomials
may not represent appropriate quantile functions.

Calculation of Lipschitz Constants Another limitation stems from the use of Lip-
schitz constants and the calculation of the same. In this work, they are calculated
empirically, that is, by sampling the function in question. However, this does not guar-
antee that the resulting value is indeed the function’s Lipschitz constant. While the
evaluation results show that in both use cases, the GFM and the concept of RoS , this
approximation is sufficient, future work may research alternatives, for instance as pre-
sented in [87]. Building upon the empirically determined gradients of the considered
function, the authors propose to fit a Reverse Weibull distribution and use its location
parameter as an estimate of the Lipschitz constant.

Fitting of Failure Patterns Next to limitations regarding the GFM itself, shortcom-
ings originate in the processing chain for generating the same as well. For instance,
failure patterns are learned using gradient descent in the first stage, cf. Section 3.3.1.
While this enables using alternative function approximation schemes, for instance,
ANN , it is not optimal in combination with polynomials. When using these, the train-
ing data generated through the identification of occurrences can be used to calculate
the optimal weights directly, e.g., using Housholder QR decomposition. Applying such
a method could increase the performance of the identification stage.

Parameterizing Failure Types The second stage of the processing chain (cf. Sec-
tion 3.3.2) employs a sliding window approach to extract training data for representing
time- and value-correlated random distributions of failure types. When configured cor-
rectly, the resulting polynomials represent these adequately. However, the process is
sensitive to variations of these configuration parameters. The applied window size, for
instance, has to be tuned such that the value- and time domains are covered sufficiently
as correlations are not identified correctly otherwise.
The reason is that the number of occurrences accounted to a single window may vary,
which causes unstable results. This effect should be examined in more detail. An
alternative could be to introduce a dynamic window size which is adjusted according
to the number of occurrences found for a failure type in general and for specific parts
of the value- and time domains.

Integration with State-of-the-Art Approaches The overall idea of the GFM is to
describe failure characteristics such that they can be shared between interacting sys-
tems. However, as concluded from the review on different run-time safety assessment

6.2. Limitations and Future Work 247

techniques in Chapter 2, additional information will be required to complement the
process at different abstraction levels. Schneider et al. [46] proposed DDIs to share
general dependability information between systems, for instance. As this idea is sim-
ilar to sharing GFMs, future work can be directed into the question on how to share
GFMs as part of a DDI . Next to sharing a GFM between systems, this would enable
integration with more state-of-the-art approaches.

6.2.2. Limitations and Future Work on Region of Safety
The limitations encountered for the concept of RoS address its conservatism (CLF ,
number of stability points, and worst-case assumption) as well as its applicability to
real-world scenarios (real-time capability, integration with state-of-the-art approaches).
They are discussed in the following paragraphs.

Control Lyapunov Functions The challenge of designing a suitable CLF is known
from literature already [44]. Originated in the approach of RoA, this limitation applies
to RoS as well. As no structured way exists, multiple CLF candidates have to be
evaluated and compared to identify suitable options. This approach was taken for
determining the CLF in Chapter 5 and was described in detail during the evaluation
using the inverted pendulum as well.
In Section 4.3.2, it was derived that a CLF should increase symmetrically around its
minimum to ensure that the calculated set of stabilizing states fully encompasses the
same. Contrarily, when evaluating the concept using the collision avoidance controller,
the asymmetry of the considered failure characteristics FM{N,O,OO} caused the RoA
condition to be unfulfilled for lower values of Dmin, cf. Section 5.3.3. Thus, safety can
be guaranteed using the estimation of RoS only for high values of Dmin ≥ 9.5m.
In future work, this conservatism should be investigated and minimized to increase the
applicability of the approach. For that, one direction to follow is to adjust Theorem 4.1
such that the symmetry of a CLF and asymmetry of considered failure characteristics
do not contradict each other. Specifically, an RoS may not necessarily be a level set of
a CLF function, but it should be a set of states guaranteed to not be left under a given
control strategy. This means that the set of stabilizing states needs to be connected and
encompass the stability point in question, but does not require to extend to a maximum
value of cmax at all costs. In that regard, future work may aim at relaxing or removing
Theorem 4.1’s reliance on a CLF ’s level set and at introducing a notion of connectivity
in the set of stabilizing sets instead. This would also address the limitations associated
with choosing an appropriate value for λc of Algorithm 1.

Number of Stability Points The idea of adjusting the theorems reliance on a CLF
can be extended to solve another limitation encountered during Chapter 5. There, to
overcome the fact that a single RoS can be estimated for a single stability point, a fusion
strategy was proposed to handle control strategies for multiple stability points.
On the one hand, future work can focus on generalizing the presented fusion approach
to achieve applicability to other use cases as well. On the other hand, the assumption
about a single stability point stems from the estimation of RoA and its reliance on
a CLF , which is focused on stability instead of safety. Thus, to shift focus further
towards safety, one should investigate dropping the requirement of having a single

248 6. Conclusions and Future Work

stability point and should focus on defining a region of states that will not be left
instead. For example, investigating the use of general cost functions with more than
one global minimum could provide such functionality.
The results discussed in Section 5.3.2 underlined this hypothesis as RoS associated to
one stability point were estimated to cover the other stability point as well. On the
other hand, varying failure characteristics generated contradicting results, which leaves
this as an open question for future work.

Worst-Case Assumption in Region of Safety Another reason for the conservatism
of the estimated RoS is its worst-case assumption. For each state, an interval of
minimal and maximal failure amplitudes is considered. Based on that, the estimated
RoS provides a guarantee on how the system will behave. On the other hand, this
means that even unlikely state trajectories are considered. In other words, no valid
RoS will be estimated if a single trajectory of states exists that violates the stated
requirements.
As discussed in Chapter 1, however, a system is considered safe if the risk it poses
is tolerable. This means, a single, yet sufficiently unlikely state trajectory leading to
unsafe states could be tolerated. By taking a probabilistic perspective, this aspect
could be integrated into the concept of RoS and the conservatism could be further
reduced. Eq. (4.9) could serve as a starting point where one could examine its relation
to, for instance, Safety Integrity Level (SIL) and Probability of Fails on Demand (PFD)
of the IEC 61508 standard (cf. Section 1.2.2) with respect to such a probabilistic
perspective.
Moreover, with this idea in mind, reachability analysis techniques could be investigated
in future work for estimating RoS as well.

