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Boosting and lassoing new prostate 
cancer SNP risk factors and their 
connection to selenium
David E. Booth1*, Venugopal Gopalakrishna‑Remani2, Matthew L. Cooper3, 
Fiona R. Green4 & Margaret P. Rayman5

We begin by arguing that the often used algorithm for the discovery and use of disease risk factors, 
stepwise logistic regression, is unstable. We then argue that there are other algorithms available that 
are much more stable and reliable (e.g. the lasso and gradient boosting). We then propose a protocol 
for the discovery and use of risk factors using lasso or boosting variable selection. We then illustrate 
the use of the protocol with a set of prostate cancer data and show that it recovers known risk factors. 
Finally, we use the protocol to identify new and important SNP based risk factors for prostate cancer 
and further seek evidence for or against the hypothesis of an anticancer function for Selenium in 
prostate cancer. We find that the anticancer effect may depend on the SNP‑SNP interaction and, in 
particular, which alleles are present.

In the present paper we introduce two newer variable selection method, the lasso and gradient boosting which 
we argue are large improvements to the often presently used  methods1. We discuss the advantages of these newer 
methods and show how they successfully find new, as well as known, risk factors for prostate cancer. We then 
discuss what this means in the search for new anti-cancer drugs in the case of prostate cancer.

As Austin and  Tu1 remark, researchers as well as physicians are often interested in determining the independ-
ent predictors of a disease state. These predictors, often called risk factors, are important in disease diagnosis, 
prognosis and general patient management as the attending physician tries to optimize patient care. In addition, 
knowledge of these risk factors help researchers evaluate new treatment modalities and therapies as well as help 
make comparisons across different  hospitals1. Because risk factors are so important in patient care it behooves 
us to do the best job possible in the discovery and use of disease risk factors. Because new statistical  methods2–9 
have been and are being  developed8, it is important for risk factor researchers to be aware of these new methods 
and to adjust their discovery and use of risk factor protocols as is necessary. In this paper, we argue that now is 
such a time. For a number of years in risk factor research a method of automatic variable selection called stepwise 
regression and its variants forward selection and backward  elimination10 (chapter 9) have been used even as new 
methods have become available  (see11–17 and many others). The last three cited are risk factor studies. We do not 
argue for a change of protocols in risk factor discovery and use simply because newer methods are available. As 
literature  shows1 the older methods are often untenible and the newer methods are much less so. In particular, 
in a simulation study of stepwise methods, Austin and  Tu1 found that 1,000 runs of backward elimination on 
the same data set produced 940 different “optimal” models. However, in our opinion, a bit more needs to be said 
about stepwise regressions and other similar variable selection approaches. As we just remarked it is possible 
to have a selection process to produce optimal models by these older approaches. Recall by optimal we mean 
that no better predictive solutions exist. In theory then we could find an optimal model by these methods. The 
problem is the identification of such a model because we may have many candidates. Thus as far as we know 
the only way to know if it is optimal is to test each candidate individually which is very labor intensive. As we 
discuss in the next section of the paper, the oracle property of adaptive lasso regression requires less laborious 
methods, Thus we recommend the use of adaptive lasso to solve our selection problem (i.e. the identification of 
disease risk factors) by this method. In addition in our recommended protocol we recommend use of a gradient 
boosting algorithm to verify our adaptive lasso solution. The disadvantage of gradient boosting as an overall 
solution is that it only identifies the salient risk factors and does not provide actual prediction equation to use to 
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compute the actual risk itself as is needed to be certain these new risk factors have a realistic effect in changing 
the actual salient risks involved.

While a comparison between stepwise regression and lasso/gradient boosting was beyond the scope of the 
present work, the aim of which was to identify SNP based risk factors for prostate cancer. Austin and  Tu1 have 
previously established the instability (in the sense that so many candidate models were produced by stepwise 
regression) it is practically too labor intensive for use in routine risk factor studies.

We point out that the overall purpose of this paper is twofold. First, we wish to introduce two methods of 
statistical variable selection and show how they can be used to identify disease risk factors, especially in the case 
of prostate cancer. Second, we wish to investigate these several new SNP risk factors for prostate cancer and 
using these risk factors see what we can discover more about the effect of selenium on prostate cancers. Our 
paper makes the following points:

1. We summarize some of the studies that show that stepwise regression and its variants, as now used more often 
than they should be in risk factor studies, are unreliable and in fact may cause some of the irreproducibility 
of life sciences research as discussed  by18 as we shall discuss later.