Real-Time Capabilities The evaluations of the RoS presented in this work did not
consider the aspect of execution time. Building upon [45], it is assumed that the
approach can be executed at run-time, but real-time properties are not analyzed yet.
Contrarily, for real-world applications, these properties have to be provided. Therefore,
future work has to show that the reliance of RoS on RoA indeed provides the ability
to adhere to real-time constraints. For that, implementations tuned towards use-case-
specific scenarios are required.

Integration with State-of-the-art Approaches Similarly to the investigation of real-
time capability, the applicability of the RoS to real-world scenarios can be supported
by integrating the concept with other state-of-the-art approaches. In line with the
integration of LoS , one can think about integrating RoS with the approach of ConSert.
For instance, RoS can be considered a process for generating run-time evidence, which
can be used to check whether specified demands and/or assumptions are fulfilled.

6.2.3. Future Work on Safety in Dynamically Composed Systems
Despite their applicability in other fields, the concepts of RoS and GFM were designed
with respect to the challenge of a run-time safety assessment, that is, Challenge 1.4.
However, other challenges were identified in Chapter 1 as well, which need to be ad-
dressed in future work.
Starting with the ODD coverage, where the question arises on how to describe the
context situations in which a system will be if its composition is available only at run-
time. Similar to the GFM , this asks for an explicit representation of context, that is,
a way to describe situations in which a component may be employed and how these
situations influence a component’s nominal and failure behavior. Based on such a
representation, a reasoning mechanism could take a set of components into account
and derive which contextual situations have to be considered during a safety analysis.
Moreover, it could be checked whether the set of available sensors or general data
sources are sufficient to detect all relevant context situations.
On the other hand, such an explicit context description could enable addressing Chal-
lenge 1.2, which asks for whether or not all relevant hazards are identified during a
HARA. Having an explicit description of each component of a system and its relevant
context parameters may enable an automated analysis on which failure behaviors to
expect. In the best-case scenario, it would be possible to derive new hazards for a
dynamic system composition at run-time.
Consequently, a dynamic risk assessment for those hazards would be needed. On the
one hand, the concept of LoS and the idea of a safety kernel [40], [47] provide already
means to assess risks at run-time. On the other hand, this applies only to context
situations identified already at design-time.
A key enabler to truly dynamically composed systems for which safety can be guaran-
teed at design-time and maintained at run-time are explicit descriptions of individual
components with unambiguous interpretations. As shown by this work, only an un-
ambiguous interpretation allows analyzing contents and descriptions at run-time while
providing guarantees about the functional correctness of the employed methods at
design-time.

251

Appendices

253

A. Defining Factors of Risk According
to IEC 61508

Tab. A.1.: Components of risk according to IEC 61508 required for SIL determination [8]. This table
complements the discussion of Section 1.2.2.

Risk Parameter Classification Description

Consequence

C1 Minor injury The classification of
consequences is oriented towards
injuries and death of people and
serves as an example. In
correspondence with
Definition 1.10, other
classifications may be developed.

C2
Serious injuries,
death to one person.

C3
Death to several per-
sons.

C4
Very many people
killed.

Frequency
F1

Rare to more often
exposure. Frequency of, and exposure time

in, the hazardous zone.
F2

Frequent to perma-
nent exposure

Possibility of
avoiding the
hazardous event.

P1
Possible under cer-
tain conditions.

This parameter takes possibilities
into account that exist without
implementing a safety function.P2 Almost impossible.

Probability of
the unwanted
occurrence.

W1

Very slight probabil-
ity, few unwanted oc-
currences are likely.

Estimates the frequency of the
unwanted occurrence without
implementing a safety function
but considering external risk
reduction facilities.W2

Slight probability,
few unwanted occur-
rences are likely.

W3

Relatively high prob-
ability, frequent
unwanted occur-
rences are likely.

255

B. Evaluation Results for the
Identification Stage

Tab. B.1.: Comparing the occurrences of identified failure types to injected occurrences of original
failure type. This table complements the description and results discussed in Section 3.4.2.

FM rO µOverlap µscle

FM{N} [1.00] [1.00] [0.00]

FM{O} [0.98] [0.99] [0.01]

FM{S} [0.97] [0.80] [0.08]

FM{A} [1.00] [0.49] [0.04]

FM{N,O} [1.00, 0.88] [1.00, 0.98] [2.58, 0.02]

FM{N,S} [1.00, 0.47] [1.00, 0.71] [8.40, 0.12]

FM{N,A} [1.00, 1.00] [1.00, 0.48] [47.44, 0.02]

FM{S,O} [0.63, 0.96] [0.50, 0.95] [2.88, 0.14]

FM{O,A} [0.99, 1.00] [0.96, 0.39] [0.42, 0.95]

FM{S,A} [0.82, 1.00] [0.75, 0.43] [0.51, 1.36]

FM{N,S,O} [1.00, 0.13, 0.81] [1.00, 0.40, 0.88] [21.00, 0.52, 0.84]

FM{N,O,A} [1.00, 0.78, 0.72] [1.00, 0.93, 0.39] [54.90, 0.15, 0.97]

FM{N,S,A} [1.00, 0.50, 0.88] [1.00, 0.73, 0.51] [40.43, 0.30, 0.74]

FM{S,O,A} [0.93, 0.86, 1.00] [0.72, 0.35, 0.41] [1.15, 1.05, 1.18]

FM{N,S,O,A} [1.00, 0.15, 0.84, 0.76] [1.00, 0.48, 0.85, 0.46] [38.08, 0.50, 1.98,
0.39]

257

C. Overview of Failure Amplitudes of
Marker Detection Results

0 2 4

0

1

2

3

XG in m

Y
G

in
m

0 1 2 3

0

1

2

3

XG in m

Y
G

in
m

Absolute Mean |µfΘ(k,ok)| Standard Deviation σfΘ(k,ok)

0 5 10 15

0.8

0.82

Time t in s

f Θ
(k

,o
k
)

in
ra

d

ok = [x = 1.1 m y = 0 m Θ = −180°]T

0 5 10 15
0

2

4

6
·10−2

Time t in s

f Θ
(k

,o
k
)

in
ra

d

ok = [x = 1.1 m y = 0 m Θ = 45°]T

Fig. C.1.: Visualizing the failure amplitudes affecting the Θ component of the pose observations
provided by the marker detection framework. Similar to Fig. 5.9, the upper plots illustrate the
magnitude of the mean and standard deviations calculated from the failure amplitudes of the Θ
component observed for the associated positions. However, as only Θ is considered in this case, that
is, only one dimension, the radius of the circles of the upper plots indicates the magnitude. For
illustrating the circles a ratio of 1m : 2 rad is assumed such that the size of the circle can be displayed
with respect to the x and y components. The lower diagrams show exemplary time series of failure
amplitudes observed at the indicated positions.

259

Bibliography
[1] E. Chindenga, M. S. Scott, and C. Gurajena, “Semantics based service orchestra-

tion in iot,” in Proceedings of the South African Institute of Computer Scientists
and Information Technologists, ser. SAICSIT ’17, Thaba ’Nchu, South Africa:
Association for Computing Machinery, 2017. doi: 10.1145/3129416.3129438.

[2] M. Milošević, M. Đurđev, D. Lukić, A. Antić, and N. Ungureanu, “Intelligent
process planning for smart factory and smart manufacturing,” in Proceedings of
5th International Conference on the Industry 4.0 Model for Advanced Manufac-
turing, L. Wang, V. D. Majstorovic, D. Mourtzis, E. Carpanzano, G. Moroni,
and L. M. Galantucci, Eds., Cham: Springer International Publishing, 2020,
pp. 205–214.

[3] S. Aheleroff, X. Xu, R. Y. Zhong, and Y. Lu, “Digital twin as a service (dtaas)
in industry 4.0: An architecture reference model,” Advanced Engineering Infor-
matics, vol. 47, p. 101 225, 2021. doi: 10.1016/j.aei.2020.101225.

[4] A. Atta, S. Abbas, M. A. Khan, G. Ahmed, and U. Farooq, “An adaptive ap-
proach: Smart traffic congestion control system,” Journal of King Saud Univer-
sity - Computer and Information Sciences, vol. 32, no. 9, pp. 1012–1019, 2020.
doi: 10.1016/j.jksuci.2018.10.011.

[5] R. Mason, “Developing a profitable online grocery logistics business: Exploring
innovations in ordering, fulfilment, and distribution at ocado,” in Contemporary
Operations and Logistics: Achieving Excellence in Turbulent Times, P. Wells, Ed.
Cham: Springer International Publishing, 2019, pp. 365–383. doi: 10.1007/978-
3-030-14493-7_19.

[6] A. Bolu and Ö. Korçak, “Adaptive task planning for multi-robot smart ware-
house,” IEEE Access, vol. 9, pp. 27 346–27 358, 2021. doi: 10.1109/ACCESS.
2021.3058190.

[7] G. Jäger, S. Zug, and A. Casimiro, “Generic sensor failure modeling for cooper-
ative systems,” Sensors, vol. 18, no. 3, 2018. doi: 10.3390/s18030925.

[8] I. E. Commission, “Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems (E/E/PE, or E/E/PES),” International Elec-
trotechnical Commission (IEC), Geneva, CH, Standard, 2018.

[9] R. Bell, “Introduction to iec 61508,” in ACM International Conference Proceed-
ing Series, vol. 162, 2006, pp. 3–12.

[10] M. Chaari, “Formalization and model-driven support of functional safety anal-
ysis,” Ph.D. dissertation, Technische Universität München, 2020.

[11] T. Meany, “Functional safety and industrie 4.0,” in 2017 28th Irish Signals and
Systems Conference (ISSC), 2017, pp. 1–7. doi: 10.1109/ISSC.2017.7983633.

https://doi.org/10.1145/3129416.3129438
https://doi.org/10.1016/j.aei.2020.101225
https://doi.org/10.1016/j.jksuci.2018.10.011
https://doi.org/10.1007/978-3-030-14493-7_19
https://doi.org/10.1007/978-3-030-14493-7_19
https://doi.org/10.1109/ACCESS.2021.3058190
https://doi.org/10.1109/ACCESS.2021.3058190
https://doi.org/10.3390/s18030925
https://doi.org/10.1109/ISSC.2017.7983633

260 Bibliography

[12] I. E. Commission, “Programmable Controllers - Functional Safety,” Interna-
tional Electrotechnical Commission, Geneva, CH, Standard, 2012.

[13] I. O. for Standardization, “Road vehicles - Functional safety,” International Or-
ganization for Standardization, Geneva, CH, Standard, 2018.

[14] E. C. for Standardization (CEN), “Railway applications - communication, sig-
nalling and processing systems - software for railway control and protection
systems,” European Committee for Standardization (CEN), Standard, 2012.

[15] R. T. C. for Aeronautics, “Software consideration in airborne systems & equip-
ment certification,” Radio Technical Commission for Aeronautics, Standard,
2012.

[16] I. E. Commission, “Functional safety - Safety instrumented systems for the pro-
cess industry sector,” International Electrotechnical Commission, Geneva, CH,
Standard, 2020.

[17] I. O. for Standardization, “Safety of machinery - Safety-related parts of control
systems,” International Organization for Standardization, Geneva, CH, Stan-
dard, 2015.

[18] I. E. Commission, “Safety of machinery - Functional safety of safety-related
control systems,” International Electrotechnical Commission, Geneva, CH, Stan-
dard, 2021.

[19] I. O. for Standardization, “Road vehicles - Safety of the intended functionality,”
International Organization for Standardization, Geneva, CH, Standard, 2019.

[20] I. Häring, “The standard iec 61508 and its safety life cycle,” in Technical Safety,
Reliability and Resilience: Methods and Processes. Singapore: Springer Singa-
pore, 2021, pp. 193–207. doi: 10.1007/978-981-33-4272-9_11.

[21] S. Mathur and S. Malik, “Advancements in the v-model,” International Journal
of Computer Applications, vol. 1, no. 12, pp. 29–34, 2010.

[22] E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-of-
the-art in modeling, analysis and tools,” Computer Science Review, vol. 15-16,
pp. 29–62, 2015. doi: 10.1016/j.cosrev.2015.03.001.

[23] A. Birolini, Reliability & Availability of Repairable Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2017, pp. 169–310. doi: 10.1007/978-3-662-
54209-5_6.