2. We then argue on the basis of current research that there are methods available that are considerably more 
reliable.

3. We then propose a modern statistical protocol for the discovery and use of risk factors when using logistic 
regression as is commonly done.

4. We illustrate the use of the protocol developed in 3 using a set of prostate cancer  data19.
5. We report the finding of new and important prostate cancer risk factors using the modern procedures. 

These new risk factors are important because they increase the possibility of an explanation for the potential 
anticancer effects of  Selenium19,20 in prostate cancer. This is the reason for studying the SEPP1 and SOD2 
genes. Cooper et al.19 discussed the possibly of such a mechanism. We quote  from19. “Selenium may affect 
prostate cancer risk via its plasma carrier selenoprotein P which shows dramatically reduced expression in 
prostate cancer tumors and cell lines. The selenoprotein P (SEPP1)Ala234 single nucleotide polymorphism 
(SNP) allele is associated with lower plasma selenoprotein Pin men, reducing the concentration/activity of 
other antioxidant selenoproteins. Selenium status also modifies the effect of the mitochondrial superoxide 
dismutase (SOD2) SNP Ala16Val on prostate cancer risk.” This is a continuation of the earlier  study19 which 
“investigated the relationship of these SNPs with prostate cancer risk”.

We further note that nothing in the way of statistical methods is new in this paper. What is new is the introduc-
tion of a clear protocol to identify and use disease risk factors that involve much less problematic methods than 
stepwise regression. We then use the proposed protocol to identify a known prostate cancer risk factor and then 
discover new and important prostate cancer risk factors and finally see what conclusions can be drawn about the 
relationship between selenium and prostate cancer. In particular we propose a new hypothesis that may explain 
the contradictory results on the relationship of Selenium and prostate cancer.

What then should replace these automatic variable selection methods? From the references in 
“Introduction” section, we see that the shrinkage methods have done well when compared to the current step-
wise and all subsets methods and thus we follow the suggestion of Steyerburg et al.4 and look at shrinkage meth-
ods. The question then becomes what shrinkage method might we choose as the next variable selection method? 
We are impressed by the work of Ayers and  Cordell2 in this regard. First, we note that shrinkage estimators are 
also called penalized estimators. In particular the  lasso7 as defined by  Zou21 can be considered. We note that the 
factor lambda is said to be the penalty because it weights one term in the  definition21 more than the other. This 
is because the weight for one term is lambda and for the second term is 1-lambda. As lambda changes from 0 to 
1 the weights are adjusted accordingly. This adjustment can be optimized for a particular data set by using tech-
niques of mathematical optimization. The adjustment and method are discussed with respect to the figures and 
protocol later in the presentation. We mention there that different variable types require different optimization 
methods and provide more details and references. This fact leads to calling this approach penalization by some 
authors as discussed in the following paragraph.

Now Ayers and  Cordell2 studied “the performance of penalizations in selecting SNPs as predictors in genetic 
association studies”, where SNP stands for single nucleotide polymorphism. Their conclusion is: “Results show 
that penalized methods outperform single marker analysis, with the main difference being that penalized meth-
ods allow the simultaneous inclusion of a number of markers, and generally do not allow correlated variables to 
enter the model in which most of the identified explanatory markers are accounted for”, as shown by  Tibshirani7. 
In addition, lasso prevents overfitting the  model9, p 304. At this point, penalty estimators (i.e. shrinkage) look 
very attractive in risk factor type  studies9 (chapter 16.), especially given the relationship between lasso and 
 boosting9, p. 320.

Another  paper21 helps us make our final decision.  Zou21 considers a procedure called adaptive lasso in 
which different values of the parameter λ are allowed for each of the regression coefficients. Furthermore, Zou 
shows that an adaptive lasso procedure is an oracle procedure such that β(Ϩ) (asymptotically) has the following 
properties.

a. It identifies the right subset model and
b. It has the optimal estimated rate.
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Zou then extends these results to the adaptive lasso for logistic regression. Wang and  Lang22 developed 
an approximate adaptive lasso (i.e. a different λ for each β is allowed) by least squares approximation for 
many types of regression.  Boos23 shows how easy it is to implement this software in the statistical language 
R for logistic regression. Thus, we choose to use the least squares approximation to their adaptive lasso 
logistic regression in the next section. We note here that a special variant of lasso, group  lasso24 is needed 
for categorical predictor variables.