[24] P. Fuchs and J. Zajı́ček, “Safety integrity level (sil) versus full quantitative risk
value,” 2013.

[25] M. Shamsuzzoha and S. Skogestad, “The setpoint overshoot method: A sim-
ple and fast closed-loop approach for pid tuning,” Journal of Process Control,
vol. 20, no. 10, pp. 1220–1234, 2010. doi: 10.1016/j.jprocont.2010.08.003.

[26] R. Salay, R. Queiroz, and K. Czarnecki, “An analysis of iso 26262: Using machine
learning safely in automotive software,” arXiv preprint arXiv:1709.02435, 2017.

https://doi.org/10.1007/978-981-33-4272-9_11
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1007/978-3-662-54209-5_6
https://doi.org/10.1007/978-3-662-54209-5_6
https://doi.org/10.1016/j.jprocont.2010.08.003

261

[27] G. Jäger, S. Zug, T. Brade, A. Dietrich, C. Steup, C. Moewes, and A. Cretu,
“Assessing neural networks for sensor fault detection,” in 2014 IEEE Inter-
national Conference on Computational Intelligence and Virtual Environments
for Measurement Systems and Applications (CIVEMSA), 2014, pp. 70–75. doi:
10.1109/CIVEMSA.2014.6841441.

[28] T. Brade, G. Jäger, S. Zug, and J. Kaiser, “Sensor- and environment depen-
dent performance adaptation for maintaining safety requirements,” in Com-
puter Safety, Reliability, and Security, A. Bondavalli, A. Ceccarelli, and F. Ort-
meier, Eds., Cham: Springer International Publishing, 2014, pp. 46–54. doi:
10.1007/978-3-319-10557-4_7.

[29] G. Jaeger, T. Brade, and S. Zug, “Using failure semantics to maintain safety for
dynamic composed systems,” in ARCS 2016; 29th International Conference on
Architecture of Computing Systems, 2016, pp. 1–7.

[30] J. Höbel, G. Jäger, S. Zug, and A. Wendemuth, “Towards a sensor failure-
dependent performance adaptation using the validity concept,” in Computer
Safety, Reliability, and Security, S. Tonetta, E. Schoitsch, and F. Bitsch, Eds.,
Cham: Springer International Publishing, 2017, pp. 270–286.

[31] G. Jäger, K. Kirchheim, F. Schrödel, and S. Zug, “Multi-dimensional failure
modeling for shared data in cooperative systems,” IFAC-PapersOnLine, 2020,
IFAC World Congress 2020.

[32] G. Jäger, J. Schleiss, S. Usanavasin, S. Stober, and S. Zug, “Analyzing regions
of safety for handling shared data in cooperative systems,” in 2020 25th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA), vol. 1, 2020, pp. 628–635. doi: 10.1109/ETFA46521.2020.9211932.

[33] G. Jäger, C. A. Mueller, M. Thosar, S. Zug, and A. Birk, “Towards robot-centric
conceptual knowledge acquisition,” Robots that Learn and Reason Workshop in
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018.

[34] M. Thosar, C. A. Mueller, G. Jäger, J. Schleiss, N. Pulugu, R. Mallikarjun
Chennaboina, S. V. Rao Jeevangekar, A. Birk, M. Pfingsthorn, and S. Zug,
“From multi-modal property dataset to robot-centric conceptual knowledge
about household objects,” Frontiers in Robotics and AI, vol. 8, p. 87, 2021.
doi: 10.3389/frobt.2021.476084.

[35] M. Thosar, C. A. Mueller, G. Jaeger, M. Pfingsthorn, M. Beetz, S. Zug, and
T. Mossakowski, “Substitute selection for a missing tool using robot-centric
conceptual knowledge of objects,” in Proceedings of the 35th Annual ACM Sym-
posium on Applied Computing. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 972–979.

[36] O. Jaradat, I. Sljivo, R. Hawkins, and I. Habli, “Modular safety cases for the
assurance of industry 4.0,” in 28th Safety-Critical Systems Symposium, Feb.
2020.

[37] J. Reich, D. Schneider, I. Sorokos, Y. Papadopoulos, T. Kelly, R. Wei, E. Ar-
mengaud, and C. Kaypmaz, “Engineering of runtime safety monitors for cyber-
physical systems with digital dependability identities,” in Computer Safety, Re-
liability, and Security, A. Casimiro, F. Ortmeier, F. Bitsch, and P. Ferreira, Eds.,
Cham: Springer International Publishing, 2020, pp. 3–17.

https://doi.org/10.1109/CIVEMSA.2014.6841441
https://doi.org/10.1007/978-3-319-10557-4_7
https://doi.org/10.1109/ETFA46521.2020.9211932
https://doi.org/10.3389/frobt.2021.476084

262 Bibliography

[38] D. Schneider and M. Trapp, “Conditional safety certification of open adaptive
systems,” ACM Trans. Auton. Adapt. Syst., vol. 8, no. 2, pp. 1–20, Jul. 2013.
doi: 10.1145/2491465.2491467.

[39] S. Müller and P. Liggesmeyer, “Dynamic safety contracts for functional coop-
eration of automotive systems,” in Computer Safety, Reliability, and Security,
A. Skavhaug, J. Guiochet, E. Schoitsch, and F. Bitsch, Eds., Cham: Springer
International Publishing, 2016, pp. 171–182.

[40] A. Casimiro, J. Rufino, R. C. Pinto, E. Vial, E. M. Schiller, O. Morales-Ponce,
and T. Petig, “A kernel-based architecture for safe cooperative vehicular func-
tions,” in Proceedings of the 9th IEEE International Symposium on Industrial
Embedded Systems (SIES 2014), 2014, pp. 228–237. doi: 10.1109/SIES.2014.
6871208.

[41] J. Rushby, “Runtime certification,” in Runtime Verification, M. Leucker, Ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 21–35.

[42] S. Kabir, “An overview of fault tree analysis and its application in model based
dependability analysis,” Expert Systems with Applications, vol. 77, pp. 114–135,
2017. doi: 10.1016/j.eswa.2017.01.058.

[43] R. Kianfar, P. Falcone, and J. Fredriksson, “Reachability analysis of cooperative
adaptive cruise controller,” in 2012 15th International IEEE Conference on
Intelligent Transportation Systems, 2012, pp. 1537–1542. doi: 10.1109/ITSC.
2012.6338839.