In the next section, we propose and discuss a protocol for the discovery and use of risk factors in logistic regres-
sion models. In the following section we illustrate the use of the protocol using the data of Cooper et al.19 to look 
at some risk factors for prostate cancer. We will show that currently known risk factors can be identified as well 
as new risk factors discovered using these methods.

In addition, a second new method of variable selection called gradient boosting has been  developed25–27, 
Chapter 89,28, (Chapter 17.). This method has some of the same advantages as lasso and we add it to the protocol 
and test it as well. The boosting method makes use of regression trees. A readable introduction can be found 
 in29. The main purpose of the boosting algorithm is to further confirm the lasso results.

Materials and methods
A suggested protocol for using logistic type regression to discover and use disease risk fac‑
tors. Our suggested protocol is shown below. We discuss the protocol in this section and illustrate its use with 
prostate cancer risk factors in the following section. This protocol uses the R statistical language. R was chosen 
because of its power and the fact that all of the required algorithms are available in R.  See23 for their internet 
URLs.

Protocol for use with risk factors. 

 1. Ready data for analysis.
 2. Input to R.
 3. Regress a suitable dependent variable ((say) 0—Control, 1—Has disease) on X (a potential risk factor) as 

described by  Harrell30 (Chapter 10) for logistic type regression.
 4. Select a set of potential risk factors. If an X variable is continuous, we suggest use of the Bianco-Yohai 

(robust (outlier resistant),  see31) estimator and further suggest putting outliers, sometimes called leverage 
points, aside for further analysis as they may give rise to extra  information31. This step can help to lessen 
the effects of anomalous data points

 5. Now build a full risk factor prediction model as described by  Shmueli32.
 6. Use potential risk factors (Xs) to form a full model with the appropriate dependent variable (as in 3).
 7. If any variables are continuous repeat 4 using the entire potential full prediction model.
 8. With any outliers set aside for further study, regress the dependent variable on the logistic regression type 

full model using the adaptive lasso method, least squares approximation, as described by  Boos23.
 9. Using a Bayesian Information Criterion (BIC) or alternatively an Akaike Information Criterion (AIC), 

select variables without zero lasso regression coefficients to be predictors in a risk factor based reduced 
 model23. If categorical risk factors are present, use group lasso  regression24. Use graphs like Fig. 1  in24 to 
identify the zero lasso regression coefficients that may exist for the categorical variables.

 10. Repeat Step 8 for gradient boosting as described by  Kendziorski26 or  Ho33.
 11. Validate the reduced model, with the similar validation of the full model of step 6, if there is any doubt 

about variables discarded from the full model, using bootstrap cross validation or tenfold cross  validation30 
and then check the usual model  diagnostics34 for either lasso or boosting or both.

 12. Predict with the reduced model containing the appropriate risk factors as described in  Harrell30, Chapter 11 
and  Ryan35, Chapter 9.

Notes to the protocol.

A. We note that for the genome wide case of predictors one should refer  to36  and37.
B. All logistic regression assumptions should be checked and satisfied as in  Pregibon27.

Results
The prostate cancer case. This example is taken from Cooper et al.19 where the data (including all sample 
sizes) and biological system are described. Also see the data description in the “Appendix”. The data set used 
in this paper is a subset of the Cooper et al. data set with all observations containing missing values of model 
variables removed. Further we note that all potential predictor variables are categorical, so no imputation was 
performed. The coding assignments and the variable definitions are given in the “Appendix”. The simple and 
multiple logistic regressions are carried out as described  in30. Robust logistic regressions, when needed, are 
carried out as described  in31. Variable selection is carried out using the adaptive  lasso21 with the least squares 
approximation of Wang and  Leng22 for continuous independent variables and by group  lasso24 for categorical 
independent variables. Gradient boosting is carried out using R Package  gbm25 as described  by26,28,33. All com-
putations are carried out using the R statistical language. The R functions for variable selection (adaptive lasso 
and group lasso) along with the papers are available from  Boos23, and used as described there. The use of the 
group lasso R function is covered in R help for packages grplasso and grpreg. The data sets and R programs are 
available from the authors (DEB). Further the R code can be found at the URLs given  in23 and the data can be 
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found on the internet as indicated in the “Appendix”. The variables studied as potential risk factors are listed in 
the X column of Table 1. The dependent variable is current status. The goal of the research is to see if our results 
support a possible mechanism for Selenium’s anticancer function in prostate cancer as suggested  in19.

We now follow the protocol and explain each step in detail. We begin by considering the one predictor 
logistic regressions in Table 1. First note that all potential risk factors in this data set are categorical (factors) 
so we do not have to consider the Bianco-Yohai38 estimator of protocol Step 4 for this data. We note that this is 
often not the case. Cooper et al.19 hypothesize a SNP-SNP interaction as a risk factor for prostate cancer where 
SNP denotes a single nucleotide polymorphism. Recall point 5 of “What then should replace these automatic 
variable selection methods?” section. We now test this hypothesis and attempt to answer the question is there 
such an interaction? In order to answer this question, we first note that the answer is not completely contained 
in Table 1. Second, we recall that we have a gene–gene interaction of two genes if both affect the final phenotype 
of the individual together. To be specific, we now consider the two genes representing the relevant alleles of the 
SEPP1 and SOD2 genes, the genes involved in the potential mechanism for selenium anticancer properties. If 
there is a gene–gene interaction, we must see the following statistically. The relevant alleles of the SEPP1 and 
SOD2 genes must be selected to be in a reasonable prediction equation for the disease state by the appropriate 
lasso or boosting algorithm (see Figs. 1, 2, Tables 3, 4). The appropriate lasso algorithm here is the group lasso 
for logistic regression because the predictor variables are categorical. We now note that in our data set we have 
four candidate predictor variables from which to search for our gene–gene interaction MnSOD_DOM_Final, 
SeP_Ad_Final, MnSOD_AD_Final and SeP_DOM_Final. Either observation of the Variable Values or a simple 
trial shows that we cannot include all four variables in the model at once because they are pairwise collinear. 
Hence, we have to separate the variables into the two cases, the models of Figs. 1 and 2. We also note that lasso 
generally does not allow correlated variables to enter the  model2,7,9 as well as prevents  overfitting7,9.

We now begin our search using lasso with the model of Fig. 1. This gives us a candidate for an interaction. 
We then perform the group lasso analysis of Fig. 1. Here we must determine if the relevant alleles are included 
in the group lasso selected prediction equation. Roughly this is the case if the lasso regression coefficients are 
essentially not zero at the end of the algorithm’s execution as shown on the coefficient path plot of Fig. 1. By 
looking at equation (2.2)  of24 we see that 0 ≤ λ < ∞ hence as λ → ∞,  sλ(β) → 0 and thus βi → 0 but not uniformly. 
Hence the question is what value of λ do we choose to determine if the coefficients are close enough to zero to 
discard that term from the model as a zero coefficient. Based on Table 2 where we compute the optimal λ to use 
we choose λ = 1.428 to be the cutoff point. Hence, we can now apply the condition of the previous paragraph. We 
now check Fig. 1 to see which if any of these candidate alleles are selected for the group lasso prediction equa-
tion which was our criterion. We now examine the Fig. 1 plot at λopt = 1.428. We note that at this λ none of the 
candidate alleles have coefficients of zero. Hence using our criterion, we can summarize as follows:

1. We need Fig. 1 selection to show interaction. SeP_Ad_Final0 was Ala/Ala so this is one allele that qualifies. 
Similarly, for SeP_Ad_Final1 and 2 which are Ala/Thr and Thr/Thr respectively.

Figure 1.  The Group Lasso Coefficient plot for the logistic regression. Containing MnSOD_DOM_FINAL 
and SeP_Ad_Final. We note that for lambda = λopt none of the paths shrink to zero suggesting that a SNP-SNP 
interaction, as reported  in19 exists.
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Table 1.  Simple logistic regression results dependent variable CURRENTSTATUS intercepts are not listed.