[44] T. Sánchez and J. A. Moreno, “A constructive lyapunov function design method
for a class of homogeneous systems,” in 53rd IEEE Conference on Decision and
Control, 2014, pp. 5500–5505. doi: 10.1109/CDC.2014.7040249.

[45] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe learning of
regions of attraction for uncertain, nonlinear systems with gaussian processes,”
in 2016 IEEE 55th Conference on Decision and Control (CDC), 2016, pp. 4661–
4666. doi: 10.1109/CDC.2016.7798979.

[46] D. Schneider, M. Trapp, Y. Papadopoulos, E. Armengaud, M. Zeller, and K.
Höfig, “Wap: Digital dependability identities,” in 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), 2015, pp. 324–329.
doi: 10.1109/ISSRE.2015.7381825.

[47] A. Casimiro, J. Kaiser, E. M. Schiller, P. Costa, J. Parizi, R. Johansson, and R.
Librino, “The karyon project: Predictable and safe coordination in cooperative
vehicular systems,” in 2013 43rd Annual IEEE/IFIP Conference on Dependable
Systems and Networks Workshop (DSN-W), 2013, pp. 1–12. doi: 10.1109/
DSNW.2013.6615530.

[48] T. Brade, “Failure algebra to validate sensor data,” Ph.D. Thesis, Otto-von-
Guericke Universität Magdeburg, Jul. 31, 2017.

[49] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end safe
reinforcement learning through barrier functions for safety-critical continuous
control tasks,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 01, pp. 3387–3395, Jul. 2019. doi: 10.1609/aaai.v33i01.33013387.

https://doi.org/10.1145/2491465.2491467
https://doi.org/10.1109/SIES.2014.6871208
https://doi.org/10.1109/SIES.2014.6871208
https://doi.org/10.1016/j.eswa.2017.01.058
https://doi.org/10.1109/ITSC.2012.6338839
https://doi.org/10.1109/ITSC.2012.6338839
https://doi.org/10.1109/CDC.2014.7040249
https://doi.org/10.1109/CDC.2016.7798979
https://doi.org/10.1109/ISSRE.2015.7381825
https://doi.org/10.1109/DSNW.2013.6615530
https://doi.org/10.1109/DSNW.2013.6615530
https://doi.org/10.1609/aaai.v33i01.33013387

263

[50] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[51] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-based
reinforcement learning with stability guarantees,” Advances in neural informa-
tion processing systems, vol. 30, 2017.

[52] E. Balaban, A. Saxena, P. Bansal, K. F. Goebel, and S. Curran, “Modeling,
detection, and disambiguation of sensor faults for aerospace applications,” IEEE
Sensors Journal, vol. 9, no. 12, pp. 1907–1917, Dec. 2009. doi: 10.1109/JSEN.
2009.2030284.

[53] X. Dai, F. Qin, Z. Gao, K. Pan, and K. Busawon, “Model-based on-line sensor
fault detection in wireless sensor actuator networks,” in 2015 IEEE 13th Inter-
national Conference on Industrial Informatics (INDIN), Jul. 2015, pp. 556–561.
doi: 10.1109/INDIN.2015.7281794.

[54] J. Feng, S. Megerian, and M. Potkonjak, “Model-based calibration for sensor
networks,” in SENSORS, 2003 IEEE, vol. 2, 2003, 737–742 Vol.2. doi: 10.
1109/ICSENS.2003.1279039.

[55] S. Zug, A. Dietrich, and J. Kaiser, “Fault diagnosis in robotic and industrial
systems,” in Fault Diagnosis in Robotic and Industrial Systems. St. Franklin,
Australia: Concept Press Ltd., 2012, ch. Fault-Handling in Networked Sensor
Systems.

[56] S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (tof) cameras: A sur-
vey,” IEEE Sensors Journal, vol. 11, no. 9, pp. 1917–1926, Sep. 2011. doi:
10.1109/JSEN.2010.2101060.

[57] S. Kabadayi, A. Pridgen, and C. Julien, “Virtual sensors: Abstracting data from
physical sensors,” in 2006 International Symposium on a World of Wireless,
Mobile and Multimedia Networks(WoWMoM’06), 2006, 6 pp.–592. doi: 10 .
1109/WOWMOM.2006.115.

[58] Continental. “Ars 404-21.” (Feb. 17, 2021), [Online]. Available: https://www.
continental-automotive.com/getattachment/99443083-31fb-4345-9b84-
6a02707041d4/ARS404-21_datasheet_en_170707_V07.pdf.pdf (Last Ac-
cessed Feb. 17, 2021).

[59] Hokuyo. “Urg-04lx-ug01.” (Feb. 17, 2021), [Online]. Available: https://www.
hokuyo-aut.jp/search/single.php?serial=166 (Last Accessed Feb. 17,
2021).

[60] R. J. Moffat, “Describing the uncertainties in experimental results,” Experimen-
tal Thermal and Fluid Science, vol. 1, no. 1, pp. 3–17, 1988. doi: 10.1016/0894-
1777(88)90043-X.

[61] J. JCGM et al., “Evaluation of measurement data—guide to the expression of
uncertainty in measurement,” Int. Organ. Stand. Geneva ISBN, vol. 50, p. 134,
2008.

[62] Y. Dodge, “Central limit theorem,” in The Concise Encyclopedia of Statistics.
New York, NY: Springer New York, 2008, pp. 66–68. doi: 10.1007/978-0-387-
32833-1_50.

https://doi.org/10.1109/JSEN.2009.2030284
https://doi.org/10.1109/JSEN.2009.2030284
https://doi.org/10.1109/INDIN.2015.7281794
https://doi.org/10.1109/ICSENS.2003.1279039
https://doi.org/10.1109/ICSENS.2003.1279039
https://doi.org/10.1109/JSEN.2010.2101060
https://doi.org/10.1109/WOWMOM.2006.115
https://doi.org/10.1109/WOWMOM.2006.115
https://www.continental-automotive.com/getattachment/99443083-31fb-4345-9b84-6a02707041d4/ARS404-21_datasheet_en_170707_V07.pdf.pdf
https://www.continental-automotive.com/getattachment/99443083-31fb-4345-9b84-6a02707041d4/ARS404-21_datasheet_en_170707_V07.pdf.pdf
https://www.continental-automotive.com/getattachment/99443083-31fb-4345-9b84-6a02707041d4/ARS404-21_datasheet_en_170707_V07.pdf.pdf
https://www.hokuyo-aut.jp/search/single.php?serial=166
https://www.hokuyo-aut.jp/search/single.php?serial=166
https://doi.org/10.1016/0894-1777(88)90043-X
https://doi.org/10.1016/0894-1777(88)90043-X
https://doi.org/10.1007/978-0-387-32833-1_50
https://doi.org/10.1007/978-0-387-32833-1_50

264 Bibliography

[63] E. Elnahrawy and B. Nath, “Cleaning and querying noisy sensors,” in Proceed-
ings of the 2Nd ACM International Conference on Wireless Sensor Networks
and Applications, ser. WSNA ’03, San Diego, CA, USA: ACM, 2003, pp. 78–87.
doi: 10.1145/941350.941362.