X Coeff SE P

X_STRATUM  − .055132 .005646  < 2 ×  10−16

MnSOD_AD_Final

0  − 0.4334 .1241 0.000477

1  − 0.2478 .1157 0.032196

2  − 0.3140 .1233 0.010879

SeP_Ad_Final

0 0.21219 0.10309 0.039557

1 0.12890 0.10754 0.230675

2 0.23484 0.15797 0.137117

MnSOD_DOM_Final

0 0.4334 0.1241 0.000477

1 0.2704 0.1126 0.016369

SeP_DOM_Final

0 0.21219 0.10309 0.039557

1 0.14445 0.10568 0.171679

Smoke_ever

0  − .00339 .08161 0.967

1  − .03791 .07016 0.589

Alco_ever 0

0  − 0.428943 0.142425 0.0026

1 0.002951 0.062317 0.9622

FAMHIST 0.84619 0.09497  < 2 ×  10−16

Figure 2.  Group lasso Coefficient Plot for Model Containing MnSOD_AD_Final and SeP_DOM_Final.
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2. Both MnSOD_DOM_Final0 and MnSOD_DOM_Final1 (i.e. Ala/Ala and + /Ala) satisfy so this shows that 
for MnSOD the result is + /Ala. Hence the identified interaction alleles are

Gene name Value

SEPP1 Ala/Ala

SOD2  + /Ala

which agrees with the Cooper et al.19 finding on a gene–gene interaction risk factor.

New risk factors. Similarly, we have from SeP_Ad_Final 1 and 2

Gene name Value

Ala/Thr  + /Ala

Thr/Thr  + /Ala

which are also risk factors.

We now repeat this analysis for the model which contains the other possible candidate alleles. By our criterion 
for gene–gene interaction we need βi ≠ 0 for λopt = 0.635, from observing Table 2. Now by observing Fig. 2 we 
see that for MnSod_Ad Final the 0, 1 and 2 values meet the criteria while for SeP_DOM_Final only the 0 and 1 
alleles do. By consulting the “Appendix”, we see that

SeP_DOM_Final1 is Ala/Thr and Thr/Thr
SeP_DOM_Final0 is Ala/Ala
MnSOD_AD_Final0 is Val/Val

1 is Val/Ala
2 is Ala/Ala

Hence, we conclude that we have additional gene–gene interactions that are risk factors. Since one combina-
tion was identified using the first model. We now have

Table 2.  Optimal λs computed from R packages grplasso and grpreg for indicated models. λmin computed by 
package grpreg using a Bayesian Information Criterion λmax was computed by package grplasso.

Predictors in model λmin λmax λopt

MnSOD_AD_Final
SeP_DOM_Final .009 70.55 .635

MnSOD_DOM_Final
SeP_Ad_Final .017 83.99 1.428

Table 3.  Boosting results Pkg gbm Ada Boost, corresponds to Fig. 1.

Variable Relative influence

MnSOD_DOM_Final 68.96

SeP_Ad_Final 31.03

Table 4.  Boosting results, same conditions as Table 3, corresponds to Fig. 2.

Variable Relative influence

MnSOD_AD_Final 75.29

SeP_DOM_Final 24.70



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17877  | https://doi.org/10.1038/s41598-021-97412-2

www.nature.com/scientificreports/

SEPP1 SOD2

Ala/Ala Val/Val

Ala/Ala Val/Ala

 + /Thr Val/Val

 + /Thr Val/Ala

as risk factors. None of these have been reported in the prior literature as far as we can determine.

We can now make prediction equations using our now known risk factors which will give our predicted diag-
nosis of whether or not a patient is at risk for prostate cancer based on our variable values assuming that we use 
a new observation not one which is included in our current dataset. We note from Figs. 1 and 2 that some risk 
factor coefficients seem to be positive and some negative. We note that this could mean that some alleles lead to 
an antitumor effect while other alleles are tumorigenic. Thus we believe follow up of the current study is most 
important. This observation may have some bearing on why Selenium is sometimes reported as an anti-cancer 
compound, but not always. We recommend and use bootstrap cross validation to validate this equation and full 
details are included  in30. As a final reminder, all of the other assumptions of logistic regression need to be checked 
each and every time such a model is used. The reader is referred to  Pregibon34 for further details. These new risk 
factor results are particularly important since the SEPP1 gene product is in the same metabolic path as a tumor 
suppressor for prostate  cancer20. This may help provide a mechanism for selenium’s possible anti-prostate cancer 
 action19. We also notice in Figs. 1 and 2 the regression coefficient plots show both negative and positive values 
as the curve proceeds to convergence. This suggests that we have both positive and negative risk factors in this 
data and hence some risk factors suggest anticancer activity while others suggest positive tumorigenic cancer 
activity. This perhaps suggests that some combinations of these alleles are anticancer while others are cancer 
causing. If this is the case, then perhaps we have a start on explaining the complicated mechanism that seems to 
be in operation between Selenium and prostate cancer.