[64] Y. Kim and H. Bang, “Introduction to kalman filter and its applications,” In-
troduction and Implementations of the Kalman Filter, vol. 1, pp. 1–16, 2018.

[65] Y. Wang, N. Masoud, and A. Khojandi, “Real-time sensor anomaly detection
and recovery in connected automated vehicle sensors,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–11, 2020. doi: 10.1109/TITS.2020.
2970295.

[66] M. A. Cooper, J. F. Raquet, and R. Patton, “Range information characterization
of the hokuyo ust-20lx lidar sensor,” Photonics, vol. 5, no. 2, 2018. doi: 10.3390/
photonics5020012.

[67] S. A. Hiremath, G. W. van der Heijden, F. K. van Evert, A. Stein, and C. J.
ter Braak, “Laser range finder model for autonomous navigation of a robot in
a maize field using a particle filter,” Computers and Electronics in Agriculture,
vol. 100, pp. 41–50, 2014. doi: 10.1016/j.compag.2013.10.005.

[68] S. S. Dasika, M. P. Sama, L. F. Pampolini, and C. B. Good, “Performance
validation of a multi-channel lidar sensor: Assessing the effects of target height
and sensor velocity on measurement error,” Transactions of the ASABE, vol. 62,
no. 1, pp. 231–244, 2019.

[69] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi,
E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor network data
fault types,” ACM Trans. Sen. Netw., vol. 5, no. 3, 25:1–25:29, Jun. 2009. doi:
10.1145/1525856.1525863.

[70] T. Muhammed and R. A. Shaikh, “An analysis of fault detection strategies
in wireless sensor networks,” Journal of Network and Computer Applications,
vol. 78, pp. 267–287, 2017. doi: 10.1016/j.jnca.2016.10.019.

[71] M. Fagbemi, M. G. Perhinschi, and G. Al-Sinbol, “Modeling of upset sensor op-
eration for autonomous unmanned systems applications,” International Journal
of Intelligent Unmanned Systems, 2019.

[72] L. Al Shalabi, Z. Shaaban, and B. Kasasbeh, “Data mining: A preprocessing
engine,” Journal of Computer Science, vol. 2, no. 9, pp. 735–739, 2006.

[73] W. Gilchrist, Statistical modelling with quantile functions. Chapman and
Hall/CRC, 2000.

[74] J. H. Friedman, The elements of statistical learning: Data mining, inference,
and prediction. springer open, 2017.

[75] R. Serfling, “Quantile functions for multivariate analysis: Approaches and ap-
plications,” Statistica Neerlandica, vol. 56, no. 2, pp. 214–232, 2002. doi: 10.
1111/1467-9574.00195.

[76] F. Belzunce, A. Castaño, A. Olvera-Cervantes, and A. Suárez-Llorens, “Quan-
tile curves and dependence structure for bivariate distributions,” Computational
Statistics & Data Analysis, vol. 51, no. 10, pp. 5112–5129, 2007. doi: 10.1016/
j.csda.2006.08.017.

https://doi.org/10.1145/941350.941362
https://doi.org/10.1109/TITS.2020.2970295
https://doi.org/10.1109/TITS.2020.2970295
https://doi.org/10.3390/photonics5020012
https://doi.org/10.3390/photonics5020012
https://doi.org/10.1016/j.compag.2013.10.005
https://doi.org/10.1145/1525856.1525863
https://doi.org/10.1016/j.jnca.2016.10.019
https://doi.org/10.1111/1467-9574.00195
https://doi.org/10.1111/1467-9574.00195
https://doi.org/10.1016/j.csda.2006.08.017
https://doi.org/10.1016/j.csda.2006.08.017

265

[77] R. Y. Liu, J. M. Parelius, and K. Singh, “Multivariate analysis by data depth:
descriptive statistics, graphics and inference, (with discussion and a rejoinder
by Liu and Singh),” The Annals of Statistics, vol. 27, no. 3, pp. 783–858, 1999.
doi: 10.1214/aos/1018031260.

[78] P. Chaudhuri, “On a geometric notion of quantiles for multivariate data,” Jour-
nal of the American Statistical Association, vol. 91, no. 434, pp. 862–872, 1996.
doi: 10.1080/01621459.1996.10476954.

[79] P. Joslin, “Multivariate comparisons of random vectors with applications,”
Ph.D. dissertation, Universidade de Murcia, May 2012, pp. 25–26.

[80] J. Fernandez-Ponce and A. Suarez-Llorens, “A multivariate dispersion ordering
based on quantiles more widely separated,” Journal of Multivariate Analysis,
vol. 85, no. 1, pp. 40–53, 2003.

[81] M. Ben-Daya, D. Ait-Kadi, S. O. Duffuaa, J. Knezevic, and A. Raouf, Handbook
of maintenance management and engineering. Springer, 2009, vol. 7.

[82] L. D. Branges, “The stone-weierstrass theorem,” Proceedings of the American
Mathematical Society, vol. 10, no. 5, pp. 822–824, 1959.

[83] N. E. Cotter, “The stone-weierstrass theorem and its application to neural net-
works,” IEEE Transactions on Neural Networks, vol. 1, no. 4, pp. 290–295, 1990.
doi: 10.1109/72.80265.

[84] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-
function networks,” Neural computation, vol. 3, no. 2, pp. 246–257, 1991.

[85] R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, and M. Steinbrecher, Compu-
tational intelligence: a methodological introduction. Springer, 2016.