We now repeat the analysis using gradient boosting. The purpose of this analysis is to verify and confirm the 
lasso results. Please notice that in this paper each new result has been verified by at least two independent meth-
ods. That is the point of adding gradient boosting to demonstrate to the reader that our results are reproducible 
and solid. The results are shown in Tables 3 and 4. The results are identical to the lasso results in the sense that 
exactly the same risk factors are obtained.

Discussion
Limitations of the proposed protocol and future research. As much as we would like this to be the 
last word on the discovery and use of disease risk factors with logistic regression, it is not. We will mention a 
few possible limitations and our hope for some future work perhaps by us or others that we would like to see.

First, Ayers and  Cordell2 mention a limitation of this suggestion, the fact that there is no known way to get 
confidence intervals and p-values for lasso estimates,i.e. the lasso regression coefficients. Fortunately, this is 
changing. There is a paper by Lockhart et al. entitled “A significance test for the lasso”39. While this is a compli-
cated paper that doesn’t solve all problems a strong beachhead has been established. Unfortunately, this is not a 
test on individual lasso regression coefficients but rather an omnibus test.

Next, we discussed the advantages of adaptive lasso earlier (esp. the oracle property) but no algorithm cur-
rently exists to solve the adaptive group lasso problem in the case of logistic regression. We conjecture based 
on the results of the linear regression case extended to the logistic case that if we could extend adaptive lasso 
to the group lasso for logistic regression cases that the same desirable properties of adaptive lasso would hold, 
especially the oracle property.

Finally, the usual problems of outliers, etc., as always, raise their head. The Bianco-Yohai  algorithm38 is a start. 
This type thinking has been extended to some penalized shrinkage regression methods, but not yet for logistic 
regression to our knowledge. We conclude that there is much work to be done and fully expect to see other papers 
like this one in the future and hopefully statistical practice can continue to evolve and even better solutions can 
be applied to these interesting and important problems.

Selenium as an anti‑prostate cancer compound. We have found additional risk factors involving 
the SNPs in SEPP1 and SOD2. This provides support for a possible anti-prostate cancer function for selenium 
in addition to those reported by Cooper et al.19, hence continuing to support a reported anticancer  effect40 for 
 selenium19,20. However as we noted above that the regression coefficient plots may suggest some of these com-
bination are anticancer while some are tumorigenic. This observation may shed light on what seems to be a 
complicated relationship between Selenium and prostate cancer.

Conclusion
We have attempted in this paper to bring up to date statistical thinking to the problem of the identification and 
use of disease risk factors, where stepwise regression is still too often used. Much remains to be done, but we 
hope that the ideas presented here will improve statistical practice in this very important area. In the process of 
bringing this thinking up to date, we have shown that we recover a currently known risk factor and identify new 
risk factors for prostate cancer which suggest the value of our approach. These new risk factor results are par-
ticularly important since the SEPP1 gene product has recently been shown to be in the same metabolic pathway 
as a tumor suppressor (Selenium binding Protein 1) for prostate  cancer20. This further supports the possibility 
that selenium has anti-prostate cancer  properties19 but may have tumorigenic properties as well with certain 
genotypes. This could explain why studies like SELECT have shown a positive cancer effect and yet other studies 



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17877  | https://doi.org/10.1038/s41598-021-97412-2

www.nature.com/scientificreports/

show an anti-cancer effect for  selenium20,41–43. This suggests a complicated mechanism. Figures 1 and 2 suggest 
different signed regression coefficients for the different alleles. Again, this could suggest that different alleles in 
a codon could cause different effects induced by the resulting protein and hence different biological activity for 
the resulting protein. Our working hypothesis is that this effect is related to the SNP-SNP interaction. Perhaps 
differences such as these are causing reports of positive and negative selenium effects for anti-cancer activity. 
Only more research will shed light on this complicated area.

Data availability
This Data can be obtained on ResearchGate.net at David Eugene Booth’s account with https:// doi. org/ 10. 13140/ 
RG.2. 2. 19989. 86240.