[86] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma, “Finding approx-
imate local minima faster than gradient descent,” in Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, ser. STOC 2017,
Montreal, Canada: Association for Computing Machinery, 2017, pp. 1195–1199.
doi: 10.1145/3055399.3055464.

[87] G. Wood and B. Zhang, “Estimation of the lipschitz constant of a function,”
Journal of Global Optimization, vol. 8, no. 1, pp. 91–103, 1996.

[88] T. Hickey, Q. Ju, and M. H. Van Emden, “Interval arithmetic: From principles
to implementation,” J. ACM, vol. 48, no. 5, pp. 1038–1068, Sep. 2001. doi:
10.1145/502102.502106.

[89] S. Mallat, A wavelet tour of signal processing, Third Edition, M. Stéphane, Ed.
Academic Press, 2009.

[90] Y. Lei, T. Hu, G. Li, and K. Tang, Stochastic gradient descent for nonconvex
learning without bounded gradient assumptions, 2019.

[91] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic
differentiation in machine learning: A survey,” Journal of machine learning re-
search, vol. 18, 2018.

[92] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,”
in International Conference on Learning Representations, 2018.

https://doi.org/10.1214/aos/1018031260
https://doi.org/10.1080/01621459.1996.10476954
https://doi.org/10.1109/72.80265
https://doi.org/10.1145/3055399.3055464
https://doi.org/10.1145/502102.502106

266 Bibliography

[93] M. Daigle and I. Roychoudhury, “Qualitative event-based diagnosis: Case study
on the second international diagnostic competition,” 2010.

[94] H. Sak, A. Senior, and F. Beaufays, Long short-term memory based recurrent
neural network architectures for large vocabulary speech recognition, 2014.

[95] B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich, “A survey on
long short-term memory networks for time series prediction,” Procedia CIRP,
vol. 99, pp. 650–655, 2021, 14th CIRP Conference on Intelligent Computation
in Manufacturing Engineering, 15-17 July 2020. doi: 10.1016/j.procir.2021.
03.088.

[96] P. I. Frazier, A tutorial on bayesian optimization, 2018.
[97] Y. Rubner, C. Tomasi, and L. Guibas, “A metric for distributions with appli-

cations to image databases,” in Sixth International Conference on Computer
Vision (IEEE Cat. No.98CH36271), 1998, pp. 59–66. doi: 10 . 1109 / ICCV .
1998.710701.

[98] F. Amato, C. Cosentino, and A. Merola, “On the region of attraction of nonlinear
quadratic systems,” Automatica, vol. 43, no. 12, pp. 2119–2123, 2007. doi: 10.
1016/j.automatica.2007.03.022.

[99] Q. Hu, B. Li, D. Wang, and E. K. Poh, “Velocity-free fault-tolerant control al-
location for flexible spacecraft with redundant thrusters,” International Journal
of Systems Science, vol. 46, no. 6, pp. 976–992, 2015. doi: 10.1080/00207721.
2013.803634.

[100] R. C. Avram, X. Zhang, and J. Muse, “Quadrotor actuator fault diagnosis and
accommodation using nonlinear adaptive estimators,” IEEE Transactions on
Control Systems Technology, vol. 25, no. 6, pp. 2219–2226, 2017. doi: 10.1109/
TCST.2016.2640941.

[101] P. E. Protter, “Stochastic differential equations,” in Stochastic Integration and
Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 249–361. doi: 10.1007/978-3-662-10061-5_6.

[102] W. Krämer, “Generalized intervals and the dependency problem,” PAMM,
vol. 6, no. 1, pp. 683–684, 2006. doi: 10.1002/pamm.200610322.

[103] ——, “Generalized intervals and the dependency problem,” PAMM, vol. 6, no. 1,
pp. 683–684, 2006. doi: 10.1002/pamm.200610322.

[104] F. Grasser, A. D’arrigo, S. Colombi, and A. C. Rufer, “Joe: A mobile, inverted
pendulum,” IEEE Transactions on industrial electronics, vol. 49, no. 1, pp. 107–
114, 2002.

[105] C. Aguilar-Ibanez, “A constructive lyapunov function for controlling the inverted
pendulum,” in 2008 American Control Conference, 2008, pp. 5145–5149. doi:
10.1109/ACC.2008.4587311.

[106] C. Anderson, “Learning to control an inverted pendulum using neural networks,”
IEEE Control Systems Magazine, vol. 9, no. 3, pp. 31–37, 1989. doi: 10.1109/
37.24809.

https://doi.org/10.1016/j.procir.2021.03.088
https://doi.org/10.1016/j.procir.2021.03.088
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.1016/j.automatica.2007.03.022
https://doi.org/10.1016/j.automatica.2007.03.022
https://doi.org/10.1080/00207721.2013.803634
https://doi.org/10.1080/00207721.2013.803634
https://doi.org/10.1109/TCST.2016.2640941
https://doi.org/10.1109/TCST.2016.2640941
https://doi.org/10.1007/978-3-662-10061-5_6
https://doi.org/10.1002/pamm.200610322
https://doi.org/10.1002/pamm.200610322
https://doi.org/10.1109/ACC.2008.4587311
https://doi.org/10.1109/37.24809
https://doi.org/10.1109/37.24809

267

[107] M. Hehn and R. D’Andrea, “A flying inverted pendulum,” in 2011 IEEE In-
ternational Conference on Robotics and Automation, 2011, pp. 763–770. doi:
10.1109/ICRA.2011.5980244.

[108] T. Maeba, M. Deng, A. Yanou, and T. Henmi, “Swing-up controller design for
inverted pendulum by using energy control method based on lyapunov function,”
in Proceedings of the 2010 International Conference on Modelling, Identification
and Control, 2010, pp. 768–773.

[109] J. Butcher and G. Wanner, “Runge-kutta methods: Some historical notes,” Ap-
plied Numerical Mathematics, vol. 22, no. 1, pp. 113–151, 1996, Special Issue
Celebrating the Centenary of Runge-Kutta Methods. doi: 10.1016/S0168-
9274(96)00048-7.

[110] F. Tajti, G. Szayer, B. Kovács, and P. Korondi, “Robot base with holonomic
drive,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 5715–5720, 2014, 19th
IFAC World Congress. doi: 10.3182/20140824-6-ZA-1003.00785.