Code availability
This example is taken from Cooper et al.19 where the data (including all sample sizes) and biological system are 
described. Also see the data description in the “Appendix”. The data set used in this paper is a subset of the Cooper 
et al. data set with all observations containing missing values of model variables removed. Further we note that 
all potential predictor variables are categorical, so no imputation was performed. The coding assignments and 
the variable definitions are given in the “Appendix”. The simple and multiple logistic regressions are carried out 
as described  in30. Robust logistic regressions, when needed, are carried out as described  in31. Variable selection 
is carried out using the adaptive  lasso21 with the least squares approximation of Wang and  Leng22 for continuous 
independent variables and by group  lasso24 for categorical independent variables. Gradient boosting is carried 
out using R Package  gbm25 as described  by26,28,33. All computations are carried out using the R statistical language. 
The R functions for variable selection (adaptive lasso and group lasso) along with the papers are available from 
 Boos23, and used as described there. The use of the group lasso R function is covered in R help for packages 
grplasso and grpreg. The data sets and R programs are available from the authors (DEB). Further the R code can 
be found at the URLs given  in23 and the data can be found on the internet as indicated in the “Appendix”. The 
variables studied as potential risk factors are listed in the X column of Table 1. The dependent variable is current 
status. The goal of the research is to see if our results support a possible mechanism for Selenium’s anticancer 
function in prostate cancer as suggested  in19.

Appendix: Data set
Total number of observations is 4679.

This Data can be obtained on ResearchGate.net at David Eugene Booth’s account with https:// doi. org/ 10. 
13140/ RG.2. 2. 19989. 86240.

INCLUSIONSTATUS Cancer status at inclusion
0 = Control

1 = Cancer

X_INCLUSIONAGE_YRS Age Age

CURRENTSTATUS Updated cancer status
0 = Control

1 = Cancer

T T-stage

Staging 1 to 4

 − 1 = Control

9 = No data

N N-stage

0 = N − 

1 = N + 

 − 1 = Control

99 = No data

M M-stage

0 = M − 

1 = M + 

 − 1 = Control

99 = No data

GLEASON Gleason score

Staging 1 to 10

 − 1 = Control

99 = No data

PSA Prostate specific antigen

μg/ml

 − 1 = Data not avail-
able

 − 2 = Control

ADV
Advanced stage cancer in at least one of the above mark-
ers (TNM, Diff, Gleason, PSA) see below for how the 
cancers were classified

0 = Not aggressive

1 = Aggressive

 − 1 = Control

99 = No data

X_STRATUM Stratification of data based on age and geographical 
location

https://doi.org/10.13140/RG.2.2.19989.86240
https://doi.org/10.13140/RG.2.2.19989.86240
https://doi.org/10.13140/RG.2.2.19989.86240
https://doi.org/10.13140/RG.2.2.19989.86240
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FAMHIST Family history
0 = No

1 = Yes

smoke_ever Smoking

0 = Never

1 = Ever

99 = Data missing

alco_ever Alcohol consumption

0 = Never

1 = Ever

99 = Data missing

X_BMI Body mass index
 − 1 = No data

1 < , = BMI

MnSOD_AD_Final SOD2 genotype

0 = Val/Val

1 = Val/Ala

2 = Ala/Ala

MnSOD_DOM_Final SOD2 dominant model
0 = Val/Val

1 = Val/Ala and Ala/
Ala

SeP_Ad_Final SePP1 genotype

0 = Ala/Ala

1 = Ala/Thr

2 = Thr/Thr

SeP_DOM_Final SePP1 dominant model
0 = Ala/Ala

1 = Ala/Thr and Thr/
Thr

inclusion_age_banded Age banded within 10 years

Ad_control_100_final Aggressive and control. All other cases excluded
0 = Control

1 = Aggressive

Loc_control_100 Non-aggressive and control. All other cases excluded
0 = Control

1 = Non aggressive

Cases were classified as either non-aggressive at diagnosis (tumor stage 1 and 2, Gleason score < 8, Differen-
tiation G1-G2, NP/NX, MO/MX, PSA < 100 μg/L; NPC) or aggressive at diagnosis (tumor stage 3–4, Gleason 
score ≥ 8, Differentiation G3-G4, N + , M + , PSA ≥ 100 μg/L;APC).Total number of observations was 4679.

Received: 15 October 2020; Accepted: 5 July 2021
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