[111] G. Indiveri, “Swedish wheeled omnidirectional mobile robots: Kinematics anal-
ysis and control,” IEEE Transactions on Robotics, vol. 25, no. 1, pp. 164–171,
2009. doi: 10.1109/TRO.2008.2010360.

[112] V. Strobel, E. Castelló Ferrer, and M. Dorigo, “Blockchain technology secures
robot swarms: A comparison of consensus protocols and their resilience to byzan-
tine robots,” Frontiers in Robotics and AI, vol. 7, 2020. doi: 10.3389/frobt.
2020.00054.

[113] G. Wampfler, M. Salecker, and J. Wittenburg, “Kinematics, dynamics, and con-
trol of omnidirectional vehicles with mecanum wheels,” Mechanics of Struc-
tures and Machines, vol. 17, no. 2, pp. 165–177, 1989. doi: 10 . 1080 /
15397738909412814.

[114] K. McGuire, G. de Croon, and K. Tuyls, “A comparative study of bug algorithms
for robot navigation,” Robotics and Autonomous Systems, vol. 121, p. 103 261,
2019. doi: 10.1016/j.robot.2019.103261.

[115] A. Morar, A. Moldoveanu, I. Mocanu, F. Moldoveanu, I. E. Radoi, V. Asavei,
A. Gradinaru, and A. Butean, “A comprehensive survey of indoor localization
methods based on computer vision,” Sensors, vol. 20, no. 9, 2020. doi: 10.3390/
s20092641.

[116] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial detection,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 4193–4198. doi: 10.1109/IROS.2016.7759617.

https://doi.org/10.1109/ICRA.2011.5980244
https://doi.org/10.1016/S0168-9274(96)00048-7
https://doi.org/10.1016/S0168-9274(96)00048-7
https://doi.org/10.3182/20140824-6-ZA-1003.00785
https://doi.org/10.1109/TRO.2008.2010360
https://doi.org/10.3389/frobt.2020.00054
https://doi.org/10.3389/frobt.2020.00054
https://doi.org/10.1080/15397738909412814
https://doi.org/10.1080/15397738909412814
https://doi.org/10.1016/j.robot.2019.103261
https://doi.org/10.3390/s20092641
https://doi.org/10.3390/s20092641
https://doi.org/10.1109/IROS.2016.7759617

Versicherung
Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die
aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche
kenntlich gemacht.
Die Hilfe eines Promotionsberaters habe ich nicht in Anspruch genommen. Weitere
Personen haben von mir keine geldwerten Leistungen für Arbeiten erhalten, die nicht als
solche kenntlich gemacht worden sind. Die Arbeit wurde bisher weder im Inland noch im
Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

July 04th, 2022 M. Sc. Georg Jäger

Declaration
I hereby declare that I completed this work without any improper help from a third
party and without using any aids other than those cited. All ideas derived directly or
indirectly from other sources are identified as such.
I did not seek the help of a professional doctorate-consultant. Only those persons
identified as having done so received any financial payment from me for any work done
for me. This thesis has not previously been published in the same or a similar form in
Germany or abroad.

July 04th, 2022 M. Sc. Georg Jäger

	List of Acronyms
	List of Figures
	List of Tables
	Introduction – Safety in Future Smart Industries
	The Example of Smart Warehouses
	Functional Safety Standards
	Overview of Functional Safety Standards
	IEC 61508

	Scope of this Thesis
	Objectives
	Contributions
	Outline

	Related Publications by the Author
	Mathematical Notation

	State of the Art
	State of the Art in Run-Time Safety Assessment
	Approaches at the Functional Level
	Approaches at the Technical Level
	Conclusions

	State of the Art in Failure Modeling
	The Definition of (Sensor) Failure Model
	Interval-Based Failure Modeling
	Distribution-Based Failure Modeling
	Failure-Type-Based Failure Modeling
	Conclusions

	Conclusions from the State of the Art

	Generic Failure Model
	Defining the Generic Failure Model
	Time- and Value-Correlated Random Distribution
	A Failure Type's Failure Amplitudes
	A Failure Type's State Function
	Polynomial Representation of a Failure Type
	Discussion on the Fulfillment of the Predefined Criteria

	Converting a Generic Failure Model to an Interval
	Converting a Time- and Value-Correlated Random Distribution
	A Failure Type's Interval

	Processing Chain for Generating Generic Failure Models
	Identifying Failure Types
	Parameterizing Failure Types
	Confidence Calculation

	Exemplary Application to Artificial Failure Characteristics
	Generating the Artificial Data Set – Manually Designing gfm
	Identifying Failure Types
	Parameterizing Failure Types
	Confidence Calculation
	Comparison to State-of-the-Art Models

	Summary

	Region of Safety
	Explicitly Modeling Uncertainties for Dynamically Composed Systems
	Regions of Safety for Dynamically Composed Systems
	Estimating Regions of Attraction in Presence of Uncertainty
	Introducing the Concept of Region of Safety
	Discussion on the Fulfillment of the Predefined Criteria

	Evaluating the Concept of Region of Safety
	Defining the Scenario and Considered Uncertainties
	Designing a Control Lyapunov Function
	Determining an Appropriate Value for _c
	The Effect of Varying Sensor Failures on Regions of Safety

	Summary

	Evaluation and Integration
	Multi-Robot Collision Avoidance
	Assumptions
	Design of the Circle and Navigation Scenarios
	Kinematics
	Control Policy
	Intention Modeling by Model Uncertainty
	Fusing Regions of Safety of Multiple Stability Points

	Failure Modeling for Shared Data – A Marker Detection Failure Model
	Data Acquisition
	Failure Model Generation
	Evaluating the Quality of the Failure Model

	Safe Handling of Shared Data in a Collision Avoidance Strategy
	Configuration for Region of Safety Estimation
	Estimating Regions of Safety
	Evaluation Using the Circle Scenario
	Evaluation Using the Navigation Scenario

	Summary

	Conclusions and Future Work
	Summary
	Limitations and Future Work
	Limitations and Future Work on the Generic Failure Model
	Limitations and Future Work on Region of Safety
	Future Work on Safety in Dynamically Composed Systems

	Appendices
	Defining Factors of Risk According to IEC 61508
	Evaluation Results for the Identification Stage
	Overview of Failure Amplitudes of Marker Detection Results
	Bibliography

